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Voorwoord 

Elke week maakt de klimaatverandering het nieuws. Ondanks deze steeds groeiende 

aandacht is een algehele economisch en politiek haalbare oplossing nog niet in zicht. 

Hoewel de grote transformatie uitblijft, bevinden we ons in een transitiefase. Stap 

voor stap komen deeloplossingen naar boven die fungeren als een minuscuul stukje 

uit een immense puzzel.  

Ook in de elektriciteitssector heeft de klimaatverandering zijn weerslag. Slechts 

enkele decennia geleden zou een mens raar opkijken wanneer hij of zij in een huis 

terechtkwam met een Tesla voor de deur, zonnepanelen op het dak, een slimme 

meter in de kelder, een batterijpakket in de tuin, een robotstofzuiger en slimme 

witgoedtoestellen die reageren op de elektriciteitsprijs in de keuken en in-home 

displays en tablets met bijhorende informatie over elektriciteitsverbruik in de 

woonkamer. Vandaag beseffen we dat dit realiteit kan zijn. Ik ben benieuwd wat we 

binnen 10 jaar mogelijk achten. Ondanks dat het woord “dynamiek” traditioneel niet 

gelinkt wordt aan de elektriciteitssector, kunnen we deze stelling vandaag 

ontkrachten. De transitie komt op toerental, dynamiek is het codewoord. En ik heb 

het geluk om hiervan deel uit te mogen maken. 

Met volgende quote van Bill Gates in het achterhoofd, wil ik mijn steentje bijdragen: 

“We always overestimate the change that will occur in the next two years and 

underestimate the change that will occur in the next ten. Don't let yourself be lulled 

into inaction.” Laat ik met deze wijze woorden de thesis op gang trekken, en mijn 

uiterst minieme bijdrage leveren aan een ongekende nieuwe wereld. 

Alvorens volledig van start te gaan, wil ik het niet nalaten om enkele personen te 

bedanken die rechtstreeks en onrechtstreeks een bijdrage leverden aan mijn werk.  

Vooreerst wil ik mijn promotor, Professor Belmans bedanken om mij vertrouwen te 

geven en mij de kans te geven om een doctoraat te vervolledigen. Door zijn 

academische en industriële ervaring en zijn visie, creëert hij werk en mogelijkheden 

binnen en buiten ELECTA. Ik ben blij dat ik van deze optie gebruik gemaakt heb. 

Bovendien stond hij me toe om in alle vrijheid mijn weg te zoeken binnen de 

academische wereld en op de kritieke momenten bood hij de nodige stimulans om er 

nog eens tegenaan te gaan. 

Ook wil ik Professor Driesen bedanken. Dankzij hem ben ik meegestapt in de KIC 

PhD school. Hij was mijn directe aanspreekpunt. Door de buitenlandse avonturen die 

volgden, ben ik gegroeid als academicus en persoon.  



In this perspective, I also want to thank Professor Ramos for being my host at the 

Institute for Research and Technology at Comillas Pontifical University. During my 

stay, I was welcomed with open arms. This time proved to be very fruitful in the 

academic way. Special thanks also to Dr. Luis Olmos and Kristin Dietrich for the 

interesting talks about dynamic tariff design and the ROM-model. I also want to 

thank all colleagues and friends from the institute for the necessary distractions apart 

from work. 

I also thank Ms. Kiliccote for being my host at the demand response research center 

at Lawrence Berkeley National Laboratory. Through her close connections with 

industry, I was able to get in contact with several demand response companies and 

get familiar with the North-American demand response market. Our weekly 

discussions proved to be a good exercise to check my academic results with reality. 

Mijn economische achtergrond wou ik niet verloochenen. Daarom is een deeltje van 

dit doctoraat gebaseerd op economische en econometrische modellen. Hierbij wil ik 

Professor Pepermans bedanken. Door onze vele discussies, ben ik dieper in de 

materie gedoken en heb ik antwoorden gevonden op voordien niet gestelde vragen. 

Mede dankzij hem, is mijn werk beter in lijn met de economische theorie. 

Professor D’haeseleer bedank ik voor zijn nuttige feedback op deze tekst. Bovendien 

heb ik gebruik kunnen maken van de rijke ervaring die bij TME rond unit-

commitment modellen is opgebouwd. De feedback van Kenneth Bruninx en Dr. Erik 

Delarue werd ten zeerste geapprecieerd. 

Mijn dank gaat ook uit naar Professor Adhemar Bultheel om de preliminaire en 

publieke verdediging voor te zitten. 

Voorts wil ik heel ELECTA bedanken. In deze dynamische omgeving, heb ik de 

opportuniteit gehad om ervaring uit te bouwen op verschillende terreinen: 

academisch onderzoek, begeleiden van thesissen, projectwerk, nauwe 

samenwerkingen met industrie, werkpakketleiderschap, labo’s geven, assistent van 

een vak, enz. Bovendien ben ik als newbie gestart op een topic genaamd “demand 

response” en heb ik ELECTA zien uitgroeien tot een gevestigde waarde in deze 

materie. De stappen die we de laatste jaren op dit en vele andere vlakken gezet 

hebben zijn onnavolgbaar. De elektriciteitssector is in volle dynamiek en we kunnen 

stellen dat ELECTA de boot niet gemist heeft. Het allerbelangrijkste is bovendien dat 

ik in tussentijd omringd was door de meest fantastische collega’s. Aan de 

collegialiteit en amusementswaarde zullen weinige onderzoeksgroepen kunnen 

tippen. Ik zou elke collega 1 voor 1 kunnen bedanken. Al is het niet voor het pintje 

bier, de gezamenlijke (sport)activiteiten, dan wel om de gezellige babbel tussendoor. 

Omdat ik mijn voorwoord korter wil houden dan mijn tekst zelf, ga ik dit 

achterwegen laten. Daarom richt ik me specifiek aan de personen die een directe 

bijdrage aan dit werk hebben geleverd. Eerst en vooral wil ik Cedric bedanken voor 



 

de verhelderende discussies. Deze stonden me toe om alles eens op een rijtje te 

zetten en af te wijken van mijn eigen denkpatroon. Bedankt voor uw enthousiasme 

doorheen mijn hele doctoraat en voor het nalezen van de tekst. Ook Jeroen T. wil ik 

bedanken. Zijn wiskundig inzicht en Matlab skills hebben menig onderzoeker binnen 

ELECTA vooruit geholpen. Ik was daar één van. Vooral bij het optimaliseren van 

witgoed heeft onze samenwerking geloond. Ook Frederik R. bedank ik. Het gebruik 

van flexgrafieken kent geen geheimen voor hem. Zijn hulp bleek dan ook heel nuttig 
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omtrent modelleren van investeringsbeslissingen. Tot slot bedank ik ook de hele 

ondersteuning binnen ELECTA, met name het secretariaat en het IT- en 

labopersoneel. Zij vormen een onmisbare schakel binnen. Zij stonden altijd klaar voor 

mij. Bovendien kreeg de cover van dit boekje een heuse opwaardering dankzij de 

grafische kunsten van Nathalie. 
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Abstract 

The need for flexibility within power system operation is growing as more 

intermittent renewables with limited controllability are integrated. While traditionally 

this need is met by supply side resources, the demand side also has intrinsic 

flexibility available which could be tapped, often referred to as demand response. 

Although policy makers and industry recognize the value of demand response, its use 

and understanding remains limited. This is especially the case on the residential 

level. 

This thesis aims at enhancing the understanding of demand response by addressing 

three knowledge gaps, ranging from designing dynamic tariff schemes to incentivize 

demand response, over quantifying the residential load modifications these cause, 

until determining the final benefits this brings for households and society as a whole. 

First of all, the demand response incentive following from the current residential 

tariff designs is limited especially in view of more renewable energy resources. 

Moreover, these tariffs do not reflect the time-dependency of the underlying cost of 

electricity. In order to allow demand response and to reflect actual costs to the 

users, this thesis argues a balance has to be found between tariff principles related 

to costs and social acceptability on the one hand and its resulting demand response 

incentive on the other. This balance can be accomplished by proper tariff design. It is 

shown that the choice of the tariff design not only affects the demand response 

incentive, but also the resulting benefits. 

Second, the magnitude to which residential users react to those tariff schemes 

remains largely unknown. This thesis shows that flexibility obtained from both wet 

appliances and battery electric vehicles is considerable. Moreover, automation adds 

to the level and predictability of demand response. Hereby, predictability can be 

reached by means of price elasticities. 

Finally, the benefits residential demand response brings to power system operation 

are not properly identified. This thesis shows that demand response leads to 

operational benefits as costs of plant operation decrease, while enhancing system 

reliability. Moreover, demand response proves to be an efficient means to integrate 

intermittent renewable energy resources. On the investment side, demand response 

leads to a postponement and reduction of the need for additional generation 

capacity. 

 





 

Samenvatting 

De nood aan flexibiliteit voor de werking van het elektriciteitssysteem groeit 

naarmate meer intermitterende hernieuwbare energiebronnen met beperkte 

controleerbaarheid geïntegreerd worden. Hoewel deze nood traditiegetrouw door 

elektriciteitscentrales aan de aanbodzijde wordt opgevangen, beschikt de vraagzijde 

ook over intrinsieke flexibiliteit die kan ingezet worden. Hierbij wordt vaak verwezen 

naar vraagrespons. Hoewel beleidsmakers en industrie het nut van vraagrespons 

herkennen, blijft het gebruik en de kennis beperkt.  

Deze thesis verrijkt de kennis omtrent residentiële vraagrespons door zich op drie 

hiaten te richten. Deze hiaten omvatten het ontwerp van elektriciteitstarieven die 

vraagrespons aanmoedigen, het inschatten van de huishoudelijke 

verbruiksaanpassingen, en het bepalen van de voordelen die dit oplevert voor 

huishoudens en voor de maatschappij als geheel. 

Ten eerste moedigen de huidige elektriciteitstarieven vraagrespons nauwelijks aan, 

zeker met het oog op toenemende hernieuwbare elektriciteitsbronnen. Bovendien 

vatten deze tarieven de onderliggende tijdsafhankelijke kost van elektriciteit 

onvoldoende. Om vraagrespons toe te laten en de eigenlijke elektriciteitskost naar de 

eindgebruiker te reflecteren, toont deze thesis aan dat er een balans nodig is tussen 

tariefprincipes gerelateerd aan kosten en sociale aanvaardbaarheid enerzijds en de 

resulterende stimulus voor vraagrespons anderzijds. Deze balans wordt bereikt door 

een gepast tariefontwerp. De keuze van het ontwerp beïnvloedt niet alleen de 

stimulans voor vraagrespons, maar ook de voordelen die hieruit voortvloeien. 

Ten tweede blijft de grootteorde waarmee residentiële gebruikers reageren op deze 

tarieven niet gekend. Deze thesis toont dat flexibiliteit afkomstig van zowel 

wasmachines, droogkasten, afwasmachines als van batterij-aangedreven elektrische 

voertuigen substantieel is. Zij geeft ook aan dat automatisatie bijdraagt tot de 

grootteorde en de voorspelbaarheid van vraagrespons. Deze voorspelbaarheid kan 

deels gevat worden door prijselasticiteiten.  

Tot slot zijn de huishoudelijke en maatschappelijke voordelen van residentiële 

vraagrespons niet geïdentificeerd. Deze thesis toont aan dat vraagrespons resulteert 

in operationele voordelen aangezien de operationele productiekost van 

elektriciteitscentrales daalt en de betrouwbaarheid van het elektriciteitssysteem 

toeneemt. Bovendien leidt vraagrespons tot een efficiëntere integratie van 

hernieuwbare energiebronnen. Tenslotte resulteert vraagrespons in uitstel en 

vermindering van de nood aan additionele productiecapaciteit. 

 

 

 



 

 



 

Abbreviations and symbols 
 

List of abbreviations 
 
 

ACER  Agency for the Cooperation of Energy Regulators 

AIDS  Almost Ideal Demand System 

BEV  Battery Electric Vehicle 

CCGT Combined Cycle Gas Turbines 

CES  Constant Elasticity of Substitution 

CHP  Combined Heat and Power 

CPP  Critical Peak Pricing 

DOE  Department Of Energy 

DP Dynamic Pricing 

DR Demand Response 

DSM  Demand Side Management 

DW Dishwasher 

DY Dryer 

DSO Distribution System Operator 

EC  European Commission 

ENS  Energy Not Served 

ENTSO-E  European Network of Transmission System Operators for Electricity 

EU European Union 

GAI  Generalized AIDS 

GAMS General Algebraic Modeling System 

GEP  Generation Expansion Planning 

GL  Generalized Leontief  

GM  Generalized McFadden 

GT  Gas Turbines 

IBP Incentive-Based Program 

ICE  Internal Combustion Engines 

ICT  Information and Communication Technologies 

IEA  International Energy Agency 

ILP  Integer Linear Programming 

IRP Integrated Resource Planning 

LA-AIDS  Linear Approximate Almost Ideal Demand System 

LDC  Load Duration Curve 

LDP  Locational Dynamic Pricing 

LOLE  Loss Of Load Expectation 

LP Linear Programming 

MILP Mixed-Integer Linear Program 

PtOP  Peak to Off-Peak 

PWR  Pressurized Water Reactors 

QUAIDS Quadratic Almost Ideal Demand System 

REN Renewable tariff 

RES Renewable Energy Sources 



xiv Abbreviations and symbols 

RO  Real Options 

RTP Real-Time Pricing 

SET  Strategic Energy Technology 

SPP  Steam Power Plants 

ToU  Time-of-Use 

TSO Transmission System Operator 

TSP  Total Shifting Potential 

VOLL Value of Lost Load 

VREG  Vlaamse Regulator voor Elektriciteit en Gas 

WA  Wet Appliance 

WM  Washing Machine 

 

 

 
List of symbols 
 
 

a Type of appliance  

e Type of BEV  

g Generator  

h Pumped storage hydro plant  

j Appliance cycle  

k Stage within planning horizon  

l Linked appliance cycle  

n Number of hours shifted  

p, p’ Hourly time period  

q Quarterly time period  

s, s’ State of the BEV  

t Thermal plant  

Ω𝑥,𝑑,𝒖,𝜔  State space  

𝜔 Long-term uncertainty of the demand growth for 
electricity 

 

 

 

𝑐𝑘 Total costs in stage k [€] 

Cajn Cost for cycle j of appliance a shifted with n-1 hours [€] 

𝑐ℎ𝑝
𝑒 BEV e charging indicator in period p {0,1} 

𝐷𝑝 Demand in period p [MW] 

𝑑𝑝 Electricity demand in period p [MW] 

DPq Dynamic price in quarter q [€/MWh] 

𝑑𝑑𝑜𝑝,𝑎 Downward demand variation for type of appliance a in period p [MW] 

DDoMaxa Maximum downward variation of demand of appliance a [p.u.] 

𝑑𝑟𝑑𝑒𝑓𝑝 Downward reserve deficit in period p [MW] 

DResC Downward reserve deficit cost [€/MWh] 



Abbreviations and symbols xv 

𝑑𝑢𝑝𝑝,𝑎 Upward demand variation for type of appliance a in period p [MW] 

DUpMax𝑎 Maximum upward variation of demand of appliance a [p.u.] 

𝑒𝑐𝑝
𝑒,𝑠 Consumption of BEV e in state s in period p [MW] 

𝐸𝐶𝑀𝑎𝑥𝑝
𝑒 Maximum power charged by BEV e in period p [MW] 

EEfBtWe  Battery-to-wheel efficiency for each type of BEV e [p.u.] 

EEfGtBe  Grid-to-battery efficiency for each type of BEV e [p.u.] 

EEMax Maximum energy charged by BEV [MWh] 

EMax Maximum battery energy content boundary [kWh] 

EMin Minimum battery energy content boundary [kWh] 

EPp
e,s Percentage of BEV of type e and in state s for each period p [p.u.] 

EPTp
e,s,s′ Percentage of BEVs of type e and in state s’ that move to state 

s for each period p 
[p.u.] 

ETp
e,s Battery energy used in transport of each type of BEV e in each 

state s for each period p 
[MWh] 

FC𝑡 Fixed cost for thermal unit t [€/h] 

𝑓𝑇 Operational costs of the non-flexible period TNF actualized to 
period T 

[€] 

FlatEnergy Average energy tariff component over the year [€/MWh] 

FlatDistr Average distribution tariff component over the year [€/MWh] 

𝑔𝑐𝑝
ℎ Consumption of pumped storage hydro plant h in period p [MW] 

𝑔𝑝𝑝
𝑔
 Output of generator g in period p [MW] 

IC Investment cost of a thermal plant [€] 

ISa,j+1 Initial cycle start of appliance a with cycle j [h] 

𝐽𝑘 Minimum total expected costs in stage k [€] 

nsep Non-supplied power in period p [MW] 

NSEC Non-supplied energy cost [€/MWh] 

𝑜𝑐 Minimum operational cost [€] 

𝑜𝑐𝑓𝑎𝑗 Optimal cycle finish for cycle j of appliance a [h] 

𝑜𝑐𝑠𝑎,𝑗 Optimal cycle start for cycle j of appliance a [h] 

𝑜𝑝𝑐𝑜𝑠𝑡 Total operational cost [€] 

𝑝𝑜𝑤𝑒𝑟q Charging power in quarter q [MW] 

PowerMax Maximum power charging capacity [MW] 

r Discount factor [p.u.] 

𝑟𝑓𝑒 Rescaling factor for energy component  

𝑅𝑇𝑃𝐷𝑖𝑠𝑡𝑟,𝑝 Hourly dynamic distribution tariff component in period p [€/MWh] 

𝑅𝑇𝑃𝐸𝑛𝑒𝑟,𝑝 Hourly dynamic energy tariff component in period p [€/MWh] 

𝑆𝐶𝑡 Start-up cost of thermal unit t [€] 

SLPp  Synthetic load profile in period p [p.u.] 

𝑠𝑜𝑐𝑝
𝑒,𝑠 State of charge of the battery of BEV e at the end of period p 

in each state s 
[MWh] 

𝑠𝑡𝑝
𝑡  Start-up thermal unit t in period p {0,1} 



xvi Abbreviations and symbols 

T Planning horizon [Years] 

TNF Number of non-flexible periods after planning horizon [Years] 

Tmax Last time interval of the simulation period [h] 

TSP Total shifting potential [h] 

𝑢𝑐𝑝
𝑡  Commitment of thermal unit t in period p {0,1} 

𝑢𝑘 Investment decision in stage k  [MW] 

UncGp Power generation from uncontrollable capacity in period p [MW] 

𝑢𝑟𝑑𝑒𝑓𝑝 Upward reserve deficit in period p [MW] 

UResC Upward reserve deficit cost [€/MWh] 

VCt Variable cost for thermal unit t [€/MWh] 

𝑤𝑐𝑝 Wind curtailment in period p [MW] 

WPp  Wholesale price in period p [€/MWh] 

𝑥𝑘 Total installed capacity in stage k [MW] 

𝑋𝑎𝑗𝑛 Shift of cycle j of appliance a with n-1 hours {0,1} 
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0. Introduction  

0.1 Context and motivation 

Power system operation is on the verge of a major transition. Due to new challenges 

such as the integration of more intermittent renewable energy sources (RES), 

supply-side resources could be insufficient to keep the balance at all times. To reach 

this higher need for flexibility and to increase efficient power system operation, a 

paradigm shift is occurring as more and more flexibility is provided by demand side 

resources. While initially the intrinsic flexibility of the demand side was neglected, 

nowadays, demand is starting to take a more active role within power system 

operation. This is also referred to as demand response (DR). 

Demand response can be triggered by providing more dynamic electricity tariffs 

reflecting the dynamic nature of the underlying cost of electricity. These tariffs are 

also referred to as dynamic pricing (DP). This way, the demand side is incentivized to 

modify its demand pattern in order to bring more efficient power system operation in 

which the operation of RES is integrated.  

Although the inclusion of demand response and dynamic electricity tariffs is already 

described in the literature since the 80s, the use and understanding is still limited. 

Especially residential demand response is still neglected and no clear indication of the 

impact on both household and supply side level is available. 

These gaps become apparent on three levels. First of all, current electricity tariff 

designs fall short on incentivizing DR, especially on the residential level. Second, no 

clear indication or quantification is available on how residential users react to more 

dynamic tariff schemes, leading to slower implementation. And finally, benefits 

resulting from DR are largely unknown, again leading to slower implementation. 

To address these gaps in the literature and practice, this thesis aims to enhance the 

knowledge of residential DR and DP. In addition, it also desires to enable more 

informed decision making by policy makers, industry and residential users. In this 

perspective, this thesis intends to answer following questions: 

- Q1: What are demand response and dynamic electricity pricing? 

- Q2: How should dynamic electricity prices be designed? 

- Q3: To which extent do residential users modify their power pattern as a 
reaction to DP? 

- Q4: How can this modification be quantified and predicted? 

- Q5: What benefits do such load modifications bring for the residential users 
and for power system operation and investments? 
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0.2 Outline 

This thesis is divided into four parts. Each part contributes to the understanding of 

demand response based on dynamic pricing by answering the questions formulated 

in Section 0.1. An overview of the first three parts and the underlying chapters is 

visualized in Fig. 0.1. The final part covers the conclusions and recommendations 

following from this thesis. Each of these parts is discussed in what follows. 

 

Fig. 0.1.  Thesis overview. 

0.2.1 Part I: Fundamentals of demand response and dynamic 

pricing 

Chapter 1 presents the theory and practice of demand response. It creates the 

background of this thesis as it discusses different demand response types and 

programs, and various benefits they can bring forward. Moreover, it provides an 

overview of worldwide deployment of demand response. 

This chapter is partly based on the following paper: 

 B. Dupont, C. De Jonghe, K. Kessels and R. Belmans, “Short-term 

Consumer Benefits of Dynamic Pricing,” in IEEE, International 

Conference on the European Energy Market (EEM), Zagreb, 

Croatia, May 2011. 

Chapter 2 focuses on one of the demand response programs, being dynamic pricing. 

More specifically, the focus is on locational dynamic pricing (LDP) schemes in which 

prices depend on both time and location. It provides a theoretical framework for LDP 
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schemes accounting for general principles of tariff design related to costs and social 

acceptability. Also the impact of RES on this theoretical framework is assessed. 

Moreover, it describes how tariff design can trigger demand response. Backed by this 

framework, existing tariff schemes are assessed. 

This chapter is based on the following paper: 

 B. Dupont, C. De Jonghe, L. Olmos and R. Belmans, "Demand 

response with locational dynamic pricing to support the integration 

of renewables," Energy Policy, vol. 67, pp. 344-354, April 2014. 

0.2.2 Part II: Residential demand response based on dynamic 

pricing 

The second part simulates and quantifies residential demand response resulting from 

different dynamic pricing schemes. For each tariff scheme, demand modifications are 

analyzed and the resulting residential benefits are pointed out. It consists of 3 

chapters covering from the development of DP up to the quantification of the 

resulting demand response. 

Chapter 3 describes the development of different dynamic pricing schemes taking 

into account the principles discussed in Chapter 2. This results in various dynamic 

pricing schemes which reflect the dynamics in the underlying costs and the 

availability of RES to a different extent. 

Chapter 3 is partly based on the following paper: 

 B. Dupont, C. De Jonghe, K. Kessels and R. Belmans, „Short-term 

Consumer Benefits of Dynamic Pricing,” in IEEE, International 

Conference on the European Energy Market (EEM), Zagreb, 

Croatia, May 2011. 

Chapter 4 describes residential demand response following the different dynamic 

pricing schemes from Chapter 3. Distinction is made between simulation and 

practical evidence. While demand response simulation allows setting benchmarks, 

practical evidence retrieved from a pilot project allows obtaining practical demand 

response results. 

This chapter is partly based on the following papers and project deliverable within 

LINEAR: 

 B. Dupont, J. Tant, and R. Belmans, “Automated Residential 

Demand Response Based on Dynamic Pricing,” in IEEE PES 

International Conference and Exhibition of Innovative Smart Grid 

Technologies (ISGT Europe), Berlin, Germany, October 14-17, 

2012. 

 B. Dupont, P. Vingerhoets, P. Tant, K. Vanthournout, W. 

Cardinaels, T. De Rybel, E. Peeters, and R. Belmans, “LINEAR 
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Breakthrough Project: Large-Scale Implementation of Smart Grid 

Technologies in Distribution Grids,” in Third IEEE PES Innovative 

Smart Grid Technologies (ISGT), Europe edition, Berlin, Germany, 

October 14-17, 2012. 

 B. Dupont, “LINEAR Deliverable 2.1: Portfolio management based 

on dynamic pricing,” LINEAR, Belgium, November 2014. 

Chapter 5 provides a quantification of residential demand based on results from the 

previous chapter. The quantification is obtained by means of price elasticities 

allowing to estimate demand response when sending a dynamic pricing scheme to 

residential users. 

0.2.3 Part III: Power system benefits of residential demand 

response 

While part II focuses on demand response at household level, part III describes the 

benefits on power system level following from residential demand response. Hereby, 

distinction is made between the impact of demand response on power system 

operation and generation investment decisions.  

 

Chapter 6 provides an operational model that quantifies power system operation 

benefits of residential demand response and tests this model within a Belgian case 

study pointing out the impact of RES. 

The chapter is based on the following paper:  

 B. Dupont, K. Dietrich, C. De Jonghe, A. Ramos, and R. Belmans, 

"Impact of residential demand response on power system 

operation: A Belgian case study," Applied Energy, vol. 122, pp. 1-

10, June 2014. 

Chapter 7 provides an investment model quantifying generation investment benefits 

of residential demand response and tests this model within a Belgian case study. 

Again, the impact of RES is pointed out in this chapter. 

This chapter is based on the following paper:  

 B. Dupont, M. Maenhoudt, C. De Jonghe, K. Dietrich, A. Ramos, G. 

Deconinck, and R. Belmans, "Impact of short-term demand 

response with battery electric vehicles on generation investment 

decisions: A Belgian case study," submitted for Energy Policy. 

0.2.4 Part IV: Conclusions and recommendations 

Chapter 8 reviews the conclusions drawn throughout this thesis. Additionally, 

recommendations for further research are suggested. 





 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART I 

Fundamentals of demand 

response and dynamic pricing 

 



 



 

1. Demand response: theory and practice 

1.1 Introduction 

The European electricity system is facing three tremendous evolutions. First, the 

European Union aims to reduce greenhouse gas emissions by at least 80% below 

1990 levels towards 2050 [1]. Therefore, they consider integration of renewable 

energy sources (RES) as a key instrument. Second, the European transmission and 

distribution grid is ageing and needs replacement as most of the infrastructure was 

invested during the seventies [2]. Finally, electricity demand will rise due to the 

electrification of energy services such as transport or heating and cooling of buildings 

and dwellings. Examples of this electrification are the integration of heat pumps and 

electric vehicles. These three evolutions trigger the need for more flexibility in order 

to ensure reliable power system operation in which electricity supply equals 

electricity demand at all times.  

Traditional solutions to ensure the balance between demand and supply are found at 

the supply side. New generation, transmission, and distribution investments are 

made to cover the electrification of demand and ageing infrastructure. Moreover, 

variability of demand and generation from RES is covered by the remaining power 

generation capacity. Although these means of flexibility benefit reliability, only 

focusing on traditional solutions could be insufficient, expensive, and harmful for the 

environment. 

Rather than only focusing on the supply side, the demand side itself can also bring 

flexibility into the system. This is also referred to as demand response (DR). By more 

active involvement of end-users which can change electric usage in response to 

power system conditions, operation of and investment in generation, transmission, 

and distribution can profit, also facilitating the integration of RES.  

 

European interest, recognition and promotion of DR are rising within the last decade. 

This is reflected at the level of policy, regulation, standardization, and the electrical 

energy industry as such.  

European policy recognizes that a further introduction of DR will benefit end-users, 

industries, and society as a whole [3]. In the Energy Efficiency Directive [4], the 

conditions are created for national policy makers, regulators, network operators, and 

the energy industry to integrate DR in the market in the near term. This is expressed 

by the following statements: “Member states shall ensure that national regulatory 

authorities encourage demand side resources, such as demand response, to 
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participate alongside supply in wholesale and retail markets”, and “Member states 

shall promote access to and participation of demand response in balancing, reserves, 

and other system services markets, inter alia by requiring national regulatory 

authorities […] in close cooperation with demand service providers and consumers, 

to define technical modalities for participation in these markets on the basis of the 

technical requirements of these markets and the capabilities of demand response.” 

The Agency for the Cooperation of Energy Regulators (ACER) also expresses its 

support to DR in its Framework Guidelines on Electricity Balancing: “These terms and 

conditions, including the underlying requirements, shall, in particular, be set in order 

to facilitate the participation of demand response, renewable and intermittent energy 

sources in the balancing markets [5].” 

By the end of 2014 European standardization organizations are expected to develop 

a standard facilitating demand response and complementing the current smart grid 

standard under Mandate 490 [6]. 

The European industry also paves the way for DR. Among others, this can be seen in 

the European Electricity Grid Initiative issued by European transmission and 

distribution system operators [7]. Moreover, new energy businesses are created to 

enable more flexibility at the demand side and national and worldwide smart grid 

initiatives such as Smart Grid Flanders [8] and the Global Smart Grid Federation [9] 

foster DR knowledge. 

 

Apart from increased interest from European stakeholders, other developments are 

also building momentum for DR. The integration of smart metering systems 

enhances accurate metering of demand and therefore stimulates active involvement 

of end-users. This integration is boosted by the European Commission (EC) in the 

Third Energy Package stating that by 2020 consumers are required to be equipped 

with intelligent metering systems subject to a cost-benefit analysis [10]. Advanced 

ICT and automation widen the possibility of stimulating DR without any loss of 

comfort or production efficiency for end-users. The importance is stipulated by a 

growing interest from industry not directly related to energy, e.g. data management 

companies, appliance manufacturers, telecom, technology providers. 

 

This chapter is structured as follows. Section 1.2 provides deeper insight in DR and 

confusion with other terminology is clarified. Section 1.3 discusses the broad range 

of programs, user classes and load types involved in DR. Different benefits of DR are 

highlighted in Section 1.4. Section 1.5 discusses the deployment of DR and finally 

Section 1.6 concludes. 
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1.2 Definition of demand response 

Various organizations around the globe provide a definition of demand response. 

The first definition was given by the Department of Energy (DOE) in the U.S. [11] 

and was later on adopted by the US Federal Energy Regulatory Commission [12] and 

some academics [13]: 

 “Changes in electric usage by end-use customers from their normal 

consumption patterns in response to changes in the price of electricity over 

time, or to incentive payments designed to induce lower electricity use at 

times of high wholesale market prices or when system reliability is 

jeopardized”. 

Within Europe the following definitions are formed: 

 European Commission: “Demand response is to be understood as voluntary 

changes by end-consumers of their usual electricity use patterns - in response 

to market signals (such as time-variable electricity prices or incentive 

payments) or following the acceptance of consumers’ bids (on their own or 

through aggregation) to sell in organized energy electricity markets their will 

to change their demand for electricity [3].”  

 European University Institute: “Changes in electric usage implemented 

directly or indirectly by end-use customers/prosumers from their 

current/normal consumption/injection patterns in response to certain signals 

[14].” Hereby, only consumers acting voluntarily are concerned, excluding 

demand response that is mandatory or without any compensation. Moreover, 

stand-alone generators on distribution level are not considered.  

The International Energy Agency (IEA) defines demand response in the following 

way:  

 “Demand response programs are programs and activities designed to 

encourage consumers to change their electricity usage patterns, including 

timing and level of electricity demand, covering all load shape and customer 

objectives. Demand response includes time-of-use and dynamic rates or 

pricing, reliability programs such as direct load control of devices and 

instantaneous interruptible load, and other market options for demand 

changes, such as demand side bidding [15].”  

In all definitions, DR entails a change in the electric usage pattern of end-users in 

response to signals such as dynamic electricity prices or incentive payments. 

Additionally, in Europe emphasis is put on the voluntary nature of DR programs and 

the definition is widened by also including changes in injection patterns. Also note 

that DR involves changes in power consumption, yet not necessarily in total energy 

usage.  



14 Chapter 1  

Although the consistency in defining demand response, confusion with other 

terminology such as demand side management (DSM) exists. Within DSM programs 

a market party actively uses different options to modify electricity demand to 

increase customer satisfaction and coincidentally produce desired changes in the 

electric utility’s load shape [16]. These programs were already created in the early 

1980s in the U.S. in reaction to concerns on the dependency on fossil fuels and on 

the environmental impact of generation [17]. In this context, often is referred to 

integrated resource planning (IRP) [18], [19]. These planning models contrast to 

traditional electricity expansion planning as IRP includes both supply and demand 

side options in the planning process. The demand side options, also referred to as 

DSM, cover different load shape objectives distinguishing between energy [MWh] 

adjustments and power adjustments [MW] [20]. The most well-known objective is 

energy efficiency which focuses on permanent energy consumption [MWh] 

reductions. In contrast, objectives related to DR typically entail power adjustments. 

Examples are load shifing and valley filling. In other words, DSM is a wider concept 

than DR as it also captures energy adjustments such as energy efficiency. 

1.3 Categorization of demand response 
Different categories of demand response exist depending on the way it is 

encouraged and the purpose it is used for, the user classes it serves, and the load 

types targeted. 

 

Demand response programs  

Two groups of DR programs are distinguished: incentive- and price-based [11], [13]. 

This classification is made according to the techniques used for encouraging changes 

in the instantaneous electric power usage. While in price-based programs, end-users 

react to dynamic prices, incentive-based programs provide incentive payments 

independent from the electricity rate. Within each program, several subcategories 

exist (Fig. 1.1). 

 

Fig. 1.1.  Demand response programs distinguishing between incentive-based programs and 

price-based programs. 
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On the left hand of Fig. 1.1, incentive-based programs are depicted. In those 

programs, participating users receive payments for reducing their demand at critical 

times. Incentive-based programs include six subcategories: direct load control, 

curtailable load, demand bidding, emergency demand response, capacity and 

ancillary services markets programs. In direct load control programs, a third party is 

in control of some appliances at the end-user’s premises (e.g. air conditioners, heat 

pumps). In the event of system stress, the third party can control those appliances 

directly in compensation for a previously known participation fee. Often these 

programs are also referred to as dispatchable. In curtailable load programs [21] end-

users are in control of their own appliances. By enrolling into the program, the end-

user makes the commitment to modify load when a request is received. The gain for 

the participants can take different forms as bill credits and participation fees. A 

penalty is given in case the user does not respond to the load signal. In demand 

bidding programs end-users make the commitment to modify load by bidding in the 

wholesale electricity market. If the bid is cleared, the end-user is obliged to reduce 

his load by the according amount. Emergency demand response programs are called 

upon times when system security is in danger. End-users get incentive payments for 

helping to resolve system stability. Capacity market programs use load reduction 

commitments [21], partly replacing traditional generation commitments on capacity 

reserve markets. Participating end-users receive an up-front reservation payment for 

offering the load capacity and an activation payment for calling the capacity in case 

of an event. In ancillary services market programs end-users bid load reduction 

commitments in ancillary markets as operating reserves [22]. When the bid is 

accepted, end-users receive an up-front payment reflecting the spot market price for 

being on stand-by. Once the load reduction is called for, end-users receive the 

additional spot market electricity price. 

Price-based demand response programs are depicted on the right hand side of Fig. 

