
A semi-quantitative approach for modelling crop response to soil fertility: 

Evaluation of the AquaCrop procedure 

Short title: Evaluation of AquaCrop soil fertility procedure 

 

H. VAN GAELEN
1*

, A. TSEGAY
2
, N. DELBECQUE

1,3
, N. SHRESTHA

1
, M. GARCIA

4
, H. 

FAJARDO
4
, R. MIRANDA

4
, E. VANUYTRECHT

1
, B. ABRHA

2
, J. DIELS

1
 AND D. 

RAES
1 

 

1
Department of Earth and Environmental Sciences, KU Leuven – University of Leuven, 

Celestijnenlaan 200 E, 3001 Leuven, Belgium 

2
Department of Dryland Crop and Horticultural Sciences, Mekelle University, P.O. Box 231, 

Mekelle, Ethiopia 

3
Department of Soil Management, Ghent University, Coupure Links 653, 9000 Ghent, 

Belgium (Present address) 

4
Facultad de Agronomía, Universidad Mayor de San Andrés, La Paz, Bolivia 

* To whom all correspondence should be addressed. Email: 

hanne.vangaelen@ees.kuleuven.be  

 

 

 

This paper is published as: 

Van Gaelen, H., Tsegay, A., Delbecque, N., Shrestha, N., Garcia, M., Fajardo, H., Miranda, 

R., Vanuytrecht, E., Abrha, B., Diels, J., Raes, D. 2015. A semi-quantitative approach for 

modelling crop response to soil fertility: Evaluation of the AquaCrop procedure. Journal of 

Agricultural Science,153:1218-1233 doi:10.1017/S0021859614000872. 

  



SUMMARY 

Most crop models make use of a nutrient balance approach for modelling crop response to 

soil fertility. To counter the vast input data requirements that are typical of these models, the 

crop water productivity model AquaCrop adopts a semi-quantitative approach. Instead of 

providing nutrient levels, users of the model provide the soil fertility level as a model input. 

This level is expressed in terms of the expected impact on crop biomass production, which 

can be observed in the field or obtained from statistics of agricultural production. This study 

is the first to describe extensively, and to calibrate and evaluate, the semi-quantitative 

approach of the AquaCrop model, which simulates the effect of soil fertility stress on crop 

production as a combination of slower canopy expansion, reduced maximum canopy cover, 

early decline in canopy cover and lower biomass water productivity. AquaCrop’s fertility 

response algorithms are evaluated here against field experiments with tef (Eragrostis tef 

(Zucc.) Trotter) in Ethiopia, with maize (Zea mays L.) and wheat (Triticum aestivum L.) in 

Nepal, and with quinoa (Chenopodium quinoa Willd.) in Bolivia. It is demonstrated that 

AquaCrop is able to simulate the soil water content in the root zone (relative root-mean-

square error (RRMSE) 6-13 %), and the crop’s canopy development (RRMSE 12-34 %), dry 

aboveground biomass development (RRMSE 13-22 %), final biomass (RRMSE 4-24 %) and 

grain yield (RRMSE 7-19 %), under different soil fertility levels, for all four crops. Under 

combined soil water stress and soil fertility stress, the model predicts final grain yield with a 

RRMSE of only 11-13 % for maize, wheat and quinoa, although of 34 % for tef. This study 

shows that the semi-quantitative soil fertility approach of the AquaCrop model performs well 

and that the model can be applied, after case-specific calibration, to the simulation of crop 

production under different levels of soil fertility stress for various environmental conditions, 

without requiring detailed field observations on soil nutrient content. 

 

INTRODUCTION 

Soil fertility exhaustion is widely acknowledged as a principal cause of low agricultural 

production in smallholder farming. The effects of soil fertility and the potential benefits of 

fertilizer application on crop production have traditionally been studied by means of 

experimental research. Unfortunately, field experiments tend to be laborious and time- and 

resource-consuming, and the results are often affected by the specific experimental set-up. 

For these reasons, present-day experimental research is often complemented with crop 

models, in order to study crop responses to soil fertility under various farming systems and 

environmental conditions (Myers 2005). Crop models integrate different factors influencing 



crop production and contribute to the understanding of the interactions amongst these factors. 

Moreover, they enable very efficient long-term assessments to be made of numerous 

scenarios and fertility management strategies (Boote et al. 1996; Carberry et al. 2002) for 

both historical and future climatic conditions (Tubiello & Ewert 2002). 

Commonly used crop models, such as APSIM (Keating et al. 2003), CROPSYST 

(Stöckle et al. 2003), DSSAT/CERES (Jones et al. 2003), STICS (Brisson et al. 2003) and 

WOFOST (Boogaard et al. 2014), typically make use of a nutrient balance approach to 

consider the effects of soil fertility on crop production. Depending on the complexity of the 

model, environmental conditions, soil characteristics, the initial nutrient content of the soil, 

individual nutrient sources and their losses, and conversions of nutrients between different 

forms or ‘pools’ are taken into account in calculating the amounts of nutrients available to, or 

taken up by, the crop. In this way, crop productivity and growth processes can be related to 

the nutrient content of the soil, to nutrient uptake and to the nutrient content of specific plant 

organs. One of the disadvantages of such a detailed approach is the requirement for a vast 

input of data. Moreover, the nutrient balances are mostly calculated for selected nutrients 

(often merely nitrogen), which are not always the nutrients that are the most limiting to crop 

growth and productivity (Probert & Keating 2000; Brisson et al. 2003; Probert 2004); in 

addition, the release of nutrients from organic fertilizers such as crop residues or manure is 

difficult to quantify but is nevertheless crucial for the estimation of the nutrient balance 

(Gijsman et al. 2002; Probert & Dimes 2004). Finally, the relationships between nutrients and 

crop production have mostly been developed for a specific crop type and hence the models 

are not widely applicable. These disadvantages clearly hamper the application of detailed, 

nutrient-balance-based crop models to smallholder farming systems in tropical and sub-

tropical regions, where a wide variety of crops are grown (in rotation, or by intercropping), 

where organic fertilizers are the predominant soil fertility management strategy, and where 

other nutrients besides nitrogen (e.g. phosphorus) limit crop production (Delve et al. 2009; 

Whitebread et al. 2010).  

