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Abstract 

Liver cirrhosis represents the end-stage of different liver disorders, progressively affecting 

hepatic architecture, hemodynamics and function. Morphologically, cirrhosis is characterized by 

diffuse fibrosis, the conversion of normal liver architecture into structurally abnormal 

regenerative nodules and the formation of an abundant vascular network. To date, the vascular 

remodeling and altered hemodynamics due to cirrhosis are still poorly understood, even though 

they seem to play a pivotal role in cirrhogenesis. This study aims to determine the perfusion 

characteristics of the cirrhotic circulation using a multi-level modeling approach including 

computational fluid dynamics (CFD) simulations. 

Vascular corrosion casting and multi-level micro-CT imaging of a single human cirrhotic liver 

generated detailed datasets of the hepatic circulation, including typical pathological 

characteristics of cirrhosis such as shunt vessels and dilated sinusoids. Image processing 

resulted in anatomically correct 3D reconstructions of the microvasculature up to a diameter of 

about 500 µm. Subsequently, two cubic samples (150x150x150 µm3) were virtually dissected 

from vascularized zones in between regenerative nodules and applied for CFD simulations to 

study the altered cirrhotic microperfusion and permeability. Additionally, a conceptual 3D 

model of the cirrhotic macrocirculation was developed to reveal the hemodynamic impact of 

regenerative nodules.  

Our results illustrate that the cirrhotic microcirculation is characterized by an anisotropic 

permeability showing the highest value in the direction parallel to the central vein (kd,zz = 1.68 x 

10-13m2 and kd,zz = 7.79 x 10-13m2 for sample 1 and 2, respectively) and lower values in the 
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circumferential (kd,θθ = 5.78 x 10-14m2 and kd, θθ = 5.65 x 10-13m2 for sample 1 and 2, resp.) and 

radial (kd,rr = 9.87 x 10-14m2 and kd,rr = 5.13 x 10-13m2 for sample 1 and 2, respectively) direction. 

Overall, the observed permeabilities are markedly higher compared to a normal liver, implying a 

locally decreased intrahepatic vascular resistance (IVR) probably due to local compensation 

mechanisms (dilated sinusoids and shunt vessels). These counteract the IVR increase caused by 

the presence of regenerative nodules and dynamic contraction mechanisms (e.g. stellate cells, 

NO-concentration etc.). Our conceptual 3D model of the cirrhotic macrocirculation indicates 

that regenerative nodules severely increase the IVR beyond about 65 vol% of regenerative 

nodules. 

Numerical modeling allows quantifying perfusion characteristics of the cirrhotic macro- and 

microcirculation, i.e. the effect of regenerative nodules and compensation mechanisms such as 

dilated sinusoids and shunt vessels. Future research will focus on the development of models to 

study time-dependent degenerative adaptation of the cirrhotic macro- and microcirculation.  

Keywords. human liver cirrhosis, hepatic perfusion, computational fluid dynamics, permeability 

tensor  
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1. Introduction 

Liver cirrhosis is the end-result of any chronically active liver disease. In this situation, normal 

liver tissue is gradually replaced by diffuse fibrosis, complete fibrous vascularized septa and 

regenerative nodules following ongoing parenchymal cell damage, leading to progressively 

impaired hepatic architecture, perfusion and function [1-4]. Advanced cirrhosis can progress 

toward end-stage liver failure or hepatocellular carcinoma [5] and accounts annually for an 

estimated 1.03 million deaths worldwide [6, 7]. Although several treatments (antiviral therapies, 

alcohol abstinence etc.) attempt to restrict disease progression and suppress complications, 

there is no effective treatment for advanced cirrhotic disease and localized hepatocellular 

carcinoma, except for liver transplantation [8].  

The liver has two supplying blood vessels: the hepatic artery (HA) and the portal vein (PV), 

providing the liver with oxygenated versus nutrient-rich but partially deoxygenated blood, 

respectively. Both vessels ramify down to the microscale level, consisting of repetitive 

anatomical units (hexagonal lobules; see Fig. 1 in [9]). Blood is delivered to the lobules via portal 

tracts (containing terminal HA and PV branches) and flows through the sinusoids, whilst 

metabolically interacting with the liver cells. Hereafter, blood is collected in the central veins 

and drained via the hepatic veins (HV) [10, 11]. Cirrhosis, however, is the progression of fibrosis 

following the overproduction of extracellular matrix accompanied by changes in 

angioarchitectural structure with sinusoidal capillarization, (neo-)angiogenesis and shunt 

formation [12-16]. As these morphological modifications tend to alter the intrahepatic vascular 

resistance, portal hypertension may arise, which may elicit complications such as ascites, 

hepatic encephalopathy, varices etc.  
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Over the past decades, several experimental studies have focused on cirrhosis-induced 

angioarchitectural and functional changes. For instance, the multiple-indicator dilution 

technique demonstrated an impaired exchange between sinusoids and hepatocytes in cirrhotic 

livers due to sinusoidal collagenization and shunt formation [14, 15, 17]. A variety of imaging 

techniques (e.g. MRI, CT, ultrasound and microscopy) enabled assessing the microvascular 

characteristics (a.o. mean transit time, permeability-surface area product) in cirrhotic livers [18-

23]. Furthermore, Vanheule et al. [16] conducted an intravital fluorescence microscopy study to 

analyze the interplay between fibrosis and angiogenesis in cirrhotic mice, showing the 

importance of the vascular endothelial growth factor during cirrhogenesis. 

Next to experimental studies, computational models are helpful tools to provide deeper insights 

in the interaction between the angioarchitecture, perfusion and liver function. To date, 

numerical research has mainly focused on normal liver perfusion. On the macrocirculatory scale, 

most existing models examined the hemodynamics in a single vascular tree without considering 

its interplay with the others (e.g. to study the PV hemodynamics after a right hepatectomy [24-

26] or the microsphere transport in the HA tree for radioembolization [27]). Additionally, a few 

studies have simulated the hepatic circulation as a whole based on electrical analog models [28-

30].  

Contrary to the macrolevel, only little research has focused on mathematically modeling the 

microcirculation, often based on idealized geometries (e.g. mathematical 2D porous medium 

models of hexagonal lobules [31-33] or a 3D segment of an idealized lobule [34]). Nevertheless, 

a few studies have investigated the hepatic microcirculation based on anatomically realistic 

structures using vascular corrosion casts [9, 35]. Van Steenkiste et al. [35] studied microvascular 
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morphological changes and altered macrovascular hemodynamics in portal hypertensive and 

cirrhotic rodents. Debbaut et al. [9] developed image-based 3D models of a single human 

hepatic microcirculation to study its perfusion characteristics, enabling the development of  a 

3D porous medium liver lobule model [36]. 

