
Advanced Wi-Fi Attacks Using Commodity Hardware

Mathy Vanhoef
iMinds-DistriNet

KU Leuven
Mathy.Vanhoef@cs.kuleuven.be

Frank Piessens
iMinds-DistriNet

KU Leuven
Frank.Piessens@cs.kuleuven.be

ABSTRACT
We show that low-layer attacks against Wi-Fi can be im-
plemented using user-modifiable firmware. Hence cheap off-
the-shelf Wi-Fi dongles can be used carry out advanced at-
tacks. We demonstrate this by implementing five low-layer
attacks using open source Atheros firmware. The first at-
tack consists of unfair channel usage, giving the user a higher
throughput while reducing that of others. The second attack
defeats countermeasures designed to prevent unfair channel
usage. The third attack performs continuous jamming, mak-
ing the channel unusable for other devices. For the fourth
attack we implemented a selective jammer, allowing one to
jam specific frames already in the air. The fifth is a novel
channel-based Man-in-the-Middle (MitM) attack, enabling
reliable manipulation of encrypted traffic.

These low-layer attacks facilitate novel attacks against
higher-layer protocols. To demonstrate this we show how
our MitM attack facilitates attacks against the Temporal
Key Integrity Protocol (TKIP) when used as a group ci-
pher. Since a substantial number of networks still use TKIP
as their group cipher, this shows that weaknesses in TKIP
have a higher impact than previously thought.

1. INTRODUCTION
Wireless networks based on the 802.11 standard have had

an enormous success, ranging from use in common house-
holds to large scale deployments in critical infrastructures.
As new standards push the boundary of transmission speed
and functionality, the capabilities of wireless chips have in-
creased accordingly. This opens new possibilities where com-
modity devices can be used to implement state of the art
attacks, previously thought only possible on expensive hard-
ware such as Universal Software Radio Peripherals (USRPs).
To demonstrate this we implement several low-layer attacks
using off-the-shelf Wi-Fi dongles. In particular we modify
the firmware of Atheros AR7010 and AR9271 chips. We con-
jecture that other devices, which also load user-modifiable
firmware after power up, can execute similar attacks.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ACSAC ’14, December 08–12, 2014, New Orleans, LA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3005-3/14/12 ...$15.00.
http://dx.doi.org/10.1145/2664243.2664260 .

Our first modifications give the client an unfair share of
the bandwidth. We use this to experimentally explore the
behaviour of selfish stations. Based on this, to the best of our
knowledge, we are the first to suggest that contending selfish
stations will exploit the capture effect to increase through-
put. This is the phenomenon where, in case of a collision, the
frame with the strongest signal and lowest bitrate is received
correctly [13]. Surprisingly, contending selfish stations end
up lowering their bitrate to obtain a higher throughput. We
also bypass systems designed to prevent selfish behaviour.

We continue by turning our dongle into a continuous and
selective jammer. The former endlessly transmits noise,
while the latter jams specific frames already in the air. Pre-
viously, selective jamming required either a costly USRP
setup [7], or a WiFi adapter which allows modifications
to the microcode handling medium access and de/encod-
ing operations [4]. Though it shows selective jamming is
possible, the URSP setup is non-trivial and costs more than
$3600. Additionally, being able to change medium access al-
gorithms in commodity devices is rare in practise. We show
that these jamming attacks can be implemented using off-
the-shelf USB dongles (costing only 15$) without requiring
low-level microcode access. It is surprising this is possible
by using only the default (and limited) API of the wireless
chip (i.e., without modifying its medium access algorithms).

With as goal to enable (or facilitate) attacks on higher-
layer protocols, we also present a channel-based MitM at-
tack against any type of encrypted network. Our goal is not
to decrypt traffic, but to be able to reliably intercept and
manipulate it. Normally obtaining a MitM position in an en-
crypted network is not trivial, since the station and Access
Point (AP) verify each other’s MAC address. Therefore an
attacker cannot set up a rogue access point with a different
MAC address to subsequently intercept and forward all traf-
fic. We demonstrate that cloning the AP on another channel
bypasses the MAC address checks. Customizable firmware
makes the implementation easier and more efficient, in par-
ticular when targeting multiple stations simultaneously.

Finally we use the MitM position to attack TKIP when
used as a group cipher, and show how to decrease the ex-
ecution time of the attack by targeting multiple stations
simultaneously. Since most routers by default use TKIP as
their group cipher for backwards compatibility, a significant
amount of networks are vulnerable to our attack.