An alternative to the nutrient balance approach consists of modelling the effects of soil 

fertility on crop development and production in a semi-quantitative way. Such a semi-

quantitative approach was implemented in AquaCrop (Hsiao et al. 2009; Steduto et al. 2009; 

Raes et al. 2009), the crop water productivity model developed by the Food and Agriculture 

Organization of the United Nations (FAO), and has been updated in the latest version, 

AquaCrop version 4.0 (Raes et al. 2012). In contrast to other models, nutrient cycles or 

balances are not considered explicitly in AquaCrop, but soil fertility stress is determined by 



its expected effects on crop biomass production. The calculation procedure does not 

distinguish between different nutrients and it is identical for all crops; only the calibration of 

the model is crop- and case-specific. Furthermore, AquaCrop integrates the effects of various 

production-limiting factors – including climatic factors, soil water stress, soil salinity stress 

and field management – with soil fertility stress. Within this integrated approach, between-

stress interactions are taken into account, thereby allowing realistic yield simulations to be 

made. 

In this study, the semi-quantitative approach of AquaCrop (version 4.0) to the simulation 

of crop responses to soil fertility is described extensively for the first time and evaluated for 

different crops under diverse environmental and meteorological conditions. The study aims to 

evaluate the performance of AquaCrop’s fertility response algorithms in simulating not only 

final yield production, but also the soil water balance, canopy development, and dry 

aboveground biomass for various soil fertility levels, both in the presence and in the absence 

of soil water stress. By providing a reliable alternative to commonly used soil nutrient 

balance approaches, the semi-quantitative approach will contribute to, rather than replace, the 

existing diversity of simulation approaches for crop responses to limited soil fertility. The 

semi-quantitative approach is particularly applicable in circumstances where detailed 

observations of soil nutrient conditions are unavailable.  

 

MATERIALS AND METHODS 

The semi-quantitative approach of AquaCrop 

AquaCrop is a multi-crop water productivity model. It simulates crop development and 

production under a range of environmental and management conditions, based on user-

specified inputs of daily climatic data (rainfall, minimum and maximum temperature and 

reference evapotranspiration), soil physical characteristics (total available soil water content 

and saturated hydraulic conductivity), crop characteristics (crop phenology for the local 

cropping environment), and irrigation and field management information. With its limited 

input and calibration requirements, AquaCrop was developed to maintain a good balance 

between simplicity, accuracy and robustness. The model has been successfully calibrated and 

evaluated for several common crops, including barley, maize, wheat and cotton (García-Vila 

et al. 2009; Heng et al. 2009; Andarzian et al. 2011; Abrha et al. 2012), as well as for some 

underutilized crops, such as quinoa and tef (Geerts et al. 2009; Tsegay et al. 2012). Based on 

a water-driven growth module, AquaCrop is well suited to the simulation of crop production, 



especially under conditions in which water is a key limiting factor (e.g. Geerts et al. 2010; 

Stricevic et al. 2011; Abedinpour et al. 2012).  

Instead of using a nutrient balance, AquaCrop proposes a semi-quantitative assessment to 

determine the degree of stress that a crop experiences from nutrient deficiencies. This semi-

quantitative measure corresponds to the maximum relative dry aboveground biomass (Brel) 

that can be expected in a fertility-stressed environment with reference to stress-free 

conditions (Eqn 1). Brel ranges from 0 %, corresponding to complete crop failure from 

nutrient deficiency, to 100 %, indicating no nutrient stress. 

 

     
       

    
       

 

(1) 

 

where Brel is the maximum relative dry aboveground biomass (%), Bstress is the total dry 

aboveground biomass at the end of the growing season in a field with soil fertility stress, and 

Bref is the total dry aboveground biomass at the end of the growing season in a field without 

soil fertility stress. Both Bstress and Bref are to be recorded in well watered fields (no soil water 

stress) and free of any other stress factors, such as weeds, pests, diseases and salinity. 

Being a semi-quantitative input parameter, Brel can easily be obtained. It is the maximum 

B that can be produced under the governing local conditions in a field that is only affected by 

soil fertility stress (the ‘soil fertility stressed’ field) in a good rainy year, or under irrigation 

when there is no water stress (Bstress). This biomass may be available from statistical reports 

or from indigenous farmer knowledge. The biomass is then expressed as a percentage of the 

biomass produced under stress-free conditions (Bref), which can be obtained from nearby 

experimental fields, from published potential yields, or through the application of a full 

nutrient strip in one part of the farmer’s field. In addition, model simulations can provide an 

estimation of the biomass for the local farming conditions under stress-free conditions (the 

‘reference’ field).  

When crop production is not affected by soil fertility stress, the AquaCrop model 

calculates crop yield (Y) based on the amount of water transpired by the crop (Tr). 

Transpiration (Eqn 2) depends on climatic conditions (reference evapotranspiration ET0) and 

the green canopy cover (CC), through the crop transpiration coefficient (KCTr). The expansion 

of the canopy cover from its initial value (CC0) to reach the maximum canopy cover (CCx) is 

described by a logistic function determined by the canopy growth coefficient (CGC). At the 

end of the growing season, the decline of the canopy cover due to senescence is described by 



means of the canopy decline coefficient (CDC). By means of the normalized crop water 

productivity (WP*), transpiration is converted into dry aboveground biomass production (B) 

(Eqn 3). Finally, yield is determined based on biomass, by means of the harvest index (HI) 

(Eqn 4).  

AquaCrop determines the soil water content in the root zone (Wr) by means of a soil 

water balance that keeps track of incoming (rainfall, irrigation and capillary rise) and 

outgoing (runoff, deep percolation and evapotranspiration) daily water fluxes. A maximum of 

five soil horizons, each with its own specific soil physical characteristics, can be incorporated 

into the model. When the soil water content in the root zone drops below conservative 

thresholds, which are process- and crop-specific, soil water stress will affect root zone 

expansion, canopy expansion and early senescence, transpiration and the harvest index. The 

relative intensity of the water stress on the various target model parameters is determined by 

the relevant stress coefficients (Ks). Ks varies between 1 (no stress) and 0 (full stress) and is 

related to the soil water content by a concave stress curve. A more detailed description of the 

AquaCrop model calculation procedure and algorithms can be consulted in Raes et al. (2009). 
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where Tri is the crop transpiration (mm/day) on day i, ET0i is the reference 

evapotranspiration (mm/day), KcTri is the crop transpiration coefficient (-), Ksi is the soil 

water stress coefficient (-), Ksbi is the cold stress coefficient for biomass production (-), B is 

the cumulative dry aboveground biomass production (g/m²), WP* is the normalized crop 

water productivity (g/m²), n is the number of sequential days spanning the growing period, Y 

is the dry mass of yield production (g/m²), and HI is the harvest index (-). 