1.1. In those programs, time-varying tariffs also referred to as dynamic tariffs, 

approximate the actual cost of energy. Those tariffs are offered to make end-users 

shift consumption from high to low price periods. Although many variants of price-

based demand response programs exist, most can be classified in three 

subcategories according to their tariff design: time-of-use, critical peak and real-time 

pricing [23]. While all three are dynamic in nature and therefore more closely 

reflecting the underlying cost of energy, the frequency of updating predetermined 

prices differs. Time-of-use tariffs divide the day into different time blocks in which 

different electricity prices apply. These prices are fixed for a specific period (e.g. a 

month). Even though they reflect the average cost of energy during the time blocks, 

they fail to account for short-term variability in wholesale prices. This is partly 

resolved by critical peak pricing, which adds a component to time-of-use or flat 

tariffs. This component is only applied during critical peak hours for a limited number 
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of hours a year. Typically the end-user receives the critical peak tariffs on short 

notice. As a refund, a price discount during non-critical peak hours applies. The 

variability of the electricity tariff is even greater with real-time prices, which typically 

reflect hourly wholesale and imbalance prices. Between a day-ahead and an hour-

ahead, the end-user receives new hourly electricity prices. This pricing program 

allows a deeper reflection of the underlying cost of energy. A more extensive 

description of these tariff designs is provided in Chapter 2. 

The main difference between incentive-based and price-based demand response 

programs is the level of end-user involvement in load modification. Incentive-based 

programs trigger load modification in the occasion of critical events based on 

contractual arrangements. In return the end-user receives an incentive payment. 

Although participation is voluntary, falling short on a specific demand response 

request brings penalties. In price-based programs, the end-user enrolls in a dynamic 

pricing scheme. Voluntary load modifications are based on the user’s own economic 

and rational preferences. In such programs no penalties are incurred, although the 

user can be imposed to high electricity prices. 

 

DR user classes and load types 

Demand response programs target all user classes: residential, commercial, and 

industrial. For each user class, the load type and its accompanying end-use service 

differ. While the end-use service for residential and commercial users is closely 

related to comfort, industrial users are more concerned about the efficiency of 

production processes. Moreover, each user class is characterized by different types of 

loads which can be used for demand response purposes. A distinction can be made 

between storable, shiftable, and curtailable loads [14]. With storable loads, thermal 

inertia or batteries can be used to separate the moment of power consumption and 

the end-use service in time; examples are electric vehicles for residential users or air 

conditioning in commercial buildings. With shiftable loads power consumption can be 

shifted in time without loss of the end-use service. Usually this shifting involves 

planning which might affect comfort or production efficiency; examples of such loads 

are washing machines and dishwashers for residential users or production processes 

in industry which can be moved in time. With curtailable loads power consumption is 

forgone along with the end-use service. Therefore, this curtailment also involves a 

loss of comfort or production output; examples are household lighting or curtailment 

of industrial processes. 

1.4 Benefits of demand response 

Demand response brings about several benefits for participants and society as a 

whole [11], [13] (Fig. 1.2). 
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Fig. 1.2. Demand response benefits. 

Benefits can be split up in four categories: participant financial benefits, market wide 

financial benefits, reliability benefits and market performance benefits. Participant 

financial benefits consist of short-term direct bill savings resulting from incentive 

payments or a decreased electricity bill. Market wide financial benefits are divided 

into short-term operational benefits and long-term investment benefits. Demand 

response can lead to operational benefits in the short run due to a reduced start-up 

cost of expensive peaking units. Moreover, demand can be aligned with the 

availability of generation from RES. This causes lower wholesale prices during peak 

periods or when generation from RES is abundant. In the long run, utilities avoid 

capacity, transmission and distribution investment costs [24], because the system 

can be tuned to a lower peak demand due to sustained demand response. Both short 

and long term benefits result in a lower electricity price for both participating and 

non-participating end-users due to more efficient power system operation. Demand 

response can also lead to reliability benefits [25], as additional system flexibility 

reduces the probability of a demand-supply imbalance [26]. Demand response can 

furthermore lead to market performance benefits [27]. End-user’s ability to decrease 

electricity consumption during high price moments reduces generator’s incentive to 

bid above marginal generation costs. 

1.5 Deployment of demand response 

Within Europe, the Nordic region and the United Kingdom are on the forefront when 

dealing with demand response [28]. Hereby, demand response resources contribute 

up to 30% of the total ancillary services market. Although the main part of these 

resources is attributable to large industrial users, an increasing amount is coming 

from medium and small users. 
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While demand response is gaining importance in Europe, the United States are 

running ahead with up to 50% of peak resources provided by DR in some markets 

[28]. This 50% derives from the different user classes covering different DR 

programs (Fig. 1.3). The main part of demand response resources is retrieved from 

the commercial and industrial users and the wholesale market. This last one refers to 

demand response reported by wholesale providers which cannot be attributed to 

specific retail companies or user classes [12]. Another observation is that residential 

demand response is lagging and the main source of residential demand response 

comes from direct load control.  

 

Fig. 1.3. Reported potential peak reduction for commercial and industrial, residential, wholesale 

and other users within incentive-based or time-based programs in 2010 in the US based on a 

FERC Survey [29]. 

Although worldwide implementation is still limited, the potential of residential 

demand response is considerable. Empirical evidence suggests that the potential 

economic benefits are substantial and residential users respond to dynamic pricing 

schemes [28]. Moreover, some residential loads such as water and space heaters are 

by nature controllable and can offer cost-effective opportunities. As the deployment 

of smart metering and enabling technologies is gaining speed, this residential 

potential starts to getting tapped. 
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1.6 Summary & Conclusions 

The concept of demand response has been defined. A deeper description of different 

programs, user classes, and load types has been provided. Moreover, the rising 

interest of policy makers, regulators, standardization bodies, and industry has been 

pointed out. It has been shown that although benefits of demand response are 

known, DR within one user class is still lagging behind, being residential.  

Over the past years, residential demand response seems to be on the verge of a 

breakthrough due to the deployment of smart metering, ICT, enabling technologies 

and smart appliances. How and when the majority of the demand response potential 

will be tapped is still unknown. 



 



 

2. Locational dynamic pricing: theory and 

practice 

2.1 Introduction 

Departing from the general demand response (DR) description, this chapter further 

elaborates on one of the DR programs, being price-based programs. The focus is on 

residential users with a locational dynamic pricing (LDP) scheme. Within this scheme, 

the price depends on time and location. As LDP allows capturing the locational and 

time dependency of underlying costs [30], residential consumption and generation 

can be valued against their contribution to the whole electricity system. In turn, LDP 

can influence the location and time of consumption and generation [31]. Hereby, the 

amount of residential flexibility triggered depends on the tariff design of LDP.  

In order to evaluate the potential of constructing an LDP scheme in view of 

incentivizing demand response, first the underlying costs of consuming and 

generating electricity need to be assessed. Therefore, a theoretical framework is built 

(Fig. 2.1). The framework starts from costs incurred at the generation, transmission 

and distribution (T&D), and retail level. These costs are translated into a tariff 

scheme according to some general principles. Depending on the potential for 

locational and time dependency of tariffs, traditional and locational dynamic pricing 

can be applied to charge for residential demand and generation. While typically 

traditional pricing leads to inflexible demand and generation, residential flexibility can 

be triggered by LDP.  

In the literature, demand response is often neglected when constructing tariff 

schemes. The design is mainly based on principles related to cost and practicality 

[32], [33]. Other papers, primarily based on experimental projects, mainly focus on 

incentivizing demand while harming some of the cost related principles [34], [35]. In 

contrast, this chapter discusses the impact and relationship between costs and 

practicality on the one hand, and demand response on the other. This approach aims 

to provide a background for policy makers, industry and academics to assess existing 

tariff schemes and construct new ones.  
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Fig. 2.1. Theoretical framework of locational dynamic pricing, translating costs into tariffs 

triggering flexibility. 

 

In Section 2.2, general principles of tariff design are discussed and applied to 

traditional and LDP tariff schemes. Section 2.3 gives a more detailed perspective on 

LDP for consuming electricity by evaluating the potential of making each tariff 

component locational and time dependent. Hereby, the influence of renewable 

energy sources (RES) is pointed out. Section 2.4 elaborates on the potential of LDP 

for residential generation of electricity. Section 2.5 highlights some practical 

considerations to be taken into account. Section 2.6 assesses how tariff design of 

LDP can affect the incentive for demand response and how this relates to general 

principles of tariff design. To clarify the theoretical concepts discussed, Section 2.7 

discusses some existing tariff designs and assesses four illustrative tariff schemes. 

Section 8 concludes. 
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2.2 Locational dynamic pricing based on general 

principles of tariff design 

 

Principles of tariff design 

In a liberalized electricity system, distinction is made between the regulated and 

competitive part of the system. Typically, the T&D networks are considered as 

regulated and operated by a transmission system operator (TSO) and a distribution 

system operator (DSO), respectively. Competition is introduced in generation and 

retail activities. Both regulated and competitive parties incur costs and convert them 

into tariffs taking into account general principles of tariff design. 

In the literature, a wide variety of general principles of tariff design is provided. In 

Bonbright [36] general principles for public utility tariffs are discussed. In Berg and 

Tschirhart [37] the focus is on optimal pricing and tariff design for natural 

monopolies, while Pérez-Arriaga and Smeers [32] provide guidelines for grid tariff 

design. While most of these principles date from the era of vertically integrated 

utilities, they also apply in a context of an unbundled electricity system. In what 

follows, five general principles of tariff design are selected and discussed. A 

distinction is made between principles resulting from practical considerations and 

social acceptability, on the one hand, and cost related principles, on the other.  

 

Three principles result from practical consideration and social acceptability. 

 Transparency: a tariff design should be clear and understandable 

for the user; 

 Simplicity: a tariff should be simple, aligning with the 

transparency principle; 

 Minimum volatility: tariff fluctuations in the short and long term 

should be limited to protect the user. 

While historically the lack of ICT, metering and automation did not allow for complex 

tariffs with high short-term volatility, technological breakthroughs have altered this. 

These breakthroughs make it feasible to send LDP schemes regularly, register 

consumption and generation on a shorter time frame, and automate consumption 

and generation at the residential level. Therefore, it becomes easier to meet the 

principles related to practicality in case of more complex or volatile tariffs.  

 

Two principles are cost related:  

 Cost recovery; all actors should be able to recover their costs. 

Although this principle arises from the regulated part of the 



24 Chapter 2  

electricity system, it is assumed that competitive actors also should 

recover their costs in order to remain profitable in the long run. 

 Cost causality; consumers or generators should pay the costs 

they cause. In other words, costs should be assigned to whoever 

they belong to. This creates non-discrimination as consumers face 

the same price for electricity which causes the same costs. It also 

implies that cross-subsidization is avoided as costs are allocated to 

the beneficiary of the electricity, instead of being socialized. In 

other words, cost causality avoids the cross-subsidies between 

different customer groups as stated in Borenstein [38]. 

 

Traditional pricing in view of RES 

Considering the large-scale introduction of RES and its accompanying operational 

and economic challenges, traditional tariff designs meet with the principles out of 

practical consideration and social acceptability, while conflicting with the cost related 

tariff principles.  

Traditional pricing schemes align with simplicity, transparency and minimum volatility 

principles due to the intrinsic nature of flat or day-night tariff designs. Cost recovery 

is under stress as RES can bring additional costs for T&D which were initially not 

anticipated. Cost causality is harmed as well, as traditional tariffs do not reflect 

varying generation costs due to the intermittent nature of generation from RES. This 

leads to cross-subsidization in time as defined in Borenstein [38]. As the underlying 

cost of energy is variable, consumers who consume less when more generation from 

RES with zero marginal costs is available, subsidize the other consumers under 

traditional tariffs. Although variability of costs already existed before, it increased due 

to the integration of RES. Moreover, cross-subsidization in location occurs as every 

consumer pays the same price independent of the local availability of generation 

from RES and the local operational challenges it brings. As the cost causality principle 

is seriously harmed, especially in view of the introduction of RES, a new tariff design 

such as LDP is required. 

 

Locational dynamic pricing  

In contrast to traditional tariffs, dynamic pricing schemes allow for more variability in 

the price level and pattern over the course of the day. This adds to the cost related 

principles of tariff design as this tariff facilitates to pass on the costs to their 

beneficiaries and to avoid cross-subsidization over time. Next to the dynamics of this 

tariff scheme in time, a dynamic price can be made locational resulting in a locational 

dynamic price [30]. This allows allocating the costs to the beneficiary and avoids 

cross-subsidization over locations.  
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Besides the contribution to cost causality, LDP also allows attracting flexibility at the 

residential level [11]. This offers the demand side the potential to be part of the 

solution to the challenges RES brings. Historically, the focus at the demand side was 

on the flexibility consumption can bring. This was referred to as demand response. 

In the event of more dispatchable decentralized generation, flexibility of consumption 

should be complemented with flexibility of generation as discussed in Chapter 1. 

Therefore, residential demand response can refer to flexibility of both consumption 

and generation.  

2.3 Residential consumption tariff 

In this section, LDP for residential electricity consumption is assessed. It consists of a 

tariff for the withdrawal of electricity from the grid and for the investment in the 

electricity system associated with it. This tariff incorporates the costs of consumption 

without taking into account local generation facilities. In the next section, the 

injection tariff discusses the value a residential user gets for local injection of 

electricity.  

Before the potential for demand response can be estimated, the potential for making 

a tariff dynamic and locational according to the cost causality principle needs to be 

assessed. It should be based on the underlying costs of the electricity. A distinction 

needs to be made between cost components, categories and drivers (Fig. 2.2). 

 

 

Fig. 2.2. Potential for locational dynamic pricing based on cost components, cost categories, 

and cost drivers. 
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Three cost components are distinguished: generation, T&D, and retail. All three 

should separately meet the five principles of tariff design as much as possible.  

Cost categories reflect the different types of costs associated with the nature of the 

business underneath each cost component. The following cost categories are 

associated with generation, system operation, and retail business.  

 Operational costs are variable costs that typically depend on 

operational decisions of the different actors in the system. 

Generation, T&D, and retail costs share some similar operational 

costs such as wages and office rents. However, most costs depend 

on the nature of the business (generation, T&D, retail). 

 In contrast to operational costs, investment costs are made with a 

longer term perspective. Therefore, these costs also largely 

contribute to future electricity usage.  

 

For all costs within a cost category, a distinction in cost drivers is made [33]. 

 Costs driven by energy usage expressed in kWh, such as the fuel 

costs. 

 Costs driven by system’s peak expressed in kW due to the balance 

between demand and generation. It refers to the net peak as both 

demand and generation are considered in the system. It can refer 

both to the local and global level, depending on the underlying 

cost component. An example is a distribution feeder investment 

partly driven by the net peak at the local level. 

 Costs independent of energy usage or system’s peak. In the 

literature, this cost is considered to be driven by the number of 

users [39]. An example is the metering cost partly driven by the 

number of users connected. 

 

In the following, the time and locational dependency of costs are affected by the 

time and locational dependency of its cost drivers. As both energy usage and 

system’s peak are variable over the course of the day, time dependency of tariffs is 

possible. Similarly, locational dependency of tariffs rests on the locational 

dependency of its cost drivers. If the cost driver is situated at the local or global 

geographical area, costs should be borne by the beneficiaries in that specific area. 

The time and locational dependency of the underlying costs of each component are 

assessed based on the cost drivers of its underlying cost categories. The different 

cost categories of each component are evaluated against its time dependency. 

Locational dependency is discussed. This leads to insights in the potential for 

locational and time dependency of tariffs in view of demand response. The focus is 

on costs depending on the nature of the business. As operational costs such as 
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wages and office rent are incurred by generation, T&D, and retail, these costs are 

omitted for simplicity. Costs are assigned to each of the different components based 

on who makes the initial costs, not on the market actor which bears the 

responsibility of the costs. The assignment of costs due to grid losses illustrates this. 

Even though the TSO is responsible for these costs and charges them to the 

consumers, costs are assigned to generators as they bear the operational costs of 

generating more. 

Also note that several rate designs exist to recover costs: energy charging [c€/ kWh], 

demand charging [c€/ kWh] and fixed charging [c€] [39]. This is in line with the cost 

drivers as defined in Fig. 2.2. In what follows, the focus is on energy charging 

implying that all costs are translated in a price per kWh. According to Weston [39], 

energy charging is the preferred rate design for residential consumers as these 

promote energy efficiency. Moreover, energy based charging is widely adopted in 

Europe. Nevertheless, combining energy charging with demand or fixed charging and 

its impact on DR is subject to further research.  

2.3.1 Generation component 

Operational costs for generation are split up in generation costs, surplus generation 

costs, generation costs as a service to the TSO, and maintenance and repair costs 

(Table 2.1). 

 

Table 2.1. Underlying costs of generation cost component. 

Cost categories Costs 

Operational costs  Generation costs  

 Surplus generation costs 

 Generation costs as service to the TSO 

 Maintenance and repair costs  

Investment costs  Generation investment costs 

 

Generation costs consist of fuel and environmental costs. The driver of these costs is 

typically energy usage expressed in kWh as energy usage typically affects the 

commitment of contributing generation plants. As the energy usage is affected by 

the variability and unpredictability of RES, the commitment of plants and their 

underlying operational costs are affected as well [31]. This adds to the dynamics of 

the underlying costs. The next costs are surplus generation costs driven by energy 

usage as they result from grid losses. Costs as a service to the TSO include ancillary 

services. Although compensation mechanisms exist to recover them from the TSO, 
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initial costs are partly incurred by the generator. As stated in Parsons et al. [40], 

variability and unpredictability of RES add to the underlying costs of ancillary 

services. Finally, maintenance and repair costs complete the operational costs.  

Investment costs mainly consist of investments in generation plants, including the 

RES. These investment decisions mainly depend on the expected future energy 

usage pattern on the one hand, and the expected unpredictability and 

uncontrollability of demand and generation on the other. It corresponds to the 

expected hours of generation plant commitment and availability. The latter is mainly 

applicable for flexibility purposes as this gains importance in view of a massive 

introduction of variable RES [41]. 

On the whole, most generation costs are attributable to present and future energy 

usage at system level. As electric power use is time dependent, the underlying cost is 

also time dependent making dynamic pricing (DP) a logical rate design. This 

contributes to cost causality and no excessive cross-subsidization. By allowing DP, 

consumers pay the generation cost they cause. Especially in view of more integration 

of RES, characterized by intermittency and limited predictability, importance grows. 

Locational dependency of generation costs is applicable as well, as surplus 

generation costs or losses due to consuming electricity depend on the location of the 

consumption. If lines are congested, locational pricing is even more appropriate to 

reflect cost causality. In view of RES, locational dependency gains importance. An 

example is the electricity transport from areas with an excess of RES and limited 

demand to areas with excess demand [42]. It contributes to losses and increases the 

importance of locational pricing. The same applies at the distribution level if 

residential consumers are able to consume locally generated electricity, reducing 

losses. Next to losses and congestion costs, the remaining costs of the generation 

component are not dependent on the location of consumption. 

2.3.2 Transmission and distribution component  

Next to general operational costs like wages or office rent, the operational cost of 

T&D operation constitute mainly of grid maintenance and repair (Table 2.2). As the 

cost driver of these costs is typically locationally dependent, location can be reflected 

in the tariff. 

Table 2.2. Underlying costs of T&D component. 

Cost categories Costs 

Operational costs Grid maintenance & repair 

Investment costs Expansion existing T&D grid 

 New T&D assets 

 Connection costs of demand and generation 
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A considerable amount of costs results from investments in T&D assets. A distinction 

can be made between expansion of the existing grid, investments in new assets, and 

connection costs of demand and generation. In general, three different kinds of 

investments are done: reliability, economic, and connection investments [43]. In 

what follows, each of them is evaluated against its costs driver after which its time 

and locational dependency are assessed.  

 

Reliability investments arise when security and safety standards are exceeded, or 

when quality and continuity of supply are jeopardized. These problems typically lead 

to expansion of the existing grid or to investments in new assets. Most problems are 

driven by a system’s peak expressed in kW leading to investments scaled to system 

peak. In this case, the system refers to the area where the reliability problem occurs 

making it locationally dependent. Other investments are caused by the energy usage 

pattern expressed in kWh. E.g., next to the system’s peak, the usage pattern also 

affects the aging of transformers [44]. Both costs driven by energy usage and 

system peak are affected by the integration of RES, as RES can both hamper and 

benefit reliability [45], [46]. 

Economic investments are made to maximize the global surplus of network users 

within a specific geographical area. The cost driver is mainly the usage and peak of 

the relevant system. Again, costs need to be allocated to beneficiaries. Examples are 

investments to increase competition, to defer congestion or to decrease losses [47]. 

Again, RES impact the cost drivers and the accompanying economic investments, 

either magnifying or reducing investment costs [48], [49]. 

Connection costs, both of demand or generation, represent the cost of connecting 

to the grid. They are driven by energy usage and system peak. Connection costs 

directly attributable to a specific consumer or generator can be directly charged to 

this consumer or generator [50]. This part falls outside the LDP scheme as costs can 

be recovered directly. If the investment costs also bring benefits to other consumers 

or generators, they should contribute to recover the investment costs. It can be part 

of the LDP scheme. 

 

Most T&D operation and investment costs are driven by both energy usage and 

system’s peak. As the introduction of centralized and decentralized RES affects both 

elements, investments are also affected. Depending on the usage and peak pattern 

at the relevant system level, RES can both increase or decrease investment costs. 

To follow the cost causality principle, consumers and generators causing this usage 

or peak, should pay for the corresponding costs. Therefore, a different tariff can be 

charged to consumers depending on their contribution to usage and peak. As 

discussed in Olmos and Pérez-Arriaga [51], in case T&D investment costs are already 
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incurred, they should be recovered by a fixed charge over time. If not, the cost 

recovery can conflict with the system operation and lead to inefficiencies. This 

implies that investment costs already incurred should not be transformed in time 

dependent tariffs. By charging a fixed charge depending on the residential usage and 

peak pattern, cost causality is still met. 

The driver of T&D costs can be assigned to consumers or generators within the 

specific geographical area where the reliability, economic or connection problems 

occur. As a result, T&D charges should be location dependent in order to reflect cost 

causality and defer cross-subsidization over location. Examples on how to transfer 

transmission costs in prices can be found in Green [52] and Shirmohammadi et al. 

[53]. In Brandstätt et al. [54], the transfer of distribution costs is discussed. 

2.3.3 Retail component 

The retail business mainly operates as an intermediary between generation and 

system operation business on the one hand, and users on the other. Basic retail 

activities consist of procurement, sales, and billing [55]. Several retail businesses are 

involved in marketing and user service activities. Underlying costs are typically driven 

by the number of users. These are independent of energy usage and peak pattern, 

leading to limited potential for transferring costs in locational dynamic pricing. 

2.4 Residential injection tariff 

Next to the role of consumers, residential users can take the role of generators when 

they install local generation facilities at their premises and inject electricity in the 

distribution grid. Following the cost recovery principle, installation costs made by the 

residential generator need to be recovered as well. A distinction is made between the 

direct costs at the household level itself and the indirect costs at the grid level.  

Direct costs are for installing and operating its local generation facilities. Based on 

the costs they make, they should be compensated according to the cost causality 

principle. Although cost recovery is not guaranteed, local generators try to recover 

the two cost categories of Fig. 2.2. In other words, these costs should be regained 

through the generation component paid by the consumers. As this puts local 

generators on an equal footing with centralized generators, local electricity 

generation affects the overall costs of generation. Therefore, together with the costs 

of centralized generation, the direct costs of local generation can be translated in a 

locational dynamic tariff charged to consumers. 

Next to the recovery of direct costs resulting from the installation and operation of 

local facilities, generation can also indirectly affect costs at the grid level. In 

contrast with direct costs made by the local generators themselves, indirect costs are 

initially borne by the TSO and DSO. As they are caused by local generators, they 
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should be assigned to them following the cost causality principle. Again, these 

indirect costs are split according to Fig. 2.2. Consistent with Section 2.3.2, distinction 

is made between operational costs and investment costs. 

Similar to withdrawal, injection of electricity at the residential level can lead to grid 

reliability problems triggering additional investments. These problems mainly occur at 

the distribution level as this network was only designed for consumption purposes. 

Following the cost causality principle, additional cost should be paid for by the local 

generators. In contrast, local generation can also avoid network problems, which 

reduces investment needs [31]. In this case local generation should be compensated. 

The second indirect investment cost is the economic investment costs due to global 

surplus maximization. Again, costs need to be allocated to the beneficiaries. The final 

indirect cost is the connection costs associated with the installation of the generation 

facility at the residential level. Similar to generation at a centralized level, costs 

should be borne by the user who causes them. 

Following the same principles and reasoning as with consumption of electricity, these 

indirect costs made at grid level can be translated in a locational dynamic tariff 

charged to local electricity injection. 

2.5 Practicability of locational dynamic pricing 

Operational and investment costs, driven by energy usage or system’s peak, can be 

transformed to LDP. This adds to the cost causality principle and defers cross-

subsidization. Although this approach is viable from a theoretical point of view, some 

practicalities have to be taken into account. 

Operational and investment costs should be exactly determined together with their 

beneficiaries in order to attain full cost causality. In practice, both calculation of costs 

and allocation to the beneficiaries are difficult to determine, as every node in the grid 

needs to be modelled in detail [51]. Moreover, T&D investments are based on 

predictions of energy usage and peak flows, which complicates exact cost 

determination and allocation. Indivisibilities of investments and strong increasing 

returns to scale are further complicating this exercise [32].  

Social acceptability and practicality are at stake if full cost causality is applied. As cost 

causality implies largely varying electricity charges depending on time and location of 

consumption, electricity charges can differ from one time period and household to 

another. The integration of RES only strengthens this variation. This conflicts with 

the principles of tariff design of transparency, simplicity and minimum volatility. 

To overcome these challenges, a balance has to be found between cost causality and 

its feasibility of cost and beneficiary determination on the one hand, and social 

acceptability and practicality on the other. 
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2.6 Tariff design incentivizing demand response 

Apart from meeting the cost causality principle, LDP can influence decisions on the 

timing of electricity usage of residential consumers and generators. This way, the 

demand side becomes a flexible part of the electricity system reacting to changing 

system conditions. As both operational and investment costs are partly driven by 

residential users, it becomes relevant to defer these costs by influencing their 

behavior. Apart from consumption, LDP can also influence the decisions on the 

timing of dispatchable electricity generation at the residential level. In what follows 

the focus is on consumption, although the same reasoning can be applied for 

generation. Although in theory LDP can also influence the choice of residential users 

on the location of their consumption or generation in the network, only the influence 

of costs on the operation at their current location is discussed. 

An LDP scheme can be sent to residential consumers in different forms, depending 

on the advance notice of sending the pricing scheme to consumers, the length of the 

price blocks, and the length of the price patterns (Fig. 2.3). More practical examples 

of tariff designs can be found in the literature. In Ortega et al. [56] and Bartusch et 

al. [57] a tariff design for distribution network costs is proposed, while in Dupont et 

al. [58], [59], the focus is mainly on tariff design for generation costs. Each of the 

theoretical concepts is assessed according to the principles of tariff design and the 

demand response incentive for consumers. Cost related tariff principles are balanced 

against principles related to practicality. The balance between both leads to a certain 

demand response incentive (Fig. 2.4). 

 

Fig. 2.3. Tariff design based on advance notice, and the length of price blocks and price 

patterns. 

 

  
 

Price  

Advance notice Price pattern 

Price block 

Time 
0 h 8 h 12 h 4 h 



Locational dynamic pricing: theory and practice 33 

 

Fig. 2.4. Demand response incentive following from the design concepts of locational dynamic 

pricing:  advance notice, price blocks, and price patterns. 

2.6.1 Advance notice 

Advance notice refers to the time period between the moment when the price is sent 

to the consumer and when it is applied [60]. In Fig. 2.3, the price for hour 8 is sent 

to the consumer at hour 0, resulting in an advance notice of 8 hours. Advance notice 

of DP tariffs gives residential consumers the possibility to react. The longer 

consumers know their tariffs in advance, the better they are able to adjust demand 

as this adds to the transparency and simplicity principles of tariff design.  

This contrasts with the cost causality principle as advance notice assumes a 

prediction of costs. If prices are sent a year in advance, it’s difficult to get the costs 

right, but easier for consumers to adapt consumption. The closer to real-time, more 

information becomes available making cost predictions more accurate. This 

contributes to the cost causality principle, although consumers experience more 

difficulties to adapt consumption at the last moment. Full cost causality can be 

achieved if prices are communicated at or after real-time. This decreases demand 

response benefits as demand is not able to react to the price signal anymore. 

The contrast between the demand response incentive and the cost causality principle 

can be reduced in two ways.  

A first way is by sending the predicted price pattern in advance to consumers. This 

serves as a trigger for demand response. When costs are known, the final price 

reflecting full costs causality can be sent and billed. The practical implementation 
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depends on the accuracy of predicting costs and the willingness of consumers to take 

on the risk of an inaccurate prediction. 

A second way is by using automation of residential appliances. In this case, 

appliances cycle whenever the price is lowest, without further consumer interaction. 

Only consumer preferences need to be set. Examples are the shifting potential for a 

washing cycle or the temperature set point for a heat pump. As consumer interaction 

is minimal, automation can protect consumers against complexity and volatility, 

overcoming the demand response demotivation of consumers. 

In what follows, a more detailed view on advance notice is provided for each of the 

different components of Fig. 2.2: 

 

Generation 

A considerable part of generation costs is not affected by the daily consumption 

pattern of residential users. Examples are operational costs such as wages and office 

rent. As these costs are known in advance, the time of communicating them can 

occur beforehand as long as the cost recovery principle is satisfied. 

Most generation plants are scheduled based on day-ahead predictions of electricity 

generation from RES, reserve requirements, and on day-ahead predictions of 

demand and demand response. This commitment of plants results in an expected 

cost of covering demand, leading to a price pattern which can be communicated to 

the users. 

As the commitment of plants is based on predicted demand and demand response 

from consumers and generation from RES, prediction errors induce an intraday 

rescheduling of the generation plants. Following cost causality, this results in a new 

price pattern which can be communicated to the consumers. This process of 

rescheduling generation and communicating prices can continue until real-time. At 

the moment of consumption itself, the actual cost of generation is known (Fig. 2.5). 

In view of an optimal incentive for demand response, a balance should be found 

between following the cost related principles and the principles related to practicality 

and social acceptability. 

 

Fig. 2.5. Cost uncertainty over time. 
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Transmission and distribution 

A considerable part of the T&D costs is not affected by the daily consumption pattern 

of residential consumers. Examples are investment costs such as meter installation 

and operational costs such as wages and office rent. As these costs are known in 

advance, the time of communicating these costs can occur beforehand as long as the 

cost recovery principle is satisfied. 

Time dependency of T&D prices is less straightforward, because of possible conflicts 

with system operation. As this reasoning only applies when investment costs are 

already incurred, elaboration is needed when investments are not done yet. In this 

case, it is important to notice that reliability investments, economic investments and 

new connections are driven by the operation of consumers and generators. This 

implies that the operation of residential users can defer investments by using 

demand response [61]. Therefore, in some situations it can be more efficient to send 

locational dynamic prices and defer investments, instead of making the investments 

directly [54], [62]. To align with cost causality, a link should be found between 

forward looking network investment costs and prices sent to households [31]. Similar 

to the energy component, costs can be derived if demand and generation patterns of 

both centralized and decentralized RES are predicted. As this prediction is again 

covered by uncertainty, cost prediction gets more accurate closer to real-time.  

2.6.2 Length of price blocks and price patterns 

The length of price blocks refers to the time period in which the same price is 

applicable. As an example, the length of price blocks is one hour in Fig. 2.3. Dynamic 

pricing schemes charge a different price during different price blocks as costs 

fluctuate. Full cost causality would charge a different price every time costs change. 

The volatility of these costs depends on the underlying cost of power system 

operation. Similar to advance notice, a balance should be found between reaching 

the cost related tariff principles and the principles related to practicality, in order to 

optimally incentivize demand response [63]. 

Three examples of dynamic pricing schemes with a different length of price blocks 

are visualized in Fig. 2.6. The smaller the length of different price blocks, the better 

the principle of cost causality can be met. As a result of small price blocks, volatility 

is higher and the tariff could be more complicated or loose transparency. Moreover, 

consumption cycles such as washing machine cycles can last longer than the length 

of the price blocks, making the DR decision for the consumer more complex.  

Full cost causality could discourage demand response as adjusting consumption to 

short price blocks is more difficult. If price blocks get longer, demand response for a 

residential consumer could become more convenient as tariffs become more 

transparent and simpler to react to. If the length of the price blocks becomes longer 
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than the shifting potential of demand, the DR incentive decreases again. Moreover, it 

is more difficult for wider price blocks to reflect price spikes. If the price block lasts 

longer, the peak price level is flattened by averaging with shoulder periods. This 

leads to a lower opportunity for bill saving, resulting in a lower incentive for DR. 

 

Fig. 2.6. Dynamic pricing scheme with quarterly (left), hourly (middle), and six-hourly (right) 

pricing blocks and consumption of washing machine cycle. 

The price pattern consists of one or multiple price blocks. The length of the price 

pattern refers to the total time period covered by the pricing signal sent to the users 

constituting of the different price blocks, e.g. 4 hours in Fig. 2.3. Next to the length 

of individual price blocks, the length of the communicated price pattern also affects 

the cost related principles and the principles related with social acceptability, thereby 

affecting the demand response incentive.  

The longer the communicated price pattern lasts, the more costs are based on 

predictions. This makes it more difficult to attain full cost causality, but adds to the 

principles of social acceptability as for example demand shifting can be planned in 

time. Therefore, adjusting demand based on this longer price pattern is easier. 

2.7 Tariff designs in practice 

2.7.1 Existing tariff designs 

Around the world, different tariff designs are implemented. In line with Chapter 1, 

four main tariff designs are distinguished: flat, Time-of-Use (ToU), critical peak 

pricing (CPP), and real-time pricing (RTP) [12]. Each of these tariff designs aligns 

with a different extent with the cost related principles and the principles related to 

social acceptability and practicality. The specifics of each of these four tariff designs 

are given in Table 2.3.  
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Table 2.3. Tariff designs. 

Tariff design Advance notice Price pattern Price block 

Flat days Year/season Year/season 

Time-of-use days Year/season >1 block/day (e.g. day-night) 

Critical peak pricing < 1 day Hours Hours 

Real-time pricing < 1 day 1 hour 1 hour 

 

Each tariff design differs in its period of advance notice, price blocks, and price 

pattern. Flat tariffs are the traditional design and apply a constant price over a longer 

time period such as a year or season. Therefore, the length of the price pattern and 

price block is equal. The price level is set based on long term cost predictions. ToU 

pricing also typically sends a pricing scheme which applies over a longer time period, 

although the length of the price blocks are shorter. ToU pricing distinguishes 

between different price blocks a day. A widespread example is day-night pricing in 

which a lower price applies during the night. During the 80s, this price design was 

introduced within Belgium following investments in nuclear capacity. This design 

aimed at avoiding nightly shut downs of nuclear plants. In the CPP scheme, a peak 

price is added on top of another pricing scheme during a limited number of hours per 

year. In general, the length of advance notice is less than a day, while the length of 

the price block covers several hours. This tariff design is mainly used in the US. 

Finally, in RTP the length of advance notice, price blocks, and price patterns 

decreases to close to real-time. Although deployment of these pricing schemes for 

residential users is limited, some examples can be given. In Illinois, US, an hourly 

RTP scheme is used which charges consumers based on hourly wholesale prices 

[64]. To overcome the principles of social acceptability, pricing schemes can be 

coupled with information and automation services. Moreover, predicted prices are 

sent to the users day-ahead, although afterwards they are charged based on actual 

prices. In Sweden, a day-ahead hourly RTP scheme is used [65]. This implies that 

residential users are noticed the previous day of a tariff pattern covering 24 hours 

divided in hourly price blocks and are billed on the same tariff pattern afterwards. 