Our selective jammer, channel MitM, and TKIP attacks
are available for download [1]. The unfair channel usage
and continuous jammer can disrupt network activity without
usable countermeasures being available. Therefore we do not

Busy Medium Backoff Slots Next Frame

SIFS

AIFS[i]

SLOT

Defer Access Decrement backoff if medium idle

Figure 1: EDCA Timing Relations.

release them. To summarize, our main contributions are:

• We study (contending) selfish stations using off-the-
shelf Wi-Fi dongles, taking into account capture affect,
and bypass systems designed to detect selfish users.

• We show how continuous and selective jamming can
be implemented using off-the-shelf Wi-Fi dongles.

• We present a channel-based Man-in-the-Middle attack
against encrypted networks, enabling reliable intercep-
tion and manipulation of all encrypted traffic.

• We attack TKIP when used as a group cipher, and ad-
ditionally devise a technique to decrease the execution
time by targeting multiple stations simultaneously.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the relevant aspects of the 802.11 standard.
In Section 3 we analyse, implement, and measure the impact
of selfish stations. Section 4 shows how continuous and selec-
tive jamming can be implemented on commodity devices. A
novel channel-based Man-in-the-Middle attack is presented
in Section 5, and in Section 6 we use this to attack TKIP
when used as a group cipher. Finally, we summarise related
work in Section 7 and conclude in Section 8.

2. THE 802.11 STANDARD
In this section we present the basics of the 802.11 MAC

and physical (PHY) layer [11], explain the TKIP encryption
protocol, and introduce the ath9k_htc firmware.

2.1 Medium Access Control (MAC)
The MAC service is responsible for exchanging MAC Pro-

tocol Data Units (MPDUs) using carrier sense multiple ac-
cess with collision avoidance (CSMA/CA). A station wish-
ing to transmit first monitors the medium for a given Inter
Frame Space (IFS), using a carrier sense mechanism. If the
medium is busy the station defers its transmission using a
random backoff procedure. The original standard offered the
Distributed Coordination Function (DCF) to control this
process. The 802.11e amendment extends DCF with Quality
of Service (QoS) enhancements, resulting in enhanced dis-
tributed channel access (EDCA). With EDCA four different
Access Classes (AC) are defined, allowing the prioritization
of traffic. For example, the access class of voice traffic has a
higher priority than that of background traffic. We use the
terms QoS channel and priority as synonyms of AC.

The time a station must wait before it can transmit de-
pends on several parameters and inter frame spaces (see Fig-
ure 1). The shortest is the Short Interframe Space (SIFS)
and is the time between successfully receiving a frame and
sending an acknowledgement (ACK). Other frames must
wait longer than SIFS , giving ACKs the highest priority.
When a station wants to transmit a data frame of access
class AC it first monitors the medium for a period equal to

AIFS [AC] = SIFS + AIFSN [AC] · SLOT (1)

preamble header TSC Data MIC ICV FCS

encrypted

MPDU: rate defined by PLCP headerPLCP: 1 Mbps

Figure 2: Simplified format of 802.11b TKIP frames.

where SLOT is the duration of one slot interval, and with
AIFSN dependent on the access class. If the medium is idle
during this time the station can transmit immediately. In
case the medium was busy the contention window CW [AC]
is set to CWmin[AC] and the random backoff procedure is
initiated. This procedure initializes the backoff counter to a
value uniformly distributed over the interval [0,CW [AC]].
Once the medium has been idle for AIFS [AC], the backoff
counter is decremented for each slot where the medium is
idle. When the counter is zero the station transmits the
frame. Since AC is clear from context it will no longer be
explicitly included. The values assigned to AIFSN , CWmin ,
and CWmax determine the priority of an access class, and are
advertised by the AP in the EDCA parameter set element
in beacons and probe responses. Beacon frames are peri-
odically transmitted to advertise the presence of a network,
while probe requests and responses are used to actively seek
networks. The value of SIFS and SLOT depend on the
physical layer being used (see Section 2.2).

If the Frame Check Sequence (FCS) at the receiver is cor-
rect it will wait SIFS time and send an ACK. If the sender
receives an ACK it resets CW to CWmin and enters a post-
backoff stage by setting the backoff counter to a value uni-
formly distributed over the interval [0,CW]. When the FCS
is wrong the frame is discarded. When the sender receives no
ACK it retransmits the frame by updating CW to 2·CW +1
and repeating the backoff procedure. A frame is retransmit-
ted at most 7 times, and CW is limited by CWmax .