In AquaCrop, the overall effect of soil fertility stress on crop production is simulated as 

the result of an integration of its effects on canopy cover development and biomass 

production.  First, AquaCrop mimics the effect of soil fertility stress on the canopy cover, 

according to what can be observed in soil fertility stressed fields (Walburg et al. 1981; 

Albrizio & Steduto, 2005). For this reason, three adaptations to the canopy cover 

development are introduced (Fig. 1): (i) a reduced canopy expansion, and consequently 



slower canopy development; (ii) a reduced CCx, and hence a less dense canopy; and (iii) a 

steady decline of the canopy cover once CCx is reached at mid-season. Mimicking canopy 

cover development under soil fertility stress is a crucial feature of the semi-quantitative 

AquaCrop procedure because it enables a correct simulation to be made of transpiration and 

soil water balance. Secondly, based on observations from field experiments reported by 

Steduto & Albrizio (2005), the effect of soil fertility stress on daily biomass production is 

simulated by a reduction in WP*. As the reservoir of soil nutrients gradually becomes 

depleted during crop development, the correction to WP* gradually increases (therefore, 

WP* itself is more strongly reduced) as more biomass is produced (Fig. 2). This correction to 

WP* was inspired by Geerts (2008) who reported, on the basis of experimental work with 

quinoa in the Bolivian Altiplano, that AquaCrop would more accurately represent the true 

situation if WP* were reduced once a certain amount of biomass had been produced and 

nutrients had become limiting.  

To simulate these four crop responses to soil fertility stress, AquaCrop uses four stress 

coefficients, i.e. for canopy expansion (Ksexp,f), for maximum canopy cover (KsCCx), for 

biomass water productivity (KsWP) and for canopy decline (fCDecline). As for water stress, 

stress coefficients range from 1 (no stress) to 0 (full stress). For every stress coefficient, a 

stress curve (Fig. 3(a)) defines the relationship between the level of soil fertility stress and the 

reduction of the target crop parameter (CGC, CCx, WP* and CC, respectively) that is affected 

by soil fertility stress. The shape of the stress curve can be convex, concave or linear, 

according to the position of the curve’s calibration point (e.g. Fig. 3(a)). The calibration point 

is determined for each case through calibration of the parameters of the model. As mentioned 

above, even though the fertility stress simulation procedure is the same for different crops, 

the crop response to soil fertility is specific to the crop type and to the environmental 

conditions under which the crop is cultivated, including climate and soil type. Therefore, the 

crop response to soil fertility stress cannot be described using conservative crop parameters 

(independent of location, crop cultivar or management practice) but requires calibration for 

each case.  

To facilitate the calibration of the crop response to soil fertility stress, an automatic 

calibration procedure is incorporated in the latest AquaCrop software (version 4.0). This 

procedure requires field observations of CCx and Brel and a qualitative description of the 

observed canopy decline during the season for a ‘soil fertility stressed’ calibration field in 

comparison to a ‘reference’ field (no soil fertility stress). To avoid interference and 

interaction with other stress factors during calibration, both fields need to be free of soil water 



stress and salinity stress, as well as of diseases, weeds and pests. Based on the input of the 

field observations, the curves of the four soil fertility stress coefficients (Ksexp,f, KsCCx, KsWP 

and fCDecline), i.e. the soil fertility stress relationships (e.g. Fig. 3(a)), are automatically fixed 

by means of an iterative optimization algorithm. Next, the expected canopy development and 

reduction of biomass are calculated for every level of soil fertility stress between full stress 

and no stress, based on the four stress curves (e.g. Fig. 3(a)) and assuming no water stress. 

This results in the determination of the relative biomass-soil fertility stress relation (Fig. 

3(b)). This relationship is not linear because (i) the shapes of the four stress curves are mostly 

non-linear, (ii) the shapes of the stress curves differ amongst the four stress coefficients, and 

(iii) the effect of soil fertility stress on WP* increases when biomass increases. The 

AquaCrop reference manual version 4.0 (Raes et al. 2012) contains more information about 

the automatic calibration procedure. 

Once the crop response to soil fertility stress is calibrated, crop production can be 

simulated for specified soil fertility levels under various environmental and management 

conditions. In order to perform a simulation, the user needs to specify the soil fertility level in 

terms of Brel (ranging from 20% to 100%) or to select a class between “non-limiting” and 

“very poor” biomass production, which is linked to a default Brel value. In the model, the 

user-specified input of Brel is translated into a soil fertility stress level by means of the 

biomass – soil fertility stress relation (Fig. 3(b)). Next, this soil fertility stress level is linked 

to the corresponding stress coefficients so that the four target parameters are adapted 

accordingly. Additionally, AquaCrop accounts for other stresses affecting biomass 

production by making a dynamic adjustment of the soil fertility stress level at every time step. 

If, for example, soil water stress limits biomass production during time step i, the simulated 

Brel during time step i will be lower than the Brel that would be expected during that time step 

on the basis of soil fertility stress alone (Brel,input). Consequently, AquaCrop will reduce the 

soil fertility stress during time step i+1 in such a way that Brel,input could theoretically still be 

reached at the end of the crop cycle. This dynamic adjustment is justified because it can be 

assumed that the limitation of biomass production during time step i leaves more nutrients in 

the soil. 

 

Field experiments 

The semi-quantitative AquaCrop approach was tested against: i) three years of experimental 

data for fields of tef (Eragrostis tef (Zucc.) Trotter) in the drought-prone degraded highlands 



of Tigray in northern Ethiopia, ii) two years of experimental data for fields of maize (Zea 

mays L.) and wheat (Triticum aestivum L.) in the humid plains of the central Terai in Nepal, 

and iii) two years of experimental data for fields of quinoa (Chenopodium quinoa Willd.)  in 

the semi-arid Bolivian Altiplano. Table 1 presents a summary of the environmental 

conditions at the experimental sites. All experiments were set up with a (factorial) 

randomized complete block design, with the water treatment as main factor and the soil 

fertility treatment as sub-factor (Table 1). In rainfed (RF) and deficit irrigated (DI) 

treatments, some degree of water stress was apparent, whereas in the fully irrigated (IR) 

treatment crops were maintained free of any water stress. Fertility treatments corresponded to 

applications of 0 % (T0), 50 % (T50), 100 % (T100) and 150 % (T150) of the (national) 

recommended fertilizer dose (see Table 1 for local recommendations). At all the experimental 

sites, the plots were regularly weeded and kept free from pests and diseases throughout the 

growing season. The following information was recorded: local daily weather data, the soil 

water content in the root zone, the soil texture and physical characteristics, irrigation 

applications, fertilizer applications, crop development (green canopy cover development, 

monitored by overhead digital photographs), crop phenology (time of sowing, emergence, 

CCx, flowering, senescence and maturity), the effective rooting depth, the intermediate and 

the final dry aboveground biomass, and the final grain yield. More detailed information on 

the set-up and data collection for the field experiments is described by Tsegay et al. (2012) 

for Ethiopia, by Shrestha et al. (2013) for Nepal, and by Geerts et al. (2008) for Bolivia. 