This design reflects availability of generation from RES more closely and aims to 

compensate inflexibility resulting from RES integration with flexibility at the demand 

side. A residential tariff design with smaller price blocks attaining higher cost 

causality than the latter has not been found in the literature. 

2.7.2 Assessment of illustrative tariff schemes 

Based on the different tariff designs from the previous section and in accordance 

with the theoretical framework discussed, four examples of tariff schemes are 
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constructed and assessed. This allows testing and clarifying the different theoretical 

concepts.  

To construct these schemes, the underlying costs and their time and locational 

dependency need to be assessed first. A realistic quantification of the underlying 

costs is outside the scope. Nevertheless, in what follows simplified tariff schemes are 

built serving as an illustration. Three cost components are considered: generation, 

T&D, and retail. Components are assumed to be driven by energy usage and are 

accordingly translated in tariffs expressed in €/MWh. Only the generation component 

is assumed to be time dependent and only the T&D component is assumed to be 

locational dependent. 

 Based on the underlying costs characteristics, four different tariff schemes are 

obtained: Flat1, Flat2, ToU, and RTP (Table 2.4). Compared to the previous section, 

the CPP tariff design is left out for the purpose of simplicity, while two flat tariffs are 

presented to illustrate the effect of the way generation is remunerated. The first 

three tariff designs are implemented in Belgium [66], while the last aligns with the 

design from Illinois [64]. The price levels of the schemes are given. Locational 

dependency of costs is transferred in the Flat2, ToU, and RTP design. Time 

dependency of generation cost is only fully reflected in RTP. In other designs, 

generation costs are averaged over longer time periods. Flat1 differs from the other 

tariffs in the way generation is remunerated. While Flat1 remunerates generation 

based on the consumption tariff as a whole covering generation, T&D and retail, 

other tariff schemes only remunerate injection based on the generation component.  

These tariff schemes are tested on two types of residential users with similar 

consumption pattern (Fig. 2.7). The first user (U1) is located in a city and does not 

possess any type of generation. The second user (U2) is situated in a rural area and 

has solar panels installed. Daily electricity generation in terms of energy of U2 equals 

his daily consumption. To integrate locational dependency in the example, it is 

assumed that distribution costs are higher for U2 compared to U1. Applying the tariff 

designs on the two users leads to seven tariff schemes (Fig. 2.8). 

 

Table 2.4. Characteristics of theoretical tariff schemes.  

Tariff 
Cost component Cost dependency 

Remuneration 
generation 

Gen. T&D Retail Locational  Time   

Flat1 Flat Flat Flat No No Total tariff 

Flat2 Flat Flat Flat Yes No Generation component 

ToU Day-night Flat Flat Yes Yes Generation component 

RTP Hourly Flat Flat Yes Yes Generation component 
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Fig. 2.7. Fictional consumption and generation patterns of the residential users. 

 

 

Fig. 2.8. Fictional tariff schemes for the residential users. 

The cost related principles of tariff design are assessed by comparing daily electricity 

bills following from the different tariff schemes. The bills for the two users are 

depicted in Table 2.5. Distinction is made between the generation, T&D, and retail 

components. The RTP bill is assumed to be a perfect approximation of actual costs 

and serves as a reference to assess cost causality. Although the different bills result 

from a theoretical example, the comparison with the reference bill illustrates the 

concepts of cost related principles. 
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Table 2.5. Daily electricity bills for residential users following from different tariff schemes. 

 

 Flat1
U1 

Flat1
U2 

Flat2
U1 

Flat2
U2 

ToU 
U1 

ToU 
U2 

RTP 
U1 

RTP 
U2 

Generation [€] 1.13 0.00 1.13 0.00 1.30 -0.08 1.43 0.13 

T&D [€] 0.60 0.00 0.38 1.29 0.38 1.29 0.38 1.29 

Retail [€] 0.15 0.00 0.15 0.23 0.15 0.23 0.15 0.23 

Total [€] 1.88 0.00 1.66 1.52 1.83 1.44 1.96 1.65 

 

In the Flat1 tariff, a discrepancy occurs between the total bill and the actual costs 

represented by the RTP bill. This illustrates that the Flat 1 tariff is not able to fully 

meet cost causality. This discrepancy is also present in the underlying components. 

For U1, only the retail component captures the actual costs. The discrepancy in the 

generation component leads to cross-subsidization in time, implying that users who 

consume during inexpensive periods subsidize the other users. The discrepancy in 

the T&D component leads to cross-subsidization in location, implying that users who 

live in an area with low T&D costs subsidize the other users. For U2, the total bill is 

zero. This follows from an equal daily consumption and generation, and from a 

generation remuneration based on the total tariff scheme. As U2 does not bear the 

costs he causes, this leads to cross-subsidization and to cost recovery problems. This 

illustrates that the impact of residential RES should be properly valuated. In the Flat2 

tariff, the locational dependency is reflected and injection is only remunerated based 

on the generation component. This leads to an accurate T&D component for both 

users. As retail costs are not locational and time dependent, this component is 

accurately valuated as well. The time-dependency of generation costs is not 

reflected, as observed in the difference in generation costs between the Flat2 and 

RTP design. In the ToU tariff, time-dependency is included. Depending on the 

consumption and generation pattern of the users, the bill approximates the actual 

costs better or worse. This illustrates that an imperfect reflection of costs in time-

depending tariffs designs can worsen the alignment with the cost causality principle 

for some users. 

Although a quantification of demand response is not within the scope of this chapter, 

it can be noticed that the four tariff schemes affect the demand response incentive 

differently. Only Flat1 does not incentivize demand response. Flat2 incentivizes 

demand response in case generation capacity is installed, as shifting consumption 

can defer the T&D cost of injecting and withdrawing electricity. Time-varying tariff 

schemes such as ToU and RTP also incentivize demand response. As RTP is able to 

more accurately reflect the impact of RES, demand response based on this scheme 

contributes to RES integration. 
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2.8 Summary & Conclusions 

Traditional tariff schemes are not able to reflect the challenges renewables 

integration brings. In contrast, locational dynamic pricing can capture these 

challenges by allowing price dependency on location and time.  

To assess the potential of locational dynamic pricing and the residential flexibility it 

can trigger, this chapter provides a theoretical framework. First, it evaluates the 

underlying costs of electricity. This is essential as demand response is mainly 

triggered if a substantial part of the underlying costs is locational and time 

dependent. Costs of electricity are split in cost components and cost categories. In 

general, cost components constitute of generation, T&D, and retail. Cost categories 

consist of operational and investment costs. The locational and time dependency of 

these costs is assessed according to its cost drivers: energy usage, system’s peak, 

and cost independent of usage or peak. It is shown that the different cost categories 

are highly affected by the integration of RES as this affects the cost drivers. As usage 

and peak typically depend on the time of the day, most costs driven by these drivers 

can be made time dependent. Moreover, locational dependency of costs relates to 

the locational dependency of its cost drivers. If costs are driven by usage or system’s 

peak at local level, costs should be assigned to this local level. If costs are induced 

by usage or peak at the global level, costs should be shared among its beneficiaries 

at the global level. 

When designing an LDP scheme, the principle of cost causality should be strived for, 

although some constraints need to be taken into account. Full cost causality is not 

always possible as cost determination and allocation is not straightforward. 

Meanwhile, general principles resulting from social acceptability and practical 

consideration should be considered. While cost causality allows for a non-

discriminatory way of billing residential users as they pay for the cost they cause, the 

demand side is still considered as an inflexible part of the system. Therefore, 

additional principles of tariff design are needed to incentivize demand response in an 

efficient way. This leads to an LDP scheme which not only takes into account RES, 

but also helps RES integration as this scheme allows for more flexibility.  

The demand response incentive is affected by three concepts related to tariff design: 

advance notice, length of price blocks and length of price pattern. These concepts in 

their turn affect the general tariff principles related to costs and social acceptability, 

often in a contrary way. Therefore, a balance has to be found between tariff 

principles related to costs and social acceptability on the one hand and its resulting 

demand response incentive on the other.  
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3. Development of dynamic pricing schemes 

3.1 Introduction 

Based on the theoretical framework previously discussed, different dynamic pricing 

schemes are constructed. The variety in resulting dynamic tariff schemes leads to a 

deeper understanding of the potential for incentivizing demand response. Moreover, 

this chapter forms the basis on which the following chapters build. Although the 

same methodology can be used for other countries, pricing schemes are based on 

Belgian cost structures. Locational pricing is not considered. Also note that in what 

follows the focus is on an energy based rate designs expressed in c€/kWh. Other 

types of rate designs are out of scope and subject to further research. 

Section 3.2 starts by describing the price level of the different tariff components 

within Belgium. Based on the underlying costs and time-dependency, Section 3.3 

describes a methodology to develop dynamic tariff schemes. The tariff schemes 

following from this analysis are discussed and compared in Section 3.4 and 3.5 

respectively. Finally, Section 3.6 concludes. 

3.2 Tariff components 

A Belgian residential electricity tariff consists of several tariff components. Compared 

to the theoretical tariff components discussed in the previous chapter, in reality the 

structure and the content of the electricity tariff differs. Taxes and levies are added 

to the generation, transmission, distribution, and retail components. Belgian 

examples of levies are the financing of the connection of offshore wind farms, 

surcharges for green certificates, surcharges for public lighting, financing of 

promotion of rational energy use, etc. Other taxes and levies are mentioned 

separately on the residential bill. Rather than distinguishing between generation and 

retail, Belgian residential bills only account for an energy component summing both 

components. 

The breakdown of a residential electricity tariff in Belgium is visualized in Fig. 3.1 

based on an analysis of the Belgian federal regulator [67]. The tariff components are 

derived for a typical residential user connected to the low voltage grid with a yearly 

daytime and nighttime consumption of 1600 and 1900 kWh respectively [67]. The 

figure shows that the total tariff amounts to 20 c€/kWh of which 75% consists of the 

energy and distribution components. The remaining part is attributable to 

transmission and taxes and levies. Only those taxes and levies not included in the 

energy, transmission, and distribution components are visualized.  
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Fig. 3.1. Breakdown of the electricity tariff for a typical Belgian residential user. 

3.3 Dynamic tariff scheme development 

This section describes a methodology for developing dynamic pricing schemes based 

on the different tariff components and applied to the Belgian case. Based on 

available cost information, the time dependency of underlying costs of each 

component is assessed. Afterwards, these costs are translated in a dynamic tariff 

component. This approach is followed for each tariff component, being a 

simplification aiming at providing insights, rather than reflecting full cost causality. 

 

Energy tariff component 

As generation and retail are competitive in Belgium, no further insights in the 

underlying cost structure of the energy component are publicly available. 

Nevertheless, the main part of the energy tariff component is related to electricity 

generation costs which can be approximated by the price on the Belgian day-ahead 

wholesale market, later on referred to as the Belpex-price [68]. Within this market, 

hourly variation of power generation costs is reflected. 

As the Belpex-price accounts for only part of the total energy component, rescaling is 

needed for generators and retailers to recover their costs. In addition, revenue for 

the generators and retailers should be the same under flat pricing than under 

dynamic pricing if the residential users do not change their consumption pattern. 

This is also referred to as revenue neutrality [69]. 

A valid rescaling factor rfe is derived from: 

∑ [[SLPp ∙ WPp ] ∙ rfe]

8760

𝑝=1

= FlatEnergy 
(3.1) 

with: 
SLPp: Synthetic load profile during hour p [% of yearly 

consumption], 
WPp: Wholesale price during hour p [c€/kWh], 
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rfe: Rescaling factor for energy component, 

FlatEnergy:  Average energy tariff component over year [c€/kWh]. 

The wholesale price is based on hourly day-ahead Belpex-prices of 2011 [68]. Hourly 

electricity use of residential users is derived from synthetic load profiles of 2011 [70], 

while the average energy tariff is based on [67] as discussed in Section 3.2.  

Based on the rescaling factor and the Belpex-prices, the hourly dynamic energy tariff 

component 𝑅𝑇𝑃𝐸𝑛𝑒𝑟𝑔𝑦,𝑖 is: 

𝑅𝑇𝑃𝐸𝑛𝑒𝑟𝑔𝑦,𝑝 = 𝑟𝑓𝑒 ∙ WPp. (3.2) 

The resulting dynamic energy tariff component for a random day in October is 

depicted in Fig. 3.2. The tariff varies considerably during the day between 6.26 

c€/kWh and 18.35 c€/kWh. Two measures define the variability. First, the peak to 

off-peak (PtOP) ratio describes the ratio between the maximum and minimum price 

level during the day. Often this measure is used to describe the incentive for users to 

react to the pricing signal. For October 20th, the PtOP ratio is 2.93. Second, also the 

hourly variance within a day captures the DR incentive. This is the average of 

squared differences from the mean. The higher the variance, the further hourly 

prices deviate from the daily mean, in this case 7.51. 

 

 

Fig. 3.2. Dynamic energy tariff component for Thursday October 20th. 

 

Transmission and distribution tariff component 

Belgian transmission and distribution is regulated as future costs need to be 

approved by regulators in advance. To attain perfect cost causality in time as 

discussed in the previous chapter, a quantification of the underlying costs and the 

time dependency of the cost drivers is required. As this is outside the scope of this 
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thesis, a simplified approach is taken in view of demonstrating tariff development 

and its implications. Therefore, transmission costs and its resulting tariff are assumed 

flat over the year, while distribution costs are assumed to vary with the level of 

electricity usage of residential users. In this perspective and after discussions within 

a residential pilot project named LINEAR [71], the dynamic distribution tariff 

component 𝑅𝑇𝑃𝐷𝑖𝑠𝑡𝑟,𝑝 becomes: 

𝑅𝑇𝑃𝐷𝑖𝑠𝑡𝑟,𝑝 =
SLPp

∑ SLPp
28760

p=1

 ∙  FlatDistr 
(3.3) 

with: 
𝑅𝑇𝑃𝐷𝑖𝑠𝑡𝑟,𝑝: Dynamic distribution tariff component [c€/kWh], 

FlatDistr:  Average distribution tariff component over the year 

[c€/kWh]. 

Hereby, 𝑅𝑇𝑃𝐷𝑖𝑠𝑡𝑟,𝑝 is determined based on the ratio between the hourly usage and its 

weighted average over the year. This results in a higher distribution tariff when the 

hourly electricity usage of residential users is above the weighted average. Moreover, 

the formula ensures revenue neutrality and cost recovery. 

The resulting dynamic distribution and flat transmission tariff components for 

October 20th are depicted in Fig. 3.3. The distribution tariff varies widely during the 

day between 3.86 c€/kWh and 9.00 c€/kWh. Therefore, the PtOP-ratio amounts to 

2.33 and the variance is 2.30. 

 

Fig. 3.3. Dynamic distribution tariff component and flat transmission component for Thursday 

October 20th. 

Taxes & levies tariff component 

Finally, although taxes and levies are partly variable in time, they are also assumed 

flat during the day (Fig. 3.4). 
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Fig. 3.4. Flat taxes & levies tariff component for Thursday October 20th. 

 

Total dynamic tariff 

Once all dynamic components are known, first the dynamic tariff design needs to be 

decided upon by determining advance notice, the length of the price blocks, and the 

length of the price pattern. Then, the price level of each type of price block is set by 

calculating the weighted average of all hourly prices of the same type. Finally, by 

summing the resulting dynamic tariff components, the final dynamic pricing scheme 

is obtained. 

3.4 Tariff schemes 

Based on the tariff development methodology and on different tariff design 

characteristics, four different dynamic tariff schemes are constructed. They are 

summarized in Table 3.1, along with the flat pricing scheme. In what follows, each 

tariff scheme is briefly discussed. 

 

Table 3.1. Design characteristics of considered tariff schemes. 

 Advance notice Price pattern Price Blocks 

Flat pricing Year-ahead 1 year 1 year 

Time-of-use pricing Year-ahead 1 year Peak, off-peak 

Critical peak pricing Basis: Year-ahead 

CPP: Day-ahead 

Basis: 1 year 

CPP: 1 hour  

Basis: Peak, off-peak 

CPP: 10 peaks of 1 hour 

Real-time pricing Day-ahead 24 hours 1 hour 

Renewable pricing Day-ahead 24 hours 0h-7h, 7h-10h, 10h-13h, 
13h-17h, 17h-20h, 20h-24h 
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3.4.1 Flat pricing 

The flat pricing scheme is widespread in Belgium [72]. Although the price with flat 

pricing schemes in Belgium can be adapted over the different seasons, it is assumed 

that it remains flat over the entire year. Assuming that the contract with the 

residential user spans a year, the period of advance notice covers up to a year-

ahead. 

An example of the flat tariff scheme for a day in October is provided in Fig. 3.5, 

distinguishing between the different tariff components. 

 

Fig. 3.5. Flat tariff scheme for Thursday October 20th. 

3.4.2 Time-of-use pricing 

Together with flat pricing, time-of-use pricing is the main tariff scheme in Belgium. 

As shown in Table 3.1, two price blocks are distinguished within this tariff scheme. 

Depending on the geographic area within Belgium, the peak tariff covers the daytime 

block from 7h to 22h during weekdays, while the off-peak period covers all hours 

during weekends and the nighttime block from 22h to 7h during weekdays. Similar to 

flat pricing the price patterns spans a full year.  

An example of the ToU tariff scheme for Thursday October 20th is provided in Fig. 

3.6, distinguishing between the different tariff components. The peak tariff amounts 

to 21.58 c€/kWh, while the off-peak tariff sums to 18.60 c€/kWh. This leads to a 

price difference of 2.98 c€/kWh and a peak to off-peak (PtOP) ratio of 1.16. The 

variance sums up to 2.17 for this day. 
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Fig. 3.6. ToU tariff scheme for Thursday October 20th. 

3.4.3 Critical peak pricing 

A dynamic tariff scheme, which is currently not available in Belgium for residential 

users, is Critical Peak Pricing (CPP). This tariff scheme covers the ToU scheme which 

is overruled when an hourly price spike is sent on a day-ahead basis. The occurrence 

of this event is limited to 10 times a year. The purpose of this tariff scheme is to 

reduce consumption during these critical events. 

To attain the level of the price spikes, the energy component of the ToU price is 

lowered by 0.5 c€/kWh for all periods and the resulting revenue loss is recovered by 

charging a higher price level during the critical peak hours. These critical hours were 

chosen to be the ones with the highest Belpex-price. This leads to a price of 162.55 

c€/kWh on top of ToU price.  

Note that contrary to prices within other dynamic tariff schemes, the critical peak 

price is not based on the principle of cost causality and therefore does not reflect the 

underlying costs. Instead, the critical peak price is sent to assure demand response 

to be triggered and therefore to avoid the critical event. 

An example of the CPP tariff scheme for Thursday October 20th is provided in Fig. 

3.7. During this day a critical peak price is called. The peak tariff amounts to 183.83 

c€/kWh, while the off-peak tariff sums to 18.30 c€/kWh. This leads to a price 

difference of 165.53 c€/kWh and a PtOP-ratio of 10.04. The variance adds up to 

1118.89. 
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Fig. 3.7. CPP tariff scheme for Thursday October 20th. 

3.4.4 Real-time pricing 

A second dynamic tariff scheme, currently not available in Belgium for residential 

users, is real-time pricing (RTP). In this thesis, day-ahead RTP is assumed covering 

24 price blocks a day. This allows a closer reflection of the underlying costs 

compared to the flat, ToU, and CPP tariff scheme. 

An example of the RTP tariff scheme for Thursday October 20th is provided in Fig. 

3.8, distinguishing between the different components. The peak tariff amounts to 

32.34 c€/kWh, the off-peak to 15.21 c€/kWh. This leads to a price difference of 

17.13 c€/kWh and a PtOP-ratio of 2.13. Variance adds up to 15.81. 

 

Fig. 3.8. RTP tariff scheme for Thursday October 20th. 
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As the energy and distribution tariff patterns vary over the day, it could happen that 

these two patterns of the underlying tariff components incentivize opposing demand 

response directions. From the point of view of DSOs and retailers, these opposing 

signals have to be avoided. The direction of the DR incentive of each component is 

determined by the deviation of the hourly price from its daily average. For example, 

an hourly price of the energy component above its daily average incentivizes a 

demand reduction, while an hourly distribution price during the same hour below its 

daily average incentivizes a demand increase. This implies an opposing demand 

response incentive triggered by the energy and distribution component. This 

decreases the impact of the demand response incentive resulting from each 

individual component. In what follows, this effect is referred to as opposing dynamic 

components. Within the RTP scheme, this effect is present in 2724 hours or 31.10% 

of the hours within a year. In the remaining 68.10% of the time, the demand 

response incentive is enlarged due to coincident variability of the energy and 

distribution pattern. Hereby, any size of opposing effects is considered however 

small. When neglecting smaller effects, this picture changes. When a deviation of the 

hourly price from the daily average of less than 0.25 c€/kWh is not considered, the 

opposing effect only takes place in 13.82% of the time. When deviations of less than 

0.5, 1, 1.5 and 2 c€/kWh are neglected, this further reduces to 8.79, 1.84, 0.29 and 

0.01% of the time respectively. Therefore, it can be concluded that during the main 

part of the hours in which the price deviation is high, the demand response incentive 

is enlarged due to coincident dynamic components. 

3.4.5 Renewable pricing 

A final dynamic pricing scheme is referred to as renewable pricing (REN). The 

purpose of this tariff scheme is to align consumption with power generation from 

renewable energy sources. It is used within a Flemish pilot project, named LINEAR 

[58]. As shown in Table 3.1, this pricing scheme sends the price pattern day-ahead 

similarly to RTP. Nevertheless, renewable pricing differs from RTP in two ways.  

The price pattern is divided in 6 price blocks instead of 24. The width of each time 

block is chosen based on similarity between the price levels in adjacent hours [58]. 

The purpose of the wider blocks is to allow residential users to react more easily.  

The impact of power generation from wind farms and solar panels on the wholesale 

price and energy component is enlarged, as the share of RES increases [73]. 

Therefore, wholesale prices are adjusted according to the RES capacity [74]. 

Wholesale price adjustment is based on market resiliency analysis. This analysis 

states the wholesale price sensitivity due to an increase in offer or demand on the 

market. Based on [68], an hour with 100 MW renewable energy generation above 

average leads to a 0.332 €/MWh decrease of the hourly wholesale price. This 

resiliency factor is applied to annual hourly generation profiles of solar and wind 
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plants, derived from public data [75], [76]. Hereby, the resiliency factor is applied to 

the hourly power deviation from the average power. Moreover, this impact is 

increased with a factor 5 in order to stimulate consumption during moments of 

power generation from RES. The hourly price adjustments over the whole year are 

shown in Fig. 3.9 and Fig. 3.10 for power generation from solar and wind plants 

respectively. Only short-term effects are considered, while the long-term effect due 

to the impact on generation investments is not. The adjusted wholesale prices are 

depicted in Fig. 3.11 and compared to the initial wholesale price within a price 

duration curve. This curve ranks the hourly price levels within a year from high to 

low. The price adjustment leads to a higher spread of prices even extending to 

negative prices. The final residential energy price component is obtained by 

multiplying the wholesale price with a rescaling factor similarly to rescaling in Section 

3.3. As the price blocks cover multiple hours and after adding distribution, 

transmission, and other components, the total REN-tariff becomes positive during all 

hours of the year.  

 

Fig. 3.9. Wholesale price adjustment due to power generation from solar panels. 
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Fig. 3.10. Wholesale price adjustment due to power generation from wind mills. 

 

Fig. 3.11. Initial and adjusted wholesale price. 

An example of the REN tariff scheme for Thursday October 20th is provided in Fig. 

3.12, distinguishing between the different components. The peak tariff amounts to 

23.48 c€/kWh, while the off-peak tariff sums to 16.20 c€/kWh. This leads to a price 

difference of 7.28 c€/kWh and a PtOP-ratio of 1.44. Variance adds up to 5.76. 
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Fig. 3.12. Renewable tariff scheme for Thursday October 20th. 

3.5 Tariff comparison 

To gain insights in the similarities and differences between schemes, tariffs are 

compared based on the price patterns within a single day and on price curves and 

statistics for a full year. 

The different tariff schemes within a single day are depicted in Fig. 3.13. They result 

from the methodology as previously described and all meet the cost recovery and 

revenue neutrality principle. The CPP tariff scheme is omitted for clarity reasons. The 

flat price positions between the peak and off-peak price of the ToU tariff. This 

follows from the calculation method of both pricing schemes and from the cost 

recovery and neutrality principle. By comparing the flat and ToU tariff scheme, it can 

be seen that averaging over multiple periods reduces the peak tariff and enlarges the 

off-peak period. Therefore, the PtOP-ratio and the demand response incentive get 

smaller. The same principle applies for the RTP and REN tariff schemes. The RTP is 

higher than the flat or ToU price during the main part of the day, when consumption 

is higher. This implies that apart from daily variations, flat pricing is not able to 

account for seasonal variation. As in general Belgian wholesale prices are higher 

during winter compared to summer, flat and ToU pricing are undervalued during 

winter while overvalued during summer. Finally, the REN tariff scheme is lower than 

the RTP scheme. This implies that power generation from RES during this day was 

higher than average, lowering prices. 
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Fig. 3.13. Comparison of tariff schemes for Thursday October 20st. 

 

Next to the insights following from an individual day, some general observations for a 

full year can be derived by analyzing the price duration curve (Fig. 3.14) and the 

statistics of each tariff scheme. The price duration curve ranks the hourly price levels 

within a year from high to low. The CPP tariff scheme is left out for clarity reasons. 

Comparison between the remaining schemes shows that similarly to the previous 

figure, flat pricing lays between the peak and off-peak price of ToU. Peak prices 

within ToU only occur in less than 50% of the times as no peak prices are present in 

weekends. The RTP and REN tariff schemes illustrate that these tariff schemes 

increase the variability around the flat tariff. Comparing the RTP and REN tariff 

schemes shows that for the main part of the year, the REN further deviates from the 

flat tariff. This follows from the inclusion of a higher price impact of power 

generation from RES, increasing price variability. Although Fig. 3.14 illustrates the 

hourly price spread for the entire year, it does not allow capturing the demand 

response incentive as short-term demand response results from the proportion 

between the different price blocks within the short-term, such as a day.  

In order to capture the demand response incentive, different statistics for each tariff 

scheme are provided in Table 3.2. A distinction is made between the daily PtOP-ratio 

and the daily variance. For each day within each tariff scheme, these characteristic 

are calculated after which the yearly minimum, median, and maximum of these daily 

values are derived (Table 3.2). As no price variability is present within the flat pricing 

scheme, the PtOP-ratio is 1.00 while the variance amounts 0.00. For the ToU tariff 

scheme the minimum PtOP-ratio and variance remain the same as ToU prices are flat 
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during weekends. During weekdays values go up arriving at a variance of 2.17. The 

minimum and median values are similar for the CPP tariff schemes as both tariff 

schemes are parallel during the main part of the year. During the days including the 

critical peak prices, both PtOP and variance boom reaching values of 10.04 and 

1118.89 respectively. For the RTP scheme, the minimum PtOP and variance values 

are 1.40 and 2.42, exceeding the maximum values of the ToU scheme and the 

median value of the CPP. It implies higher price variability within the day of the RTP 

scheme during the main part of the year. The same applies for the REN scheme, 

although the latter has lower minimum and median PtOP ratios and variances. This 

results from longer price blocks, which average peak or off-peak periods with 

shoulder periods decreasing the price spike and price drop. The maximum 

characteristics are higher in the case of the REN tariff scheme due to the impact of 

power generation from RES leading to more price extremes. 

 

Fig. 3.14. Yearly price duration curves for the different tariff schemes. 

 

Table 3.2. Statistics of different pricing schemes. 

 Peak to off-peak ratio Variance 

 Min. Median Max. Min. Median Max. 

Flat 1.00 1.00 1.00 0,00 0.00 0.00 

ToU 1.00 1.16 1.16 0,00 2.17 2.17 

CPP 1.00 1.16 10.04 0,00 2.17 1118.89 

RTP 1.40 1.88 2.51 2.42 9.71 25.60 

REN 1.12 1.44 3.03 0.44 6.93 39.03 
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3.6 Summary & Conclusions 

This chapter discusses the development of different dynamic tariff schemes and the 

implication the choice of a particular tariff scheme has on tariff characteristics and 

demand response incentives. Based on a distinction in the length of advance notice, 

the length of the price blocks, and the length of the price pattern, five tariff schemes 

are discussed: flat, ToU, CPP, RTP, and REN.  

Three types of tariff schemes can be distinguished based on their objectives: 

meeting cost causality, decreasing demand during critical events, and aligning 

consumption with power generation from RES. The first tariff type covers the flat, 

ToU, and RTP tariff schemes. While the flat scheme allows meeting cost causality 

over the year, it does not meet cost causality over a shorter time horizon. The ToU 

tariff scheme goes one step further by allowing cost causality over the peak and off-

peak periods within the year. Moreover, it stimulates short-term demand response 

due to the difference between peak and off-peak prices. The RTP tariff scheme 

meets cost causality on an hourly basis reflecting the hourly underlying costs and 

therefore incentivizing demand response. In the second type of tariff schemes, cost 

causality is not the main objective, but the focus is on reducing demand during 

critical events. The example used is CPP. This tariff scheme is typically used within a 

capacity constrained power system that is not able to meet demand during every 

hour of the year. Therefore, a previously agreed price spike is sent during these 

critical events aiming to reduce demand. As such events occur rarely, this tariff 

scheme is not suited to cover the intermittency in a power generation portfolio based 

on RES. Moreover, this tariff scheme only aims at securing a power generation 

shortage while a power generation excess is not covered. The third type of tariff 

schemes aims at a more efficient integration of intermittent RES by aligning demand 

with the available power generation from RES. An example is the REN tariff scheme 

which increases the impact of power generation from RES on the electricity price.  

To assess the quantity of short-term demand response following from a tariff 

scheme, two characteristics often used are the daily PtOP-ratio and the daily 

variance. Apart from critical peak days within the CPP scheme, the RTP scheme 

shows the highest daily PtOP and variance during the main part of the year. 

Although yearly variability is higher, daily PtOP and variance are lower for the REN 

tariff as peak and off-peak periods are averaged with shoulder periods due to wider 

price blocks. Another effect that can limit the daily PtOP and variance values, is the 

opposing dynamic components effect. Although existing, it should be noted that this 

effect only occurs in 0.29% of the time when only price deviations larger than 1.5 

c€/kWh are accounted for. Nevertheless, in reality further optimization and 

prioritization of these opposing signals seems interesting. 

 



 



 

 

4. Demand response simulation and practical 

evidence 

4.1 Introduction 

This chapter discusses residential demand response (DR) as a reaction to dynamic 

pricing. To achieve a comprehensive insight in demand response under it various 

forms, distinction is made between demand response following from the different 

dynamic pricing schemes developed in the previous chapter, DR simulation and 

practical evidence, and DR with different underlying residential load types. 

In Section 4.2, DR with different residential load types is simulated based on the 

various dynamic tariff schemes developed in Chapter 3. After this theoretical demand 

response description, practical evidence of residential demand response is 

highlighted in Section 4.3 based on results from a residential pilot project. Finally, 

Section 4.4 summarizes and concludes.  

4.2 Demand response simulation under various tariff 

schemes 

A theoretical approach is taken by simulating demand response following from 

dynamic tariff schemes. Hereby, it is assumed that power consumption of different 

load types is shifted towards the lowest price period while accounting for user 

preferences. This simulation serves as a benchmark against which results from real-

world pilots can be compared allowing to consider different load types and tariff 

schemes. It can also be seen as the case in which loads automatically shift towards 

the lowest price period with a minimum level of interaction with residential users, 

also referred to as automated demand response. The assumption is that prices are 

binding once communicated. Therefore, demand shifts do not affect prices 

communicated to the households. Note however that this is an approximation, 

especially if the amount of DR becomes substantial. In the ideal case, the dynamic 

pricing scheme sent to the residential users already accounts for the resulting 

demand shifts. Nevertheless, this is subject to further research.  

To attain deeper insights in this simulation, first the optimization model for the 

different load types is discussed. The focus is on wet appliances (WAs) and on 

battery electric vehicles (BEVs). Afterwards results of DR are discussed in a 

descriptive analysis, comparing DR with different load types under different dynamic 

tariff schemes. Finally, household benefits of demand response are described.  
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4.2.1 Wet appliance scheduler 

Starting from the dynamic pricing schemes, a WA scheduler shifts consumption 

cycles of appliances towards the lowest price period. Several load control algorithms 

are discussed in the literature [77], [78], [79], and [80]. Most studies optimize the 

appliance schedule for one day, given a theoretical time window in which the 

predefined power consumption profile can be shifted [78], [79], and [80]. Adding to 

these studies, this section applies a WA scheduler to measured consumption data of 

residential consumers. These realistic consumption profiles call for a different 

approach as the power profile and timing of each appliance cycle differ day by day. 

Moreover, the scheduler requires the integration of user preferences to ensure a 

more realistic outcome. Therefore, a WA scheduler based on Integer Linear 

Programming (ILP) is developed. 

 

Data & Assumptions 

Within the context of the LINEAR project [71], consumption profiles of over 200 

Belgian households are measured since 2012. Out of these 200 profiles, 30 profiles 

were selected based on quality and completeness of data. For each of the 

households a three-month period is considered covering January till March 2013. 

Hereby, distinction is made between total and flexible consumption. Total 

consumption covers all consumption within the household, while flexible consumption 

only covers consumption due to the use of WAs. These WAs cover washing 

machines, dishwashers, and dryers. Each WA is submetered separately.  

The average consumption profile for WAs within a household is visualized in Fig. 4.1 

and Fig. 4.2 for an average week and weekend day respectively. Generally daytime 

consumption during weekends is higher than during weeks. The difference in 

consumption profiles during weeks and weekends has two main reasons. In 

weekends more consumers are at home during daytime. Some of the households are 

registered for a day-night tariff scheme, implying a lower price during weekends and 

during the nighttime of weeks. Therefore, some of the WA cycles are already shifted 

towards the evening of weekdays and towards weekends. Also the profile of WAs 

differs. During weeks, consumption of dishwashers typically peaks at the end of the 

day. Consumption of washing machines typically peaks between 9h00 and 12h00, 

while the dryer peaks between 12h00 and 13h00. This illustrates the link between 

washing machine and dryer. The dryer runs behind on the washing machine. This 

can also be seen by the delayed rise in the consumption profile of the dryer in the 

morning. During weekends, peaks in consumption profiles of washing machines and 

dryers fall later during the day. Nevertheless the link between both appliances 

remains. 
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Fig. 4.1.  Average household power profiles of WAs during an average weekday. 

 

Fig. 4.2.  Average household power profiles of WAs during an average weekend day. 

As WAs are considered to be flexible, they can be shifted in time. Therefore, two WA 

consumption profiles are distinguished: the unscheduled measured and the 

scheduled profile with DR. The unscheduled flexibility profile equals the historical 

profile and results in the averaged measured profiles of Fig. 4.1 and Fig. 4.2. The 

scheduled profile with DR is obtained after running the WA scheduler. Hereby, it is 

assumed that consumers do not change the loading behavior of their appliances 

under dynamic pricing schemes. This implies that residential users load and initialize 

their WAs at the same time as in the unscheduled case. Afterwards they set the 

shifting potential (TSP) with a timer, stating by when the cycle needs to be finished. 

Within this period, the appliance cycle is optimally scheduled based upon the 

dynamic pricing scheme. Only a shift of the full cycle is considered, as the wet 

appliances are assumed uninterruptible. 
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Before the model for scheduling WAs is discussed, an overview of the spread of total 

and flexible consumption of households for the three-month period is visualized by 

means of a boxplot (Fig. 4.3). Hereby, the upper and lower box each covers a spread 

of 40% or 12 out of 30 households. The border between both represents the 

household with median consumption level, while the wickers represent households 

with minimum and maximum consumption levels. This illustrates that the amount of 

flexibility originating from WAs is limited compared to the total consumption. 