As illustrated above, most modeling studies are restricted to normal livers, leaving the questions 

regarding cirrhotic perfusion unanswered. Since the vascular remodeling and perfusion 

alterations due to cirrhosis are still poorly understood, an enhanced knowledge of the 

dysregulated hemodynamics in cirrhotic livers could provide novel insights in cirrhotic liver 

disease.  

The objective of this study is to investigate the perfusion characteristics of the cirrhotic 

circulation based on a multi-level modeling approach using computational fluid dynamics (CFD) 

simulations.  
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2. Materials and methods 

A. Microcirculation 

The human liver, examined in this study, was discarded for transplantation due to advanced 

alcohol-induced cirrhosis (Fig. 1a). The microcirculation of this cirrhotic liver was assessed 

following a methodology previously applied to a normal liver [9]. As part of research related to 

machine perfusion preservation of the liver, this study was approved by the Ethical Committee 

of the University Hospitals Leuven (Belgium) and by the Belgian Liver and Intestine Committee. 

1. Vascular corrosion casting and micro-CT imaging 

A freshly prepared polymer solution was simultaneously injected into the cannulated HA and PV 

until the polymer resin emerged from the HV. The casting fluid contained Batson's #17 

monomer solution, Batson's catalyst, Batson's promoter (Polysciences, Warrington, USA) and 

monomeric methyl methacrylate (Merck, Darmstadt, Germany). The polymer solutions were 

supplemented with coloring dyes to visually distinguish between the HA (red) and PV system 

(blue). Bismuth oxide nanoparticles were added to the HA injectate to induce a contrast 

difference between both supplying vessel systems on micro-CT images. After polymerization, 

the liver was immersed in potassium hydroxide (25% KOH) to dissolve the tissue surrounding 

the vessels. After maceration, only the polymerized resin within the vascular tree lumina 

remained, representing a replica of the liver's vascular system (Fig. 1b). 

Two microvascular samples (with dimension of ± 1.5 mm by 1.4 mm by 1.6 mm and ± 1.1 mm by 

1.9 mm by 1.5 mm for sample 1 and 2, respectively) were dissected from the cast from 

vascularized zones in between regenerative nodules. Both microscopic (Stereo microscope; 
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Olympus SZ with colorview 1 camera and CellˆD software, Hamburg, Germany) and scanning 

electron microscopic (SEM; JEOL JSM 5600 LV, Jeol, Zaventem, Belgium) examination displayed 

a microvascular network without extravascular polymer leaks, with the presence of abnormally 

shaped, often enlarged blood vessels, compatible with shunt vessels which are typically present 

in liver cirrhosis (Fig. 2a-b). Lacking the typical sinusoidal network, regenerative nodules were 

observed as empty ellipsoidal regions in the cast (Fig. 2c).  

Subsequently, an in-house developed high-resolution micro-CT scanner (UGCT, Ghent University, 

Ghent, Belgium) was used to scan the microvascular samples at a resolution of 1.9 µm and 1.7 

µm for sample 1 and 2, respectively [37]. More elaborate details on the vascular casting and 

micro-CT procedure can be found in [28]. 

The micro-CT image datasets were segmented and reconstructed in 3D using the software 

package Mimics (Materialise, Leuven, Belgium). Sample 1 contained seemingly unaffected 

sinusoids to study the more subtle sinusoidal changes caused by cirrhosis (Fig. 3a). In contrast, 

sample 2 displayed multiple abnormal, often enlarged, blood vessels, most likely representing 

shunt vessels (Fig. 3b).  

Due to computational limitations, a cube was virtually dissected from the selected samples for 

the numerical models using Magics (Materialise, Leuven, Belgium). The orientation of each cube 

was such that its z-axis was approximately parallel to the longitudinal direction of the lobule 

(central vein direction). The r and θ direction of the cube were oriented according to the radial 

and circumferential directions, respectively, of the hexagonal lobule cross-section (see [9] for 

more information). 

Journal of Biomechanical Engineering. Received September 24, 2014; 
Accepted manuscript posted December 5, 2014. doi:10.1115/1.4029280 
Copyright (c) 2014 by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Downloaded From: http://asmedigitalcollection.asme.org/ on 12/18/2014 Terms of Use: http://asme.org/terms



A Multi-level Modeling Framework to Study Hepatic Perfusion Characteristics in case of Liver Cirrhosis 

G. Peeters et al. BIO-14-1475 9 

2. Computational fluid dynamics modeling 

Before modeling blood flow through the cubic samples, guidance boxes were added to facilitate 

numerical convergence and distribute the blood inflow over the inlet sinusoids (Fig. 4; height 

was equal to 10% of the sample height). The surface meshes of the cubes were optimized using 

3-matic (Materialise, Leuven, Belgium). After the removal of useless noise shells (e.g. detached 

sinusoidal remnants), the cubes were auto-remeshed, and overlapping and intersecting 

triangles were removed. Final surface meshes contained approximately 1.2 x 106 triangular 

elements with a skewness less than 0.5 (Fig. 4). Thereafter, unstructured tetrahedral volume 

grids were created in TGrid (Ansys, Canonsburg, PA, USA) with approximately 9.5 x 106 

tetrahedral cells, a maximal skewness less than 0.95 and an average skewness of 0.27. Detailed 

information about the mesh generation can be found in [9].  

To estimate the permeability tensor of the cubes, blood flow was simulated through the 

sinusoidal structure in three orthogonal directions (radial, circumferential and axial directions of 

the lobule). The CFD software package Fluent 14.0 (Ansys, Canonsburg, PA, USA) was used to 

solve the steady and laminar flow field.  

A flat velocity profile was imposed at the inlet of the model (Fig. 4; top plane of the inflow 

guidance). Due to a lack of literature data on microcirculatory flow velocities in three orthogonal 

directions in a cirrhotic liver, the applied inlet velocity was deduced from scaling down the 

average total liver blood flow (1450 ml/min; [10]) to the flow entering the dissected sample as is 

also done in [9], resulting in an inlet velocity ν of 2.59 x 10-6 m/s. The lateral boundaries, 

consisting of transected sinusoids, were defined as symmetry planes. A zero static pressure 

boundary condition (0 Pa) was applied at the bottom of the outlet guidance box and the 
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sinusoidal lumina were treated as closed no-slip walls. Blood was modeled as an incompressible 

and homogeneous Newtonian fluid with a density ρ equal to 1050 kg/m3 and a dynamic 

viscosity μ of 3.5·10-3 Pa·s [9].  