 

Calibration and evaluation of the semi-quantitative AquaCrop procedure 

As a starting point for the calibration of crop responses to soil fertility stress, the default crop 

parameters of AquaCrop version 4.0 (Raes et al. 2012) were used for all four crops. The non-

conservative cultivar-specific crop parameters, describing the crop phenology, were fine-

tuned to match the local cultivar and environmental conditions. The resulting crop files 

described canopy development, biomass production and yield under both optimal agronomic 

conditions and water stress, but not at this stage the crop responses to soil fertility stress. 

The crop response to soil fertility stress was calibrated based on field observations during 

the rainy season of 2010 for tef, during the dry season of 2010/2011 for maize and wheat, and 

during the growing season of 2009/2010 for quinoa. Tef was only calibrated for one of the 

experimental sites (Dejen), because it was assumed that the soil fertility and environmental 

conditions for both sites would be similar, and that the crop would therefore respond 



identically to soil fertility stress at both sites. In the automatic calibration procedure (Table 

2), observations of canopy cover development and of biomass for plots not experiencing 

water stress but undergoing full soil fertility stress (IR-T0) were compared to observations for 

plots undergoing neither water stress nor fertility stress (IR-T100 for Ethiopia and Bolivia 

and IR-T150 for Nepal). For the tef and quinoa experiments, the (national) recommended 

fertilizer dose (T100) was taken as the ‘reference’, because the T100 treatment relieved crops 

from fertility stress. By contrast, T100 cannot represent non-limiting soil fertility for the 

maize and wheat experiments in Nepal, because production increases for maize and wheat 

were observed with fertilizer doses that exceeded the national recommended dose. For this 

reason, T150 was used as the reference for the calibration of the maize and wheat responses 

to soil fertility stress in Nepal.  

The calibrated crop response to soil fertility stress for each crop (Table 2) was evaluated 

with the remaining, independent field datasets covering the different experimental sites (for 

tef), the different growing seasons, and the various water and fertility treatments. The 

observed Brel for the non-water stressed treatments was used as input, but no alterations to the 

calibrated crop responses (Table 2) were made; thus the biomass – soil fertility stress relation 

(Fig. 3(b)) was applied as described in the calculation procedure above. For both calibration 

and evaluation, the environmental conditions at the experimental sites were used as the inputs 

for the AquaCrop model.  

The fit between the observed and simulated soil water content, canopy cover, biomass 

and yield was assessed by a combination of graphical displays (plots of simulated versus 

observed values) and two statistical indicators, i.e. the relative root-mean-square error 

(RRMSE; Eqn 5; Loague & Green, 1991) and the coefficient of determination, or squared 

Pearson’s correlation coefficient R² (Eqn 6). In addition, the statistical significance of the 

Pearson’s correlation (R) between the observed and the simulated values was reported. 

 

            
   

  
  

         
 
   

 
 
   

  
 (5) 

   

 

 
                

   

           
               

    

 

 

 (6) 

 



where Oi are the observed values, Pi are the predicted values, Ō is the mean of the 

observed values,    is the mean of the predicted values and n is the number of observations. 

Following Jamieson et al. (1991), the performance of the model was classified based on 

RRMSE values as excellent (RRMSE < 10 %), good (10 % < RRMSE < 20 %), fair (20 % < 

RRMSE < 30 %) and poor (RRMSE > 30 %). Special attention was paid to the performance 

of the model under conditions in which soil water stress coincided with soil fertility stress. 

For this purpose, the performance of the model was also evaluated using only the rainfed and 

deficit irrigated plots.   

 

RESULTS 

This section discusses the performance of the model in simulating crop responses to soil 

fertility stress, with a focus on the RRMSE values, because they give a clear indication of the 

mean deviation of the simulation results obtained using the model, compared to the actual 

observations. Additionally, Table 3 (calibration) and Table 4 (evaluation) present the R²  

values, with indications of the significance of the correlation (P-value). 

 

Calibration of the crop responses to soil fertility stress 

Crops were calibrated for different local soil fertility stress conditions (Table 2). Soil fertility 

stress in the calibration fields was highest for wheat (Brel 44 %) and lowest for tef (Brel 66 %), 

with maize and quinoa being intermediate (Brel 50-53 %). The calibration results (Table 2) 

clearly show how the four crops in their specific environments responded very differently to 

the local nutrient limitations. For example, a soil fertility level Brel of about 50 % resulted in a 

greater reduction in WP* and in canopy decline in maize than in quinoa. By contrast, the 

reduction in crop development and CCx was greater in quinoa than in maize. The calibrated 

effect of soil fertility on CC and WP* (Table 2) resulted in an acceptable simulation of Wr 

and of the overall development of CC and B throughout the crop cycle for the soil fertility 

stressed calibration plots (IR-T0) (Table 3). The model performed excellent in simulating Wr, 

with RRMSE values below 10 % for all crops. For CC and B, the model performance was 

more variable, with RRMSE values mostly above 10 %. The model predicted CC with a 

mean deviation of about 16 % for tef, but the deviation increased to 20-24 % for wheat and 

maize. CC predictions could not be evaluated for quinoa, due to a lack of observations. With 

a RRMSE value of about 9 %, the best prediction of B was obtained for maize, followed by 

tef and wheat, for which RRMSE values were 12 % and 14 % respectively. For quinoa, B 



was predicted with a RRMSE value of about 25 %. Generally, the model calibration was 

most accurate (based on the RRMSE values for Wr, CC and B) for maize and tef, followed 

by wheat and quinoa. 