Moreover, the relative spread of both total and flexible consumption is high. 

Therefore, total and flexible consumption depends on the household itself, as the 

frequency of use and number of appliances vary. While flexible consumption 

accounts for less than 80 kWh per 3 months in some households, other households 

have over 270 kWh available for flexibility purposes during the three-month period. 

Although not visualized, also appliance ownership differs amongst households. While 

23 households possess all three wet appliances, 7 households only possess two. 

 

 

Fig. 4.3.  Spread of total and flexible consumption of 30 households for a three-month period 

with the upper and lower box each representing 40% of the observations and the wickers 

representing the minimum and maximum consumption levels. 

 

Integer Linear Program (ILP) 

Objective Function  

The objective of the scheduler is to minimize electricity costs by shifting WAs to the 

lowest price periods. The objective function is: 

∑ C𝑎𝑗𝑛 ∗ 𝑋𝑎𝑗𝑛𝑎𝑗𝑛 , (4.1) 

where C𝑎𝑗𝑛 reflects the cost for cycle j of appliance a (1 = washing machine, 2 = 

dryer, 3 = dishwasher) shifted with n - 1 hours, where n ∈ {1, … , shifting potential}. 

X𝑎𝑗𝑛 represents a binary auxiliary decision variable. If 𝑋𝑎𝑗𝑛= 1, cycle j of appliance a 
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is shifted for n - 1 hours. Values of C𝑎𝑗𝑛 are calculated before solving the ILP. This 

allows easily adding constraints integrating user preferences into the model. 

Constraints 

Cycle j of appliance a needs to be executed once within the shifting interval: 

∑ 𝑋𝑎𝑗𝑛 = 1n  ∀ 𝑎, 𝑗.  (4.2) 

An appliance cycle needs to be finished within its total shifting potential (TSP): 

𝑜𝑐𝑓𝑎,𝑗  ≤  ISa,j + TSP ∀ 𝑎, 𝑗, (4.3) 

where 𝑜𝑐𝑓𝑎,𝑗 is the optimal cycle finish and ISa,j is the initial cycle start of cycle j of 

appliance a.  

An appliance cycle needs to be finished before the initial start of the next cycle of the 

same appliance:  

𝑜𝑐𝑓𝑎,𝑗 ≤ ISa,j+1 ∀ 𝑎, 𝑗. (4.4) 

The last cycle of the time horizon needs to be finished before the horizon ends: 

𝑜𝑐𝑓𝑎,𝑗 ≤  TMax ∀  𝑎, 𝑗, (4.5) 

where TMax represents the last time interval of the simulation period. 

In most cases, a direct link exists between the cycle of the washing machine and 

dryer as washed load is put in the dryer after finishing. Therefore, the washing 

machine needs to finish before the dryer cycle is initialized: 

𝑜𝑐𝑓1𝑗 ≤ IS2l ∀ 𝑗, (4.6) 

where 𝑜𝑐𝑓1𝑗 represents the optimal cycle finish of cycle j of the washing machine and 

IS2l stands for the initial cycle start of the linked dryer cycle l. 

 

Scheduler Example 

Fig. 4.4 illustrates the change in consumption pattern after solving the ILP. Hereby, 

the total shifting potential (TSP) is set to 8 hours in line with results from the LINEAR 

project [71]. The example depicts the flexible consumption pattern of one household 

under RTP for two random weekdays in February. Hourly prices are represented at 

the top. Underneath, the unscheduled and scheduled consumption patterns of the 

washing machine and dryer are depicted. For reasons of clarity, non-flexible 

consumption and consumption from dishwasher cycles are omitted. Clearly, washing 

machine and dryer cycles are shifted towards the lowest cost periods given an 8 hour 

shifting potential. Moreover, the figure illustrates that the washing machine cycle 

needs to be finished before the start of the associated dryer cycle.  
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   Fig. 4.4. Hourly price pattern, and unscheduled & scheduled consumption patterns of washing 

machine (WM) and dryer (DR) during two random weekdays of February for one household. 

4.2.2 BEV scheduler 

Starting from the dynamic pricing schemes, a BEV scheduler shifts battery charging 

of BEVs to the lowest price period in order to minimize total electricity costs. To 

ensure a realistic outcome, the scheduler requires the integration of driving behavior 

and technical characteristics of vehicles. Therefore, a BEV scheduler based on Linear 

Programming (LP) is developed and discussed. 

 

Data & Assumptions 

To determine the optimal charging profile, data are needed on both the driving 

patterns of BEVs and on vehicle characteristics.  

The driving patterns are derived from results of the 3rd Flemish Mobility Study 

(OVG3) [81]. In this study transportation behavior of 8800 drivers was analyzed from 

September 2007 till 2008. Over this period, the status of the vehicles is listed, 

distinguishing between driving and standing still. Moreover, standing still is split in ‘at 

home’ and ‘other’. In Van Roy et al. [82], the energy consumption of each driving 

cycle is determined based on these driving patterns and the vehicle sizes.  

From the analysis of OVG3 [81] and Van Roy et al. [82], 100 representative BEVs 

with a full year of data on minute basis were selected and driving patterns and 

energy consumption were obtained. The average status of all vehicles during a week 

and weekend day is visualized in Fig. 4.5 and Fig. 4.6, distinguishing between 

driving, at home, and at another location. Both during weeks and weekends the main 

share of vehicles is standing still at home or another location. On average weekend 

days, the share of vehicles driving never exceeds 10% while the share during 

weekdays is a bit higher. 
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Fig. 4.5.  Average number of vehicles driving, at home and at another location during weeks.   

 

Fig. 4.6.  Average number of vehicles driving, at home and at another location during 

weekends.   

Table 4.1. Technical characteristics of BEVs. 

 Subcompact 

BEV 

Midsize 

BEV 

Large BEV Reference 

Specific consumption [kWh/km] 0.16 0.19 0.25 [81] 

Battery capacity [kWh] 20.8 31.2 41.6 [81] 

Grid-to-battery efficiency [%] 90 90 90 [81] 

Battery-to-wheel efficiency [%] 90 90 90 [81] 

Maximum state of charge [% of battery capacity] 95 95 95 [82] 

Maximum charging power [kW] 4 4 4 [83] 

 

Three types of vehicles are considered: subcompact, midsize, and large, accounting 

for 26%, 67%, and 7% of the total fleet respectively. Each type has its own technical 

battery characteristics (Table 4.1). Effects such as aging of the battery and 

depreciation are not considered. 
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Two charging scenarios are considered. Within the unscheduled scenario, BEV 

batteries start charging as soon as they are plugged in. BEVs are only assumed to be 

plugged in at home. This scenario serves as reference. Within the scheduled 

scenario, timing and quantity of charging is optimized over the period when the BEV 

is at home. Hereby, it is assumed that residential users do not change their driving 

behavior under dynamic pricing schemes: they arrive and depart at the same time as 

in the unscheduled case. In both charging scenarios batteries charge until they reach 

the maximum state of charge or until the BEV departs. 

The spread in consumption due to BEV charging, also referred to as flexible 

consumption, is visualized in Fig. 4.7 by means of a boxplot. Apart from flexible 

consumption, inflexible household consumption without BEVs is also visualized based 

on data retrieved in the scope of the LINEAR-project [71]. The upper and lower box 

in both boxplots each covers the spread of 40% or 40 out of 100 households. The 

border between both represents the median consumption level, while the wickers 

represent minimum and maximum consumption levels. This illustrates that the 

amount of flexibility from BEVs is substantial compared to inflexible consumption. 

Moreover, the spread of both inflexible and flexible consumption is high. 

Consequently, inflexible and flexible consumption depends on the household or BEV 

itself, as the use of appliances and BEVs varies. While consumption due to BEV 

charging accounts for less than 2000 kWh in some households, others have over 

4500 kWh available for flexibility purposes over the year. For inflexible consumption, 

spread is even higher covering consumption from over 300 kWh up to almost 13000 

kWh. Nevertheless, these high inflexible consumption values typically result from 

electric heating. Although considered as inflexible within this dissertation, this is not 

necessarily the case in practice. 

 

Fig. 4.7.  Spread of inflexible consumption and flexible consumption from BEVS of 100 

households for a year with the upper and lower boxes each representing 40% of the 

observations and the wickers representing the minimum and maximum consumption levels. 
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Linear Program (LP) 

Before the BEV scheduler is used, available data is preprocessed. Therefore, a 

minimum and maximum boundary between which cumulative energy should lay is 

determined. An example of the minimum and maximum energy boundaries of one 

BEV on October 20th is given in Fig. 4.8. The minimum boundary (EMin) is obtained 

by a strategy that postpones charging as much as possible. The maximum boundary 

(EMax) results from charging as soon as the BEV arrives home until the battery is 

fully charged or the vehicle departs again, aligning with the unscheduled charging 

scenario. If the BEV is not fully charged during standstill, the minimum and 

maximum boundaries overlap and no charging flexibility is available. As the area 

between minimum and maximum boundary grows, more charging flexibility becomes 

available which can be used for demand response purposes. Once the boundaries are 

found, the optimal charging path can be determined between these boundaries 

resulting from a Linear Programming (LP) approach. 

 

Fig. 4.8. Minimum (dashed, black) and maximum energy boundaries (dotted, black), and 

minimum (dashed, gray) and maximum power patterns (dotted, gray) for October 20th for a 

random BEV. 

Objective Function  

The objective of the BEV scheduler is to minimize the yearly electricity cost by 

charging the BEVs during the lowest price periods, reflected by the objective 

function: 

𝑀𝑖𝑛. ∑ DPq ∗ 𝑝𝑜𝑤𝑒𝑟𝑞q ,   (4.7) 

where DPq reflects the dynamic pricing scheme in quarter q, while 𝑝𝑜𝑤𝑒𝑟
𝑞
 represents 

the charging power in quarter q. Time steps cover 15 minutes, contrary to the hourly 

time steps in the WA case.  
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Constraints 

The charging power is limited by the maximum power charging capacity PowerMax: 

𝑝𝑜𝑤𝑒𝑟q ≤ PowerMax  ∀ q. (4.8) 

Discharging of BEVs is not considered: 

𝑝𝑜𝑤𝑒𝑟𝑞 ≥ 0 ∀ q. (4.9) 

The cumulative energy content needs to be within the minimum and maximum 

energy boundaries: 

∑ 𝑝𝑜𝑤𝑒𝑟𝑞
𝑞
𝑗=1 ≤  EMax𝑞  ∀ q, (4.10) 

∑ 𝑝𝑜𝑤𝑒𝑟𝑞
𝑞
𝑗=1 ≥  EMin𝑞   ∀ q. (4.11) 

The charging pattern of each BEV is separately optimized for each week of the year. 

 

Scheduler Example 

Fig. 4.9 illustrates the change in the charging pattern after solving the LP. The 

example depicts the charging pattern of a random BEV for October 20th. Hourly 

prices or the RTP tariff design are shown together with unscheduled and scheduled 

charging patterns. Clearly, the scheduled charging pattern of the BEV is shifted 

towards the lowest price periods given minimum and maximum energy boundaries of 

Fig. 4.8. The last unscheduled charging cycle is shifted towards the next day and is 

not shown in the figure. 

 

 

Fig. 4.9.  Electricity tariff and unscheduled charging patterns (dotted) and scheduled charging 

patterns (dashed) of a random BEV during October 20th. 
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4.2.3 Descriptive analysis 

In this section, the effect of simulated demand response is outlined in a descriptive 

analysis. First, the change in consumption pattern of WAs and BEVs due to demand 

response based on RTP is discussed. Distinction is made between flexible 

consumption only and total household consumption. Afterwards, a similar analysis is 

performed for other dynamic tariff schemes. 

 

Effect on residential consumption pattern 

To get an overall view on the flexible consumption pattern change due to WA 

consumption or charging of BEVs, Fig. 4.10 and Fig. 4.11 show the average 

unscheduled and scheduled consumption patterns for one particular day under RTP. 

These patterns result from the WA and BEV scheduler respectively and are the 

average pattern over all households considered.  

For WAs, results show that flexible consumption is shifted towards the early morning 

and the afternoon. Thereby new peaks of flexible consumption arise, while noon and 

evening peaks disappear. Considering total consumption, no new peaks arise due to 

WA scheduling. Instead, valleys are filled in the night and afternoon. Nevertheless, 

total peak impact is limited due to limited use of WAs in the unscheduled case.   

For BEV charging, results show that charging power increases towards the evening 

and night without DR, resulting from the arrival of vehicles at home during the 

evening time (Fig. 4.5). In case of total unscheduled consumption this leads to a 

peak in consumption just before midnight. Scheduling of vehicles evokes a renewed 

average charging pattern, peaking during nighttime while being low during daytime. 

The evening peak of flexible consumption reduces, while the average night peak 

nearly triples and is shifted towards 5h00.  

New peaks created by BEV charging based on dynamic electricity pricing often are 

said to be harmful for the normal functioning of distribution grids [84], [85], [86], 

and [87]. Although technical implications of BEV charging are out of scope of this 

dissertation, some remarks in this perspective are made. The impact of BEV charging 

based on DP is often assessed within weak distribution grids. In such a grid, the 

problem is not the charging based on DP itself, but rather the addition of load: also 

unscheduled charging brings about technical issues. Nevertheless, scheduled 

charging can increase these. Simulations often assume all BEVs are scheduled based 

on the same DP. This is not necessarily the case when households have different 

contracts with different retailers. Hereby, lowest price periods can differ. Moreover, 

not necessarily all households participate in DP. Simulations often assume that all 

households in distribution grids possess a BEV. Although this might be true in the 

long run, in the short run this is unlikely. If all households possess BEVs, dynamic 

pricing patterns change shape as considerable load is added. This again can 
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influence the number of participants in DP schemes. Several methods exist to avoid 

load peaks. An example is to spread load over the lowest price block, instead of all 

starting to charge in the beginning of the price block. Nevertheless, this method is 

only applicable if price blocks are long enough. Another example is the use of local 

voltage droop control [85]. In this case, scheduling based on prices can be 

performed within the technical boundaries of the distribution grid.   

 

 

Fig. 4.10. Total unscheduled (dashed, black) and scheduled power patterns (dotted, black), and 

unscheduled (dashed, gray) and scheduled (dotted, gray) power patterns of WAs under RTP for 

a random weekday in February. 

 

Fig. 4.11. Total unscheduled (dashed, black) and scheduled power patterns (dotted, black), and 

unscheduled (dashed, gray) and scheduled (dotted, gray) power patterns of BEVs under RTP 

during October 20th. 
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Demand response under different tariff schemes 

Apart from the change in consumption pattern due to DR with RTP within a specific 

day, this subsection discusses the average flexible consumption pattern during week 

and weekend days due to various dynamic pricing schemes, allowing to assess the 

impact of various DP schemes. 

The average demand modifications due to WA scheduling under different dynamic 

pricing schemes are shown in Fig. 4.12 and Fig. 4.13 for week and weekend days 

respectively. Shifting under all dynamic pricing schemes is visualized except for CPP 

which is omitted for clarity reasons. The average power pattern under CPP closely 

follows the pattern under ToU. During week days, scheduling of WAs under ToU 

shifts flexible consumption away towards the late evening and early morning. 

Consequently only evening peaks are reduced while noon peaks remain unaffected 

through ToU implementation. During weekends power profiles almost align for Flat 

and ToU pricing schemes. Only in the early morning, the patterns differ resulting 

from a shift of Friday evening to Saturday morning. Within the REN and RTP case, 

consumption is shifted. Both for REN and RTP, consumption is shifted away from 

noon and evening periods. It contrasts with the ToU tariff case in which consumption 

was only shifted away from evening periods. Nevertheless, REN and RTP tariff 

schemes cause different power patterns to evolve. Typically, new peaks occur later 

when RTP is applied as consumption is postponed longer for some WAs. As REN 

averages longer periods, typically the cheapest time blocks start earlier in case of 

REN. Therefore, new peaks are created in shoulder periods. This illustrates that the 

effect of a shift in consumption depends on the underlying tariff scheme and that 

due to averaging of prices over longer periods, new flexible peaks do not necessarily 

end up in the preferred hour.  

 

Fig. 4.12. Average power patterns of WAs during weekdays under different pricing schemes: 

flat (long dashed line), ToU (short dashed line), REN (solid line) and RTP (dotted line). 
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Fig. 4.13. Average power patterns of WAs during weekend days under different pricing 

schemes: flat (long dashed line), ToU (short dashed line), REN (solid line) and RTP (dotted 

line). 

Average demand shifts due to BEV scheduling under different dynamic pricing 

schemes are visualized in Fig. 4.14 and Fig. 4.15 for weeks and weekends 

respectively. In line with WAs, scheduling under CPP is not visualized for clarity 

reasons. In ToU pricing, a clear difference between week and weekend days can be 

noticed. During weekdays a new peak arises in the evening, while the pattern under 

Flat and ToU pricing almost aligns during weekends. Also for REN and RTP pricing 

the evening peak diminishes. Hereby, consumption is shifted deeper into the night. 

For REN pricing, a new peak arises at 00h00 at the start of the new price block. 

Small peaks during the day also arise at the start of other price blocks. Nevertheless, 

these peaks could be spread over the whole price blocks flattening peaks. For RTP, 

charging is postponed longer until the lowest price block is obtained. Although on 

average these new peaks are smaller than in the REN case, this is not necessarily 

true for individual days. 

 

Fig. 4.14. Average power patterns of BEVs during weekdays under different pricing schemes: 

flat (long dashed line), ToU (short dashed line), REN (solid line) and RTP (dotted line). 
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Fig. 4.15. Average power patterns of BEVs during weekends under different pricing schemes: 

flat (long dashed line), ToU (short dashed line), REN (solid line) and RTP (dotted line). 

 

4.2.4 Household savings 

Monetary savings obtained from residential DR are outlined. First, average annual 

household savings under the different tariff schemes are discussed, distinguishing 

between DR with WAs and BEVs. Apart from the averages, distribution of savings 

over all households is discussed afterwards.  

Table 4.2 gives average costs for consumption from WAs and BEVs under different 

tariff schemes. Consequently, only costs due to flexible consumption are included. 

Distinction is made between average costs within the unscheduled and scheduled 

scenario. Difference between both is the average saving also expressed as a 

percentage of unscheduled costs. While savings for BEVs are based on yearly 

simulations, savings for WAs are extrapolated towards a year. 

The annual average unscheduled costs vary among different tariff schemes. 

Typically, unscheduled costs are higher for more dynamic tariff schemes in case of 

WAs as unscheduled consumption from WAs partly falls in shoulder and peak 

periods. For BEVs the opposite is true as BEV charging largely falls during nighttime. 

This implies that even without DR, savings can be obtained from switching to 

another tariff design. Although not treated in this thesis, this effect also occurs for 

non-flexible consumption as described by Borenstein [88]. 

The table shows that the use of DR has the biggest monetary effect under RTP. In 

general, higher variability of the tariff scheme leads to higher savings. On average, 

savings under RTP are 6 to 7 times higher than under ToU, both for WAs and BEVs, 

although lowest costs for WAs are reached under REN.  
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Finally, both average annual costs and absolute savings are higher with BEVs. For 

BEVs average yearly savings of €144 are obtained under RTP while for WAs this is 

limited to €18. This follows from higher consumption with BEVs. Also in relative 

terms, savings for BEVs are higher. This follows from a longer shifting potential into 

the night and from uninterruptability of WA cycles.  

 

Table 4.2. Impact of demand response on average annual electricity costs due to wet appliance 

consumption and charging of battery electric vehicles under different tariff schemes. 

 Wet appliances Battery electric vehicles 

 Unscheduled 

cost [€] 

Scheduled 

cost [€] 

Savings  

[€] 

Unscheduled 

 cost [€] 

Scheduled 

cost [€] 

Savings  

[€] 

Flat 132 x x 683 x x 

ToU 132 129 3    (2%) 663 643 20   (3%) 

CPP 131 127 4    (3%) 659 634 25   (4%) 

RTP 146 128 18  (12%) 652 508 144 (22%) 

REN 137 123 14  (10%) 662 566 96   (15%) 

 

Apart from average savings, individual household savings provide deeper insight into 

the usefulness of DR as practical implementation of DR not necessarily focuses on all 

households. Rather implementation could focus on one household type. Therefore, 

Fig. 4.16 and Fig. 4.17 depict boxplots with the spread of cost savings resulting from 

DR with WAs and BEVs respectively, each box representing 40% of households.  

These figures illustrate large spread of cost savings for each tariff scheme. This is 

especially true for more dynamic schemes. Moreover, the figure also shows that 

savings due to BEV scheduling is a multitude of savings due to WA scheduling. 

For WA scheduling, cost savings under ToU and CPP remain below €10 for over 90% 

of households. For RTP and REN, this picture changes as cost savings can top 30 and 

even €40 for some households. For BEV scheduling, cost savings under ToU and CPP 

are lowest. Nevertheless, most households save more than €20 annually, even 

extending to around €50. In more dynamic tariff schemes such as RTP and REN, all 

households save over €50. For RTP more than 90% of households save over €100. 
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Fig. 4.16. Spread of cost savings due to DR with WAs under different tariff schemes: ToU, CPP, 

RTP and REN. The upper and lower boxes represent 40% of the observations and the wickers 

represent the minimum and maximum yearly savings. 

 

Fig. 4.17. Spread of cost savings due to DR with BEVs under different tariff schemes: ToU, CPP, 

RTP and REN. The upper and lower boxes represent 40% of the observations and the wickers 

represent the minimum and maximum yearly savings. 

 

4.3 Practical evidence of demand response: the 

LINEAR field test 

In contrast to the previous section, this section discusses more practical results of 

residential demand response following from dynamic pricing. In this perspective, 

results from a Flemish residential demand response project called LINEAR are 

highlighted. 
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The general set-up of this project is discussed and specific measurements used are 

highlighted. A descriptive analysis points out the main impact from dynamic pricing 

on household consumption patterns within the field test. Finally, household savings 

obtained within LINEAR are described. 

 

4.3.1 Set-up LINEAR 

 

General project scope 

LINEAR is a large-scale research and demonstration project focused on the 

introduction of smart grids, and more specifically on demand response strategies, at 

residential premises in the Flanders region in Belgium. The LINEAR project aims at a 

technological as well as an implementation breakthrough of DR. Its focus is twofold. 

On the one hand, the project deals with research and development efforts required 

to deploy DR technologies. On the other hand, it aims at implementing these 

technologies in a field test, by setting up a pilot in which 245 households participate. 

The project started in May 2009 and receives partial funding from the Flemish 

government for the academia and research institutes (KU Leuven, VITO and IMEC, 

embedded in EnergyVille, and iMinds). Furthermore, several industrial partners, 

including Belgacom, Eandis, EDF-Luminus, Fifthplay, Infrax, Laborelec, Miele, 

Siemens, Telenet and Viessman, invest and actively participate in the project. Finally, 

the Flemish regulator for the electricity and gas market (VREG), as well as industry 

and government interest groups (Agoria, EWI, VOKA) take part in the project. 

As demand response can serve many purposes, the following four cases are selected 

and addressed within the field test of LINEAR: portfolio management, wind 

balancing, transformer ageing, and line voltage management. The portfolio 

management case investigates how residential DR helps optimizing the generation 

portfolio by reacting to day-ahead market prices. The wind balancing case assesses 

the impact of DR on the imbalance of a balancing responsible party due to errors in 

wind predictions. The transformer ageing case investigates whether DR can avoid 

accelerated ageing of distribution transformers. Line voltage management assesses 

the usefulness of DR for avoiding voltage deviations in distribution grids. In what 

follows the focus is only on the first case as this is the topic of this dissertation. 

To gain insight in consumer behavior and acceptance towards DR, two different 

consumer interaction models are tested, referred to as manual and automated 

demand response. In the manual DR interaction model, 60 households participate. 

They receive dynamic electricity tariff schemes day-ahead and are supported with 

home energy management systems and displays showing current and historic tariff 

schemes and consumption profiles. Consequently, households can manually shift 
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consumption in order to align consumption with cheaper price periods. Within the 

automated demand response interaction model, 185 households participate. They do 

not receive price signals, yet appliances are steered automatically towards dynamic 

prices through the LINEAR project while satisfying comfort requirements. 

Two different appliance types are considered for automation purposes: shiftable and 

storable. Over 440 shiftable appliances such as washing machines, dryers, 

dishwashers, are deployed within LINEAR. When they are configured, household 

consumers are requested to set a deadline for the end of the appliance cycle, also 

referred to as the shifting potential. Within the time window between configuration 

time and deadline, the appliance is started by LINEAR. Regarding storable 

appliances, 15 hot water buffers are deployed. For these appliances, no user 

interaction is required as LINEAR operates them within the household’s comfort 

zone.  

Substantial difference exists in the way DR is remunerated. For manual demand 

response, it is based on the underlying dynamic electricity price. Hereby LINEAR 

opted for renewable pricing, as described in Section 3.4.5. This tariff scheme is day-

ahead based on day-ahead wholesale prices and predicted generation from 

renewables, distinguishing between 6 time blocks a day. For portfolio management 

with automated DR, again consumption is optimized based on this renewable tariff 

scheme. Nevertheless, remuneration is based on the shifting potential configured for 

the shiftable appliances. Hereby, each hour of shifting potential is remunerated 

against an incentive payment of €0.025 per hour per appliance, implying a 

remuneration of €1 for every 40 hours of shifting potential configured with an 

appliance. 

 

Measurement data  

In order to assess the impact of DR based on dynamic electricity pricing, 

measurement data from LINEAR are analyzed. In this perspective, a distinction is 

made between a reference period during which no DR incentive is sent to the 

households and a field test period during which a DR incentive is provided, for both 

manual and automated DR. In both cases, comparison between reference and field 

test periods allows assessing the impact of DR. The same months for both reference 

and field test periods are selected. 

For manual DR, measurement data considered in this dissertation cover 16 

households for a four-month period for both reference and field test period. This 

period runs from March 1st till June 30th in 2013 and 2014 respectively. During the 

reference period around 81% of households were enrolled in a day-night tariff 

scheme in which prices are lower during nighttime and weekends.  
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For automated DR, measurement data considered in this dissertation cover 48 

households for a two-month period for both reference and field test period. This 

period runs from September 16th till November 17th for 2012 and 2013 respectively. 

Around 70% of households were enrolled in a day-night tariff scheme during the 

reference period. Also important to note is that within these 48 households, 123 

appliances were automated covering 43 washing machines, 43 dryers, 34 

dishwashers and 3 hot water boilers. 

4.3.2 Descriptive analysis 

 

Manual DR results 

A first difference between consumption during reference and field test period 

consists of the total consumption during both periods. While consumption during the 

reference period was 39515 kWh for the 16 households over the four-month period, 

consumption during the field test over the similar period the following year only was 

35937 kWh, aligning with a consumption drop of 9%. To investigate whether this 

drop does not originate from a couple of households only, the spread of the 

difference between the reference and field test consumption over the various 

households is visualized by means of a boxplot, each box representing 40% of 

housholds (Fig. 4.18). Positive values indicate a higher reference than field test 

consumption. Negative values indicate higher field test consumption. Overall, 

consumption during the reference period is higher than during the field test. The 

median difference between consumption during reference and field test periods 

amounts to 149 kWh over the four-month period.  

 

Fig. 4.18. Spread of the difference in household consumption between the four months of the 

reference and field test period. The upper and lower boxes represent 40% of the observations 

and the wickers represent the minimum and maximum consumption difference. 
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Energy conservation can originate from several factors. Within LINEAR consumers 

are stimulated to take an active role in adapting consumption in order to perform 

better compared to the reference period. Hereby, a comparison between 

consumption in reference and field test periods is sent to the consumers. 

Submetering of appliances helps to detect energy intensive appliances and act 

accordingly. Moreover, households receive a different renewable electricity price on a 

daily basis. This also keeps them actively involved to modify their consumption. 

These results align with the literature which states that feedback results in energy 

conservation [89]. Nevertheless, a second factor which could explain conservation is 

formed by climatologic circumstances as 2013 was colder than 2014. To check this, 

consumption of a control group over the same period was analyzed, consisting of 31 

household. The group was measured on a quarterly hour basis and faced no 

interaction with LINEAR or other projects.  Analysis shows that also within this 

control group, consumption drops with 6%. Therefore, it can be concluded that 

external factors outside control of LINEAR influence total consumption. Whether 

LINEAR triggered additional energy conservation remains subject to further research.  

This drop in consumption is also shown in Fig. 4.19 visualizing average LINEAR-

household consumption patterns during both reference and field test periods for 

week and weekend days. During week days consumption drops mainly occur during 

peak periods such as between 7h and 13h and between 20h and 24h. During 

shoulder periods consumption drops are less apparent. During weekends 

consumption again mainly drops during the late evening and in the morning from 

10h to 13h.  

Although energy conservation is quite apparent, distinction should be made between 

conservation on the one hand and consumption shifts or DR as discussed in this 

dissertation on the other. To obtain more insights in the latter, Fig. 4.20 visualizes 

the average daily consumption pattern relative to total daily consumption. In other 

words, each pattern sums up to one, making consumption shifts more clearly visible 

better illustrating the DR incentive. Nevertheless, note that this is an approximation. 

During the field test relative consumption decreases during the late evening period 

both during week and weekend days. It has two main reasons. The average price 

block from 20h to 24h is the highest over the day, incentivizing consumers to shift 

consumption away. Around 81% of consumers had a day-night tariff scheme during 

the reference period, implying a lower price starting from 21h or 22h. Therefore, 

reference consumption during this period is higher. From the reference to the field 

test, this consumption is shifted backwards to the early evening resulting in a 

consumption increase in the period 17h to 20h. Another rise in consumption 

following from the field test is found in the off-peak period from 13h to 17h. For both 

week and weekend days the increase is most profound at the start of the off-peak 

period. This suggests that households wait for their appliances to start until this 
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period begins. Finally, during the night period, no demand increase is observed. 

Therefore, it can be concluded that on average consumers do not shift consumption 

past midnight. 

 

 

Fig. 4.19. Impact of manual demand response based on renewable pricing on the average 

power pattern of households during week (top) and weekend days (bottom) expressed in kW, 

distinguishing between reference (dashed lines) and field test (dotted lines) consumption. 
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Fig. 4.20. Impact of manual demand response based on renewable pricing on the average 

power pattern of households during week (top) and weekend days (bottom) expressed as 

percentage of average daily consumption, distinguishing between reference (dashed lines) and 

field test (dotted lines) consumption. 
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To further distinguish between energy conservation and demand response, Fig. 4.21 

visualizes the difference-in-differences for relative average power within each time 

block. Therefore, the difference between relative average power during reference 

and field test periods for the control group is subtracted from the difference of 

relative average power for the LINEAR group. This partly ranges out the 

climatological factors in play for both the control and LINEAR group. Therefore, the 

impact of LINEAR is more properly visualized. Values close to zero imply that there is 

no substantial difference. The impact of LINEAR within these periods is limited. The 

further away from zero, the higher the LINEAR impact. During night and noon 

periods in week days the impact is limited compared to the morning and evening 

periods (Fig. 4.21). This implies that the shift of consumption from the late evening 

towards the early evening can be attributed to LINEAR as previously discussed. 

Moreover, LINEAR induces a larger average reduction in consumption during the 

morning. During weekends, the same pattern occurs although the impact during 

noon from 10h to 13h and during the night is bigger compared to weeks. 

 

 

Fig. 4.21. Difference in change of relative average power within each time block towards the 

field test period between the LINEAR and control group for week (top) and weekend (bottom) 

days. 
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Although previous figures help visualizing whether consumers react to electricity 

prices in general, less insight is provided in the amount of energy shifted, following 

from the averaging of patterns over all considered week or weekend days. In this 

perspective, Fig. 4.22 visualizes the average power pattern over all considered 

households during one random Thursday in March. Consistent with previous results, 

in general consumption during the field test drops. Moreover, the drop is clearest in 

the late evening from 20h till 24h. Hereby, power goes down by up to 750 W. 

Nevertheless, no clear patterns of demand shifting can be noticed during the rest of 

the day. This implies that control and predictability of demand shifts are limited 

under manual demand response as implemented within LINEAR.  

 

Fig. 4.22. Impact of manual demand response based on renewable pricing on the average 

power pattern of households during a random Thursday in March, distinguishing between 

reference (dashed lines) and field test (dotted lines) consumption. 
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Automated DR results 

Total consumption during the reference and field test period amounts to 42619 and 

42337 kWh respectively, implying an energy conservation of 0.7%. This consumption 

covers 48 households over the two-month period. Compared to manual DR the 

conservation effect is limited. This can be explained by the fact that less feedback is 

provided. Also the interaction with households is different compared to manual DR. 

The main action of households under automated DR is setting the shifting potential 

of their shiftable appliances, without considering prices or comparing current with 

reference consumption. Moreover, climatological circumstances between both 

reference and field test periods were not considerably different. Therefore, the 

impact on total consumption differences between reference and field test period is 

limited. 

Fig. 4.23 visualizes the impact of renewable pricing on the average consumption 

patterns for week and weekend days expressed in kW. For reasons of consistency 

with manual DR, the same patterns are repeated in Fig. 4.24 yet expressed as a 

percentage of the average daily consumption. Due to data availability, a control 

group could not be added for automated DR. 

At the starts of lower price periods small consumption peaks occur during the field 

test, as seen after midnight and after 13h during week days and after 13h and 20h 

during weekend days. Figures show practical evidence that in general consumption 

during lower price periods increases while consumption during high price periods 

decreases. Examples are a decrease in consumption during the morning period from 

7h till 13h and the evening from 17h till 24h. Increases in consumption are found 

during the night and afternoon. This is in contrast to results of manual DR where 

almost no shift towards the night was observed. Therefore it illustrates that 

automation helps shifting consumption deeper in the night. These results are 

consistent with results from simulated demand response discussed in Section 4.2. 
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Fig. 4.23. Impact of automated demand response based on renewable pricing on the average 

power pattern of households during week (top) and weekend days (bottom) expressed in kW, 

distinguishing between reference (dashed lines) and field test (dotted lines) consumption. 
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Fig. 4.24. Impact of automated demand response based on renewable pricing on the average 

power pattern of households during week (top) and weekend days (bottom), expressed as 

percentage of average daily consumption and distinguishing between reference (dashed lines) 

and field test (dotted lines) consumption. 
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Consistent with manual DR, visualizing demand shifts for one random day helps 

gaining insights in the amount of shifting. Therefore, Fig. 4.24 depicts the power 

profiles during a random Thursday in October for reference and field test period. 

Clear demand shifts over different price periods are noticed. This implies that 

automation adds more controllability and predictability of demand shifts compared to 

manual demand response. Next, average increases and decreases of 250 W can be 

noticed. This amount is in line with simulated DR with white appliances as described 

in Section 4.2. As previously mentioned, also the moment towards which demand is 

shifted aligns: the night and the late afternoon. In other words, practical results from 

the LINEAR field test partly confirm results from theoretical simulations.  

 

Fig. 4.24. Impact of automated demand response based on renewable pricing on the average 

power pattern of households during a random Thursday in October distinguishing between 

reference (dashed lines) and field test (dotted lines) consumption. 

4.3.3 Household savings 

Monetary savings obtained from residential DR within LINEAR are outlined. Again 

distinction is made between manual and automated DR. First, average annual 

household savings under manual and automated DR are discussed. Apart from the 

averages, the distribution of savings over all households is discussed.  