3. Calculation of the Permeability Tensor using Darcy’s law 

Darcy's law [Eq. 1] was applied to calculate the permeability tensor K of the cubes.  

v
k

P


       (1) 

When rewriting Darcy’s law according to the applied flow directions (r, θ and z) (see [9] for 

detailed information), the reformulated Darcy equation (with i,j representing r, θ or z) [Eq. 2] 

allowed calculating the coefficients of the permeability matrix based on the dynamic viscosity μ, 

the characteristic length Li (m), the pressure difference ∆Pi (Pa), the volumetric flow rate Qi 

(m3/s) and the cross-sectional area Ai (m
2).   

i

i

j

j

ij
A

Q

P

L
k


       (2) 

To minimize boundary conditions effects, 15 subsampled cubes (with a characteristic length of 

50 μm) were further analyzed to calculate the permeability coefficients. These subcubes (as 

defined in Table 1 of [9]) were oriented such that their lateral boundaries were located at a 

distance of at least 25 μm from the boundaries of the virtually dissected sample.  

For every subcube, the mean, standard deviation and median values of each permeability 

coefficient as well as the 3D sinusoidal porosity (fraction of the volume occupied by sinusoids in 

the total volume of the cube) were calculated. A Shapiro-Wilk test (SPSS; IBM, Amonk, New York) 

was conducted to verify whether the permeability coefficients were normally distributed. The 

permeability tensor was subsequently factorized into eigenvectors and eigenvalues to acquire 
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the permeability coefficients along the principal axes. The eigenvectors also enabled calculating 

the angles between the principal axes and the predetermined coordinate system (r, θ or z). 

Elaborate details about the diagonalization of the permeability tensor can be found in the 

Appendix of [9]. 

B. Macrocirculation 

In the previous section, the microcirculation CFD models were based on samples including 

dilated sinusoids (sample 1) and shunt vessels (sample 2). In contrast, regenerative nodules - 

observed as ellipsoidal avascular holes in the vascular replica - were not incorporated into these 

models. To quantify the impact of these regenerative nodules on the hepatic hemodynamics, 

we developed a conceptual 3D CFD model of the liver macrocirculation, allowing modeling 

normal liver perfusion (no nodules) as well as cirrhotic perfusion when including nodules. 

1. Normal liver 

A simplified 3D liver geometry was constructed in pyFormex (in-house open-source software 

developed at BioMMeda, Ghent University, Gent, Belgium). All vascular trees (HA, PV and HV) 

were modeled as single bifurcations with dimensions representative for normal livers (Fig. 5a) 

[38]. A rectangular cuboid volume was used to symbolize the sinusoids and liver tissue 

surrounding the vascular trees. 

An unstructured tetrahedral volume mesh of the geometry was created with ICEM (Ansys, 

Canonsburg, PA, USA) based on the Octree method, which was optimized by Delaunay 

refinement. The HA, PV, HV and liver tissue volume were defined as porous media. The 

volumetric mesh comprised about 1.6 x 106 tetrahedral elements with a maximal skewness less 

than 0.65. 
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Initially, the CFD model was calibrated to perfusion data of a normal liver, as explained below by 

using a simplified electrical analog model (Fig. 5b) that is based on liver data from [28]. To this 

end, pressures of 13.3 kPa (100 mmHg), 1.33 kPa (10 mmHg) and 0 Pa were applied at the HA 

inlet, PV inlet and HV outlet, respectively. The boundaries of the liver tissue and sinusoids were 

treated as closed walls (no slip) and blood was modeled as an incompressible and homogeneous 

Newtonian fluid with a density ρ equal to 1050 kg/m3 and a dynamic viscosity µ of 3.5 x 10-3 Pa·s 

[39]. Darcy’s law [Eq. 4] was applied to estimate zone-specific isotropic permeability values (k) in 

order to match the zone-specific vascular resistances to those obtained with the electrical 

model in [28] for a healthy human liver. This is illustrated for the PV system by Eq. 4 – 6, in 

which the vascular resistance (RPV) was calculated as the pressure difference over the PV 

vascular tree (∆PPV) divided by the flow (QPV). Darcy’s law (Eq. 4) was subsequently subdivided 

into two parts according to the first (mother vessel) and second (daughter vessels) generation of 

the PV system (Eq. 5) and rearranged to calculate the corresponding permeability value (Eq. 6). 

A1/2 and l1/2 represent the branch’s cross-sectional area and centerline length of the first/second 

vessel generation, respectively (Fig. 5). Finally, the permeability values were slightly adjusted to 

correspond to the electrical model, resulting in 2.70 x 10-9 m2, 2.22 x 10-8 m2, 7.87 x 10-8 m2 and 

1.83 x 10-8 m2 for the HA, PV, HV and sinusoidal region, respectively. 

PVPV Q
Ak

l
P







      (4) 

2

2

1

1

2 Ak

l

Ak

l
R

PVPV

PV











     (5) 

Journal of Biomechanical Engineering. Received September 24, 2014; 
Accepted manuscript posted December 5, 2014. doi:10.1115/1.4029280 
Copyright (c) 2014 by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Downloaded From: http://asmedigitalcollection.asme.org/ on 12/18/2014 Terms of Use: http://asme.org/terms



A Multi-level Modeling Framework to Study Hepatic Perfusion Characteristics in case of Liver Cirrhosis 

G. Peeters et al. BIO-14-1475 13 


















2

2

1

1

2

1

A

l

A

l

R
k

PV

PV


     (6) 

2. Cirrhotic liver 

Regenerative nodules were homogenously introduced into the CFD model of the simplified 

normal liver to study their impact on the vascular resistance (nodular region in Fig. 5a). These 

nodules (diameters ranging from 6 mm to 11 mm) were created in pyFormex and modeled as 

impermeable spheres, located inside the liver tissue between the inlets and outlet. The volume 

percentage of regenerative nodules was gradually increased to estimate the isolated effect of 

the presence of nodules during the evolution of cirrhosis from a nodular volume percentage 

(vol%) of 0% (healthy liver) up to 82.5% (severe cirrhosis). The geometry was remeshed for each 

stage of cirrhosis. 