 

Evaluation of crop responses to soil fertility stress 

The calibrated model performed well in simulating Wr, CC, B and Y for the remaining 

independent evaluation plots under different soil water stress levels (IR, DI, RF) and soil 

fertility stress levels (T0, T50, T100 (only for Nepal)) (Table 4). The performance of the 

model in its simulation of CC was variable, with a RRMSE as high as 34 % for maize, 

although lower RRMSE values were obtained both for tef (23 %) and for wheat (12 %). For 

maize, this was probably a reflection of the relatively poor CC calibration (Table 3), whereas 

for wheat it reflected the good CC calibration. Despite the CC predictions, Wr was the most 

accurately predicted of all the parameters, with RRMSE values of between 6 % and 13 %. 

Together, the accuracy of the simulations of CC and Wr and the corresponding soil water 

stress levels determined the accuracy of prediction of B during the growing season and at 

maturity. Figure 4 illustrates that the effect of different soil fertility stress levels on the 

development of CC and B in a well-watered wheat field was well described by AquaCrop. 

The AquaCrop simulations clearly captured the slow canopy development, lower CCx, early 

canopy decline and lower biomass production under different soil fertility levels as they were 

observed in the field. The development of B during the season, as well as the final value of B, 

was predicted most accurately for wheat, followed by maize; the final value of B was 

predicted with a RRMSE of only 4 % for wheat, and of 12 % for maize. For quinoa and tef, 

the mean deviations for the final B predictions were 18 % and 24 %, respectively. Finally, Y 

was one of the most accurately predicted parameters, second only to Wr. For maize, the 

prediction of yield was excellent, with a RRSME of only 7 %. With RRMSE values of 10 % 

for wheat, 16 % for quinoa and 19 % for tef, the model resulted in good final Y predictions 

for all crops. This is also illustrated in Fig. 5. In general, the model performed most 

accurately (based on the RRMSE values) for maize (for which it produced the best 

predictions for Y and Wr) and wheat (for which it produced the best predictions for B and 

CC), followed by quinoa and by tef.  

 

 

 



Performance of the model under combined soil fertility stress and water stress 

When both soil fertility stress and water stress were prevalent, AquaCrop was still able to 

predict the evolution of Wr (Fig. 6), CC (Fig. 7) and B (Fig. 8) accurately during the growing 

season. The statistics for the water stressed plots only (DI and RF) in Table 4 show that the fit 

is approximately as good as when all the water treatments (IR, DI and RF) are included. 

Compared to the evaluation for all the water treatments, the RRMSE values increased by only 

0.7-3.2 % for Wr, 0.1-4 % for CC, and 0.2-2.3 % for B, for the water stressed plots alone. For 

B, in the cases of tef and quinoa, the performance of the model at maturity was even better 

when only the water stressed conditions were taken into account (RRMSE decreased by 3-4 

%). The model predicted Y under combined water stress and soil fertility stress with a 

RRMSE of between 11 % and 13 % for maize, wheat and quinoa. The deviation only 

increased by 1.6 % (wheat) and by 3.5 % (maize), and for quinoa it even decreased (by about 

3 %). For tef, on the other hand, the predictions of Y under combined soil water stress and 

soil fertility stress were rather poor. The RRMSE was as high as 34 % and the correlation 

between the observed and the simulated values was insignificant. This may be due to 

inaccurate simulation of the effect of water stress on the harvest index. Finally, Figure 5 also 

shows how, with its semi-quantitative soil fertility approach, AquaCrop is able to predict 

values for grain production that range from as little as 0.5 Mg/ha to more than 4 Mg/ha as a 

result of the various climatic, agronomic and environmental conditions and from the 

combinations of soil fertility and soil water stress levels. 

 

DISCUSSION 

Performance of the semi-quantitative AquaCrop approach 

Because the semi-quantitative AquaCrop procedure uses the relative biomass of a fertility-

stressed field compared to that of a reference field (Brel) as the input from which to determine 

the soil fertility stress coefficients, it appears obvious that the final biomass, and 

consequently the yield simulations, for fertility stressed fields match the observations that are 

made in the absence of water stress. Nevertheless, this study has shown that the semi-

quantitative AquaCrop soil fertility procedure provides realistic results; not only were the 

final biomass and the yield simulated with acceptable accuracy (RRMSE of 4-24 % for B at 

maturity and 7-19 % for Y), but the soil water content, canopy cover and biomass 

development during the growing season were all also simulated with satisfactory accuracy 

(RRMSE of 6-13 % for Wr, 12-34 % for CC and 13-22 % for B) – and even for stress levels 



for which the model had not been calibrated. Moreover, it has been shown that AquaCrop can 

provide good indicative values for final biomass (RRMSE of 4-15 %) and for yield (RRMSE 

of 11-13 %) of maize, wheat and quinoa when crop production is affected by both soil 

fertility stress and soil water stress. In the case of tef, although biomass production was well 

simulated (RRMSE of 20 %) under conditions of combined soil water stress and soil fertility 

stress, yield predictions were poor (RRMSE of 34 %). Also Tsegay et al. (2012) have noted, 

under conditions of non-limiting soil fertility, that AquaCrop performs less well in the 

estimation of tef yield under water stressed conditions. Further calibration of the effects of 

water stress on the harvest index of tef might be necessary in order to improve yield 

predictions under water stressed conditions, both with and without soil fertility stress. 

Notwithstanding its simplicity, the AquaCrop semi-quantitative approach performs as 

well as nutrient-balance-based models for the simulation of maize and wheat production 

under different levels of soil fertility stress and soil water stress. In evaluating simulations of 

wheat and maize production under different water and nitrogen treatments, Fang et al. (2008) 

found RRMSE values of 12 % for biomass and 12-15 % for yield with the CERES model, 

whereas Brisson et al. (2002) reported RRMSE values of 2-3 % for biomass but 16-24 % for 

yield using the STICS model; and Stöckle et al. (2003) reported RRMSE values between 8 % 

and 14 % for biomass and 8 % and 32 % for yield simulated with the CropSyst model. The 

APSIM model has been evaluated on a number of occasions for the simulation of more 

challenging situations such as, for example, the response of a crop to phosphorus or organic 

fertilizer. Micheni et al. (2004) and Kinyangi et al. (2004) obtained R² values of between 0.75 

and 0.88 for the simulation of maize biomass production grown with organic fertilizer. 