Table 4.3 depicts average household savings under manual and automated DR within 

LINEAR. Consequently, total household consumption is included covering both 

flexible and non-flexible consumption. Savings are calculated based on the difference 

between costs during the reference and the field test period. As only 4 and 2 months 
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Table 4.3 shows that annual household savings for manual DR amount to €135. This 

is a multitude of results from simulated demand response. Although these average 

savings are substantial, this result should be interpreted with care. These savings 

mainly result from energy conservation rather than from a demand shift. Only 16 

households were considered for manual DR. Apart from manual DR, the average 

result of automated DR closely approximates results from simulation. For the average 

household, savings amount to €14. 

 

Table 4.3. Impact of manual and automated demand response based on renewable pricing on 

average annual electricity savings within the LINEAR project. 

 Average annual household savings [€] 

Manual demand response 135 

Automated demand response 14 

 

Apart from average savings, individual household savings provide deeper insight into 

usefulness of DR. Therefore, Fig. 4.25 depicts a boxplot with the spread of cost 

savings resulting from manual and automated DR, each box representing 40% of 

housholds.  

This figure illustrates a large spread of cost savings for both manual and automated 

DR. For some households, even negative savings are observed. This implies a higher 

bill during the field test compared to the reference period. Although not visualized in 

the figure, this mainly results from an increase in consumption. Nevertheless, most 

households have positive savings even extending to around 700 and €400 for manual 

and automated DR respectively. At the median, households save 100 and €26 for 

manual and automated DR respectively. 

 

Fig. 4.25. Spread of cost savings due to manual and automated demand response based on 

renewable pricing with the upper and lower boxes representing 40% of the observations and 

the wickers representing the minimum and maximum savings. 

-400

-200

0

200

400

600

800

Manual demand
response

Automated
demand response

A
n
n
u
a
l 
h
o
u
se

h
o
ld

 s
a
v
in

g
s 

[E
U

R
] 

Upper box (40%)

Lower box (40%)



Demand response simulation and practical evidence 91 

4.4 Summary & Conclusions 

Residential demand response as a reaction to dynamic pricing is discussed. To attain 

a thorough understanding, both theoretical and practical set-ups are highlighted. 

Within the theoretical set-up residential demand response is simulated. The benefit 

of these simulations is that DR under different dynamic pricing schemes can be 

analyzed and that the impact of different load types such as WAs and BEVs can be 

assessed. Within the practical set-up, impact of DR is described based on the LINEAR 

field test. Hereby, two consumer interaction models are tested, automated and 

manual DR. While under manual DR households modify their consumption based on 

a REN tariff received in day-ahead, LINEAR steers consumption of shiftable and 

storable loads itself under automated DR. Note that the impact of DR on the 

underlying cost and price is not accounted for. This is subject for further research. 

Simulations of WAs show that RTP shifts consumption away from noon and late 

evening periods towards the afternoon and night respectively. On appliance 

consumption level, this leads to the rise of new peaks during the day. Nevertheless, 

considering total household consumption no new peaks are created as shifted 

consumption fills the valleys. Hereby, it should be noted that the impact on peaks in 

total household consumption is limited as the initial number of WAs in operation 

during peak periods is limited. 

While consumption of WAs is limited, consumption of BEVs is considerable. Adding 

them to the reference household consumption profile creates new peaks even if DR 

is not in use. This new peak arises just before midnight as most vehicles have 

returned home and started charging during this period. Applying DR based on RTP, 

this new peak is shifted towards the night. On average, this new peak is almost 

double of the reference consumption peak. Whether this peak increase leads to grid 

stability problems partly depends on the number of BEVs scheduled towards prices, 

on the underlying pricing scheme, and on the approach to optimize these BEVs. 

Assessing the impact of DR under different tariff schemes, simulations show that DR 

based on ToU pricing mainly affects evening peaks during weeks while noon peaks 

remain almost unaffected. Moreover, during weekends power profiles during 

weekends align between ToU and Flat pricing. Adding more dynamics to pricing 

schemes, also leads to more variation in consumption profiles, illustrated under REN 

and RTP simulations. REN peaks start earlier as prices are averaged over a longer 

period. The drawback is that consumption is not always shifted to the most 

advantageous period leading to new peaks during initial shoulder periods. 

Apart from the impact of different dynamic tariffs with different appliances on 

consumption patterns, also the amount of household savings is affected. More 

dynamics in a tariff scheme leads to higher savings. For instance, savings under RTP 

are 6 to 7 times higher than under ToU. Significant differences in the amount of 
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savings occur between WAs and BEVs. Hereby, savings with BEVs are a multitude of 

those with WAs. This mainly results from the amount of energy both consume. 

Although average annual savings for WAs amount to less than €20, the spread over 

different households shows that for some households savings are almost double. 

Practical results from the LINEAR field test partly confirm results from theoretical 

simulations. This is mainly true for automated DR. Also in this case a consumption 

shift from noon and evening to the afternoon and night is observed. Moreover, the 

amount of load shifted approximates the simulation results.  

While results for automated DR align with results from simulation, results from 

manual DR differ. Apart from DR also energy conservation is observed. While this 

conservation mainly follows from climatological circumstances, the impact of LINEAR 

could not be completely ruled out and is subject to further research. Provision of 

dynamic tariff schemes to households also leads to shifts in demand. Nevertheless, 

these shifts are less profound than with automated or simulated DR. The amount of 

shifting is more limited under manual DR and no shifting towards the night occurs. 

Automation overcomes these hurdles. 





 

 



 

5. Demand response quantification: price 

elasticities based on renewable pricing 

5.1 Introduction 

Several parameters exist to quantify the level of demand response following dynamic 

pricing schemes. DR can be measured as a peak demand reduction. Generally, this 

parameter gives the percentage drop in demand during peak periods. Although this 

gives an indication of the peak reduction potential, no information is given on the 

aggregated load modification and its sensitivity to electricity price levels. The second 

way of expressing DR is by means of the price elasticity of demand. Price elasticity 

represents the responsiveness of user demand to electricity price changes [89]. This 

measure provides a more exact quantification of DR, allowing to predict the demand 

level after implementing a dynamic pricing scheme.  

Section 5.2 describes the concept of price elasticities based on consumer demand 

theory. Moreover, different categories of price elasticities are listed and empirical 

evidence of price elasticities is discussed in a literature review. Section 5.3 describes 

the statistical model used to estimate price elasticities. Section 5.4 applies this model 

to simulated DR and practical evidence from the LINEAR-project as discussed in the 

previous chapter. Based on the obtained price elasticities, Section 5.5 predicts 

demand patterns following from dynamic prices and Section 5.6 concludes. 

5.2 Literature review 

5.2.1 Consumer demand theory 

Before an indication of DR following from dynamic electricity prices can be derived, 

an economic model of consumer demand is needed. Such a model allows studying 

consumer behavior and preferences and eventually leads to their mathematical 

quantification. In this perspective, a functional form is needed which relates several 

variables determining consumer behavior. This functional form should fulfill two 

conditions. The functional form should be consistent with restrictions on demand 

functions implied in economic theory. Moreover, it should allow sufficient flexibility in 

order not to restrict the estimated parameters.  

Economic theory assumes that an individual consumes goods in order to maximize 

utility subject to budget constraints [91]. Typically, the utility of an individual is a 

function of the consumed goods, also referred to as a direct utility function. 
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Optimization of the utility function while accounting for the budget constraint results 

in a demand function, expressing the quantity of demand of a good as a function of 

its price, prices of other goods, income, and additional factors of importance. Hereby, 

distinction is made between a Marshallian and Hicksian demand function referred to 

as an uncompensated and compensated demand function respectively [91]. In a 

Marshallian demand function income or budget is assumed to be constant across the 

demand curve, while in a Hicksian one utility is assumed constant. Translating this 

towards electricity demand as discussed in this thesis, Hicksian demand mainly 

assumes shifting of electricity demand from one period to another. Hereby, utility 

remains constant and comfort is unaffected. Apart from the substitution effect, 

Marshallian demand additionally assumes an income effect. This implies that next to 

shifting electricity also the total amount of electricity consumption changes due to a 

change in the total budget for electricity.   

Apart from using a direct utility function, demand functions can be derived from 

indirect utility and expenditure functions. Often, these functions are preferred in 

empirical work. While an indirect utility function expresses utility in function of prices 

and income, an expenditure function expresses expenditures in function of prices and 

income. 

5.2.2 Categories of price elasticities 

Based on the functional form and the demand function, consumer behavior is derived 

by estimating price elasticities. As previously discussed, this consumer behavior is 

also referred to as DR in case of dynamic electricity pricing. 

Several categories of price elasticities are distinguished in order to quantify DR. The 

three main categories are own, cross, and substitution price elasticities. The 

mathematical expressions are: 

own elasticity: 𝜀𝑖   =  [
𝜕𝑞𝑖

𝑞𝑖
] [

𝜕𝑝𝑖

𝑝𝑖
]⁄  , (5.1) 

cross elasticity: 𝜀𝑖,𝑗 =  [
𝜕𝑞𝑖

𝑞𝑖
] [

𝜕𝑝𝑗

𝑝𝑗
]⁄           𝑓𝑜𝑟 𝑖 ≠ 𝑗, (5.2) 

substitution elasticity: 𝜎𝑖,𝑗 =  
𝜕(𝑞𝑗 𝑞𝑖⁄ )/(𝑞𝑗 𝑞𝑖⁄ )

𝜕(𝑝𝑖 𝑝𝑗⁄ )/(𝑝𝑖 𝑝𝑗⁄ )
    𝑓𝑜𝑟 𝑖 ≠ 𝑗, (5.3) 

with: 

𝑞𝑖:  electricity demand in period i, 

𝑞𝑗:  electricity demand in period j, 

𝑝𝑖:  electricity price in period i, 

𝑝𝑗:  electricity price in period j.   
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Own price elasticity refers to the relative change in demand in response to a change 

in the electricity price in the same period. These elasticities are typically negative as 

a price increase incentivizes a decrease in demand. While own price elasticity 

captures the relative change in demand within the same period, cross price elasticity 

refers to the relative change in demand due to a change of the electricity price in 

another period. Hereby, electricity demand in different periods are considered as 

different products. Positive cross-elasticities reflect a demand increase when the 

price in another period goes up. Therefore, demand in these periods are substitutes. 

Negative elasticities also occur, implying that a price increase in one period will lead 

to a demand decrease in another. Therefore, demand in these periods are 

complements. Finally, substitution elasticity defines the change in relative demand of 

electricity between two periods in response to a change in the relative electricity 

price between them. Typically, substitution elasticities are negative implying a 

relative demand decrease over two periods when the price ratio over those two 

periods increases.  

5.2.3 Functional forms 

To determine price elasticities of electricity demand with dynamic pricing, several 

functional forms are used in the literature. In what follows different functional forms 

are listed and their main advantages and disadvantages are discussed in line with 

Table 5.1. Although most common functional forms are included, this list is not 

exclusive. To enhance readability, the mathematical specifications are not discussed 

in detail. Nevertheless, references are provided in which the specifications can be 

found. The specification for the functional form used in this dissertation is discussed 

in Section 5.3. 

 

Table 5.1. Overview of different functional forms used for determining the price elasticity of 

electricity demand. 

Functional form Consistency with 

demand theory? 

Flexible form? Price elasticities Sources 

Double logarithmic No No Own & Cross [92], [93] 

Constant elasticity of 

substitution  

Yes No Substitution [94], [95], [96], 

[97], [98], [99], 

[100], [101] 

Almost ideal demand 

system 

Yes Yes Own & Cross [102], [103], 

[104], [105], 

[106] 

Generalized Leontief Yes Yes Substitution [95], [107] 

Generalized McFadden Yes Yes Own & Cross [108], [109] 
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Double logarithmic 

The double logarithmic functional form expresses the logarithm of electricity demand 

as a linear combination of the logarithm of prices. Usually, household and time 

dummies are added in order to increase predictive power of the functional form.  

Its advantage is the ease of interpretation and estimation. Price elasticities can 

simply be derived from the coefficients of the price variables yielding own and cross 

price elasticities. Estimation can be performed by ordinary least squares. The main 

disadvantage of this functional form is that it leads to ad hoc estimates. This implies 

that own and cross price elasticities are assumed constant across several price levels. 

In other words, the resulting elasticities do not depend on the price levels itself and 

therefore usability during periods with different prices is limited. The double 

logarithmic functional form is not strictly consistent with economic theory as it cannot 

be derived from the process of utility maximization. Often estimation of this 

functional form leads to inconsistent and biased estimates due to problems of serial 

correlation. 

While Angevine and D. Hrytzak-Lieffers [92] apply the double logarithmic functional 

form for estimating price elasticities, the use of this functional form is often 

discouraged due to its disadvantages. Variants of the double logarithmic functional 

form are the single logarithmic and quadratic functional form. The former expresses 

the logarithm of demand as a function of prices and is applied in Horowitz [93]. The 

quadratic form expresses demand as a function of prices and the square of prices 

[98]. 

 

Constant elasticity of substitution 

The constant elasticity of substitution or CES functional form expresses the ratio 

between peak and off-peak electricity demand as a function of an intercept, the ratio 

between peak and off-peak prices and some additional variables. Typically, 

substitution elasticities are derived from this functional form as the variables refer to 

the ratios of demand and price. Hereby, a two-stage budgeting process of residential 

consumers is assumed to align with economic theory [110]. The budget is assigned 

between electricity and other products. Hereby, homothetic separability of utility 

functions is assumed. This implies that the input demand and elasticities can be 

derived from subfunctions alone, without knowledge related to other products [111]. 

The electricity budget is assigned over the different periods of the day. Demand 

during these periods is considered as different products.  

The first advantage is that it is consistent with economic theory as it is derived from 

the maximization of a utility function. The model and the resulting price elasticities 

can easily be estimated as the model is highly structured. The main disadvantage is 

that the functional form is not flexible. This implies that the substitution elasticity is 
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independent of the price levels itself. The functional form does not allow estimating 

cross elasticities which can capture the price effect in a given hour on quantity in 

another. Therefore, it cannot be determined whether demand in a given hour is a 

substitute or a complement. 

The CES functional form is frequently applied in the literature [94], [95], [96], [97], 

[98]. Often it is used when the applicable dynamic pricing scheme only distinguishes 

between peak and off-peak periods. An exception is [97], in which the functional 

form is applied to a real-time pricing pilot. Also variants of CES functional forms are 

often applied, the most common variant being the nested CES functional form [99], 

[100], [101]. In this functional form shifting demand between days is also considered 

next to shifting within days. 

 

Almost ideal demand system 

The almost ideal demand system (AIDS) expresses budget shares of electricity 

demand as a function of the logarithms of prices and the logarithm of real total daily 

expenditures [103], [112]. Typically, own and cross elasticities can be derived from 

this form. Similar to the CES functional form, AIDS assumes a two-stage budgeting 

process in which the total budget is first divided between electricity and other 

products and afterwards between the different electricity demand periods during the 

day. Moreover, homothetic separability is also assumed. 

The main advantage of the AIDS model is that it’s relatively simple to estimate while 

estimated price elasticities depend on the price level itself. The model provides a 

first-order flexible functional form in which the complementarity or substitutability of 

different demand periods can be addressed. Moreover, distinction can be made 

between Marshallian and Hicksian price elasticities. Finally, the flexible functional 

form is derived from economic demand theory of utility maximization while 

restrictions of homogeneity and symmetry are easily imposed. Nevertheless, other 

functional forms exists which are theoretically superior. 

For deriving the price elasticity of electricity demand, AIDS is applied in Filippini 

[102] and Matsukawa [104]. Moreover, several variants of AIDS exist: Linear 

Approximate AIDS (LA-AIDS) model, Generalized AIDS (GAI) model and Quadratic 

AIDS (QUAIDS) model. While the GAI model was applied to derive the price elasticity 

of electricity demand in Navigant [105] and Bigerna and Bollino [106], no examples 

were found for the LA-AIDS and QUAIDS model. 

 

Generalized Leontief 

The generalized Leontief (GL) functional form expresses utility as a function of the 

squared roots of demand. In turn, the derived demand function expresses the 
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logarithms of demand ratios as a function of the ratios of the square root of prices. 

Typically, from this demand function substitution elasticities are derived. Consistent 

with previous functional forms, a two-stage budgeting process and homothetic 

separability are assumed. 

The main advantage of this functional form is its consistency with economic demand 

theory. The form is also flexible as the elasticity of substitution can vary between 

different pairs of inputs as well as with different input prices. Finally, it is also suited 

for estimating small price elasticities. Its main disadvantage is that demand in all 

periods is assumed substitutable, neglecting complementarity. Moreover, estimation 

is complex. 

The generalized Leontief functional form is applied to demand under dynamic 

electricity pricing within Braithwait [95] and Boisvert et al. [107]. Within Braithwait 

[95], estimated results from the GL and CES functional form are compared. 

 

Generalized McFadden 

The generalized McFadden (GM) functional form uses a variable cost function to 

derive demand functions from which own and cross elasticities can be found [113]. 

The flexible functional form satisfies consumer demand theory. Consistent with 

previously discussed flexible forms, it assumes a two stage budgeting process. 

Its main advantage is that it is theoretically superior to other functional forms. The 

flexible functional form is second-order flexible while being able to capture small 

positive and negative elasticities. Its main disadvantage is that it is complex to 

estimate.  

For deriving the price elasticity of electricity demand, the GM functional form is 

applied for industrial demand in Taylor et al. [108] and Patrick and Wolak [109].  

5.2.4 Evidence of residential price elasticities 

Based on various residential pilot projects, several own, cross, and substitution 

elasticities are found in the literature (Table 5.2). The main part of these studies 

entail ToU or CPP tariff structures. RTP was only tested in the US, although a hybrid 

form of RTP and ToU was studied in the EdF Tempo tariff in France [114]. It can be 

seen that substitution elasticities range between -0.05 and -0.41, while own 

elasticities range between 0.00 and -2.42. Cross elasticities range from -0.12 to 1.42. 

Apart from residential elasticities, elasticities from larger consumers are also found in 

the literature. They typically include medium-to-large commercial, industrial, and 

governmental demand [92], [99], [108], [109]. For these consumers, own price 

elasticities following from RTP range between 0.00 and -0.27.  
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Table 5.2. Overview of substitution, own and cross price elasticities based on various residential 

pilot projects with distinct tariff schemes. Results based on the literature. 
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 Elasticity 

Subst. Own Cross 

Energy Australia  [115] AU 2006  ToU Not 

available 

 -0.30 to 

-0.38 

-0.04 to 

-0.12 

Swiss utilities [102] CH 1987-

1990 

 ToU AIDS  -1.29 to 

-2.42 

0.48 to 

1.42 

Midwest Power 

Systems of Iowa 

[116] 

 

US 1991- 

1992 

 ToU CES -0.12 to 

-0.17 

  

PG&E [117] US 1983-

1984 

 ToU CES -0.37   

Carolina Power 

and light 

[110] US 1970-

1980 

 ToU CES -0.05 to 

-0.25 

  

Connecticut 

Light & Power 

[118] US 2009 x ToU/

CPP 

CES -0.05 to 

-0.08  

  

GPU pilot [96] US 1997 x ToU/

CPP 

CES -0.06 to 

-0.41 

  

California 

Statewide 

Pricing Pilot 

[98] 

[119] 

[120] 

[121] 

[121] 

US 2003-

2004 

 ToU/

CPP 

CES -0.09 to 

-0.15 

 

  

BGE experiment [94] US 2008-

2009 

x CPP CES -0.10 to 

-0.23 

  

EdF Tempo 

Tariff 

[114]  1989-

1991 

 RTP/

ToU 

Variant 

on GL 

 -0.18 to 

-0.79 

 

ComEd RTP 

pilot 

[122] 

[123] 

US 2003-

2006 

 RTP Double 

Log 

 -0.04 to 

-0.08 

 

ComEd RTP 

pilot 

[93] US 2005  RTP Double 

Log 

 No sign. 

results 

  

 

Variation in elasticity estimates over different residential pilot projects, results from 

several factors. Underlying tariff structures differ. Although the general tariff design 

itself can be similar, the price levels and price blocks differ leading to different 

estimates. Residential demand differs as a result of different geographic conditions or 

climate zones. This leads to different degrees of air conditioning or heat pump 

ownership affecting demand and therefore demand response. Some pilot projects 

offer enabling technology. Examples are in-home displays, energy orbs, air 

conditioning switches or smart thermostats. Typically, they lead to a higher demand 
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response incentive and therefore a higher elasticity. Finally, elasticity estimates 

resulting from the application of different functional forms can lead to different 

results. This follows from the fact that all functional forms are approximations of an 

underlying, but unknown functional form.  

Several aspects are still missing in the estimation of elasticities resulting from pilot 

studies. Evidence from residential pilots with RTP is still missing. Hourly day-ahead 

RTP was only tested in the ComEd pilot, while the EdF pilot included some hybrid 

form of RTP and ToU. Moreover, the role of automation is untested in most pilots. 

The focus is on demand response with no automation or on switching of air 

conditioning, while automation of wet appliances or new loads such as electric 

vehicles is not investigated yet.  

5.3 Almost ideal demand system 

A more in-depth discussion of the selected functional form in this thesis is provided, 

being the almost ideal demand system (AIDS). This functional form is selected 

because of its advantages such as flexibility, relative easiness of estimation, and 

alignment with consumer demand theory. In what follows, the AIDS model is 

expressed mathematically together with its applicable restrictions. The mathematical 

description of price elasticities derived from AIDS is provided. Finally, the estimation 

method used for solving the AIDS model and deriving its price elasticities is given. 

As previously discussed, the almost ideal demand system expresses daily budget 

shares of electricity demand as a function of the logarithms of prices and real total 

expenditures [112]. The mathematical expression is: 

𝑤𝑖 =  𝛼𝑖 + ∑ 𝛾𝑖𝑗 log 𝑝𝑗 + 𝛽𝑖 log
𝑥

𝑃
 

𝑗

 (5.1) 

with: 

𝑤𝑖: budget share from electricity demand in period i [%], 

𝑝𝑗: electricity price in period j [€/MWh], 

𝑥:  total daily expenditure [€], 

P:  price index, 

𝛼𝑖, 𝛾𝑖𝑗 and 𝛽𝑖:  parameters to be estimated. 

This demand system can be estimated for every period within the day. 

The budget share 𝑤𝑖 is obtained by multiplying prices and demand in each period i 

and dividing it by the total daily budget. The price index P is defined by: 

log 𝑃 = 𝛼0 + ∑ 𝛼𝑘 log 𝑝𝑘  𝑘 + 
1

2
∑ ∑ 𝛾𝑘𝑗 log 𝑝𝑘 log 𝑝𝑗𝑘𝑗  (5.2) 
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To align with consumer demand theory, several restrictions on the parameters are 

imposed, namely adding up, homogeneity of degree zero in prices and daily 

expenditures, and Slutsky symmetry [112]. Adding up implies that total expenditure 

shares should sum to one. Homogeneity of degree zero in prices and daily 

expenditures implies that a proportional change in these variables does not affect 

budget shares. Slutsky symmetry implies that the substitution effect of an increase in 

electricity price in period j on the budget share in period i is equal to the substitution 

effect of an increase in electricity price in period i on the budget share in period j. 

The restrictions are imposed as follows: 

Adding up:       ∑ 𝛼𝑖 = 1𝑛
𝑖=1  ,  ∑ 𝛽𝑖 = 0𝑛

𝑖=1  , and ∑ 𝛾𝑖𝑗 = 0𝑛
𝑖=1  ∀ 𝑗 (5.3) 

Homogeneity:   ∑ 𝛾𝑖𝑗𝑗 = 0  ∀ 𝑖  (5.4) 

Symmetry:       𝛾𝑖𝑗 = 𝛾𝑗𝑖 (5.5) 

A full derivation of the AIDS model is provided in Deaton and Muellbauer [111].  

Once the parameters of the AIDS model are estimated, Marshallian and Hicksian 

price elasticities are determined according to: 

Marshallian:  𝜂𝑖𝑗 = −𝛿𝑖𝑗 +  
𝛾𝑖𝑗

𝑤𝑖
 −  

𝛽𝑖𝛼𝑗

𝑤𝑖
 −

𝛽𝑖

𝑤𝑖

∑ 𝛾𝑘𝑗 log 𝑃𝑘𝑘   (5.6) 

Hicksian:      𝜂𝑖𝑗
∗ =  𝜂𝑖𝑗 + 𝑤𝑗(1 +  

𝛽𝑖

𝑤𝑖
) (5.7) 

with: 

𝜂𝑖𝑗:  Marshallian price elasticity of electricity demand, 

𝜂𝑖𝑗
∗ : Hicksian price elasticity of electricity demand, 

𝛿𝑖𝑗: Kronecker delta (𝛿𝑖𝑗 = 1 for 𝑖 = 𝑗, 𝛿𝑖𝑗 = 1 for 𝑖 ≠ 𝑗). 

Elasticities depend on the budget shares  𝑤  illustrating that the applied functional 

form is flexible.  

To estimate the proposed demand system, a statistical software package called 

STATA 12 is used in what follows [124]. This package provides commands such as 

QUAIDS to estimate the almost ideal demand system. Additional information is given 

in [125] and [126].  
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5.4 Price elasticities for simulated demand response 

and within LINEAR 

This section builds further on the descriptive analysis of demand response discussed 

in Chapter 4 and quantifies demand response by means of price elasticities. Again 

distinction is made between simulated demand response with WAs and BEVs on the 

one hand and practical evidence from LINEAR with manual and automated DR on the 

other.  

The notion behind price elasticity differs between the simulated and LINEAR cases. 

This follows from the underlying assumptions of demand behavior (Table 5.3). For 

the simulated cases, optimal elasticities based on renewable pricing (REN) are 

obtained. This naming is chosen as these elasticities follow from optimized demand 

profiles. Hereby demand is always shifted to the lowest price period independent of 

price differences between periods. Therefore, these elasticities align with a best case 

scenario as households are extremely price sensitive within the boundaries of their 

comfort zone. Note that as a consequence, price elasticities also depend on the 

pricing scheme itself as the same demand shifting applies whether relative price 

differences are small or large. Therefore, ‘based on renewable pricing’ is explicitly 

added to the naming of the optimal elasticities. While elasticities following from 

simulation serve as benchmarks, price elasticities under the LINEAR cases are based 

on real behavior of households. In the manual DR case, households receive 

renewable pricing schemes and can react accordingly. This reaction can take the 

form of shifting demand, but also of a conservation or growth in demand. 

Remuneration is based on the pricing scheme itself. Elasticities derived from manual 

DR align with price elasticities as defined within economic theory as they represent 

the genuine response of households towards price changes. In the automated DR 

case, households set a shifting potential for their appliances based on which they 

receive a bonus. During this shifting potential, the appliance is automatically cycled 

by LINEAR. While these households do not see the renewable pricing scheme, their 

consumption is shifted based on it. Therefore, elasticities in this case are useful to 

estimate the relationship between prices and demand, yet do not align with 

elasticities as defined in economic theory. Consequently, these elasticities are 

referred to as automated elasticities based on renewable pricing. Although the 

reasoning behind elasticities from this case aligns with optimal elasticities from the 

simulated cases, automated elasticities follow from practice. Therefore, also other 

demand behavior apart from shifting can occur. 
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Table 5.3. Underlying characteristics of simulated and practical demand response cases and its 

resulting elasticities and interpretation. 

Cases 
Customer 

involvement 
Demand behavior Remuneration Elasticities 

Simulation WAs None, optimization 

starting from 

historic profiles 

Shifting Based on DP Optimal price 

elasticities based 

on REN 

BEVs None, optimization 

starting from 

historic profiles 

Shifting Based on DP Optimal price 

elasticities based 

on REN 

LINEAR Manual DR Reaction to DP Shifting, 

conservation, 

growth, etc. 

Based on DP Price elasticities as 

defined within 

economic theory 

Automated DR Set shifting 

potential 

Mainly shifting, yet 

also other types of 

behavior possible 

Based on 

shifting 

potential 

Automated price 

elasticities based 

on REN 

 

Based on the almost ideal demand system, elasticities are estimated for the four 

cases. As the focus is on demand shifting within the comfort settings of the 

household rather than other demand behavior, demand is assumed to be Hicksian. 

This shifting behavior is especially valid in the simulated cases and in the automated 

DR case. Based on LINEAR inquiries, the main DR behavior for manual DR is also 

shifting. So Hicksian elasticities are derived approximating this substitution effect.  

This model is run twice for every case, once for week days and once for weekend 

days. In each model run, all available week or weekend days are included. This 

distinction between week and weekend is made because of differences between 

demand patterns. Therefore, price elasticities are also expected to be different. 

Nevertheless, no substitution between week and weekend days is considered. This 

forms a limitation of the current model. Next, a day within the model is considered to 

cover the period from hour 8 until hour 7 the next calendar day instead of the usual 

calendar day from hour 1 until hour 24. The reasoning behind this is that demand 

shifts towards the night period are mainly based on comparison of night prices with 

previous prices rather than with following prices. Moreover, flexibility of appliances 

available during the evening spans two calendar days as it often runs into the night. 

Therefore, the night block is linked to price blocks of the previous calendar day 

rather than the following ones.  

The datasets used for calculating price elasticities cover both a non-treatment and 

treatment period. Distinction between both periods allows accounting for the effect 

on the demand pattern from going from traditional towards renewable pricing. The 

non-treatment period aligns with the unscheduled and reference period for the 

simulated and LINEAR cases respectively. The treatment period aligns with the 

scheduled and field test period for the simulated and LINEAR cases respectively.  
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Elasticity matrices following from the different cases are discussed. Before assessing 

the resulting elasticity matrices for each case, an example is provided in Fig. 5.1 in 

order to understand their structure. The matrix depicts the influence of all price 

blocks within the renewable pricing scheme, on demand in all periods during the day. 

Hereby, rows represent demand blocks, columns price blocks. The first period 

considered within the matrix is the block from hour 8 until hour 10 as this is the first 

period within the AIDS model. Every cell of the matrix contains an elasticity which 

describes the effect of price in a certain period on demand in another or the same 

period for cross and own price elasticities respectively. Own price elasticities lay on 

the diagonal, while cross elasticities are found alongside the diagonal.  

 

    Price 

  Period Hour 8-10 Hour 11-13 Hour 14-17 Hour 18-20 Hour 21-24 Hour 1-7 

D
e
m

a
n
d
 

Hour 8-10 
            

Hour 11-13             

Hour 14-17             

Hour 18-20             

Hour 21-24             

Hour 1-7             

Fig. 5.1. Example of price elasticity matrix, distinguishing between different time periods 

resulting in own and cross price elasticities. 

5.4.1 Wet appliances 

In line with Chapter 4, optimal price elasticities following from demand shifting with 

wet appliances are based on simulated shifting of WAs within 30 households covering 

a period from January till March. Hereby, simulation starts from realistic demand 

measurements.  

As price elasticities determined by the almost ideal demand system are flexible, price 

elasticities vary from day to day. Fig. 5.2.A provides optimal elasticities for one 

random Thursday in February. Based on the estimated parameters from the model 

run for all weekdays and the characteristics of the random Thursday, price elasticties 

are obtained. This day partly aligns with the day visualized in Section 4.2.1, yet also 

covers the hours of the first price block of the next calendar day. Also note that 

these elasticities do not align with economic theory as previously discussed. These 

elasticities merely serve as a benchmark of what optimally could be attained under 

REN pricing. To illustrate this point, optimal elasticities based on other pricing 

schemes are provided in Appendix A.   

Cross price elasticities 

 

Cross price elasticities 
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A. WAs Price 

  Period Hour 8-10 Hour 11-13 Hour 14-17 Hour 18-20 Hour 21-24 Hour 1-7 

D
e
m

a
n
d
 

Hour 8-10 -0.195** -0.037 0.182** 0.132* -0.179** 0.098** 

Hour 11-13 -0.041 -0.311* 0.493*** -0.137 0.122 -0.125** 

Hour 14-17 0.167** 0.410*** -0.606*** -0.020 0.308*** -0.258*** 

Hour 18-20 0.106* -0.100 -0.018 -0.270*** 0.109 0.173*** 

Hour 21-24 -0.121** 0.075 0.227*** 0.092 -0.423*** 0.151*** 

Hour 1-7 0.089** -0.102** -0.254*** 0.193*** 0.202*** -0.128** 

        B. BEVs Price 

  Period Hour 8-10 Hour 11-13 Hour 14-17 Hour 18-20 Hour 21-24 Hour 1-7 

D
e
m

a
n
d
 

Hour 8-10 -0.662*** 0.148*** -0.096*** 0.095*** 0.502*** 0.013 

Hour 11-13 0.242*** -0.652*** -0.037 0.143*** 0.382*** -0.078*** 

Hour 14-17 -0.234*** -0.056 -0.459*** -0.304*** 1.362*** -0.309*** 

Hour 18-20 0.120*** 0.112*** -0.158*** 0.045 -0.737*** 0.617*** 

Hour 21-24 0.387*** 0.180*** 0.430*** -0.446*** -1.763*** 1.212*** 

Hour 1-7 0.020 -0.070*** -0.184*** 0.708*** 2.294*** -2.768*** 

        C. Manual DR Price 

  Period Hour 8-10 Hour 11-13 Hour 14-17 Hour 18-20 Hour 21-24 Hour 1-7 

D
e
m

a
n
d
 

Hour 8-10 -0.133** 0.067 -0.094* -0.005 0.077 0.087** 

Hour 11-13 0.075 -0.556*** -0.021 -0.086 0.475*** 0.112** 

Hour 14-17 -0.092* -0.018 0.184** 0.057 -0.071 -0.060 

Hour 18-20 -0.003 -0.057 0.043 -0.023 -0.027 0.068** 

Hour 21-24 0.040 0.219*** -0.037 -0.019 -0.177*** -0.027 

Hour 1-7 0.071** 0.082** -0.049 0.074** -0.042 -0.135*** 

        D. Automated DR Price 

  Period Hour 8-10 Hour 11-13 Hour 14-17 Hour 18-20 Hour 21-24 Hour 1-7 

D
e
m

a
n
d
 

Hour 8-10 0.190** -0.175*** -0.183*** -0.251*** 0.301*** 0.119** 

Hour 11-13 -0.196*** -0.154 0.081 -0.035 0.135 0.169*** 

Hour 14-17 -0.180*** 0.071 -0.123 0.074 0.222*** -0.064 

Hour 18-20 -0.187*** -0.023 0.056 0.471*** -0.408*** 0.091** 

Hour 21-24 0.156*** 0.062 0.117*** -0.283*** -0.087* 0.035 

Hour 1-7 0.097** 0.123*** -0.053 0.100** 0.055 -0.323*** 

        
   

Legend:   Significant negative price elasticity 

   
    Significant positive price elasticity 

   
Note:  *** p<0.01, ** p<0.05,  * p<0.1   

 

Fig. 5.2. Optimal price elasticities, automated price elasticities, and price elasticities as defined 

within economic theory based on REN pricing for one random Thursday based on simulation 

with WAs (A) and BEVs (B) and on practical experience from manual (C) and automated (D) DR 

within LINEAR, stating the significance level of each price elasticity.  
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The elasticity matrix shows that the own optimal price elasticities based on 

renewable pricing along the diagonal are all significant: the price during a price block 

has a significant impact on demand during the same period. Moreover, all own price 

elasticities are negative. This implies a demand decrease when prices go up. 