The resulting volumetric meshes ranged from 2 x 106 to 10 x 106 tetrahedral elements and were 

imported in Fluent. Boundary conditions and permeability values were set equal to those of the 

normal liver (as described in the previous section).  

The pressure drop over the nodular region (∆P) was measured by subtracting the average 

pressure of two predefined planes (Fig. 5a), located proximal (plane 1) and immediately distal 

(plane 2) to the nodular region. Both planes were created such that they did not intersect with 

the vascular systems. The blood flow (Q) across the nodular region was determined by 

measuring the volumetric flow rate through the inflow plane. The vascular resistance over the 

nodular region could then easily be assessed by Eq. 7.  

Q

P
R


       (7)     
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3. Results 

A. Microcirculation 

The static pressure distributions of both samples (Figs. 6a and 7a for the r direction, Figs. S1 and 

S4 in the supplemental material for the θ and z direction) indicate that pressures along the r, θ 

or z flow direction range from 0 to 33 Pa, 16 Pa and 11 Pa for sample 1 and from 0 to 6 Pa, 3 Pa 

and 2.6 Pa for sample 2, respectively. Overall, the pressure drop over the cube is markedly 

lower for sample 2. Additionally, the results illustrate that the pressure drop over the cubes 

depends on the applied blood flow direction with the highest value in the r direction and the 

lowest in the z direction. Several sinusoids display an approximately uniform pressure, while 

others show larger pressure gradients (Figs. 6, 7, S1, S4). This leads to preferential pathways in 

the geometry along which the vast majority of blood flow is transported (Figs. 6b, 7b, S2 and S5). 

Due to the imposed symmetry conditions, the preferential paths are mainly located within the 

central region of the geometry. To reduce the influence of the applied boundary conditions, the 

hemodynamics of a smaller central cube (characteristic length of 50 µm; similar to [9]) are 

further analyzed. Table 1 lists the maximum and mean velocity (v) and wall shear stress (WSS) of 

the central cubes of both samples, indicating that the highest vmax and WSSmax values are found 

for the r direction and the lowest for the z direction. 

The wall shear stress covering the sinusoidal surfaces remained mostly under 1 Pa (Figs. 6c, 7c, 

S3 and S6) for every flow direction. Some (small) regions yielded higher wall shear stresses due 

to narrow channels or preferential pathways.  
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The permeability coefficients and porosity of every subsampled cube of sample 1 and sample 2 

are listed in supplemental Tables S1 and S2, respectively. The mean sinusoidal porosity of the 

subcubes was found to be 14.3% ± 3.2% for sample 1 and 24.6% ± 7.3% for sample 2. The 

Shapiro-Wilk test (significance level of 0.05) indicated that for sample 1 two out of nine (kθθ, kzθ) 

and for sample 2 three out of nine (krr, kθz, kzz) permeability coefficients were not normally 

distributed. Therefore, the permeability tensors of both samples (K1 and K2 as depicted in Eqs. (8) 

and (9) for sample 1 and 2, respectively) were estimated based on the median values to limit 

the influence of skewed distributions (see also [9]). Additionally, Mann–Whitney U tests were 

conducted to determine whether    ,    , .. ,     of both samples (i.e. of their 15 subsamples) 

were different (significance level of 0.05), which was the case for the main permeability 

coefficients (   ,    ,    ) and    . 
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K    (9) 

The diagonalized tensors (Eqs. (10) and (11) for sample 1 and 2, respectively) demonstrate that 

the highest permeability is oriented in the axial direction (kzz), which is almost parallel to the 

central vein direction, for both samples. For sample 1, the permeability in the circumferential 

direction (kθθ) is about two times lower compared to the radial direction (krr). In contrast, krr and 

kθθ are practically the same for sample 2. 
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The angles between the original coordinate system (r, θ and z) and the principal axes were 

12.5°, 23.6° and 21.8° and 38°, 39.1° and 10.4° for sample 1 and 2, respectively. In order to 

align the original coordinate system with the principal axes, the original coordinate system had 

to be rotated (counter-clockwise) over 20°, -8° and 9.6° and 10.4°, -0.2° and -38° around the r, 

θ and z axes for sample 1 and 2, respectively.  

B. Macrocirculation 

The pressure distribution and velocity streamlines of a section through a healthy liver and a liver 

with severe cirrhosis (nodular vol% of 81.2%) are visualized in Fig. 8. The results of the CFD 

models (Fig. 9) indicate that increasing vol% of regenerative nodules corresponds to higher 

pressure drops over the nodular region, which is located between the PV/HA and HV, (Fig. 9a) 

and significantly lower HV outflows (Fig. 9b).  

For the simplified normal liver model, the pressure difference over the sinusoidal region is 66.7 

Pa and the hepatic venous outflow amounts 1468 ml/min. In the case of cirrhosis, the pressure 

over the nodular region increases up to 80.1 Pa, 169.5 Pa and 675.8 Pa, while the HV outflow 

decreases to 1445.5 ml/min, 1353.2 ml/min and 904.3 ml/min for a nodular vol% of 22.7%, 60.2% 

and 82.5%, hereafter called mild, moderate and severe cirrhosis, respectively. The resulting 

vascular resistances are 1.27, 2.87 and 17.14 times higher compared to the normal hepatic 
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resistance (2.6 x 103 Pa·s/m3) for mild, moderate and severe cirrhosis, respectively. Hence, 

regenerative nodules severely increase the intrahepatic vascular resistance (Fig. 9c), especially 

beyond about 65 vol%. The exponentially-fitted curves of the pressure difference over the 

sinusoidal region, the HV outflow and the vascular resistance are indicated in Fig. 9. 
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4. Discussion 

Liver cirrhosis comprises a wide spectrum of pathological characteristics, deteriorating the 

hepatic perfusion and function. In this study, the impact of a number of typical characteristics 

for cirrhosis on the hepatic hemodynamics was numerically modeled at different length scales. 

While numerical microcirculation models - based on vascular corrosion casting – revealed the 

disturbed microflow patterns due to subtle sinusoidal changes and shunt vessels, the impact of 

regenerative nodules was not included. Therefore, a novel conceptual macrocirculation model 

was developed to illustrate the overall hemodynamic changes due to regenerative nodules.  