Evaluating the simulation of maize production under different phosphorus and nitrogen 

supply levels, Fosu-Mensah et al. (2012) found RRMSE values of about 15 % for yield and 

R² values for biomass of between 0.89 and 0.91 (corresponding to RMSE values of 0.661 - 

0.780 Mg/ha). Finally, Delve et al. (2009), who studied the performance of maize grown 

under different phosphorus sources (manure versus fertilizer) and treatments (rate and 

frequency of application), found R² values of 0.83-0.88 for biomass (corresponding to 

RRSME values of at least 26 %) and of 0.74-0.81 for yield. For maize and wheat, the 

performance statistics found in this study (Table 4) are clearly within the range of statistics 

reported for studies with nutrient-balance-based models. For tef and quinoa, the performance 

of the model cannot be compared to the performance of other crop models, since AquaCrop is 

currently the only crop model that has been calibrated to simulate crop production for these 

underutilized crops (Geerts et al. 2009; Tsegay et al. 2012). 



It should also be noted that this study evaluated the performance of AquaCrop’s fertility 

response algorithms against observations that were obtained from on-farm experiments in 

relatively small plots. As such, problems such as lodging of the crop, damage to some of the 

plots, (partial) loss of samples due to technical problems and transport, and a limited sample 

size during the growing season could not be avoided. This inevitably led to deviations among 

replicates that were sometimes substantial, and this led to large standard deviations in the 

graphs presented. It can be expected that similar experiments conducted in a controlled 

environment of an experimental research station would yield an even better match between 

the observed and simulated values for soil water balance, canopy development, biomass 

production and yield. 

 

Input and calibration requirements 

The semi-quantitative approach of AquaCrop requires the user to specify the soil fertility 

level, expressed as the relative biomass (Brel) that can be expected in a fertility-stressed field 

compared to that for a reference field in non-water-stressed conditions. Brel can readily be 

obtained from farmers, from experimental fields or from agricultural statistics relating to 

local crop production. The ease with which this input can be obtained makes the semi-

quantitative AquaCrop approach user-friendly and accessible to users worldwide. Moreover, 

the approach integrates the effects of various soil nutrients (and not merely nitrogen) and 

mineralization processes without a requirement for vast amounts of input data, for 

initialization of the soil nutrient conditions, or for elaborate parameterization. 

The AquaCrop model is applicable to different crops and environmental conditions, but 

the crop response to soil fertility stress is crop- and case-specific and consequently the model 

requires calibration in each case. The necessity for a case-specific calibration diminishes the 

practicability of the model for analyses on a large spatial scale, but in this respect AquaCrop 

is no different from models that make use of a nutrient balance approach, which also need 

site-specific information (Gabrielle et al. 2002; Matthews 2002). Indeed, when crop 

production is being assessed over large areas, not only may various crops be being grown, but 

also the management, and the soil and nutrient conditions, may vary between different fields. 

Since each type of nutrient limitation affects canopy cover development and biomass in a 

different way, the crop response to soil fertility stress may differ amongst fields, even when 

the same crop is being grown. For example, a crop grown in a field where nitrogen is the 



most limiting nutrient will respond to the local soil fertility stress in a completely different 

way from a crop grown in a field where potassium is the most limiting nutrient.  

Fortunately, as this research shows, when simulations are run for different fields within 

the same area, in which the constraints on crop growth are similar, the calibrated crop 

response to soil fertility stress is quite robust. In this study, for example, the response of tef to 

soil fertility stress was calibrated for one of the experimental sites (Dejen), but the model also 

performed well in simulating crop development and production at the other experimental site 

(Maiquiha). In another assessment using AquaCrop in Ethiopia, in which the barley yield gap 

was investigated at the district level, it was demonstrated that after calibrating the response of 

barley to soil fertility stress for one experimental site, AquaCrop could estimate with 

acceptable accuracy (R² of 0.84 for B and 0.87 for Y, RMSE 0.82 Mg/ha for B and 0.23 

Mg/ha for Y) barley biomass and yield under soil fertility stress for other farmers’ fields 

within the same district (Abrha, 2013). A case-or field-specific calibration should therefore 

be considered only if large soil, nutrient or management differences occur within the same 

area.  

Clearly, crop- and case-specific calibration results in extra work, but the effort involved 

is limited. First of all, the calibration procedure for the model is automated and requires few 

input parameters, and these are easily obtainable. The required information for canopy cover 

development (CCx and canopy cover decline) in a ‘soil fertility stressed’ calibration field can 

be easily obtained by means of visual estimates in the field or from digital photographs, and 

can be specified as an input by selecting a class ranging from “very strong reduction” to 

“close to reference, or small reduction”. Secondly, the calibration of the crop response to soil 

fertility stress is important mainly for a correct simulation of the soil water balance and 

canopy development, and less important for the assessment of crop biomass production under 

soil fertility stress, for which Brel already gives an indication of the reduction of biomass (and 

consequently yield) due to soil fertility stress. The automated calibration aims to determine 

the relative contributions of all four effects (reduced CC expansion, reduction of CCx, early 

CC decline, reduction of WP*) to the overall effect of soil fertility on biomass production. 

This calibration step was introduced because the soil water content can be simulated more 

accurately by making a distinction between the soil fertility effect on WP*, which does not 

directly affect the soil water balance and the three soil fertility effects on canopy cover 

development (reduced CC expansion, reduction of CCx, early CC decline), which do affect 

the soil water balance, through their effect on transpiration. A reliable simulation of the soil 

water balance is of course indispensable for an accurate simulation of crop production 



(Aggarwal 1995; Eitzinger et al. 2004), certainly in the AquaCrop model, which is wholly 

based on a water-driven growth module. Moreover, it allows the user to simulate the 

combined effect of soil fertility and water stress, which is a major strength of the AquaCrop 

model. Although very important for the simulation of the soil water balance, the calibration 

step is less important for the simulation of biomass production under soil fertility stress. 

Indeed, an indication of the local Brel is sufficient to calculate the reduction of biomass (and 

consequently yield) that is due to soil fertility stress. For this reason, the calibration of the 

crop response to soil fertility should be seen more as a fine-tuning and estimation of the effect 

of soil fertility stress on canopy development and the soil water balance, rather than as a 

procedure that requires exact numbers and detailed information. This has also been illustrated 

by experimental data from Bolivia. Although data on canopy cover development were 

sparsely available, calibration nevertheless resulted in good predictions of biomass and yield.  

 

Application of the model  

After carrying out the calibration of the crop response to soil fertility stress, a user can apply 

the AquaCrop model to evaluate various soil fertility management strategies for the local 

environmental conditions, with respect to their effects on yield and crop water productivity. 