Nevertheless, own price elasticities vary over the time of the day. Also note that the 

significance level of elasticities is shown by the number of asterisks. One asterisk 

aligns with a p-value of less than 0.1 implying that results are significantly different 

from zero. More asterisks increase significance. Cross elasticities are visualized 

alongside the diagonal. Although the main part of cross elasticities is significant, 

demand during some periods is not affected by prices in others. Most significant 

cross elasticities are positive. This implies that demand within one period rises when 

price in another period goes up. Demands during those periods are considered as 

substitutes. Also some negative cross elasticities are found. This is the case for 

demand in the period from hour 1 till hour 7 which is complementary with hours 11 

to 13 and 14 to 17. The sign of significant values are symmetric within the matrix 

although values differ. Therefore complementarity and substitutability between 

specific periods matches, yet the impact of prices differs in quantity. 

The lowest negative own price elasticities are found in hours 14 to 17 and hours 21 

to 24 with a value of -0.606 and -0.423 respectively. This implies that when prices 

rise by 10% in one of these periods, demand decrease with 6.1% and 4.2% 

respectively. The highest cross price elasticity is found between the price in hours 14 

to 17 and demand in hours 11 to 13 with a value of 0.493. Therefore, if the price in 

hours 14 to 17 rises by 10%, demand in the previous period goes up with 4.9%. 

These effects align with results from the descriptive analysis of Chapter 4, yet price 

elasticities allow proper quantification.  

 

5.4.2 BEVs 

In line with Chapter 4, optimal price elasticities based on renewable pricing following 

from demand shifting with BEVs are based on simulated shifting of the vehicles of 

100 households covering a full year. Hereby, simulation starts from realistic driving 

patterns while distinguishing between different types of vehicles. 

Fig. 5.2.B visualizes an example of the optimal price elasticity matrix based on REN 

pricing for one particular Thursday in October in line with Section 4.2.2. The elasticity 

matrix shows that 5 out of 6 own elasticities along the diagonal are significant. Only 

for hours 18 till 20, the price does not have a significant effect on demand within the 

same period. Significant own price elasticities are negative illustrating a demand 

decrease when prices go up. Most cross elasticities alongside the diagonal are 

significant, implying that a price change in one period also influences demand in 

other blocks. In most cases, these cross elasticities are positive implying 
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substitutability between products. In line with the elasticity matrix following from 

shifting WAs, signs of significant elasticities within the elasticity are symmetric yet 

values differ. Also note that these elasticities do not align with economic theory, as 

previously discussed. These elasticities merely serve as a benchmark of what 

optimally could be attained under REN pricing. A more accurate quantification of 

demand response is subject to further research. 

The highest absolute own and cross price elasticities is present in hours 21 to 24 and 

1 to 7. Hereby, own price elasticities amount -1.763 and -2.768 respectively, while 

cross price elasticity between price in hours 21 to 24 and demand in hours 1 to 7 

amounts to 2.294. This illustrates that demand in the night period is highly sensitive 

to prices in the late evening. The level of those elasticities can be explained by the 

high level of electricity demand of BEVs compared to WAs. Moreover, optimal 

elasticities are listed representing a best case scenario. 

5.4.3 Manual DR 

Apart from optimal price elasticity matrices based on renewable pricing following 

from simulated DR with WAs and BEVs, practical evidence from the LINEAR project 

allows deriving genuine price elasticities based on consumer interaction. The first 

interaction model tested within LINEAR is manual DR. To derive the price elasticity 

matrix, the same data are used as in Section 4.3 covering 16 households measured 

during both a reference and field test period from March till the end of June. As 

noted in the previous chapter, total household demand decreased significantly 

towards the field test.  Therefore, also a control group covering 31 households is 

added to establish a true cause-and-effect relationship between prices and demand 

by controlling for parameters which changed from the non-treatment towards the 

treatment period. As previously discussed, climatological circumstances played a 

substantial role in case of manual DR.  

Fig. 5.2.C visualizes an example of an elasticity matrix for a random Thursday in 

March. This day is in line with the day chosen in Section 4.3.2. The number of 

significant values within the matrix is considerably less than with previous optimal 

results from simulation. This illustrates that manual DR cannot reach the level of 

response compared to benchmark results and therefore the impact of price on 

demand is more limited. Along the diagonal five significant own price elasticities are 

present. Four of them are negative while the elasticity in hours 14 to 17 is positive. 

This implies an increase in demand when prices increase.  

The highest negative own price elasticity is -0.556 and occurs in hours 11 to 13. The 

highest cross price elasticity is found in the hours 21 to 24. Hereby, a price increase 

in these hours, increases demand in the hours 11 to 13, reflecting substitutability. 
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5.4.4 Automated DR 

Finally, also automated DR is tested within the LINEAR project leading the automated 

price elasticity matrix based on renewable pricing. To this end, the same data are 

used as in Section 4.3 covering 47 households measured during both a reference and 

field test period from mid-September till mid-November. 

Fig. 5.2.D visualizes an example of an elasticity matrix for a random Thursday in 

October. More elasticities are significant compared to manual DR. Therefore, 

automation leads to additional DR. Nevertheless, the number of significant values is 

still smaller than in the simulated cases. This follows from the fact that in the 

simulated cases flexibility is given for each household and every time an appliance is 

set. Response from households within LINEAR varies to a larger extent between 

households and appliance types, as measurement results and inquiries filled in by 

participants pointed out. Nevertheless, commercial implementation of automated DR 

can approximate optimal results more closely as the focus of LINEAR was on a 

technical breakthrough of DR. Four own price elasticities are significant along the 

diagonal of which two are negative. These negative price elasticities occur during 

hours 21 to 24 and 1 to 7. As described in the previous chapter, demand typically 

goes up when prices are low in these periods. The negative own price elasticities 

confirm this. Several positive and negative cross price elasticities occur alongside the 

diagonal. Therefore, both substitutability and complementarity are present. Also note 

that these are automated elasticities under REN pricing and therefore do not align 

with economic theory, as previously discussed. A more accurate quantification of 

demand response is subject to further research. 

The lowest negative own price elasticity occurs in hours 1 to 7 with a value of -

0.323. The highest positive cross price elasticity is found for prices in hours 21 to 24 

and demand in hours 8 to 10, with a value of 0.301. Hereby, a price rise of 10% in 

hours 21 to 24 increases demand with over 3% in hours 8 to 10.  

5.5 Prediction of demand patterns based on 

renewable pricing 

Although quantification of demand response by means of optimal and automated 

price elasticities and price elasticity consistent with economic theory helps gaining 

insight in general DR behavior, these price elasticities also help predicting aggregate 

demand patterns in case dynamic pricing schemes are sent to households. This is 

useful for system operators, generators and retailers in order to know the impact of 

dynamic price profiles.  

Predictions on the daily demand patterns are made based on the above obtained 

elasticities. A predicted demand pattern results from the difference between 
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reference and field test prices, the reference demand, and price elasticities. Similarly 

to previous sections, the same days for each of these cases are analyzed. 

Fig. 5.3 shows how closely predicted average demand approximates average demand 

under renewable pricing. Again distinction is made between simulated DR with WAs 

and BEVs on the one hand and manual and automated DR within LINEAR on the 

other. For simulated DR, distinction is made between unscheduled, scheduled, and 

predicted demand. For DR within LINEAR, distinction is made between demand 

during the reference and field test period and predicted demand. The day 

represented in the figure does not align with a calendar day, but rather with the day 

used within the AIDS model. Therefore, the graphs start at 7h00. 

Predicted demand approximates demand after WA scheduling quite closely (Fig. 

5.3.A). Nevertheless, a perfect approximation is not obtained as not all parameters 

are accounted for within the AIDS model. For example, no distinction is made 

between elasticities during different days of the week or during different months.  

Fig. 5.3.B visualizes demand predictions based on optimal elasticities following from 

simulations with BEVs. As expected due to the high number of significant optimal 

elasticities, predicted demand again approximates scheduled demand quite closely. 

For closer approximations, again finer granularity has to be added to the model. 

Fig. 5.3.C visualizes predictions for manual DR within LINEAR. Predicted demand 

does not approximate field test demand. This could be expected as prediction builds 

further on the reference measurements. Therefore, differences between pre- and 

post-treatment outside the control of LINEAR are not accounted for: prediction by 

means of elasticities should start from a classical prediction model which includes 

parameters such as time, season, weather, etc. Hereby, price elasticities can be 

included in the prediction model. This mainly results from the limited number of 

significant price elasticities, implying a limited effect of prices. Nevertheless, this is 

out of scope in this dissertation.  

Fig. 5.3.D visualizes predictions for automated DR within LINEAR. Although better 

compared to the manual DR case, predictions still fail to approximate the field test 

demand pattern closely. This follows from the same main reason as for the manual 

case.  
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A. 

B.  

C.  

D.       

   
Fig. 5.3. Predicted demand based on elasticities following from simulation with WAs (A) and 

BEVs (B) and from manual (C) and automated (D) DR results within LINEAR, distinguishing 

between reference demand (dotted), field test demand (dashed) and predicted demand (solid). 
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5.6 Summary & Conclusions 

This chapter provides a quantification of demand response by means of price 

elasticities. Price elasticities capture the responsiveness of user demand to electricity 

price changes. Several categories of price elasticities exist covering own, cross, and 

substitution price elasticities.  

To derive elasticity estimates several functional forms can be used to approximate 

the true underlying preferences of households. These functional forms relate several 

variables determining consumer behavior. Often these functional forms are derived 

from consumer demand theory and align with restrictions on demand functions. This 

is the case for the constant elasticity of substitution model, the almost ideal demand 

system, the generalized Leontief model, and the generalized McFadden model. Some 

functional forms also provide flexibility in order not to restrict the estimated 

parameters. Examples of the latter are the almost ideal demand system, the 

generalized Leontief and the generalized McFadden model.  

In a literature review, practical evidence of price elasticities in various residential pilot 

projects is highlighted. Nevertheless, no consistency is found in the elasticity 

estimates. This is due to differences in geographic conditions, implementation 

designs, but also to the choice of the functional form. Moreover, the literature review 

shows that price elasticities following from more dynamic pricing schemes such as 

RTP and REN are still lacking. Additionally, the impact of automation and the 

introduction of new loads such as BEVs is not investigated thoroughly. 

To overcome the above literature gaps, this chapter estimates price elasticities for 

four different cases. Two cases cover simulated demand response based on WA and 

BEV scheduling under REN pricing. The other two cases cover practical evidence 

from manual and automated DR within LINEAR again under REN pricing. For each 

case, elasticity matrices are derived by means of the almost ideal demand system. 

This system is chosen as it provides a relatively simple estimation while preserving 

flexibility of the elasticities and consistency with economic theory.  

Results show that most elasticities within the elasticity matrix are significant in the 

simulation cases. These elasticities are optimal based on renewable pricing and 

represent a best case scenario. Therefore, these do not align with economic theory, 

yet they provide a quantification of demand response. Note however, that more 

accurate ways to quantify demand response are subject to further research. The high 

number of significant values follows from the fact that households are assumed to be 

extremely price sensitive within the boundaries of their comfort zone. Especially in 

the BEV simulation optimal elasticities are significant due to the high level of 

electricity demand by BEVs. The high sensitivity of BEV demand towards pricing can 

also be seen in the level of optimal elasticity coefficients as these are a multitude of 

optimal elasticities with WA scheduling. Compared to the simulated cases, practical 
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evidence from LINEAR leads to less clear results, although significant elasticities are 

also found. This follows from the fact that not all households actively participated in 

LINEAR. Nevertheless, it is clearly shown that automation leads to more significant 

levels of demand response. 

Apart from using price elasticities to gain insights in DR behavior, this chapter also 

uses price elasticity matrices to predict aggregated demand profiles. This is useful for 

system operators, generators, and retailers in order to know the impact of dynamic 

pricing. Predicted demand approximates scheduled demand quite closely for the 

simulated cases. Therefore, it can be concluded that the AIDS model provides a 

thorough demand response quantification. Demand predictions based on elasticities 

following from LINEAR didn’t approximate field test demand closely. Nevertheless, 

this is logical as the prediction starts from demand during the reference period. 

Therefore, other circumstances not related to price and changing towards the field 

test are not accounted for within the LINEAR cases. Therefore, the true value of 

prediction based on price elasticities can only be assessed when it is included in a 

classical prediction model which also accounts for additional variables. Yet this is 

outside the scope of this dissertation.  



 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART IV 

Power system benefits of 

residential demand response 
  



 



 

 

6. Impact of residential demand response on 

power system operation 

6.1 Introduction 

Power system operation around the world is facing challenges due to the integration 

of renewable energy resources (RES) and the electrification of energy services. To 

safeguard the demand-supply balance and to cover increased peak demand, demand 

response (DR) can be addressed.  

The use of DR in systems with a high integration of renewables is investigated in 

literature. In Dietrich et al. [127], power system operation with high wind 

penetration is modeled by means of unit commitment modeling. This allows including 

the effect of wind variability. Results show that DR can level out variations in wind 

power, leading to cost and emission reductions. These reductions are accomplished 

by load shifting and peak reduction [16]. In De Jonghe et al. [128], it is shown by 

means of unit commitment modeling that DR brings a reduction in wind power 

curtailment. Also in Sioshansi and Short [129], the impact of DR programs in a high 

wind penetration scenario is tested. A day-ahead unit commitment model is 

combined with a real-time dispatch model. Next to the variability, this allows to 

account for the wind prediction error. Results show that less wind power is curtailed 

due to DR. In Moura and Almeida [130], the role of residential, commercial, and 

industrial demand side management for integrating wind power in the system is 

assessed. Results show that peak reduction mitigates operational problems caused 

by the variability of wind power generation.  

The impact of the electrification by means of battery electric vehicles (BEVs) is 

investigated in the literature. In Wang et al. [131], the impact of plug-in hybrid 

electric vehicles on power system operation is investigated using a detailed unit 

commitment model. It is shown that total operating costs can be reduced up to 13%. 

In Bañez et al. [132], different possible charging strategies are tested in a unit 

commitment and daily economic dispatch model. The latter allows accounting for the 

prediction errors associated with power generation from RES. Finally, in Madzharov 

et al. [133], a detailed unit commitment model is used to determine the effect of 

different electric vehicle penetration levels on the total operating costs. Results show 

that for every 10% of additional electric vehicle penetration, total generation costs 

increase by approximately 1%. 
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A further refinement of the inclusion of DR in system operation modeling is needed. 

At the generation side, technical characteristics of generation plants such as ramping 

rates, minimum output, and minimum up and down time are neglected in Wang et 

al. [131]. In Dietrich et al. [127] and De Jonghe et al. [128], a day-ahead unit-

commitment model is performed, ignoring real-time operation. Therefore, prediction 

errors associated with power generation from RES are not considered. At the 

demand side, shiftable demand is often determined as a percentage of peak demand 

without accounting for the underlying consumption patterns of specific appliances 

[128], [131]. A more detailed approach is needed to reach a realistic quantification of 

operational benefits. The same applies for BEVs as realistic driving patterns and BEV 

characteristics contribute to a more realistic outcome. Next to including realistic 

demand and supply characteristics, the analysis needs to be performed on a broad 

period of data. Otherwise, the implications of single events are overestimated. 

This chapter assesses the impact of an introduction of DR on system operation, 

focusing on plant operation, system reliability, emissions, and costs. A detailed 

modeling approach of both supply and demand side is taken, allowing to obtain a 

realistic quantification of DR benefits and to assess the potential of introducing 

demand response. The approach is applied on a full year of data. The focus is on 

residential DR, including scheduling of wet appliances (WAs) and BEVs. Wet 

appliances include washing machines, dishwashers and dryers. BEVs only include 

residential light-duty vehicles. Electric heating is not considered as this requires the 

integration of weather conditions [134]. Note that the program to address the 

demand side is not discussed in this chapter as this is a potential study. Therefore, 

the demand response programs can be both price-based and incentive-based in line 

with Chapter 1. 

Section 6.2 clarifies the operational model used to optimize system operation with 

DR. Section 6.3 elaborates on the data and assumptions for demand, DR, and 

generation. Results are highlighted in Section 6.4 and Section 6.5 concludes. 

6.2 Model 

The impact of DR with WAs and BEVs on system operation is evaluated with the 

reliability and operation model for renewable energy sources (ROM-model). This 

model approximates real-life power system operation by combining two sequential 

stages: an optimization stage in day-ahead and an hourly simulation stage updating 

the economic dispatch in real-time. Each stage is documented below (Fig. 6.1). The 

model is solved in GAMS 24.0.1 using CPLEX 12.2 as a mixed integer problem solver.  
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Day-ahead optimization stage

Hourly simulation stage in real-time

Input data:
- Demand profile & reserve requirements
- Technical constraints of power plants
- Predicted power generation profile from RES
- Power generation profile from biomass plants, and CHPs
- WG demand profiles
- BEV usage profiles, connection profiles, technical characteristics

Optimal output of thermal and hydro plants
Optimal demand pattern of WGs or BEVs

Deterministic unit commitment and economic dispatch model (cost minimization)

Events:
- Forecast errors of power generation from RES based on day-ahead prediction error
- Forced outages on thermal units based on forced outage rates

Corrective actions to meet demand-supply balance:
1. Operation reserves
2. Quick start thermal units
3. Generation surplus or energy not served

Revised output of thermal and hydro plants

Fig. 6.1. Flowchart of the ROM-model, covering a day-ahead simulation stage and hourly 

simulation stage in real-time. 

6.2.1 Day-ahead optimization stage 

 

Basic model description 

In the optimization stage, a deterministic unit commitment and economic dispatch 

model are used to determine optimal output of thermal and hydro plants for the next 

day. This model contrasts with stochastic unit commitment models in which 

uncertainty is considered [135], [136]. The specific mathematical formulation of the 

model used is extensively described in Dietrich et al. [127]. The model minimizes 

daily operational costs while meeting demand-supply balance and reserve 

requirements. Technical constraints for thermal units are considered. They include 

minimum and maximum output, maintenance, and ramping rates. Technical 

constraints for pumped storage units include bounds on the hydro reservoir and 

minimum and maximum output. The demand profile and predicted power generation 

profile from RES are considered as an input. Also power generation from biomass 

plants and combined heat and power plants (CHPs) are modeled as an input, as 

generation from these plants is considered as uncontrollable or not-dispatchable from 

system operator point of view.  
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Inclusion of residential demand response 

Within the day-ahead optimization stage, DR with WAs and BEVs is introduced. 

Contrary to the use of price elasticities [137], [138], [139], this is done by optimizing 

the consumption patterns of the appliances themselves. Hereby, scheduling of 

appliances is modeled as a centralized decision making process.  

For WAs, the model allows to integrate DR with different types of appliances, such as 

washing machines or dryers. The hourly load pattern of each appliance type can be 

shifted in time according to its shifting potential. The load pattern shift for each type 

must be balanced within one day. A detailed model description of the inclusion of 

WAs is provided in Dietrich et al. [127]. The main mathematical formulation is 

provided in Appendix B. 

For BEVs, the model allows to integrate different types of cars with different types of 

usage and connection profiles. Several technical characteristics of BEVs and their 

batteries are considered: specific energy consumption when driving, battery 

capacities, grid-to-battery and battery-to-wheel efficiencies, maximum state of 

charge, and maximum charging power. When BEVs are scheduled, the energy 

requirements related to the mobility patterns must be satisfied. The inclusion of DR 

with BEVs is extensively described in Bañez et al. [132] and Ramos et al. [140]. The 

main mathematical formulation is added in Appendix B. 

6.2.2 Hourly simulation in real-time 

In the hourly simulation stage, two events are introduced which require corrective 

actions in order to meet the demand-supply balance. First, forecast errors of power 

generation from RES are integrated based on the difference between day-ahead 

predicted and real-time power generation. Second, forced outages on thermal units 

are simulated based on forced outage rates of power plants. Three main actions can 

be performed to restore the demand-supply balance. First, operation reserves kept 

available from the optimization stage are assigned. Secondly, quick start thermal 

units are deployed. As a last resort, generation surplus or energy not served is 

triggered. This leads to a revised output of thermal and hydro plants. 

6.3 Data & assumptions 

The impact of DR with WAs and BEVs on system operation is assessed within two 

alternative power generation portfolios for a one year period. The first portfolio 

contains the Belgian power generation portfolio of 2012, while the second portfolio 

consists of the projected Belgian portfolio in 2025. In what follows, data and 

assumptions on both the demand and supply side are discussed.  
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6.3.1 Demand 

Demand in Belgium is based on hourly load data from 2012, provided by the 

European network of transmission system operators for electricity (ENTSO-E) [141]. 

Yearly demand sums to 84.59 TWh. Average, maximum, and minimum hourly 

demand amounts 9.63 GWh/h, 14.19 GWh/h, and 6.24 GWh/h respectively. Demand 

in 2012 and 2025 are assumed identical.  

 

Wet appliances 

Residential demand partly arises from consumption with WAs, split up in washing 

machines (WMs), dryers (DYs), and dishwashers (DWs). Average load patterns for all 

Belgian wet appliances are depicted in Fig. 6.2. These patterns are deducted from 

total demand and modeled separately. In order to derive Belgian load patterns for 

each appliance, the following parameters are used: number of times appliances are 

cycled, starting times of cycles, and consumption profiles of cycles. Based on [142] 

and statistics from the federal public service [143], over 9 million WAs are present in 

Belgium and the number of cycles a day amounts to 2.51, 1.30, and 1.85 million 

WMs, DRs, and DWs respectively. Starting times of appliances are derived from 

[144]. Consumption cycles are obtained from measured profiles from a pilot project 

named LINEAR [71]. This leads to a total yearly consumption of 1.93 TWh of which 

0.53, 0.60, and 0.80 is attributable to WMs, DYs and DWs respectively. This exceeds 

2% of total yearly electricity demand. It is assumed that all WA cycles can be used 

for load shifting purposes. While this is an overestimation, it allows results to be 

comparable with BEV scheduling. A shifting potential of 4 hours both forward and 

backward is assumed [145]. 

Fig. 6.2. Average daily load patterns of unscheduled Belgian wet appliances: washing machine, 

dryer and dishwasher. 

 

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

En
er

gy
 [

M
W

h
] 

Hours [h] 

Washing Machine

Dryer

Dishwasher



124 Chapter 6  

Battery electric vehicles 

As the current Belgian demand does not include a significant number of BEVs, their 

power consumption has to be added to demand representing the electrification of 

transportation. In both the 2012 and 2025 scenario, the number of Belgian light-duty 

vehicles is assumed to be 5.41 million based on federal public service statistics [146], 

of which 8% or over 430 000 vehicles are BEVs [147]. In line with Section 4.2.2 

(Table 4.1), three types of vehicles with their own technical battery characteristics 

are considered: subcompact, midsize, and large vehicles. 200 representative BEVs 

and their accompanying driving patterns are considered. Total Belgian yearly power 

consumption of BEVs sums to 1.78 TWh. This exceeds 2% of total yearly electricity 

demand. The average load pattern in the unscheduled BEV charging scenario is 

depicted in Fig. 6.3. Hereby, it is assumed that BEVs are plugged in at each location 

when they are not driving. As soon as a BEV is plugged in, it starts charging until the 

battery reaches maximum state of charge or until the BEV departs again. With 

scheduled charging the timing and quantity of charging is optimized over the period 

when the BEV is not driving. 

 

Fig. 6.3. Average daily load pattern of unscheduled charging of BEVs. 

6.3.2 Power generation portfolio 

 

Installed capacity 

Current and future installed capacity in Belgium is based on data from ENTSO-E 

[148] and the Belgian TSO [149]. These capacity data are adjusted in several ways. 

Current and future installed wind, solar power capacity is revised according to 

estimations from Belgian regulators [150], [151] and the Belgian TSO [152]. A full 

nuclear phase out is assumed by 2025 [152]. Coal capacity is also phased out while 

additional gas capacity is integrated by 2025 [152]. Apart from covering demand, 

both current and future power generation portfolios need to provide reserves. An 
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approximation of reserve requirements is based on ENTSO-E and amounts to 870 

MW and 970 MW for 2012 and 2025 respectively [148]. Interconnection capacity and 

cross-border flows are not included in the analysis. The transmission grid is 

considered to be a copper plate with no internal congestions.  

Total installed capacity in 2012 and 2025 amounts to 20.30 GW and 22.25 GW 

respectively. As depicted in Fig. 6.4, the 2012 portfolio is characterized by plants 

operating on a mix of primary energy sources. Gas and nuclear capacity make up the 

main part. This is complemented with solar, wind, hydro, biomass, coal, and oil 

capacity. Biomass capacity also includes waste and wood pellets. Oil is typically used 

in smaller turbojets. Towards 2025, nuclear, coal, and oil are phased out. Installed 

capacity of gas power plants rises due to an increase in combined cycle gas turbines 

and combined heat and power plants (CHPs). Moreover, renewable integration 

becomes even more significant as more wind, solar, and biomass capacity is 

installed. Renewables make up almost 50% of total installed capacity.  

 

Fig. 6.4. Installed capacity in Belgium in 2012 and 2025. 
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steam power plants (SPPs), combined cycle gas turbines (CCGTs), gas turbines 
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set to 100% as their fuel costs is expressed in €/MWhelectric, as later on discussed. 

Start-up costs are based on [156], except for PWRs for which this characteristic is 

retrieved from [154]. The probability of maintenance and the forced outage rate are 

based on [157] for PWRs and on historic data from the Belgian TSO [158] for the 

other technologies. Technical characteristics of ICEs are retrieved from [156]. 

 

Table 6.1. Technical characteristics of power plants. 
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PWR 40 100 100 100 40 15 13 1 

SPP 30 100 33 40 40 34 2 6 

CCGT 45 100 53 60 100 73 7 2 

GT 20 100 25 32 100 10 9 5 

ICE 60 100 40 42 100 10 9 5 

 

Power generation from run-of-river plants is assumed to be stable at 50% of 

capacity. Pumped storage units are assumed to produce at an efficiency of 80% 

[159]. The reservoir level allows power generation at full capacity for 5 to 6 hours.  

Power generation data for solar, wind, biomass, and CHP plants are based on data 

from the Belgian TSO [149]. For wind power, both day-ahead predictions and real-

time power generation data are included to account for the prediction error. Power 

generation from biomass is included based on historical output data, while CHPs are 

considered as must-run plants with an unavailability rate of 14% in consistency with 

GTs. Towards 2025, all uncontrollable power generation data is scaled towards its 

respective installed capacity. 

 

Fuel cost and carbon content 

Fuel costs and the carbon content of fuels are listed in Table 6.2. Fuel costs are 

expressed in €/MWhthermal, except for uranium which is given in €/MWhelectric. 

Emission costs are set at 15 €/tCO2 [155]. 
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Table 6.2. Fuel prices and carbon content. 

Fuel Fuel costs  

[€/MWh] 

Carbon Content 

[tCO2/MWh] 

References 

Crude oil 48 0.63 [156], [160]  

Coal 10 0.85 [156], [161] 

Natural Gas 23 0.34 [154], [156] 

UO2 7 0.00 [162] 

6.4 Results 

This section describes results obtained from the Belgian case study for a whole year. 

As DR is the driver of operational benefits, scheduling of WAs and BEVs is addressed 

first. Afterwards, the impact of scheduling on power system operation is evaluated.  

6.4.1 Residential demand response 

 

Scheduled WA consumption patterns 

To be able to assess the impact of residential DR on yearly power system operation, 

firstly the unscheduled and scheduled consumption patterns of WAs for 2012 are 

discussed. While on average 15% of the total WA consumption volume is reduced 

during peak moments, daily shifting patterns widely vary over the year. Fig. 6.5 

compares the unscheduled WA consumption pattern and the spread of scheduled WA 

consumption. To obtain the spread of scheduled consumption, all daily consumption 

patterns are bundled. Afterwards, a distribution is made for each specific hour over 

all days. Hourly median values of scheduled consumption are represented by the 

white line. The intervals around the median capture a percentage of the total amount 

of observations and visualize the spread of the hourly wet appliance consumption. 

For example, the 0-10% interval shows the spread of the 10% lowest consumption 

values for each specific hour. It can be seen that WA consumption shows a large 

day-to-day variation, as demand and uncontrollable generation patterns differ 

between days. Therefore, cost minimization leads to different WA consumption 

patterns. In general, appliances are often shifted from the morning and the evening 

towards the late afternoon and the night. This leads to demand reductions of up to 

150 MWh/h. Although shifting often leads to new peaks in total wet appliance 

consumption, shifted demand typically fills valleys when total demand is considered. 

Although not visualized, average shifting patterns in 2025 are similar to those in 

2012. Nevertheless, variability of shifting patterns is higher in 2025 due to wind and 

solar power variability. 



128 Chapter 6  

 

Fig. 6.5. Distribution of daily wet appliance consumption in 2012. The hourly median values of 

scheduled consumption are represented by the white line. The intervals capture a percentage of 

the total amount of observations in each hour. 

 

Fig. 6.6. Distribution of BEV charging patterns in 2012. The hourly median values of scheduled 

consumption are represented by the white line. The intervals capture a percentage of the total 

amount of observations in each hour. 

 

Scheduled BEV consumption patterns 

On average, 50% of the total BEV consumption volume in 2012 is reduced during 

peak moments. While unscheduled charging mainly takes place during daytime, 

scheduled charging shifts cycles towards the night (Fig. 6.6). Therefore, scheduled 

charging mainly occurs at home. Charging is mainly reduced during peak moments at 

noon and in the evening. Then total BEV consumption is often reduced to 0. This can 

amount to a 300 MWh/h reduction. Similarly to WA scheduling, scheduled charging 

creates new peaks on the level of BEV consumption. As these new peaks occur 
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mainly during nighttime, shifted consumption fills valleys when total demand is 

considered. Compared to scheduled charging in 2012, shifts in the average BEV 

consumption pattern are less profound in 2025. Moreover, the variability of shifting 

patterns is higher. This results from more variability due to wind and solar capacity. 

6.4.2 Impact of residential demand response on power system 

operation 

 

Power plant operation 

Demand response influences power plant operation within the current and future 

Belgian portfolio. To assess the influence, first power plant operation within two 

reference scenarios is evaluated. These reference scenarios consist of the 2012 and 

2025 power generation portfolio in which no DR is present. Afterwards, the impact of 

DR is discussed. Distinction is made between WA and BEV scheduling as the impact 

is assessed in separate simulations. 

The share of yearly power generation from different primary energy sources within 

the two reference scenarios is visualized in Fig. 6.7. For clarity reasons, power 

generation from oil and run-of-river hydro plants is omitted. These account for less 

than 1% of power generation. In 2012, 52% of demand is covered by power 

generation from nuclear plants, while 28% is produced from gas plants. Wind mills, 

solar panels, and biomass plants contribute 14% of power generation. The remaining 

part results from coal and hydro. In 2025, significant changes in power generation 

shares occur. Nuclear and coal plants are phased out, while power generation from 

gas plants increases substantially due to an increase in CCGTs and CHP plants. Also 

power generation from wind mills, solar panels, and biomass more than doubles. As 

power generation from wind mills and solar capacity increases, hourly ramping also 

increases. Comparing both power generation portfolios, the increase in 

uncontrollable power generation is noteworthy. While in 2012 uncontrollable power 

generation amounts 24%, this increases to 54% in 2025.  
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Fig. 6.7. Share of yearly power generation from different primary energy sources in Belgium in 

2012 and 2025. 

When looking at power plant operation of different technologies, PWRs and SPPs are 

typically used as base load units, CCGTs as mid-peak plants, while GTs, ICEs, and 

pumped storage units are used during peaks.  

Residential DR affects annual power generation of different power plants. In what 

follows, the focus is on CCGTs, GTs, and pumped storage units, as DR influences 

these mid-peak and peak units most (Fig. 6.8). Hereby, annual generation of 

technologies within each scenario is compared with its reference scenario. Three 

main observations can be derived. WA scheduling decreases annual generation from 

mid-peak and peak units. BEV introduction increases the loading of those units. An 

exception is the decrease of GT loading in 2012, although largely outset by an 

increased CCGT loading. Finally, the increased loading due to BEV introduction is 

reduced by scheduling BEVs. In other words, the scheduling of BEVs decreases the 

impact of a BEV introduction. 

Similar effects occur during the peak moments of the year. In Fig. 6.9, load duration 

curves of CCGTs and GTs are visualized. They depict the highest 300 hours of 

loading for each technology, covering different power plants. Due to decreased 

controllable generation capacity, mid-peak and peak plants run longer at full load in 

2025 compared to 2012. Demand response, both with WAs and BEVs, decreases the 

hours mid-peak and peak technologies operate at full capacity. Moreover, in 2012 

maximum GT loading is never attained under the scheduled BEV scenario. 
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Fig. 6.8. Annual generation difference of CCGTs (left), GTs (middle), and pumped storage 

plants (right) compared to the 2012 and 2025 reference scenarios. 

 

Fig. 6.9. Load duration curve of CCGTs (left) and GTs (right) for the top 300 hours of the year 

in different scenarios for 2012 (dashed lines) and 2025 (solid lines). 

DR also influences the frequency of starting up mid-peak and peak plants within a 

year (Fig. 6.10). In both 2012 and 2025, the number of start-ups of CCGTs and GTs 

decreases when WAs are scheduled. This decrease can go up to 180 start-ups of 

CCGTs in 2012, corresponding to 15% of the reference start-ups. When unscheduled 

BEV charging is introduced, the number of start-ups goes up. This increase is 

reduced when BEVs are scheduled. For example, in 2012 the number of start-ups 

with CCGTs decreases with 437 or 33% compared to the unscheduled BEV scenario. 
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Except for base load technologies, similar reductions in start-ups are found for other 

technologies. This illustrates that although the amount of flexible residential demand 

is limited compared to total demand, residential DR influences the number of start-

ups to a large extent.  

 

Fig. 6.10. Number of start-ups of CCGTs and GTs in different scenarios. 

 

Reliability 

As plant operation is modified by DR, power system reliability is also affected. This 

impact is visualized in the first two rows of Table 6.3. Reliability is expressed by 

energy not served (ENS) and loss of load expectation (LOLE). While ENS describes 

the total amount of electricity demand which could not be delivered, LOLE defines 

the number of hours in which it is expected that demand cannot be met. As 

interconnection capacity is not considered, ENS and LOLE should be interpreted with 

care. While these parameters provide insights in system reliability, actual reliability 

will be higher as interconnection capacity is available.  

Results show that ENS and LOLE are a lot higher in 2025 compared to 2012. This 

results from the underlying generation portfolio and reserve requirements in both 

years. In 2012, controllable capacity and reserve requirements are high enough to 

cover variations in RES, CHPs, and demand. ENS only occurs during forced outages 

of multiple large power plants. In 2025, demand cannot be met during 200 hours. 

Although this number is distorted due to the exclusion of cross-border flows, it 

illustrates that the increase in wind, solar, biomass, CHP, and CCGT capacity and the 

limited increase in reserve requirements are not sufficient to fully cover the phase 

out of nuclear and coal capacity. Moreover, it indicates the need for sufficient 

interconnection capacity as controllable capacity within the capacity constrained 

portfolio is not always able to cover demand peaks. Together with limited 

predictability of wind power, this is the main reason of ENS.  
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Table 6.3. Reliability, emissions, and costs in different portfolios. 

 2012 power generation portfolio 2025 power generation portfolio 
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ENS [GWh] 6.49 7.07 7.99 8.02 144.90 143.50 199.29 186.04 

LOLE [h/year] 25 30 37 37 200 202 266 245 

Renewable Surplus 
[GWh] 0.00 0.02 0.00 0.01 774.15 700.33 630.04 374.55 

Emissions [MtCO2] 8.94 8.92 9.62 9.62 10.37 10.33 11.00 10.86 

Total Costs [M€] 1207 1200 1290 1278 1697 1686 1887 1842 

Thermal Costs [M€] 1206 1199 1279 1271 1389 1381 1463 1445 

 

ENS not necessarily decreases when DR is introduced. This is a consequence of two 

counteracting effects. On the one hand DR contributes to peak shaving, reducing 

ENS when total capacity is constrained, such as in 2025. In this case, DR with wet 

appliance decreases ENS with 1% compared to the reference case. Scheduling of 

BEVs also reduces ENS by 7% or 13.25 GWh compared to unscheduled charging. On 

the other hand, DR results in a decreased number of committed power plants in the 

day-ahead optimization stage. This can result in a decrease of flexibility from 

committed plants on top of the reserve requirements as plants are running closer to 

their capacity limits, yielding more ENS in the real-time simulation stage. Although 

the impact is small, this effect leads to an ENS increase within the 2012 power 

generation portfolio. 