Our microcirculation data suggest that the cirrhotic microcirculation perfusion is non-

homogeneous and anisotropic. Sample 1 was completely anisotropic in terms of permeability 

showing the highest permeability in the direction parallel to the central vein (kzz) and lower, but 

mutually different permeabilities in the radial (krr) and circumferential (kθθ) direction. Contrary, 

sample 2 exhibited a more or less isotropic permeability in hexagonal cross-sections of a lobule 

(krr and kθθ) and a slightly higher permeability along the longitudinal direction (kzz). Hence, 

sample 2 shows a lower anisotropic behavior in terms of permeability compared to sample 1. 

Debbaut et al. [9] applied the same methodology to assess the perfusion characteristics of the 

microcirculation in a healthy liver. The pressure ranges obtained in the r, θ and z flow directions 

were 0-180 Pa, 0-170 Pa and 0-100 Pa, respectively. Since these pressure ranges clearly exceed 

those of the cirrhotic samples, it appears that the sinusoidal resistance to blood flow is 

markedly decreased in the dissected samples of this cirrhotic liver. These observations on the 

microlevel contradict the pressure and flow measurements of perfusion experiments on the 

whole organ level [40], indicating that the overall intrahepatic vascular resistance increases due 

Journal of Biomechanical Engineering. Received September 24, 2014; 
Accepted manuscript posted December 5, 2014. doi:10.1115/1.4029280 
Copyright (c) 2014 by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Downloaded From: http://asmedigitalcollection.asme.org/ on 12/18/2014 Terms of Use: http://asme.org/terms



A Multi-level Modeling Framework to Study Hepatic Perfusion Characteristics in case of Liver Cirrhosis 

G. Peeters et al. BIO-14-1475 19 

to cirrhosis. This discrepancy is most likely a consequence of the presence of regenerative 

nodules and fibrotic septa, which are not included in the micromodels. The conceptual model of 

the cirrhotic macrocirculation, on the other hand, demonstrates that inclusion of regenerative 

nodules significantly increases the intrahepatic vascular resistance, impeding the perfusion of 

liver tissue with a steep increase beyond 65 vol%. Hence, we hypothesize that the lower 

pressure gradients – observed in two cirrhotic microvascular samples – imply a locally decreased 

resistance due to the presence of compensation mechanisms (dilated sinusoids and shunt 

vessels in cirrhotic sample 1 and 2, respectively). These compensations most likely counteract 

the increased IVR of the liver as a whole caused by the regenerative nodules, fibrotic septa and 

dynamic contraction mechanisms (regulated by stellate cells, NO-concentration levels etc.). 

Since the here reported data merely reflect the hemodynamics of only two relatively small 

dissected samples from one cirrhotic liver, we acknowledge that the aforementioned 

observations may not be simply generalizable to a complete cirrhotic liver. Though Mann-

Whitney U tests were performed to determine whether both samples were different in terms of 

permeability characteristics, these tests could not provide conclusive information, as both 

samples were not oriented in exactly the same direction. Additionally, the cirrhotic liver tissue 

might be heterogeneous (e.g. potential architectural differences near the liver core versus the 

liver capsule). Analyzing more samples at dispersed locations from the same as well as different 

livers might yield a better estimation of the perfusion characteristics, but implies a time-

consuming and labor-intensive process.  

The vascular corrosion casting procedure was found to be a suitable method to generate a 

replica of the cirrhotic vasculature, as the microcirculation was adequately filled with polymer 
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solution (Fig. 2). We hypothesize that the known shrinkage of the cast resin was compensated 

for by machine perfusion prior to casting and the pressure exerted during the injection of the 

polymer. Indeed, the dimensions (radius, length, etc.) of the sinusoidal network – previously 

measured using a normal liver cast [38] - were consistent with literature values. Unfortunately, 

the low-vascularized nodular structures were not included in the cast, raising the need for the 

cirrhotic macrocirculation model to study the impact of nodules. 

A number of assumptions were made when developing the numerical models. Due to computer 

performance restrictions, relatively small-sized cubic samples were virtually dissected to derive 

the simulation geometry. The positioning of the cube within the samples was not 

straightforward, as the cirrhotic angioarchitecture was highly distorted, particularly for sample 2. 

However, the addition of contrast agent bismuth oxide nanoparticles to the HA injectate 

allowed identifying portal tracts, as the particles were sieved before entering the sinusoids, 

which proved useful for sample 2. Considering the difficulties to orient the cube, the original 

coordinate system was relatively well-aligned to the principal axes, as relatively small rotation 

angles were required to align both coordinate systems.  

Blood was modeled as a Newtonian fluid, even though – at the sinusoidal microlevel – blood 

behaves like a non-Newtonian fluid with a varying viscosity depending on the diameter of the 

lumen (Fahraeus-Lindqvist effect) [41]. However, at the sinusoidal level (diameters of ± 10 µm), 

blood approximates the viscosity of blood plasma, being a Newtonian fluid. Hence, inclusion of 

the viscosity effect would only be of importance to the shear stress levels, while the 

permeability tensor – which was our main interest - solely depends on geometrically-defined 

parameters when assuming a Newtonian fluid and geometrically comparable structures [42].  
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The velocity imposed at the inlet of the model was deduced from scaling down the total liver 

blood flow to the flow entering the dissected sample. However, knowing that calculating the 

permeability tensor is independent of the applied inflow velocity, we opted to work with the 

blood flow of normal human livers (1450 ml/min).  

An isotropic permeability was implemented in the conceptual macromodel, even though it was 

shown that the microcirculation may exhibit an anisotropic permeability. We assumed, however, 

that the orientation of the remaining lobular structures is location-dependent such that, at the 

macroscopic level, this anisotropic effect cancelled out and the cirrhotic circulation behaved 

isotropic in terms of permeability. In addition, the permeability coefficients obtained with the 

micromodels were not implemented in the macromodels due to dimensional incompatibilities. 

Coupling of the macro- and microcirculation will be a future challenge. However, bearing in 

mind that the macromodel was a significantly simplified representation of the actual liver 

vascular architecture, it was still able to simulate and predict the impact of regenerative nodules, 

corroborating our hypothesis about compensation mechanisms at the microlevel.  

Finally, other aspects such as molecular and dynamic processes (stellate cells, NO-concentration 

etc.) were not included in our model, but could be the topic of future research. At this moment, 

we only considered the static vascular structure, as our analysis of cirrhotic liver disease focuses 

on the biomechanical aspects. 