When conducted under different climatic conditions (wet versus normal or dry years), such a 

scenario analysis can help to develop best-practice guidelines for farmers, taking into account 

the interactions between variable climatic conditions and soil fertility management (Van 

Gaelen et al. 2014). Moreover, the AquaCrop model accounts for the effect of elevated CO2 

on crop production (Vanuytrecht et al. 2011), so that fertility management strategies can be 

evaluated not just for historical or current climatic conditions, but for future climate scenarios 

as well.   

On account of the lack of a dynamic soil nutrient balance, however, the AquaCrop model 

is less suited to producing fertilizer recommendations. The model can reveal which soil 

fertility level optimizes crop (water) productivity, but it does not provide information on the 

amounts of nutrients that are required to attain this level of production. To establish fertilizer 

recommendations, the soil fertility level (Brel) still has to be converted to the amounts of 

nutrients that are required to achieve the corresponding crop yield and consequently to the 

fertilizer dose that is required. Oyarmoi (2013) proposed that the concept of Nitrogen 

Agronomic Efficiency (NAE) could be used to define the nitrogen fertilizer dose based on the 



AquaCrop Brel. However, further research based on experimental data is needed in order to 

evaluate the performance of this NAE-based approach.  

Finally, it is clear that after analysing the agronomic benefits of different field 

management strategies using AquaCrop, a socio-economic analysis is indispensable. 

Following the examples of García-Vila et al. (2009), García-Vila & Fereres (2012) and 

Cusicanqui et al. (2013), who optimized irrigation management both from an agronomic and 

an economic point of view, it is clear that AquaCrop simulation results can be coupled to 

economic models so as to analyse the effect of the soil fertility management strategies on 

labour requirements and farmers’ profits. 

 

CONCLUSION 

AquaCrop simulates the effect of soil fertility stress on crop production by making use of the 

relative biomass that can be expected in a fertility-stressed field compared to a reference 

field, as a measure for soil fertility stress. This semi-quantitative approach requires few input 

parameters, which are easily obtainable, and integrates the effects of various soil nutrients 

and mineralization processes. In this study, it is shown that in spite of its simplicity, the 

procedure results in an accurate simulation of the soil water balance, crop development, 

biomass production and yield for several soil fertility levels, and for various crops at different 

locations, following case-specific calibration. Moreover, the procedure shows potential for 

application in dry conditions, because the model performed well under conditions of 

combined soil water stress and soil fertility stress. With its integrated soil fertility module, the 

AquaCrop model can be a powerful tool with which to investigate the impact of soil fertility 

management on local crop production for different crops, and with which to develop best-

practice guidelines in locations where the acquisition of detailed field information on soil 

nutrients is difficult. Furthermore, the model can be used to explore existing yield gaps and 

their major causes, i.e. water stress, soil fertility stress and combinations of both. 
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TABLES  

Table 1. Three experimental sites with the experimental set up and environmental conditions (average climatic 

conditions according to New_LocClim (FAO, 2005)). Experiments were set up with a randomized complete 

block design (RCBD) or a factorial randomized complete block design (FRCBD). Water treatments consist of 

rainfed (RF), deficit irrigation (DI) and full irrigation (IR). Fertility treatments correspond to application of 0 % 

(T0), 50 % (T50), 100 % (T100) and 150 % (T150) of the (national) recommended fertilizer dose.  

Experimental site Dejen Maiquiha Chitwan Patacamaya 

Country Ethiopia Ethiopia Nepal Bolivia 

Coordinates 13°20' N, 39°22' E 13°48' N, 39°27' E 27°36' N, 84°24' E 17°14' S, 67°55' W 

Altitude (m a.s.l.) 2128 2078 160 3793 

Environmental conditions    

Soil type Loam, silty loam, 

sandy loam 

Silty loam Sandy loam Silty loam 

Aridity Semi-arid Semi-arid Humid Semi-arid 

Mean annual rainfall (mm) 620 620 1870 403 

Mean annual ET0 (mm) 1497 1497 1219 1208 

Experimental set up    

Years 2008-2010 2009 2009-2011 2006/2007 

2009/2010 

Number of seasons 3 1 2 2 

Design FRCBD FRCBD RCBD/ FRCBD FRCBD 

Crops tef tef wheat, maize quinoa 

Water treatments* RF, IR RF, IR RF, DI, IR RF, DI, IR 

Fertility treatments† T0, T50, T100 T0, T50, T100 T0, T100, T150 T0, T50, T100 

* RF: Rainfed, i.e. no supplementary irrigation 

   DI: Deficit irrigation, i.e. treatment with partial irrigation: water stress is allowed during some parts of the crop cycle 

IR: Full irrigation, i.e. kept free from any water stress 

† T0, T50, T100, T150: Application of 0 %, 50 %, 100 % and 150 % of the (national) recommended fertilizer dose  

T100 tef: 60 kg/ha N and 26 kg/ha P on heavy soils and 40 kg/ha N and 26 kg/ha P on light soils (EARO, 2002) 

T100 maize: 120 kg/ha N, 60 kg/ha P, 40 kg/ha K (MOAC, 2010)  

T100 wheat: 100 kg/ha N, 50 kg/ha P, 25 kg/ha K (MOAC, 2010) 

T100 quinoa: 30 Mg/ha organic fertilizer (sheep manure) (Miranda et al., 2012) 

  



Table 2. The relative dry aboveground biomass production (Brel), maximum canopy cover (CCx) and canopy 

decline in the season as observed for the soil fertility stressed calibration plots (IR-T0) of tef, maize, wheat and 

quinoa together with the resulting calibrated local effect of soil fertility stress on canopy development (canopy 

growth coefficient CGC, CCx, canopy decline) and biomass water productivity (WP*).  

Crop Tef Maize Wheat Quinoa 

Calibration location  Dejen Chitwan Chitwan Patacamaya 

Input for calibration 
    

Brel (%) 66 53 44 50 

CCx under soil fertility stress  (%) 66 52 50 44 

Canopy decline (-) medium medium medium medium 

Results of calibration 
    

CGC reduction (%) 15 15 39 36 

CCx reduction (%) 19 31 44 41 

Average canopy decline (%/day) 0.78 0.85 0.28 0.19 

WP* reduction (%) 19 31 50 19 

  



Table 3. The relative root-mean-square error (RRMSE), coefficient of determination (R²) and P-value for the 

Pearson’s correlation (R) for the soil water content in the root zone (Wr), canopy cover (CC) and dry 

aboveground biomass (B) during the growing season of the soil fertility stressed calibration plots (IR-T0). N is 

the number of sampled treatments during the season from those calibration plots.  