 

Environment 

Scheduling of WAs and BEVs impacts the environment due to a change in power 

plant operation. In what follows, this impact is expressed by the amount of 

renewable surplus or spillage and CO2-emissions as depicted in the third and fourth 

row of Table 6.3. 

Results show that renewable surplus is zero in 2012 when no DR is used. Towards 

2025 renewable surplus increases to 774 GWh due to limited controllability and the 

variability of wind and solar power generation. This equals almost 1% of annual 

demand. By scheduling WAs, surplus is reduced by 10%. By scheduling BEVs, the 

decrease is even higher and amounts to 41% or 255.49 GWh compared to the 

unscheduled scenario. 
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Also CO2-emissions are affected by the underlying generation portfolio and the 

presence of DR. In 2012, CO2-emissions amount to 8.94 million ton CO2 in the 

reference scenario. Towards 2025, CO2-emissions increase with 16% due to the 

nuclear phase out and its replacement by gas. By scheduling WAs, CO2-emissions 

decrease to a minor extent. Although WA scheduling decreases the loading of 

polluting ICE in 2012, this effect is counteracted by an increased loading of coal 

plants. In 2025, only the loading and the number of start-ups of gas plants are 

reduced. This has a limited effect on emissions. The introduction of BEVs increases 

CO2-emissions from the power system significantly due to increased power 

generation. Emissions increase with 8% in 2012 and 6% in 2025. Although the effect 

is limited, the scheduling of BEVs reduces CO2-emissions compared to the scheduled 

case. It should be noted that the decrease in emissions due to the electrification of 

transport is not accounted for.  

 

Cost 

Demand response influences annual operational costs. This impact is visualized in the 

last two rows of Table 6.3. Hereby, only the controllable part of the generation 

portfolio is considered. Operational costs and subsidies of RES and CHPs are not 

included. Cost results are split into costs and thermal costs. While thermal costs only 

account for operational costs, total costs also include costs for not being able to meet 

demand or reserve requirements.  

Results show that costs are higher in 2025. In 2025, total and thermal costs increase 

with 41% and 15% respectively. The increase in thermal costs is mainly due to the 

nuclear phase out, which increases the run-time of more expensive thermal plants. 

Moreover, thermal costs and total costs are of the same order in 2012, while in 2025 

total costs are significantly higher. This results from increased violations of demand 

and reserve requirements, as discussed previously. By introducing DR with WAs, a 

yearly total cost reduction of 7 and 12 M€ is accomplished for 2012 and 2025 

respectively. The cost reduction for 2025 is larger as more ENS is avoided. The 

thermal cost reduction mainly follows from a reduced use of other sources of 

flexibility, such as GTs and pumped storage hydro units. When BEVs are introduced, 

total costs rise substantially. The cost increase is higher in 2025, as future power 

generation capacity does not allow for a further increase in demand. If BEVs are 

introduced with scheduled charging, both total and thermal costs decrease with 10-

25% compared with unscheduled charging. This ranges from 12 to 45 M€ of total 

yearly cost reduction and 8 to 18 M€ of thermal yearly cost reduction. This cost 

decrease is higher in 2025 as more ENS is reduced and less renewable surplus 

occurs. 
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6.5 Summary & Conclusions 

This chapter studies the impact of demand response on power system operation by 

scheduling wet appliance and battery electric vehicles. A two-stage modeling 

approach is used on an hourly data set covering a full year. This allows taking into 

account both the variability and limited predictability of power generation from RES. 

Moreover, it provides a detailed representation of flexibility at the demand side. This 

benefits a realistic outcome allowing to assess a potential introduction of DR.  

Results show that in general DR decreases the loading of mid-peak and peak plants 

over the year and during peak moments. This is also reflected in the reduced number 

of start-ups of those plants. Renewed plant operation impacts reliability, environment 

and costs of power system operation. While reliability is affected to a limited extent, 

DR provides an efficient means to integrate RES and avoid surplus. By shifting only 

2% of total consumption towards moments with an excess of generation from RES, 

up to 41% of renewable surplus can be avoided. Finally, DR decreases thermal costs 

as less peaking plants need to be operated. This chapter shows that the impact of 

DR depends on the underlying power generation portfolio. The highest benefits of 

DR are accrued in a portfolio with a high amount of uncontrollable and renewable 

capacity.  

Looking at the demand side, shifting WA cycles and BEV charging in time contributes 

to peak shaving. Up to 150 MWh/h and 300 MWh/h of the peak is reduced by WA 

and BEV scheduling respectively. BEV consumption is mainly shifted towards 

nighttime, while WA cycles are mainly shifted towards the night and the afternoon. 

Aside from these general observations, this chapter shows that a large variety in 

shifting patterns exists. While only 8% of light-duty vehicles or 432 000 BEVs are 

assumed to contribute to DR, compared to 100% or over 9 million of WAs, system 

benefits are higher in case of BEVs. This justifies an increased attention for DR with 

BEVs. While an introduction of unscheduled BEV charging impedes system operation, 

scheduling facilitates the integration extensively. 

While this chapter provides insights into the impact of DR, some limitations are 

present in the modeling of the power system and DR. In the modeling of the power 

system interconnection capacity, transmission capacity, market behavior, demand 

uncertainty, and uncertainty in power generation from solar plants is neglected. 

Moreover, no stochasticity is included in the day-ahead optimization stage. In the 

modeling of DR, the willingness of households to provide flexibility and the cost it 

brings is not included. Furthermore, individual WA characteristics per household are 

not considered. Integrating this would further benefit a realistic outcome. Other 

paths for future research are the inclusion of a sensitivity analysis on reserve 

requirements, residential controllable generation technologies, the provision of 

reserves by means of DR and vehicle-to-grid charging. 



 

 



 

7. Impact of residential demand response on 

generation investment decisions 

7.1 Introduction 

In the event of more power generation from renewables and the electrification of 

energy services, power system operation is challenged as shown in the previous 

chapter. Traditionally, these operational challenges in turn increase investments in 

additional generation capacity. As short-term demand response (DR) also helps 

overcoming these operational challenges, it can also affect generation investment 

needs. 

In the literature, the calculation of the impact of demand response on generation 

investments is often simplified [163], [164]. Hereby, DR investment benefits are 

assessed based on a load duration curve (LDC). This curve ranks hourly demand 

from high to low for a full year of data. Afterwards, the calculation method of 

investment benefits states that a peak demand reduction during a limited percentage 

of hours, decreases generation capacity investments with the according level of peak 

load reduction. To illustrate the reasoning, an example is provided based on the load 

duration curve for Belgium for 2012 (Fig. 7.1) [141]. The reasoning implies a 

decrease in generation capacity with 15% when demand can be reduced during 5% 

of the hours of the year. By multiplying the capacity decrease with the cost of peak 

generation, the investment benefits of demand response are obtained. 

 

Fig. 7.1. Belgian load duration curve in 2012. 
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Although determination of the impact of DR on generation investments based on LDC 

is straightforward, several flaws arise due to neglecting chronology in power 

generation and demand. First of all, the LDC method does not account for temporal 

and intertemporal aspects of the operation of dispatchable power plants. Examples 

are outages or ramping constraints. Next, the impact of variability, limited 

predictability and limited controllability of generation from RES is not accounted for. 

Finally, the availability of demand response in time and quantity is not considered. 

For these reasons, a quantification of investment benefits based on the LDC method 

leads to unrealistic results and should be avoided. Therefore, detailed short-term 

power operation should be included when assessing the impact of demand response 

on generation investment decisions.  

Apart from the influence of short-term power system operation, generation 

investment decisions are also influenced by long-term uncertainty. Although evidence 

of electrification is rising due to the integration of battery electric vehicles (BEVs) and 

heat pumps, the long-term evolution is covered by uncertainty influencing generation 

investment decisions. Also future use of DR with BEVs or wet appliances (WAs) 

remains uncertain.  

To quantify the impact of short-term DR on generation investment decisions, the 

short-term operational characteristics of both RES and DR should be accounted for 

together with the long-term uncertainty in demand and demand response. Therefore, 

these aspects should be integrated in generation expansion planning (GEP) models 

[165]. These models allow determining the optimal generation investment decision. 

In general, GEP models consist of a long-term investment model and a short-term 

operational model. A higher level of detail and sophistication in both models allows a 

more realistic quantification of the impact of DR. 

Within long-term investment models, a distinction is made between static and 

dynamic investment models on the one hand, and deterministic and stochastic 

models on the other. In static models an optimal generation portfolio is determined 

for one specific year, while in dynamic ones multiple decision stages are considered 

over the planning horizon [166]. In deterministic investment models no uncertainty 

in variables is considered, while in stochastic ones uncertainty is accounted for. An 

example is the uncertainty of demand over the planning horizon. To allow for 

multiple decision stages in which the gradual release of information due to 

uncertainty is reflected, a stochastic dynamic investment model is needed. Stochastic 

dynamic programming (SDP) determines the mathematical background of real 

options (RO) theory, often employed to evaluate financial options [167]. RO was 

introduced into investment projects in the power system to deal with long-term 

uncertainties by Dixit and Pindyck [168]. In contrast to the discounted cash flow 

approach which momentarily decides whether to invest in a project, the real options 

theory also evaluates whether a postponement of the investment is beneficial. 
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Hereby the reduction of uncertainty when waiting is accounted for [169]. 

Consequently the real options theory is mostly referred to as the ”wait and see” 

approach, while the discounted cash flow resembles the ”now or never” approach 

[170]. 

Next to the long-term investment model, the short-term power system operation 

model of GEP can include different degrees of detail. A widespread approach to 

capture some operational elements is the screening curve method in which 

technologies are assigned based on the LDC [171]. As mentioned before, this 

method neglects the chronology of power system operation. A more sophisticated 

approach is linear programming, first presented by Massé and Gibrat [172]. This 

approach optimizes the generation portfolio under a cost minimization objective, 

taking into account technical constraints of different power generation technologies. 

Recently these models are updated to determine the optimal generation portfolio 

under a large share of RES [173], [174].  

Although a wide range of GEP models exist in the literature, DR is only considered 

rarely in these models. In De Jonghe et al. [175], a static single-year optimization 

approach is used to evaluate DR. Although a detailed operational model is used to 

reflect RES characteristics, appropriate DR characteristics are neglected. Moreover, 

the investment model does not account for uncertainty and investment decisions 

over the different years as the model is static. In Botterud et al. [176], the impact of 

DR on investments is assessed using a stochastic dynamic programming approach 

which accounts for uncertainty and for several investment decision stages. Although 

this leads to a detailed investment model, the representation of operational 

characteristics of DR and the power generation portfolio can be improved. In Choi 

and Thomas [177], the impact of DR is assessed in a case study using a deterministic 

dynamic approach. While a detailed operational model is used, several power plant 

and demand characteristics are neglected. Finally, Samadi et al. [178] assesses the 

effect of demand response with a simplified operational model without taking into 

account uncertainty. 

This chapter assesses the impact of short-term DR with WAs and BEVs on generation 

investment decisions by combining real options theory with a detailed short-term 

operational model. It allows accounting for short-term operational characteristics and 

long-term uncertainty in demand or DR growth. Moreover, it allows policy makers to 

assess the feasibility of DR to help realizing policy targets such as the integration of 

renewables or a phase out of conventional generation capacity. The focus is on 

residential DR with WAs and BEVs. This approach contributes to the state-of-the-art 

in two domains: 

 existing GEP models are complemented by an accurate representation of DR 

and an accurate short-term operational model, and 

 this approach is applied to the Belgian case to draw relevant conclusions. 
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Note that the program to address the demand side is not discussed in this chapter as 

this is a potential study. Therefore, the demand response programs can be both 

price-based and incentive-based in line with Chapter 1. 

Section 7.2 describes the GEP model used to optimize generation investment 

decisions. Section 7.3 elaborates on the data and assumptions for demand, DR, and 

generation. Results are highlighted in Section 7.4 and Section 7.5 concludes. 

7.2 Model 

The subsequent levels of the GEP model are depicted in Fig. 7.2. A discrete state 

space is created to represent the various compositions of the future power system. 

This state space covers all potential investment decisions and demand fluctuations 

over the planning horizon. A detailed two-step operational model is applied to 

calculate operational costs for each state in the state space. RO-theory is used by 

means of a stochastic dynamic programming model, leading to an investment 

decision in the first stage based on the calculated operational costs. Finally, an 

investment simulator assesses the optimal investment paths throughout the long-

term planning horizon. Each level is described in detail. 

Determine state space

            State space

Two-step operational model

            Operational costs

Stochastic dynamic programming 

            Investment decision stage 1

Investment simulator

            Investment paths
 

Fig. 7.2. Subsequent levels in generation expansion model. 

7.2.1 Determination of state space 

The discrete state space contains a finite number of possible states where the power 

system can end up in during the planning horizon. Typically, a state of the power 

system is defined by the power generation portfolio and the demand. The power 

generation portfolio within each state depends on the current power generation 

portfolio, planned investment and phase out decisions, and on new investment 

decisions. The latter leads to a decision tree over the considered planning horizon. A 

visualization of the different states over the different stages is depicted in Fig. 7.3. 

An increase in the number of possible investment decisions within one state enlarges 
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the decision tree and therefore the state space. Demand and DR growth within each 

year depends on external factors such as the electrification of energy services and 

the willingness of users to offer DR resources. The variation in demand and DR 

growth is covered by uncertainty, leading to an uncertainty tree over the considered 

planning horizon. In this tree each path between two states is characterized by a 

probability of occurrence. An example of an uncertainty tree with two possible 

demand growth scenarios each characterized by a probability of occurrence (Pup and 

Pdown) is visualized in Fig. 7.4. A similar uncertainty tree can be constructed for DR 

growth. A combination of the decision and uncertainty tree results in the total state 

space. After the planning horizon, a non-flexible period is added in which the states 

are equal to the respective state in the last stage. This period allows investments 

made in the last investment stages to be earned back.  

 

Fig. 7.3. Decision tree characterized by different states in different stages. 

 

Fig. 7.4. Uncertainty tree characterized by different states in different stages. 

7.2.2 Two-step operational model 

A detailed two-step operational model is applied on each state of the state space. 

This model aligns with the operational model as described in Section 6.2. This model 

accounts for demand response and approximates real-life power system operation by 

combining two sequential steps: an optimization in day-ahead by means of a 

deterministic unit commitment and economic dispatch model, and an hourly 

simulation updating the economic dispatch in real-time. Based on this model, the 

operational costs for each state of the state space are obtained. 
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7.2.3 Stochastic dynamic investment model 

Once all annual generation costs for each state are calculated, the investment model 

determines the expected total cost for the entire planning horizon based on RO-

theory. The mathematical description of this model is:  

𝐽1(𝒙𝟏, 𝑑1)   =   min
𝒖1,…,𝒖𝑇−1

E
𝜔

{∑ [
1

(1 + 𝑟)𝑘−1
∙  𝑐𝑘(𝒙𝒌, 𝑑𝑘 , 𝒖𝒌)] +  

1

(1 + r)T
 

T−1

𝑘=1

∙  𝑓𝑇(𝒙𝑻, 𝑑𝑇)} 

(7.1) 

𝒙𝒌+𝟏 =  𝒙𝒌 + 𝒖𝒌  (7.2) 

𝑑𝑘+1 =  𝑑𝑘 + 𝜔𝑘 (7.3) 

𝑐𝑘(𝒙𝒌, 𝑑𝑘 , 𝒖𝒌) =  𝑜𝑐(𝒙𝒌, 𝑑𝑘) + 𝒖𝒌  ∙  ic  (7.4) 

𝑓𝑇(𝒙𝑇 , 𝑑𝑇) =  𝑐𝑇(𝒙𝑇 , 𝑑𝑇|𝒖𝑇 = 0) ∙  
1 − (1 + 𝑟)−TNF

𝑟
 

(7.5) 

 𝒙𝒌 ∈  Ω𝒙,𝑘 ,  𝑑k ∈  Ω𝑑,𝑘 ,  𝒖𝒌 ∈  Ω𝒖,𝑘 ,   𝜔𝑘 ∈  Ω𝜔,k  (7.6) 

 

where, 

𝑐𝑘(𝒙𝒌, 𝑑𝑘 , 𝒖𝒌)  = cost in period k to fulfill demand 𝑑𝑘 with a given generation portfolio 

[€], 

𝑓𝑇(𝒙𝑻, 𝑑𝑇)  = operational cost of non-flexible periods 𝑇𝑁𝐹  actualized to period 𝑇 

[€], 

𝐽1(𝒙𝟏, 𝑑1)    = minimum total expected costs [€], 

𝑑𝑘  = electricity demand in period k [MW], 

𝑜𝑐(𝒙𝒌, 𝑑𝑘)  = minimum operational costs obtained from operational model [€], 

𝒖𝒌  = investment decision in period k [MW], 

𝒙𝒌  = total installed capacity in period k [MW], 

𝜔 = long-term uncertainty of demand growth for electricity, 

ic = investment cost for thermal plants [€], 

r = discount factor [%], 

T  = planning horizon [periods], 

TNF  = number of non-flexible periods after the planning horizon in which 

the variables stay constant [periods], 

Ω𝑥,𝑑,𝒖,𝜔   = state space. 

This description only accounts for demand growth, but the description for demand 

response growth is similar. 
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The RO-model is solved by SDP and is based on previous work of Botterud et al. 

[176] and Mo et al. [166]. Equation (7.1) shows that the total expected actualized 

cost is minimized taking into account the uncertainty in demand growth 𝜔 . The 

current investment decision 𝒖𝒌  determines the total installed capacity in the next 

stage 𝒙𝒌+𝟏 according to (7.2). This equation shows an investment decision is only 

effective in the next stage. Equation (7.3) shows that uncertainty in demand growth 

𝜔𝑘  defines the demand level in stage k+1 given a probability distribution. As 

indicated in (7.4), total costs 𝑐𝑘 consist of the operational and the investment costs. 

Apart from the planning horizon, a non-flexible period TNF is added after the planning 

horizon. The costs of this period are actualized to the last stage of the planning 

horizon by (7.5). Finally, equation (7.6) defines the state space of the variables. 

To obtain the expected total actualized cost for the entire planning horizon, the 

model starts its procedure in the last stage of the planning horizon T and iterates 

back until the first stage. The backward iteration is based on:  

𝐽𝑘(𝑥𝑘, 𝑑𝑘)   =   min𝒖𝒌∈ Ω𝒖,𝒌 {𝑐𝑘(𝒙𝒌, 𝑑𝑘 , 𝒖𝒌) +  
1

(1+𝑟)
  ∙  E

𝜔

[ 𝐽𝑘+1(𝒙𝒌, 𝑑𝑘 , 𝒖𝒌)]}. 7.7 

Once the expected costs in the states of stage k+1 are known, the optimal paths to 

the states in stage k are determined, leading to an investment decision uk  with 

minimum total expected costs for each state. This procedure is repeated until the 

first stage is reached leading to the optimal investment decision in this period. 

7.2.4 Investment simulator 

Although the RO-model derives the optimal investment decision for the first stage, it 

does not provide insight in investment decisions over the entire planning horizon. 

Therefore, a simulator is created to determine the optimal investment paths while 

accounting for the gradual release of information over the years. The simulator starts 

from the optimal investment decision in the first stage based on the RO-model. 

Afterwards, the simulator randomly draws a demand growth based on given 

probabilities in the state space, as elaborated on in subsection 7.2.1. In the second 

stage, the RO-model is rerun subject to the investment decision and realized demand 

growth from the previous stage. This results in a new investment decision for stage 

2. This process is repeated until the complete investment horizon is covered and the 

investment paths over the different stages are known. The simulation is repeated 

multiple times to cover various demand evolutions in order to determine the 

probability of each investment path. 
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7.3 Data & assumptions 

The impact of DR on generation investment decisions is assessed within a Belgian 

case study (Fig. 7.5). Two alternative cases are considered. In the first one, the 

impact of DR with wet appliances (WAs) is evaluated; in the second the impact of DR 

with battery electric vehicles (BEVs) is assessed. These cases are referred to as the 

WA and BEV cases respectively. In both cases the impact of demand response is 

assessed by comparing a scenario without and with demand response, referred to as 

the unscheduled and scheduled scenario respectively. Both scenarios of each case 

are solved separately with a GEP model. Within each case and scenario, uncertainty 

is integrated in different ways. For the WA case, no uncertainty is assumed in the 

unscheduled scenario while uncertainty in demand response growth is included in the 

scheduled scenario. For the BEV case, uncertainty in the integration of BEVs is 

assumed in the unscheduled scenario. In the scheduled scenario this uncertainty 

comes along with the uncertainty in demand response growth. In what follows, data 

and assumptions for both cases and scenarios are further discussed for each of the 

subsequent levels of the generation expansion model. 

  

Fig. 7.5. Overview of cases and scenarios tested with the GEP model. 

7.3.1 State space 

The planning horizon of the complete state space covers 14 years, from 2013 until 

2026. The horizon is split in 7 stages of two years each. Each state is defined by the 

power generation portfolio and its accompanying decision tree, and the demand and 

its accompanying uncertainty tree.  

The initial installed Belgian power generation portfolio is in line with the one from 

Section 6.3.2. Nevertheless, internal combustion engines (ICEs) are neglected to limit 

calculation time. Moreover, the state space accounts for the  gradual evolution of 

installed capacity, considering different primary energy sources such as nuclear, coal, 

gas, wind, solar, biomass, and hydro capacity (Fig. 7.6).  

WA case BEV case 

Unscheduled 

scenario 

Scheduled 

scenario 

Unscheduled 

scenario 

Scheduled 

scenario 

- - No DR 

- - No uncertainty 

- - DR with WAs 

- - Uncertainty in 
DR growth 

- - No DR 

- - Uncertainty in 
demand growth 

- - DR with BEVs 

- - Uncertainty in 
demand growth 
= DR growth 
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Fig. 7.6. Installed capacity of different primary energy sources over the planning horizon in 

Belgium. 

On top of the planned capacity evolution, new capacity can be added based on an 

investment decision tree. Except for the final stage, in every stage an investment 

decision is taken. This decision entails the construction of two combined cycle gas 

turbines (CCGTs) with a capacity of 300 MW each. Plants are online after 2 years.  

Next to the power generation portfolio, the state space is determined by demand. 

Demand in Belgium is obtained from hourly load data of the first 6 months of 2012, 

as provided by ENTSO-E [179]. This 6 months period is long enough to enable 

representativeness while limiting calculation time. Total demand in this period adds 

up to 43.77 TWh. The average, maximum, and minimum hourly demand amounts to 

9.97, 14.2, and 6.50 GWh respectively. In view of comparability, the historic demand 

pattern is assumed to be equal in the different stages of the considered planning 

horizon. Based on the uncertainty trees of the WA and BEV cases, the demand 

pattern is adapted. Note that no industrial DR participation is assumed. 

In the WA case, uncertainty in DR growth is assumed while the number of wet 

appliances remains constant. From one stage to the next demand response with WAs 

stays equal or increases. This stepwise increase between stages amounts to 20% of 

all Belgian wet appliances. The chance of this stepwise increase is assumed to be 

equal to the chance that the amount of DR remains the same, namely 50%. In the 

final stage, this leads to a maximum and minimum level of DR with WAs of 100% 

and 0% respectively. Consequently, the expected share of DR with WAs at the end 

of the planning horizon equals 60% of all WAs.  

In the BEV case, uncertainty in DR is assumed due to the integration of BEVs. From 

one stage to the next either demand stays equal or increases due to power 

consumption from BEVs. The stepwise increase in BEV share between two stages 
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amounts to 10% of all Belgian light-duty vehicles [180]. The chance that the amount 

of BEVs increases between two stages is assumed to be equal to the chance that no 

increase occurs, being 50%. In the final stage, this leads to a maximum and 

minimum BEV penetration level of 60% and 0% respectively. Consequently, the 

expected share of BEVs at the end of the planning horizon equals 30% of all Belgian 

light-duty vehicles.  

A combination of the decision tree on the power generation side with the uncertainty 

tree on the demand side leads to 1 or 1*1 state in the first stage and 49 or 7*7 

states in the final stage. In total, 140 distinctive states determine the state space. 

Besides the stages within the planning horizon, the non-flexible period TNF 

considered after the planning horizon counts 25 years. 

7.3.2 Operational problem 

For each state of the state space, the daily operational model is executed for 6 

months of hourly data. In this model, technical characteristics of power generation 

plants, WAs, and BEVs are integrated according to Section 6.3.  

Within the WA case, the expected amount of consumption available for DR purposes 

at the end of the planning horizon amounts to 0.58 TWh or 1.32% of total demand. 

Within the BEV case, the expected number of BEVs at the end of the planning 

horizon corresponds to an additional power consumption level of 3.85 TWh, or 8% of 

the total envisioned historic demand.  

As mentioned before, two scenarios are considered for both the WA and BEV case. 

These scenarios are included in the operational model as follows. Within the 

unscheduled scenario of the WA case, no DR is assumed. Therefore, power 

consumption of WAs aligns with historic power consumption. For the scheduled 

scenario of the WA case, power consumption from WAs is optimized according to 

Section 6.3.1. For the unscheduled scenario of the BEV case, the charging of BEVs 

cannot be scheduled in time and is modeled as an input. This assumes that BEVs 

start charging as soon as the vehicle is not driving until the maximum state of charge 

of the battery is reached or the vehicle departs again. For the scheduled scenario of 

the BEV case, the timing and quantity of power consumption from charging of BEVs 

is optimized. Comparison between the unscheduled and scheduled scenario within 

both the WA and BEV case allows assessing the impact of demand response.  

7.3.3 Investment problem 

Once the operational costs for every state are determined, the investment costs are 

defined and integrated in the real options model. Based on reference [181], the 

investment cost of CCGT capacity amounts to 727 €/kWe. As the real option model 
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determines the investment decision in the first stage, operational and investment 

costs need to be discounted. The discount rate is set to 10% [181].  

7.4 Results 

7.4.1 Operational costs 

The annual operational costs of all feasible paths in the scheduled scenarios of the 

WA and BEV case are visualized in Fig. 7.7. Although each path is not clearly 

distinguishable, the figure illustrates the cost spread resulting from DR growth, 

demand growth and investment decisions over the planning horizon. For clarity 

reasons, annual costs higher than 2500 M€ are not visualized. The cost spread is 

larger in the BEV case. This illustrates that demand growth with BEVs increases costs 

substantially. The cost spread increases towards the end of the planning horizon 

which reveals a close link with the underlying generation portfolio. After 2013 costs 

tend to increase as nuclear capacity is phased out. The following years, the 

integration of RES leads to a cost decrease while in 2023 and 2025 cost rise again 

due to the completion of the nuclear phase out. In these years, the integration of 

BEVs and the installed capacity of CCGTs largely impact operational costs illustrated 

by the large cost spread. Although not visualized in the figure, annual costs in the 

BEV case can go up to 6759 M€. This aligns with the situation in which no 

investments are made while the number of BEVs constantly increases. Moreover, the 

unscheduled scenario for the BEV case has an even higher spread as the annual 

costs reach 7376 M€. 

  

Fig. 7.7. Feasible operational cost paths over the planning horizon in the scheduled scenario of 

the WA case (left) and the BEV case (right). 

7.4.2 Investment decision stage 1 

The cost results for investment decisions in stage 1 are depicted in Table 7.1 for both 

the unscheduled and scheduled scenarios in the WA and BEV case. Distinction is 
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made between operational and investment costs in stage 1, and actualized future 

operational and investment costs. Operational costs in stage 1 are based on 

extrapolation from 6 months to a year and covers both operational costs in this year 

and actualized operational costs of next year. These costs are equal in the different 

scenarios as no DR with WAs or BEVs is integrated yet and the investment decision 

only results in functioning power plants from stage 2 onwards. For actualized future 

costs, they depend on the case, the scenario and the investment decision.  

 

Table 7.1. Cost results for investment decisions in stage 1 for the unscheduled and scheduled 

scenario of the WA and BEV cases. 

Case  Scenario Investment 

Decision  

Operational 

costs [M€] 

Investment 

costs [M€] 

Actualized future 

costs [M€] 

Total costs 

[M€] 

WAs 

Unscheduled 
Do not invest 2.533 0 11.555 14.086 

Invest 2.533 436 11.269 14.237 

Scheduled  
Do not invest 2.533 0 11.529 14.060 

Invest 2.533 436 11.243 14.211 

BEV 

Unscheduled  
Do not invest 2.533 0 14.039 16.572 

Invest 2.533 436 13.609 16.578 

Scheduled  
Do not invest 2.533 0 13.816 16.349 

Invest 2.533 436 13.405 16.373 

 

In the WA case, investment in CCGTs decreases future costs in both scenarios. This 

cost decrease is lower than the investment costs itself. Therefore, it is optimal in 

both scenarios to postpone investment in CCGTs. Comparing both scenarios, costs 

are lower when DR is used. Scheduling of WAs leads to an actualized cost reduction 

of 26 M€.  

In the BEV case, the actualized future cost decrease due to investment is again lower 

than the investment cost itself. Therefore, not investing in the first stage is optimal. 

Moreover, scheduling BEVs brings an actualized cost reduction of 223 M€ compared 

to the unscheduled scenario, i.e. 1.3% of total costs.  

Comparing both cases, actualized total costs increase significantly when BEVs are 

integrated. For the unscheduled scenarios, integration of BEVs leads to a cost 

increase of 2486 M€ or 18% of total costs in the WA case. Moreover, this cost 

increase is significantly lower in the scheduled scenario. Comparing the impact of DR 

with WAs and BEVs, the impact of WA scheduling on total costs is minor due to two 

main reasons. First, the generation portfolio operates closer to its limits in the BEV 

case due to demand growth. This increases the influence of DR. Second, the amount 

of energy usable for DR is higher in the BEV case. The 10% increase in BEVs 
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between two stages aligns with 0.64 TWh, while 20% of WAs only aligns with 0.20 

TWh. 

7.4.3 Investment paths 

The different optimal investment paths over the different simulations for the WA and 

BEV case are depicted in Fig. 7.8. Hereby, distinction is made between the scheduled 

and unscheduled scenarios. Each optimal investment path is represented by a line 

which increases when investments are made and remains horizontal otherwise. The 

optimal investment paths largely differ between the WA and BEV case. Both the 

unscheduled and scheduled scenario of the WA case only count two investment 

increases while the BEV case counts three or four. This illustrates the demand 

growth due to integration of BEVs influences generation investment decisions. The 

WA case only depicts one optimal investment path while the BEV case has several. 

This illustrates that DR with wet appliances has no influence on generation 

investment decisions, while demand growth and DR with BEVs influences investment 

decisions in several ways due to its uncertainty.  

  

  

Fig. 7.8. Optimal investment paths over the planning horizon for the unscheduled (top) and 

scheduled (bottom) scenario in the WA case (left) and BEV case (right). 

Focusing on the WA case, it can be noticed that investments are only needed 

towards the end of the planning horizon. Driven by the nuclear phase out, additional 
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capacity is installed towards 2023 and 2025. This is independent of the inclusion of 

DR with WAs. Therefore, DR with WAs does not affect generation investments. 

Focusing on the BEV case, three optimal investment paths exist for both unscheduled 

and unscheduled scenario. Within each scenario, the optimal paths differ due to 

distinctive demand growth resulting from the uncertainty tree. For each path, its 

occurrence in percentage is listed. In the beginning of the planning horizon, no 

capacity is installed in both scenarios. Based on an investment decision in 2017, 

installed capacity goes up towards 2019 in 75% of the cases for both scenarios. 

When no BEVs are integrated towards 2017, the investment decision is postponed. 

Otherwise, an investment is made. Starting from 2021, a difference occurs between 

the investment paths in both scenarios. While installed capacity always increases in 

the unscheduled, capacity remains equal in 25% of the cases in the scheduled 

scenario. This aligns with the case in which the BEV share amounts to 10% and an 

investment in CCGTs was already made in the past. This illustrates that DR can defer 

investment decisions depending on the number of BEVs integrated. The impact of DR 

is also observed towards the end of the planning horizon. While in the unscheduled 

scenario total installed capacity is 2400 MW in 69% of cases, this amounts to 50% in 

the scheduled scenario.  

7.4.4 Power system operation paths 

The optimal investment paths, resulting from minimizing the expected total costs, 

affect power system operation over the planning horizon. In this subsection, power 

system operation is assessed based on three parameters: operational costs, energy 

not served (ENS), and renewable surplus. This allows evaluating to which extent DR 

helps reaching current Belgian policy targets.  

The evolution of power system operation is visualized in Fig. 7.9. Each of the three 

parameters is extrapolated to cover a full year. Distinction is made between the WA 

and BEV case. Different optimal paths over the planning horizon exist for both cases 

depending on previous investment decisions, DR and demand growth. In each 

subfigure, distinction is made between an area covering the unscheduled and one 

covering the scheduled scenario. The borders of the areas represent the minimum 

and maximum optimal paths. Due to limited impact of DR with WAs on power system 

operation, these areas almost coincide for operational costs and ENS. On the 

contrary, Fig. 7.9 shows clearly distinguishable areas in the BEV case. Next to the 

areas, median paths are represented in white. They result from the probability 

distribution of DR with WAs or BEVs. For clarity reasons the different optimal paths 

within the BEV case are only visualized for the scenario covering the smallest area. 

In case of operational costs and ENS, this area entails the scheduled scenario, while 

for renewable surplus it entails the unscheduled.  
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Fig. 7.9. Operational cost paths (top), energy non served paths (middle) and renewable surplus 

paths (bottom) in the WA (left) and BEV (right) cases corresponding to the optimal investment 

decisions. The median unscheduled pattern are represented in dashed white lines while the 

median scheduled patterns are represented in dotted white lines. 

 

While the top figures of Fig. 7.7 depict the operational costs of all feasible investment 

paths, Fig. 7.9 only accounts for operational costs associated with the optimal. In the 
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latter costs also go up towards the end of the planning horizon. Compared to Fig. 

7.7, this cost increase is limited as investments are made in several stages. While in 

Fig. 7.7 operational cost go up to over 2000 and 6500 M€ for the WA and BEV case 

respectively, costs are now limited to 1600 and 2700 M€ for both cases. While in the 

BEV case the minimum and maximum optimal paths are clearly distinct, the minimum 

and maximum cost paths almost align in the WA case, due to the limited impact of 

DR with WAs on operational costs. In the final stage the difference between 

operational costs is limited to a maximum of 9 M€. In the BEV case, the minimum 

cost path is the same in both scenarios and aligns with the case when no BEVs are 

integrated. Comparing the median of the optimal cost paths between scenarios, 

illustrates that operational costs do not necessarily go down when DR is used. 

Although the effect is minor, this is related to the deferral of investments. The 

reduction in investment cost by using DR outperforms the higher operational costs. 

The middle figures of Fig. 7.9 show the energy not served over the planning horizon. 

This parameter covers the amount of electricity which could not be delivered to the 

consumers. Although ENS is always present, ENS goes up towards 2025 in the WA 

case. It results from the full nuclear phase out. Hereby, the impact of DR with WAs 

remains negligible as no significant difference in the ENS paths is found. 