Given the fact that the studied liver represents only a single patient-specific snapshot along the 

pathological pathway of cirrhosis, information on the interplay between the progression of 

cirrhosis and the architectural disarrangement could not be deduced. Our future research will 

entail studying the whole disease spectrum going from a normal liver to a full-blown cirrhotic 
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liver, using an established rat model to investigate the angioarchitecture and fluid dynamics 

over the course of events leading to cirrhotic liver disease [43]. At controlled time points, liver 

casts will be made and multiple samples will be studied using the casting and micro-CT 

methodology. This experimental setup will enable studying the spatial heterogeneity of the 

microperfusion in a controlled way and using higher number of samples. Furthermore, it will 

allow finding the link between disease progression and microstructural disturbances. A better 

insight in the liver perfusion and hemodynamics might help to define the “point-of-no-return” in 

cirrhotic patients, beyond which the disease is assumed to be irreversible. Moreover, this may 

enable the development of patient-specific macromodels. Such a chronological multi-level 

framework may also be extended to other hepatic diseases (e.g. hepatocellular carcinoma). 

 

5. Conclusions 

Multi-level numerical modeling allows quantifying the perfusion characteristics of the cirrhotic 

macro- and microcirculation. Our morphological and numerical results suggest the presence of 

local compensation mechanisms (i.e. shunt vessels and dilated sinusoids) to counteract the 

increased vascular resistance (mainly due to the presence of regenerative nodules) of the liver 

as a whole. Moreover, these local compensation mechanisms seem to be characterized by 

anisotropic permeability properties, showing the highest value in the direction parallel to the 

central vein. Generally, the observed permeability values are notably higher compared to a 

normal liver.  
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Tables 

Table 1: The maximum and mean values of the velocity magnitude and wall shear stress for the 

smaller central cubes. 

Flow direction vmax (m/s) vmean (m/s) WSSmax (Pa) WSSmean (Pa) 

Smaller central cube 1 

r 5.0 x 10
-4

 9.4 x 10
-5

 1.7 2.2 x 10
-1

 

θ 3.3 x 10
-4

 4.3 x 10
-5

 1.5 1.2 x 10
-1

 

z 1.7 x 10
-4

 3.6 x 10
-5

 4.8 x 10
-1

 9.5 x 10
-2

 

Smaller central cube 2 

r 1.9 x 10
-4

 2.0 x 10
-5

 3.3 x 10
-1

 3.7 x 10
-2 

θ 1.3 x 10
-4

 1.3 x 10
-5

 3.7 x 10
-1

 2.1 x 10
-2

 

z 0.9 x 10
-4

 2.3 x 10
-5

 3.2 x 10
-1 

4.5 x 10
-2
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Figures 

 

Figure 1: Cirrhotic liver (a) and the corresponding vascular corrosion cast (b). Smaller samples 

were dissected from the cast (white ellipse) to analyze the microcirculation. 

 

 

Figure 2. Microscopic analysis of the cirrhotic angioarchitecture: scanning electron microscopic 

(SEM) image of enlarged, irregularly shaped intrahepatic vessels, most likely representing shunt 

vessels (a; dashed circle) causing blood flow to bypass hepatocytes, and an abnormal and 

bumpy blood vessel lumen (b; dashed circle). Microscopic images (c; left and top right) and a 

SEM image (c; bottom right) show ellipsoidal holes which become visible after the maceration of 

the tissue in regenerative nodules, illustrating the compressed walls.   
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Figure 3. 3D reconstructions of dissected samples of the cirrhotic microvasculature based on 

micro-CT images: (a) sample 1 [resolution of 1.9µm] containing seemingly unaffected sinusoids 

and (b) sample 2 [resolution of 1.7µm]  displaying abnormal shunt vessels (dashed circles). 

 

Figure 4. Fluid domain in r-direction for sample 1 (a) and sample 2 (b). Inflow and outflow 

guidance boxes were added to facilitate solution convergence. The surface mesh density of both 

samples is displayed in the smaller frames. The red arrows indicate the flow direction (from top 

to bottom). The lateral boundaries were defined as symmetry planes.  
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Figure 5. Macrocirculation model of liver cirrhosis: (a) conceptual 3D model of the cirrhotic 

macrocirculation; A1/2 and l1/2 represent the branch’s area and length for the first and second 

vessel generation, respectively. The indicated dimensions are shown in millimeter (mm). (b) 

Simplified electrical analog model of a healthy liver [28]. 

 

Figure 6. CFD models of cirrhotic sample 1 in the r direction: (a) Static pressure distribution on 

the sinusoidal walls. (b)  Visualization of the preferential pathways through the geometry. The 

streamlines are colored according to the local flow velocities. (c) The spatial distribution of wall 

shear stress along the sinusoidal walls. Wall shear stresses remained mostly under 1 Pa. 
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Figure 7. CFD models of cirrhotic sample 2 in the r direction: (a) Static pressure distribution on 

the sinusoidal walls. (b)  Visualization of the preferential pathways through the geometry. The 

streamlines are colored according to the local flow velocities. (c) The spatial distribution of wall 

shear stress along the sinusoidal walls. Wall shear stresses remained mostly under 1 Pa. 

 

Figure 8. Pressure distribution and velocity streamlines of a section through (a) the sinusoidal 

region of the CFD model of a normal liver and (b) the nodular region of the CFD model of a 

cirrhotic liver (simulation of severe cirrhosis with a nodular vol% of 81.2%). 
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Figure 9. Results of the conceptual macrocirculation model. The pressure difference over the 

nodular region (a) increases and the flows through the vascular trees (b) decrease as a 

consequence of the regenerative nodules. Hence, the vascular resistance over the nodular 

region (c) increases due to regenerative nodules. 
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Nomenclature 

CFD  = computational fluid dynamics 

CT  = computed tomography 

HA  = hepatic artery 

HV  = hepatic vein 

IVR  = intrahepatic vascular resistance 

MRI  = magnetic resonance imaging 

NO  = nitric oxide 

PV  = portal vein 

v  = velocity 

WSS  = wall shear stress   
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Table captions 

Table 1. The maximum and mean values of the velocity magnitude and wall shear stress for the 

smaller central cubes. 
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Figure captions 

Figure 1. Cirrhotic liver (a) and the corresponding vascular corrosion cast (b). Smaller samples 

were dissected from the cast (white ellipse) to analyze the microcirculation. 