Parameter 
 

 Tef Maize Wheat Quinoa 

Wr n (-) 15 5 8 5 

 
RRMSE (%) 5.6 2.6 6.7 9.6 

 
R² (-) 0.75 0.99 0.87 0.98 

 
P-value (-) <0.01 <0.01 <0.01 <0.01 

CC n (-) 12 6 9 - 

 
RRMSE (%) 15.8 23.5 20.1 - 

 
R² (-) 0.97 0.91 0.87 - 

 
P-value (-) <0.01 <0.01 <0.01 - 

B n (-) 8 6 8 11 

 
RRMSE (%) 11.9 9.3 14.2 25.2 

 
R² (-) 0.96 1.00 0.95 0.97 

 
P-value (-) <0.01 <0.01 <0.01 <0.01 

  



Table 4. The relative root-mean-square error (RRMSE), coefficient of determination (R²) and P-value for the 

Pearson’s correlation (R) for the soil water content in the root zone (Wr), canopy cover (CC), dry aboveground 

biomass (B) during the season and at phenological maturity and the final grain yield (Y) of the evaluation plots 

with soil fertility stress (T0 and T50 for tef and quinoa, T0 and T100 for maize and wheat). The left-hand 

statistics include all water treatments (RF, DI, IR), while the right-hand statistics only include the plots with 

water stress (RF, DI). N is the number of sampled treatments during the season from the validation plots. 

  
 All water treatments (RF, DI, IR) Water stressed treatments (RF, DI) 

Parameter  Tef Maize Wheat Quinoa Tef Maize Wheat Quinoa 

Wr n (-) 189 39 60 15 98 26 40 10 

 
RRMSE (%) 11 5.8 9.4 13.3 12.2 6.5 10.1 16.5 

 
R² (-) 0.90 0.89 0.90 0.93 0.90 0.91 0.91 0.89 

 
P-value (-) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

CC n (-) 131 42 60 - 65 28 49 - 

 
RRMSE (%) 22.7 34.2 11.9 - 26.8 38.1 12 - 

 
R² (-) 0.92 0.82 0.95 - 0.91 0.82 0.95 - 

 
P-value (-) <0.01 <0.01 <0.01 - <0.01 <0.01 <0.01 - 

B n (-) 96 39 51 43 50 26 34 30 

 
RRMSE (%) 19.6 15.9 13.1 22.4 19.2 18.2 14.6 22.6 

 
R² (-) 0.88 0.97 0.96 0.95 0.87 0.96 0.95 0.95 

 
P-value (-) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

B at maturity n (-) 15 6 6 13 8 4 4 10 

 
RRMSE (%) 23.6 11.8 3.9 18.3 19.6 13.3 3.5 15.2 

 
R² (-) 0.77 0.95 0.96 0.91 0.82 0.97 0.98 0.87 

 
P-value (-) <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.05 <0.01 

Y n (-) 15 6 6 13 8 4 4 10 

 
RRMSE (%) 19.1 7.2 10.3 16.3 34.0 10.7 11.9 13.0 

 
R² (-) 0.85 0.99 0.77 0.81 0.21 0.99 0.93 0.86 

 
P-value (-) <0.01 <0.01 <0.05 <0.01 NS <0.01 <0.05 <0.01 



FIGURES 

 

 

Fig. 1. Soil fertility stress affects green canopy cover (CC) development by means of (1) a slower canopy 

development, (2) a less dense canopy and (3) a steady decline in canopy cover once the maximum is reached 

during mid-season. 

 

 

Fig. 2. Soil fertility stress reduces biomass water productivity (WP*) throughout the season as cumulative 

biomass (B) increases and the soil nutrient reservoir becomes depleted. The x-axis representing cumulative daily 

transpiration (ΣTr) could also been seen as an axis representing time. 



 

Fig. 3. Four stress curves of the type shown in (a), which represent the relationships between soil fertility stress 

and the four soil fertility stress coefficients, determine the relationship between relative biomass production 

(Brel) and soil fertility stress (b). The calibration point (black point) determines the shape of a stress curve. 

 

 

 

Fig. 4. Simulated (lines) and observed (symbols) canopy cover (left) and dry aboveground biomass (right) of 

irrigated wheat in Chitwan during the season of 2010/2011. Canopy development and biomass build-up are 

affected by the soil fertility level: non-limiting soil fertility T150 (dotted line, open symbol), full soil fertility 

stress T0 (full line, black symbol), and fertility treatment with 100% of the national recommended fertilizer dose 

T100 (dashed line, grey symbol). Error bars indicate ± standard deviation for three replications (n=3). 



 

Fig. 5. Observed versus simulated yield for maize (top left) and wheat (top right) in Nepal, for tef in Ethiopia 

(bottom left) and for quinoa in Bolivia (bottom right) for all simulated environmental conditions, soil fertility 

levels (T0, T50, T100, T150) and water treatments (IR white symbols, DI grey symbols, RF black symbols). 

Error bars indicate ± standard deviation for three replications (n=3). 

 

Fig. 6. Simulated (lines) and observed (symbols) soil water content in the root zone for tef under soil fertility 

stress (T50) in Dejen, during the season of 2010. Both irrigated (IR, dotted line, open symbol) and rainfed (RF, 

full line, filled symbol) soil water content are well simulated. Horizontal grey lines indicate the soil water 

content at field capacity (top line) and permanent wilting point (bottom line). Error bars indicate ± standard 

deviation for three replications (n=3).  



 

 

Fig. 7. Simulated (lines) and observed (symbols) green canopy cover for tef under soil fertility stress (T0) in 

Maiquiha during the season of 2009. Both irrigated (IR, dotted line, open symbol) and rainfed (RF, full line, 

filled symbol) canopy cover development under soil fertility stress are well simulated. Error bars indicate ± 

standard deviation for three replications (n=3). 

 

Fig. 8. Simulated (lines) and observed (symbols) dry aboveground biomass for maize in Chitwan during the 

season of 2009/2010. Irrigated (IR, dotted line, open symbol), deficit irrigated (DI, dashed line, grey symbol) 

and rainfed (RF, full line, black symbol) biomass production under soil fertility stress (T100) are all well 

simulated. Error bars indicate ± standard deviation for three replications (n=3). 

 