Nevertheless, larger spread is observed for the BEV case. Hereby, ENS increases 

towards 2015. This follows from a combination of the decommissioning of a nuclear 

plant and the integration of BEVs. This illustrates that current installed controllable 

generation capacity is limited. Towards 2025, the amount of ENS increases with 

more than 100% in several optimal paths of the BEV case. This follows from the full 

nuclear phase out and BEV integration. Comparing both scenarios, the minimum 

optimal path is the same while the maximum path is higher if no DR is used. 

Therefore, BEV scheduling limits the increase of ENS when thermal capacity is 

phased out. As interconnection capacity is not considered, ENS should be interpreted 

with care. While this parameter provides insights in system reliability, actual reliability 

is also influenced by interconnection and transmission capacity. 

Finally, the bottom figures of Fig. 7.9 show the renewable surplus over the planning 

horizon. This covers the part of power generation from wind farms which is curtailed. 

For both the WA and BEV case, no power generation from RES is curtailed in the first 

stages, while in later stages surplus cannot be avoided due to the RES increase. 

While the spread in the final stages is again larger for the BEV case, DR with WAs 

also has a considerable impact on renewable surplus. Hereby, scheduling WAs 

decreases renewable surplus. Nevertheless, impact is larger for BEVs. Comparing 

between the unscheduled and scheduled scenario, the maximum optimal path align 

for both, while the minimum and median paths differ. DR largely reduces the 

renewable surplus. In more than 50% of cases, surplus remains below 20 GWh if DR 

is used. Therefore, DR with BEVs contributes to renewables integration. 
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7.5 Summary & Conclusions 

This chapter investigates the impact of demand response on generation investments 

by means of a GEP model which accounts for detailed power system operation and 

uncertainty in demand or demand response growth over the planning horizon. This 

approach allows evaluating investment decisions over multiple stages within the 

planning horizon and to quantify the cost reduction demand response brings. It can 

be used by policy makers to assess the feasibility of promoting demand response and 

to understand how demand response helps accomplishing policy targets such as the 

integration of RES or the phase out of nuclear power plants. 

This model is applied to the Belgian power system in which nuclear capacity is 

phased out and more RES are integrated towards 2026, while demand response and 

the integration of BEVs is subject to uncertainty. As shown in this chapter, alignment 

with the Belgian renewable and nuclear phase out targets leads to a considerable 

increase in operational costs if only the planned power generation investments are 

completed. To maintain cost-effective system operation an additional capacity of 1.2 

GW is required. In case BEVs are integrated, the required capacity even reaches 

between 1.8 and 2.4 GW. Nevertheless, demand response can limit this investment 

need in quantity and time.  

Scheduling BEVs leads to a reduction of invested capacity of 600 MW in 19% of the 

cases. Moreover, during the planning horizon investments can be postponed in time 

decreasing actualized costs. Overall, an actualized cost reduction of 223 M€ or 1.3% 

of total costs is reached by BEV scheduling. Given that no BEVs are integrated yet 

and that future power consumption of BEVs is limited compared to total demand, this 

cost decrease is substantial and calls for the inclusion of demand response within 

power system operation. Therefore, a potential breakthrough of BEVs should support 

scheduled charging in order to decrease the impact on power system costs. The 

opposite is true for WAs scheduling. Opposed to BEV scheduling, WA scheduling does 

not influence investment decisions. This follows from the limited amount of energy 

resulting from the use of WAs. Nevertheless, a modest actualized cost decrease of 26 

M€ is obtained by scheduling WAs following from operational benefits. 

Given the investment decisions in the unscheduled and scheduled scenarios in the 

WA and BEV cases, power system operation is influenced in three different ways: 

operational costs, energy not served and renewable surplus. For both operational 

costs and energy not served the impact of WA scheduling is minor. Only renewable 

surplus is influenced to a larger extent. Nevertheless, scheduling of BEVs largely 

influences all three parameters. Although demand response decreases operational 

costs within a specific year, it is shown that they can increase over the planning 

horizon when demand response is implemented. The increase is caused by a deferral 

of investments. However, the cost benefit of the investment deferral surpasses the 
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increase in operational costs. This chapter also illustrates that the energy not served 

in the power system as a consequence of the nuclear phase out can be limited by 

using demand response with BEVs. Finally, this chapter shows that demand response 

with BEVs provides an efficient means to integrate more RES by decreasing 

renewable surplus. Therefore, the scheduling of BEVs helps reaching Belgian policy 

targets. 

While this chapter contributes to the state-of-the-art research concerning the impact 

of demand response on power system operation and investments, several 

improvements can still be made. A first improvement is the inclusion of 

interconnection capacity and the transmission grid in the operational model. Next, 

other technologies with various capacities can be integrated in the decision tree. 

Although this contributes to a more realistic outcome, the state space will increase 

magnifying the calculation time. Finally, a deeper assessment of the uncertainty tree 

can lead to a more realistic outcome. 
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8. Summary, conclusions and recommendations  

8.1 Summary & Conclusions 

Against the background of a push towards renewables, electrification of energy 

services and an ageing infrastructure, the need for flexibility within power system 

operation is growing. While flexibility can be obtained from several resources, this 

thesis explores the use and usefulness of flexibility at the residential demand side 

triggered by dynamic electricity prices, referred to as residential demand response 

(DR) based on dynamic electricity prices (DP).  

Although residential DR based on dynamic electricity tariffs is a known topic in the 

literature, its use and understanding is still limited. Current electricity tariff designs 

fall short on incentivizing DR. Moreover, no clear indication or quantification is 

available on how residential users react to more dynamic pricing schemes. Finally, 

benefits resulting from DR remain largely unknown. 

To address this limited understanding, this thesis enhances knowledge of residential 

DR and DP. It contributes by answering these research questions: 

- What are demand response and dynamic electricity pricing? 

- How should dynamic electricity prices be designed? 

- To which extent do residential users modify their power pattern as a 

reaction to DP? 

- How can this modification be quantified and predicted? 

- What benefits do these load modifications bring for residential users and for 

power system operation and investments? 

In what follows, first the answers to these research questions are provided by 

discussing conclusions and contributions of each chapter. Afterwards, general 

findings on the use and usefulness of DR are provided. 

8.1.1 Research findings 

Chapter 1 provides insights in the concept of DR. Different categories are discussed 

distinguishing between the purpose it is used for and the benefits it brings, the user 

classes it serves, and the load types targeted. It shows that momentum towards 

implementation of residential DR is gaining as all stakeholders are recognizing its 

value and even promoting it. This is reflected at the level of policy, regulation, 

standardization and the energy industry. Moreover, the rise of smart metering 

systems, advanced ICT and automation further pushes DR from research towards 

implementation. Although limited, current implementation of DR mainly covers the 
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commercial and industrial sector. Nevertheless, the potential of residential DR is 

substantial and its implementation is on the verge of a breakthrough.  

Chapter 2 elaborates on price-based DR programs. More specifically, focus is on 

locational dynamic pricing (LDP) in which prices depend on time and location. While 

traditional tariff schemes fail to reflect costs that specific households cause and fail to 

trigger DR, LDP aims at valuing residential consumption and generation against their 

contribution to the whole electricity system. Moreover, it aims at triggering DR. In 

this context, this chapter provides a theoretical framework to design and assess LDP. 

It starts from specific costs incurred at the generation, transmission, distribution and 

retail level. Locational and time dependency of each cost is assessed according to its 

cost drivers: energy usage, system’s peak, and cost independent of usage or peak. 

As usage and peak typically depend on the time of the day, most costs driven by 

these drivers can be made time dependent. This leaves substantial potential for 

adding dynamics to tariff schemes. Moreover, locational dependency of costs also 

relates to locational dependency of its cost drivers. If costs are driven by usage or 

system’s peak at local level, costs should be assigned to this local level. If costs are 

induced by usage or peak at global level, costs should be shared among its 

beneficiaries at the global level. When translating these costs into tariff schemes, 

general principles of tariff design need to be accounted for. Hereby, distinction is 

made between principles related to practical consideration and social acceptability on 

the one hand and cost related principles on the other. While traditional tariff 

schemes typically align with the former, cost related principles such as cost causality 

are harmed. In contrast, LDP largely meets cost related principles. Although 

practicalities to attain perfect cost causality still exist, technological and economic 

breakthroughs in ICT, metering and automation lead the way to the implementation 

of LDP. Apart from meeting cost causality, this also triggers DR. Hereby, the level of 

DR depends on tariff design. The latter is determined by concepts such as advance 

notice, length of price blocks and length of price pattern. These concepts in their 

turn affect the general tariff principles related to social acceptability and cost, often 

in a contradictory way. Therefore, a balance should be found between tariff 

principles related to costs and social acceptability on the one hand and its resulting 

DR incentive on the other. 

Chapter 3 develops different dynamic pricing schemes. They differ in advance notice, 

length of price blocks and length of price patterns. Hereby, averaging over multiple 

price periods reduces the peak and increases the off-peak tariff. Therefore, variability 

decreases and the DR incentive gets smaller as price differences lower. Five tariff 

designs are discussed: flat, time-of-use (ToU), critical peak (CPP), real-time (RTP) 

and renewable pricing (REN). These tariff schemes are categorized in three types 

based on their objectives: meet cost causality, decrease demand during critical 

events, and align demand with power generation from RES. The first type covers flat, 
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ToU, and RTP tariff schemes. While flat schemes allow meeting cost causality over 

the year, they do not meet cost causality over a shorter time horizon. ToU tariff 

schemes go one step further by allowing cost causality over peak and off-peak 

periods within the year. Moreover, it stimulates short-term DR due to the difference 

between peak and off-peak prices. RTP tariff schemes meet cost causality reflecting 

hourly underlying costs, therefore incentivizing DR on an hourly basis. The second 

type of tariff schemes covers CPP. This is typically used within a capacity constrained 

power system that is not able to meet demand during a limited number of hours a 

year. Hereby, focus is on reducing demand during infrequent critical events. 

Nevertheless, intermittency in a power generation portfolio based on RES cannot be 

addressed. The final type of tariff schemes covers REN pricing. This tariff aims at 

more efficient integration of intermittent RES by aligning demand with available 

power generation from RES.  

Following theory and development of dynamic pricing, Chapter 4 describes the DR 

effects. To provide comprehensive insights in DR under its various forms, both DR 

based on theory and practice is covered. While theoretical simulations serve as a 

benchmark, practical evidence provides a reality check. Simulations with wet 

appliances (WAs) based on RTP show shifts of consumption away from noon and late 

evening periods towards the afternoon and night. This leads to new peaks on 

appliance consumption level. Nevertheless, these peaks fill valleys when considering 

household consumption levels. The impact on household consumption peaks is 

limited as initial WA consumption during those peaks is relatively small. On the 

contrary, consumption of battery electric vehicles (BEVs) is substantial and just 

adding these vehicles to the household consumption profile creates new peaks even 

if DR is not used. This new peak arises just before midnight as most vehicles have 

returned home. Applying DR based on RTP, this new peak is shifted towards the 

night. On average, it is almost double of the reference household consumption peak. 

Considering other dynamic pricing schemes than RTP, simulations show that 

consumption patterns are largely affected by the choice of the schemes. Compared 

to flat pricing, adding dynamics to the tariff scheme leads to more variation in 

household consumption profiles. This is shown with RTP and REN pricing bringing the 

biggest changes in consumption patterns. Hereby, new peaks under REN pricing start 

earlier than under RTP as REN prices are averaged over longer periods. The 

drawback is that consumption is not always shifted towards the most advantageous 

periods leading to new peaks during initial shoulder periods. Apart from the impact of 

dynamics of tariff schemes on consumption patterns, also the amount of household 

savings is affected. In general, more dynamics in tariff schemes leads to higher 

savings. For instance, savings under RTP are 6 to 7 times higher than under ToU. 

Savings largely depend on the load type. Hereby, savings under load shifting with 

BEVs are a multitude compared to those with WAs. Nevertheless, for both load types 



162 Chapter 8  

a relative high spread of savings is found over the different households. Apart from 

theoretical results, evidence from the LINEAR project also shows that REN pricing 

impacts demand. Under the manual interaction model, consumers manually reduce 

consumption in the morning and late evening periods. Nevertheless, no clear impact 

during the night period is observed. In this perspective, automating WAs helps 

shifting consumption deeper in the night. Moreover, it adds to controllability and 

predictability of DR. This is shown by the clear demand increase during low price 

periods and vice versa.  

Building on the descriptive analysis of theoretical and practical DR, Chapter 5 

provides a deeper quantification of the responsiveness of demand to electricity price 

changes by means of price elasticities. While the literature on DR is not conclusive on 

the level of residential price elasticities in general, also evidence on elasticities 

following from dynamic pricing schemes such as RTP and REN is missing. Moreover, 

the impact of new type of loads or of automation is another topic not well addressed. 

Therefore, this thesis derives optimal price elasticities for simulated DR with WAs and 

BEVs and elasticities for manual and automated DR within LINEAR, all under REN 

pricing. Simulated DR serves as a benchmark for DR under automation and also 

shows the impact of new load types such as BEVs. Note however that the use of 

price elasticities for simulated and automated cases do not align with economic 

theory and therefore results have to interpreted with care. Results show that most 

optimal elasticities within the elasticity matrix are significant. Especially with BEV 

simulation, optimal elasticities are significant due to the high level of electricity 

demand resulting from BEV charging. High sensitivity of BEV demand towards pricing 

can also be seen in the level of elasticity coefficients. They are a multitude of 

elasticities following from WA scheduling. Compared to the simulated cases, practical 

evidence from LINEAR is less straightforward. While significant elasticities are found, 

impact compared to the simulated cases is lower. This follows from the fact that not 

all households actively participated in LINEAR. Moreover, commercial implementation 

is expected to lead to higher response levels. Nevertheless, it is clearly shown that 

automation leads to more significant levels of DR.  

While previous chapters focus on the household level, Chapter 6 describes the 

impact of residential DR on power system operation. Therefore, this chapter provides 

an operational model quantifying power system operation benefits of residential DR 

with WAs and BEVs tested within a Belgian case study. Contrary to the available 

literature, this model provides a detailed representation of demand, DR and 

generation covering a full year. Results show that based on optimal power system 

operation, demand valleys are filled with consumption from WAs and BEVs. Hereby, 

BEVs cycles are mainly shifted towards the night while WAs are shifted towards the 

afternoon and night. This aligns with results from previous chapters. Moreover, this 

chapter shows that in general DR decreases loading of mid-peak and peak plants 
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over the year and during peak moments. This is also reflected in the reduced number 

of start-ups of those plants. This renewed plant operation also impacts reliability, 

environment and costs of power system operation. While reliability is affected to a 

limited extent, DR provides an efficient means to integrate RES and avoid surplus. By 

shifting only 2% of total consumption towards moments with an excess of generation 

from RES, up to 41% of renewable surplus is avoided. Finally, DR decreases thermal 

costs as less peaking plants need to be operated. Hereby, it has to be noted that the 

impact of DR depends on the load type and the underlying power generation 

portfolio. Consistent with the previous chapter, benefits under BEV scheduling 

surpass WA benefits. Moreover, highest benefits of DR are accrued in a portfolio with 

a high amount of uncontrollable and renewable capacity.  

Following the operational impact of DR, Chapter 7 discusses the impact of DR on 

power generation investment decisions. To this end, a detailed generation expansion 

planning model is developed. Contrary to models from the available literature, this 

model combines detailed a short-term operational model with real options theory 

accounting for long-term uncertainty in DR and demand growth. This approach is 

tested within a Belgian case and allows policy makers to assess the feasibility of DR 

to help realizing policy targets such as the integration of renewables or a phase-out 

of conventional generation capacity. Results show that DR can limit investments in 

quantity and time. Nevertheless, 1.2 GW of additional capacity on top of planned 

investments is required towards 2026 to maintain cost-effective operation. If BEVs 

are integrated, the required capacity even reaches between 1.8 and 2.4 GW. In the 

latter case, scheduling BEVs leads to a reduction of invested capacity of 0.6 GW in 

19% of cases depending on the speed of BEV integration. Moreover, during the 

planning horizon investments can be postponed in time also decreasing actualized 

costs. Overall, an actualized cost reduction of 223 M€ or 1.3% of total costs is 

reached by BEV scheduling. Given that no BEVs are integrated yet and that future 

power consumption of BEVs is limited compared to total demand, this cost decrease 

is substantial and calls for the inclusion of DR within power system operation. 

Therefore, a potential breakthrough of BEVs should support scheduled charging in 

order to decrease the impact on power system costs. The contrary is true for the 

scheduling of WAs. Opposed to BEV scheduling, WA scheduling does not influence 

investment decisions. This follows from the limited amount of energy resulting from 

the use of WAs. Nevertheless, a modest actualized cost decrease of 26 M€ is 

obtained by scheduling WAs following from operational benefits. 

8.1.2 General findings on the use and usefulness of demand 

response 

The aim of this thesis is to enhance the knowledge of residential DR and DP. 

Additionally, it also wants to enable more informed decision making by policy 
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makers, industry and residential users. As different topics related to DR are 

addressed using different models, interpretation of results can be a challenging task. 

Therefore, this section aims at providing a general summary on the implications of 

results describing the use and usefulness of DR. As most results in this thesis follow 

from Belgian case studies, conclusions in this section also focus on Belgium. 

Throughout this thesis, it was pointed out that momentum is building towards 

implementation of residential DR. The driver of this momentum is the increased need 

for flexibility due to the rise of renewables, phase-out of conventional generation 

capacity, ageing assets, and electrification of energy services. This need is only 

expected to become more stringent as more renewables are integrated and 

conventional generation capacity is phased-out.  

The enabler of this momentum is the rise of technology as advanced metering, ICT 

and automation have taken a leap. These technologies are prerequisites for the 

successful implementation of DR and DP. Metering enables to measure and verify 

demand reactions to certain events. First experiences with DR have learned that this 

is essential for utilities in order to rely on the triggered flexibility and remunerate it 

accordingly. The same principle holds when DP is implemented. In this perspective, 

correct billing according to electricity consumption in every price block is essential. 

Progress in ICT adds to social acceptability and practicality of DR and DP. Hereby, 

technologies such as online monitoring, graphical user-interfaces and in-house 

displays can provide useful information to households. This results in higher 

customer involvement and enables them to make informed decisions concerning their 

electricity consumption. Finally, also automation adds to social acceptability and 

practicality as it entails to trigger DR without compromising comfort. Moreover, it 

allows households to keep their level of response over time as the effort needed to 

provide DR is limited. From the point of view of utilities, this also benefits reliability 

and controllability of DR facilitating easier integration in power system operation.  

Following from the rise of technology and the increased need for flexibility, energy 

industry and policy makers recognize the usefulness of DR. This is the case for 

generators, retailers, transmission system operators, and distribution system 

operators. Their interest sprouts either from regulatory, economic, or reliability 

incentives.  

Benefits for households and power system operation resulting from DR can be 

substantial. This is shown to be the case for WA and BEV shifting based on DP. 

Under RTP, nearly all BEV owners annually save between 100 and €200 by 

scheduling consumption. If these savings do not come at costs of comfort, 

participation of vehicle owners seems viable. For WAs, the picture looks different as 

the average household saves €18 by scheduling consumption. Nevertheless, some 

households save more than double. The latter might be interested in shifting 
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consumption to reap these savings. Apart from financial incentives, environmental 

incentives are not considered. Following from DR at household level, also significant 

cost savings can be reaped at the power system level. Hereby, integration of BEVs 

has considerable impact on power system operation and investment. Under the 

assumptions that no BEVs are integrated yet and that the expected share of BEVs 

amounts 30% of all light-duty vehicles in 2025, 223 M€ or 1.3% of total Belgian 

operating and investment costs can be saved. Moreover, DR with BEVs provides an 

efficient means to prevent curtailment of generation from RES. Therefore, scheduled 

charging of those vehicles seems appropriate upon massive integration as this helps 

reaching policy targets such as the integration of renewables while saving money. 

For WA scheduling, again this picture looks different as savings are more limited. 

Hereby, the amount of demand is not large enough to influence investment 

decisions, nor to influence operational costs to a considerable extent. Nevertheless, 

DR again proves to be an efficient means to prevent curtailment of generation from 

renewables. 

Demand response can be triggered using different dynamic pricing schemes. As 

stipulated, a balance needs to be found between tariff principles related to costs and 

social acceptability and practicality on the one hand and its resulting demand 

response incentive on the other. In order to reach substantial savings following from 

DR, sufficient dynamics in tariff schemes are key. Therefore, smaller price blocks 

implying larger price differences seem appropriate in order to incentivize DR. An 

example of such a tariff scheme is real-time pricing (RTP). To allow residential users 

to react to variability in prices while keeping their comfort level, inclusion of 

automation seems essential. It allows meeting principles of social acceptability and 

practicality, while prevailing cost related tariff principles and triggering DR.  

8.2 Recommendations for further research 

Recommendations for further research following from this thesis are twofold. First of 

all, expansions and improvements of the models discussed in this thesis are 

suggested. Second, other interesting research paths linked to this thesis are 

discussed. 

8.2.1 Model expansions and improvements 

This thesis covers several models: a model for development of dynamic pricing 

schemes, a WA and WG scheduler, a statistical model for calculating price elasticities, 

an operational model which includes DR in power system operation, and an 

investment model which includes short-term system operation and long-term 

demand uncertainty. Possible improvements for each of these models are possible. 
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Currently, the model for development of dynamic prices is based on wholesale prices 

and residential load profiles. Adding to cost causality, a more detailed inclusion of 

several cost categories seems appropriate. Nevertheless, detailed cost information 

from DSOs, TSOs, generators and retailers is not readily available. Moreover, the 

relationship between costs and residential generation or consumption is not 

straightforward. Note also that translating costs into prices based on a mixture of 

rate designs such as energy based pricing, capacity based pricing, and fixed pricing 

remains subject to further research. 

The WA scheduler assumes residential users to set a shifting potential of 8 hours 

during which the appliance cycle needs to be finished. Although this aligns with 

averages derived from the LINEAR-project, including a distribution of shifting 

potential over different households would further add to a realistic outcome of 

simulations.  

The scheduler assumes that BEVs can charge during stand-still at home, covering the 

period from arriving until departing. Specific charging settings of vehicle owners are 

neglected. Moreover, fast charging and vehicle-to-grid charging are neglected.  

The almost ideal demand system (AIDS) within this thesis estimates price elasticities 

based on REN-pricing. Expanding this model in order to estimate hourly elasticities 

would be interesting as this leads to more detailed results of demand changes over 

the course of the day. Another interesting research path would be to compare results 

from AIDS with other functional forms such as generalized Leontief and generalized 

McFadden. Moreover, including elasticity results in classical models for predicting 

demand would allow to further test the usefulness of estimated price elasticities. 

Finally, as shown in this thesis, a quantification of DR based on price elasticities does 

not fully align with economic theory in the simulated and automated cases. 

Therefore, developing new models that allow for a more accurate and finer 

representation of DR shows significant potential.  

In modeling power system operation, interconnection capacity, transmission 

capacity, market behavior, demand uncertainty, and uncertainty in power generation 

from solar plants are neglected. Moreover, no stochasticity is included in the day-

ahead optimization stage. In modeling DR, the willingness of households to provide 

flexibility and the cost it brings are not included. Furthermore, individual WA 

characteristics per household are not considered. Integrating this would further 

benefit a realistic outcome. Other paths for future research are the inclusion of a 

sensitivity analysis on reserve requirements, residential controllable generation 

technologies and vehicle-to-grid charging. Finally, including DR in the second stage 

of the operational model would allow it to contribute to corrective actions needed 

due to forced outages or forecast errors of power generation from RES. This real-

time DR could significantly impact results. 
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A first improvement of the investment model is to integrate other technologies with 

various capacities in the decision tree. Although this contributes to a more realistic 

outcome, the enlarged state space increases calculation time enormously. Second, a 

deeper assessment of the uncertainty tree can lead to a more realistic outcome.  

8.2.2 Other research paths 

Several research paths related to DR and DP remain open to be explored.  

The impact of remuneration schemes for residential generation facilities on 

residential bills but also on the DR incentive is largely untested. Different 

remuneration schemes exist, yet the impact on DR is often not considered during 

implementation. Nevertheless, it is considerable as partly shown in Chapter 2. 

Therefore, more elaborated research to describe this impact seems necessary. 

Within this thesis, simulations of residential DR focus on WAs and BEVs. Including 

other residential appliances such as heat pumps and cold appliances could expand 

current conclusions.  

Practical results in this thesis are based on the LINEAR project. This project enabled 

a first step towards implementation of DR and DP. Nevertheless, additional testing is 

needed to reach commercial implementation. Therefore, additional field tests 

involving more households, different user interfaces, and different dynamic pricing 

schemes may contribute to better knowledge of consumer behavior. 

Distribution and transmission constraints are not considered in this thesis. Including 

these technical constraints in economic optimizations provides insights in feasibility of 

results as described. 

While this thesis provides insights in savings for households and the power system as 

a whole, the distribution of these savings and the value flows amongst the different 

stakeholders are not discussed. Moreover, cost aspects of including DR within the 

system are not covered. Both distribution of savings and inclusion of costs remain 

subject to further research. 
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Appendix A  

Optimal price elasticities based on simulation with wet 

appliances under different tariff schemes 

Within this thesis dissertation, optimal elasticities under renewable pricing are 

derived for the cases in which wet appliances and battery electric vehicles are 

simulated. This naming is chosen as these elasticities follow from optimized flexible 

demand profiles. Hereby, flexible demand is always shifted to the lowest price period 

independent of relative price differences between periods. Therefore, these 

elasticities align with a best case scenario as households are extremely price 

sensitive within the boundaries of their comfort zone.  

To illustrate the dependency of the optimal elasticities on price, the own elasticities 

based on wet appliance shifting for three different pricing schemes are shown in Fig. 

A.1. The different pricing schemes are all obtained based on the renewable pricing 

scheme (REN) as described in this dissertation. The base pricing scheme equals REN, 

while in the other pricing schemes a flat component of 5 and 15 c€/kWh is added on 

top of REN. This ensures that absolute price differences between price periods 

remain the same, while relative price differences change.  

 

 

Fig. A.1.  Own price elasticities based on wet appliance shifting under three different pricing 

schemes: renewable pricing (REN), REN plus a flat component of 5 c€/kWh, and REN plus a flat 

component of 15 c€/kWh. 
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As shown in Fig. A.1., own optimal elasticities depend on the pricing scheme itself. 

Own optimal price elasticities become more negative when a flat component is added 

to the REN pricing scheme. This follows from a decrease of the relative pricing 

differences between peak and off-peak periods while the demand shift remains the 

same. In other words, the same demand response following from smaller relative 

price differences leads to more negative price elasticities. This illustrates the 

importance of the naming of the optimal price elasticities throughout this thesis. As a 

consequence, the optimal elasticities based on simulation within this thesis are only 

valid under similar tariff schemes.  
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Appendix B  

Inclusion of residential demand response in power 

system operation 

This appendix provides the specific mathematical formulation of the inclusion of 

demand response within the deterministic unit commitment and economic dispatch 

model used in this dissertation. Therefore, the main indices, parameters, variables, 

and equations are provided. A distinction is made between demand response with 

wet appliances (WAs) and demand response with battery electric vehicles (BEVs). A 

detailed description of the former can be found in Dietrich et al. [126], while the 

latter is thoroughly discussed in Ramos et al. [139] and Bañez et al. [131]. 

Constraints related to reserve requirements or technical characteristics of power 

plants are omitted for simplicity, but can be found in Dietrich et al. [126]. 

Indices 

General  

𝑝, 𝑝’   Time period. 

𝑔 Generators. 

𝑡  Thermal plants ({t g}). 

ℎ  Pumped storage hydro plants ({h g}). 

Inclusion WAs 

𝑎 Types of appliances. 

Inclusion BEVs 

𝑒 Types of BEVs. 
𝑠, 𝑠’ State of the BEV {sc (connected to the grid), sm 

(moving)}. 

Parameters 

General   

𝐷𝑝   Demand for period p [MW].  

𝑈𝑛𝑐𝐺𝑝 Power generation from uncontrollable capacity (wind 

capacity, solar, biomass, CHP, hydro run-of-river 
capacity) in period p [MW]. 

𝑈𝑅𝑒𝑠𝐶, 𝐷𝑅𝑒𝑠𝐶 Upward and downward reserve deficit cost [€/MWh]. 

𝑁𝑆𝐸𝐶 Non-supplied energy cost [€/MWh]. 

𝐹𝐶𝑡 Fixed cost of thermal unit t [€/h]. 
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𝑉𝐶𝑡 Variable cost of thermal unit t [€/MWh]. 

𝑆𝐶𝑡 Start-up cost of thermal unit t [€]. 

Inclusion WAs 

𝐷𝑈𝑝𝑀𝑎𝑥𝑎  Maximum upward variation of demand for each 

appliance type a [p.u.]. 

𝐷𝐷𝑜𝑀𝑎𝑥𝑎  Maximum downward variation of demand for each 

appliance type a [p.u.]. 

Inclusion BEVs 

𝐸𝐶𝑀𝑎𝑥𝑝
𝑒 Maximum power charged by BEV e in period p [MW]. 

𝐸𝐸𝑀𝑎𝑥𝑒 Maximum energy charged by BEV e [MWh]. 

𝐸𝑃𝑝
𝑒,𝑠 Percentage of BEV of type e and in the state s for each 

period p [p.u.]. 
𝐸𝑃𝑇𝑝

𝑒,𝑠,𝑠′ Percentage of BEV of type e and in the state s’ that 

move to the state s for each period p [p.u.]. 
𝐸𝑇𝑝

𝑒,𝑠  Battery energy used in transport of each type of BEV e  

in each state s for each period p [MWh]. 
𝐸𝐸𝑓𝐺𝑡𝐵𝑒   Grid-to-battery efficiency for each type of BEV e [p.u.]. 

𝐸𝐸𝑓𝐵𝑡𝑊𝑒  Battery-to-wheel efficiency for each type of BEV e [p.u.]. 

Variables 

General  

𝑜𝑝𝑐𝑜𝑠𝑡 Total operational cost [€]. 
𝑛𝑠𝑒𝑝 Non-supplied power in period p [MW]. 

𝑤𝑐𝑝 Wind curtailment in period p [MW]. 

𝑢𝑟𝑑𝑒𝑓𝑝 , 𝑑𝑟𝑑𝑒𝑓𝑝  Upward and downward reserve deficit in period p [MW]. 

𝑠𝑡𝑝
𝑡  Start-up thermal unit t in period p {0,1}. 

𝑢𝑐𝑝
𝑡  Commitment of thermal unit t in period p {0,1}. 

𝑔𝑝𝑝
𝑔
 Output of generator g in period p [MW]. 

𝑔𝑐𝑝
ℎ Consumption of pumped storage hydro plant h in period 

p [MW]. 

Inclusion WAs 

𝑑𝑢𝑝𝑝,𝑎  , 𝑑𝑑𝑜𝑝,𝑎 Upward and downward demand variation for each type 

of appliance in period p [MW]. 

Inclusion BEVs 

𝑠𝑜𝑐𝑝
𝑒,𝑠 State of charge (SOC) of the battery of BEV e at the end 

of period p in each state s [MWh]. 
𝑒𝑐𝑝

𝑒,𝑠 Consumption of BEV e  in state s in period p [MW]. 

𝑐ℎ𝑝
𝑒 BEV e charging indicator in period p {0,1}. 
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Objective function 

Min. 𝑜𝑝𝑐𝑜𝑠𝑡 =  ∑ [
∑(𝐹𝐶𝑡 ∙  𝑢𝑐𝑝

𝑡  +  𝑆𝐶𝑡 ∙  𝑠𝑡𝑝
𝑡 + 𝑉𝐶𝑡  ∙  𝑔𝑝𝑝

𝑡 )

𝑡

+ 

𝑁𝑆𝐸𝐶 ∙ 𝑛𝑠𝑒𝑝 + 𝑈𝑅𝑒𝑠𝐶 ∙  𝑢𝑟𝑑𝑒𝑓𝑝 +  𝐷𝑅𝑒𝑠𝐶 ∙  𝑑𝑟𝑑𝑒𝑓𝑝

]

𝑝

 

(A.1) 

Constraints related to inclusion of WAs 

Modified demand-supply balance constraint 

𝐷𝑝 + 𝑑𝑢𝑝𝑝,𝑎 − 𝑑𝑑𝑜𝑝,𝑎 − 𝑈𝑛𝑐𝐺𝑝 − 𝑛𝑠𝑒𝑝 + 𝑤𝑐𝑝 =  ∑ 𝑔𝑝𝑝
𝑔

− ∑  𝑔𝑐𝑝
ℎ

ℎ𝑔

 ∀ 𝑝 (A.2) 

Upward and downward daily demand variation balance per appliance type 

∑ 𝑑𝑢𝑝𝑝,𝑎

𝑝∈{1,24}

= ∑ 𝑑𝑑𝑜𝑝,𝑎

𝑝∈{1,24}

 ∀ 𝑎 (A.3) 

Maximum demand shift per appliance type 

(
𝐷𝐷𝑜𝑀𝑎𝑥𝑎

𝐷𝑈𝑝𝑀𝑎𝑥𝑎
) ∙ 𝐷𝑝 ≥ (

𝑑𝑑𝑜𝑝,𝑎

𝑑𝑢𝑝𝑝,𝑎
) ≥ 0  

∀ 𝑝, 𝑎 (A.4) 

Constraints related to inclusion of BEVs 

Modified demand-supply balance constraint 

𝐷𝑝 + ∑ 𝑒𝑐𝑝
𝑒,𝑠

𝑒,𝑠

− 𝑈𝑛𝑐𝐺𝑝 − 𝑛𝑠𝑒𝑝 + 𝑤𝑐𝑝 =  ∑ 𝑔𝑝𝑝
𝑔

− ∑  𝑔𝑐𝑝
ℎ

ℎ𝑔

 ∀ 𝑝 (A.5) 

State of charge of battery 

𝑠𝑜𝑐𝑝
𝑒,𝑠 − 𝑠𝑜𝑐𝑝−1

𝑒,𝑠 = 𝑒𝑐𝑝
𝑒,𝑠 ∙ 𝐸𝐸𝑓𝐺𝑡𝐵𝑒 −

𝐸𝑇𝑝
𝑒,𝑠

𝐸𝐸𝑓𝐵𝑡𝑊𝑒
+ ∑ 𝑠𝑜𝑐𝑝−1

𝑒,𝑠′ ∙ 𝐸𝑃𝑇𝑝−1
𝑒,𝑠,𝑠′

𝑠′≠𝑠

 
∀ 𝑝, 𝑒, 𝑠 (A.6) 

Logical BEV constraints of BEV when moving and plugged-in 

𝑒𝑐𝑝
𝑒,𝑠 = 0  ∀ 𝑠 ∈ 𝑠𝑚 

∀ 𝑝, 𝑒, 𝑠 (A.7) 
𝐸𝑇𝑝

𝑒,𝑠 = 0  ∀ 𝑠 ∈ 𝑠𝑐 

Maximum charging power  

𝑒𝑐𝑝
𝑒,𝑠 ≤ (1 − 𝑐ℎ𝑝

𝑒 ) ∙ 𝐸𝐶𝑀𝑎𝑥𝑝
𝑒 ∙ 𝐸𝑃𝑝

𝑒,𝑠 ∀ 𝑝, 𝑒, 𝑠 (A.8) 

Maximum energy that can be charged in one period 

𝑒𝑐𝑝
𝑒,𝑠

≤ 𝐸𝑃𝑝
𝑒,𝑠 ∙ (𝐸𝐸𝑀𝑎𝑥𝑒 − 𝑠𝑜𝑐𝑝

𝑒,𝑠) ∀ 𝑝, 𝑒, 𝑠 (A.9) 
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