Figure 2. Microscopic analysis of the cirrhotic angioarchitecture: scanning electron microscopic 

(SEM) image of enlarged, irregularly shaped intrahepatic vessels, most likely representing shunt 

vessels (a; dashed circle) causing blood flow to bypass hepatocytes, and an abnormal and 

bumpy blood vessel wall (b; dashed circle). Microscopic images (c; left and top right) and a SEM 

image (c; bottom right) show ellipsoidal holes which become visible after the maceration of the 

tissue in regenerative nodules, illustrating the compressed walls.   

Figure 3. 3D reconstructions of dissected samples of the cirrhotic microvasculature based on 

micro-CT images: (a) sample 1 [resolution of 1.9µm] containing seemingly unaffected sinusoids 

and (b) sample 2 [resolution of 1.7µm]  displaying abnormal shunt vessels (dashed circles). 

Figure 4. Fluid domain in r-direction for sample 1 (a) and sample 2 (b). Inflow and outflow 

guidance boxes were added to facilitate solution convergence. The surface mesh density of both 

samples is displayed in the smaller frames. The red arrows indicate the flow direction (from top 

to bottom). The lateral boundaries were defined as symmetry planes.  

Figure 5. Macrocirculation model of liver cirrhosis: (a) conceptual 3D model of the cirrhotic 

macrocirculation; A1/2 and l1/2 represent the branch’s area and length for the first and second 

vessel generation, respectively. The indicated dimensions are shown in millimeter (mm). (b) 

Simplified electrical analog model of a healthy liver [28]. 
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Figure 6. CFD models of cirrhotic sample 1 in the r direction: (a) Static pressure distribution on 

the sinusoidal walls. (b)  Visualization of the preferential pathways through the geometry. The 

streamlines are colored according to the local flow velocities. (c) The spatial distribution of wall 

shear stress along the sinusoidal walls. Wall shear stresses remained mostly under 1 Pa. 

Figure 7. CFD models of cirrhotic sample 2 in the r direction: (a) Static pressure distribution on 

the sinusoidal walls. (b)  Visualization of the preferential pathways through the geometry. The 

streamlines are colored according to the local flow velocities. (c) The spatial distribution of wall 

shear stress along the sinusoidal walls. Wall shear stresses remained mostly under 1 Pa. 

Figure 8. Pressure distribution and velocity streamlines of a section through (a) the sinusoidal 

region of a normal liver and (b) the nodular region of a cirrhotic liver (simulation of severe 

cirrhosis with a nodular vol% of 81.2%). 

Figure 9. Results of the conceptual macrocirculation model. The pressure difference over the 

nodular region (a) increases and the flows through the vascular trees (b) decrease as a 

consequence of the regenerative nodules. Hence, the vascular resistance over the nodular 

region (c) increases due to regenerative nodules. 
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Supplemental material 

Supplemental Table Captions 

Table S1. The resulting permeability coefficients (kij) and 3D porosity (ε) belonging to the 

subcubes of dissected sample 1 (seemingly unaffected sinusoids). The mean value, standard 

deviation, p value (Shapiro-Wilk test) and median were also calculated for each permeability 

coefficient as well as the porosity. 

Table S2. The permeability coefficients (kij) and 3D porosity (ε) belonging to the subsampled 

cubes of dissected sample 2 (abnormal vessels). The mean value, standard deviation, p value 

(Shapiro-Wilk test) and median were also calculated for each permeability coefficient as well as 

the porosity. (Subcube 9 (as defined in [9]) was omitted from the analysis, since there was no 

intersection between its outflow plane and the dissected sample, disabling calculating the 

pressure drop over the cube.) 
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Supplemental Figure captions 

Figure S1. CFD models of cirrhotic sample 1:  static pressure distribution on the sinusoidal walls.  

Figure S2. Computational fluid dynamics models of cirrhotic sample 1: visualization of the 

preferential pathways through the geometry. The streamlines are colored according to the local 

flow velocities.  

Figure S3. CFD models of cirrhotic sample 1: the spatial distribution of wall shear stress along 

the sinusoidal walls. Wall shear stresses remained mostly under 1 Pa. 

Figure S4. Hemodynamics of cirrhotic sample 2:  static pressure distribution on the sinusoidal 

walls.  

Figure S5. CFD models of cirrhotic sample 2: visualization of the preferential pathways through 

the geometry. The streamlines are colored according to the local flow velocities.  

Figure S6. CFD models of cirrhotic sample 2: the spatial distribution of wall shear stress along 

the sinusoidal walls. Wall shear stresses remained mostly under 1 Pa. 
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Supplemental Tables 

Table S1 

Cube krr [m²] kθr [m²] kzr [m²] krθ [m²] kθθ [m²] kzθ [m²] Krz [m²] kθz [m²] kzz [m²]  

1 1.78E-13 7.96E-14 -5.73E-14 1.92E-14 5.24E-14 -4.32E-14 -1.34E-14 -9.42E-14 2.19E-13 1.65E-1 

2 1.31E-13 -5.16E-15 2.45E-14 5.34E-15 1.55E-13 -2.95E-14 -1.03E-14 4.20E-16 2.05E-14 1.59E-1 

3 8.51E-14 -3.33E-14 2.18E-14 -3.07E-14 6.94E-14 -8.74E-14 9.63E-15 -3.85E-14 7.81E-14 2.04E-1 

4 1.11E-13 4.26E-14 -5.40E-14 2.40E-14 5.90E-14 -2.97E-14 -1.79E-15 -3.33E-14 2.76E-13 1.12E-1 

5 8.84E-15 1.40E-15 -6.93E-15 -3.73E-14 7.50E-14 6.39E-15 -4.16E-15 -6.15E-15 1.35E-13 1.58E-1 

6 8.55E-14 1.58E-14 5.55E-14 -2.55E-14 8.26E-14 -3.40E-14 6.16E-14 -3.40E-14 1.01E-14 1.22E-1 

7 9.73E-14 8.22E-15 3.69E-15 5.05E-15 1.04E-13 -2.29E-14 1.88E-14 -2.59E-14 1.18E-13 1.24E-1 

8 1.83E-14 4.01E-14 -1.41E-14 3.09E-15 7.75E-14 -3.68E-14 4.02E-14 -2.14E-14 1.26E-13 1.70E-1 

9 9.40E-15 -2.68E-15 3.38E-15 -7.55E-15 5.67E-14 -2.64E-14 4.06E-14 -4.80E-14 6.92E-14 1.16E-1 

10 1.28E-13 -5.72E-15 -5.44E-14 -2.57E-14 5.45E-14 -2.80E-14 -6.92E-15 -5.37E-14 1.23E-13 9.68E-2 

11 6.87E-14 3.37E-14 -2.12E-14 6.45E-15 4.84E-14 -3.68E-14 5.53E-14 -6.76E-14 1.95E-13 1.50E-1 

12 3.10E-14 7.31E-14 -8.42E-14 3.13E-15 4.53E-14 -2.10E-14 3.71E-15 -5.26E-14 1.53E-13 1.31E-1 

13 2.58E-13 3.41E-14 7.69E-15 -7.90E-15 1.27E-13 -1.26E-13 -4.40E-15 -4.59E-14 1.67E-13 9.83E-2 

14 1.12E-13 1.16E-14 -2.05E-14 2.98E-14 7.35E-14 -4.63E-14 -1.79E-14 -2.61E-14 1.72E-13 1.83E-1 

15 1.04E-13 5.84E-14 1.05E-14 -1.12E-15 8.68E-14 -3.96E-14 3.60E-14 -1.19E-13 2.34E-13 1.53E-1 

Mean 9.50E-14 2.34E-14 -1.24E-14 -2.64E-15 7.78E-14 -4.01E-14 1.38E-14 -4.44E-13 1.58E-13 1.43E-1 

Stdev 6.66E-14 3.18E-14 3.73E-14 2.00E-14 3.07E-14 3.06E-14 2.63E-14 3.12E-14 5.93E-14 3.15E-2 

P-value 2.11E-1 7.83E-1 7.81E-1 4.96E-1 2.88E-2 2.68E-3 7.76E-2 2.61E-1 9.25E-1 7.24E-1 

Median 9.73E-14 1.58E-14 -6.93E-15 3.09E-15 7.35E-14 -3.40E-14 3.71E-15 -3.85E-14 1.53E-13 1.50E-1 
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Table S2 

Cube krr [m²] kθr [m²] kzr [m²] krθ [m²] kθθ [m²] kzθ [m²] Krz [m²] kθz [m²] kzz [m²]  

1 7.80E-13 -2.40E-13 -2.27E-13 9.4 E-14 6.39E-13 -2.79E-13 2.22E-13 1.23E-13 9.81E-13 1.74E-1 

2 1.64E-13 -3.45E-13 2.79E-13 -6.18E-15 6.92E-14 4.33E-14 -7.12E-14 8.84E-13 1.78E-12 3.74E-1 

3 1.40E-12 1.41E-12 -6.44E-13 5.59E-13 9.88E-13 -3.65E-13 -1.21E-13 -1.84E-13 5.97E-13 2.57E-1 

4 1.68E-12 -6.40E-13 2.15E-13 3.23E-13 3.48E-13 -5.22E-13 -2.20E-14 1.37E-14 8.25E-13 2.84E-1 

5 6.16E-13 1.09E-13 -9.02E-14 2.44E-13 6.31E-13 -2.16E-13 3.91E-13 -3.15E-14 2.29E-13 2.24E-1 

6 1.47E-13 6.53E-14 3.07E-14 -3.33E-14 2.97E-13 4.86E-14 -1.78E-13 1.63E-13 3.47E-13 1.11E-1 

7 5.80E-14 -4.78E-15 -2.05E-14 1.06E-14 2.72E-13 5.75E-14 -2.59E-13 2.62E-14 3.94E-13 2.49E-1 

8 5.44E-13 4.67E-13 7.72E-13 -1.23E-13 1.31E-12 -4.15E-13 8.50E-13 7.76E-13 2.49E-12 2.12E-1 

10 2.02E-12 9.02E-13 -1.19E-12 2.84E-13 1.45E-12 -9.14E-13 3.76E-13 -2.11E-13 9.41E-13 2.72E-1 

11 1.27E-13 -5.86E-14 -1.22E-13 1.84E-13 7.67E-13 1.95E-14 -2.07E-13 3.37E-14 9.02E-13 3.22E-1 

12 8.65E-13 -2.38E-13 -1.81E-13 -2.06E-14 4.68E-13 -9.45E-14 3.05E-13 1.26E-13 3.65E-13 2.56E-1 

13 4.35E-13 -2.75E-14 -1.31E-13 -3.28E-14 4.57E-13 7.07E-14 -1.88E-13 3.27E-13 7.19E-13 1.38E-1 

14 1.96E-13 2.76E-14 -9.21E-14 6.91E-14 3.87E-13 -1.30E-13 1.98E-13 1.05E-13 4.75E-13 3.34E-2 

15 5.28E-13 2.30E-13 1.08E-12 2.21E-14 1.11E-12 -2.26E-13 1.07E-13 1.05E-12 2.78E-12 2.41E-1 

Mean 6.83E-13 1.18E-13 -2.27E-14 1.12E-13 6.56E-13 -2.09E-13 1.00E-13 2.29E-13 9.88E-13 2.46E-1 

Stdev 6.16E-13 5.21E-13 5.44E-13 1.85E-13 4.15E-13 2.80E-13 3.12E-13 3.93E-13 8.01E-13 7.28E-2 

P-value 3.45E-2 8.65E-2 2.55E-1 1.06E-1 3.41E-1 5.50E-2 1.43E-1 1.37E-2 5.23E-3 9.58E-1 

Median 5.36E-13 1.14E-14 -9.12E-14 4.56E-14 5.50E-13 -1.73E-13 4.27E-14 1.14E-13 7.72E-13 2.52E-1 
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Supplemental Figures 

 

Figure S1. CFD models of cirrhotic sample 1:  static pressure distribution on the sinusoidal walls.  

 

Figure S2. CFD models of cirrhotic sample 1: visualization of the preferential pathways through 

the geometry. The streamlines are colored according to the local flow velocities.  

 

Figure S3. CFD models of cirrhotic sample 1: the spatial distribution of wall shear stress along 

the sinusoidal walls. Wall shear stresses remained mostly under 1 Pa. 
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Figure S4. CFD models of cirrhotic sample 2:  static pressure distribution on the sinusoidal walls.  

 

Figure S5. CFD models of cirrhotic sample 2: visualization of the preferential pathways through 

the geometry. The streamlines are colored according to the local flow velocities.  

 

Figure S6. CFD models of cirrhotic sample 2: the spatial distribution of wall shear stress along 

the sinusoidal walls. Wall shear stresses remained mostly under 1 Pa. 
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