Assuming all stations cooperate, analytical models of DCF
show that it provides fairness [5]. Hence identical access
classes in EDCA also provide this fairness. However, in prac-
tice stations can act selfishly and increase their throughput
at the cost of others [25, 22]. In Sect. 3 we will study in
detail how selfish stations can increase their throughput.

2.2 Physical Layer (PHY)
Wi-Fi can operate in the 2.4 and 5 GHz bands. A chan-

nel number defines the center frequency on which the radio
operates. Senders can choose between multiple transmission
rates: low rates are used for bad connections, and high for
good connections. For backwards compatibility beacons and
probes are generally sent using the lowest rate of 1 Mbps.

When an MPDU is transmitted a Physical Layer Conver-
gence Protocol (PLCP) preamble and header is added (see
Figure 2). The preamble allows the receiver to synchronize
to the transmission, and the header defines the modulation
used for the MPDU. We focus on 802.11g long preamble
mode, where (slightly simplified) the overhead of the PLCP
is 23 µs, SIFS is 10 µs, and SLOT is 9 µs [11, §18.3].

An important property of 802.11 radios is their suscep-
tibility to the capture effect, the phenomenon where the
strongest frame is received correctly in case of a collision.
This goes against the common assumption that both frames
are lost. More precisely, a collision results in one of three
cases [13]: (1) both frames are lost; (2) if the stronger

frame is received first it will be decoded correctly; or (3) if
the stronger frame is received second, yet within the PLCP
preamble of the first one, the second frame will be decoded
correctly. The capture effect has been observed on different
chipsets [13, 8], occurs more frequently at low bitrates [14],
and favours nearby stations [13]. In Section 3 we show that
selfish stations can abuse it to contend with other stations.

2.3 Temporal Key Integrity Protocol
The Temporal Key Integrity Protocol (TKIP) is an im-

provement of the broken WEP protocol [27]. It was designed
so old WEP-compatible hardware can support TKIP with
only firmware updates. Nowadays TKIP is deprecated, and
the more secure (AES-)CCMP is recommended. However,
networks which support both TKIP and CCMP simultane-
ously, generally use TKIP as their group cipher. This is
done for backward compatibility, so both old TKIP clients
and newer CCMP clients can decrypt broadcast data. Since
most routers by default allow both TKIP and CCMP, and
thus use TKIP as their group cipher, TKIP is still widely
used. For example, recently it has been shown that 66% of
wireless networks in residential areas in Belgium use TKIP
as their group cipher [29]. Note that WPA1 and WPA2 are
certifications handed out by the WiFi Alliance. The differ-
ence between them is that WPA1 mandates TKIP support
and optionally allows CCMP, while the reverse is true for
WPA2. We use the term WPA1/2 to refer to both.

When a station connects to a secured network it begins
by negotiating session keys using a 4-way handshake. This
results in a pairwise transient key (PTK) and a group tem-
poral key (GTK). These keys depend, among other things,
on the MAC address of the station and AP. The PTK pro-
tects unicast traffic, while the GTK protects broadcast traf-
fic. When using TKIP as the group cipher, the GTK is
used to derive a 128-bit encryption key, and a 64-bit Mes-
sage Integrity Code (MIC) key. Note that a client transmit-
ting a broadcast frame first sends it to the AP (as a unicast
frame), after which the AP broadcasts it to all stations using
the group cipher. All keys are renewed after a user defined
interval, commonly set to 1 hour.

When a station transmits a TKIP protected frame, it first
calculates the MIC over the data field using its 64-bit MIC
key (see Figure 2). Then it calculates a CRC over the data
and MIC, called the Integrity Check Value (ICV). These
fields are encrypted using a per packet key derived from
the TKIP Sequence Counter (TSC) and 128-bit encryption
key. The TSC is a replay counter which is incremented after
successfully transmitting a frame. The receiver drops frames
with an old TSC or bad ICV. However, if a frame has a valid
TSC and ICV, but a wrong MIC, the TKIP countermeasures
are activated:

• Clients send a MIC failure report to the AP. Addition-
ally, when a client itself detects two failures within one
minute, it will disconnect from the network.

• An AP silently logs the MIC failure. If two failures
occur within one minute, it will halt all TKIP traffic for
one minute. After this minute clients can reconnect.

Several weaknesses have been discovered in TKIP [27, 29,
18, 28, 10, 17, 21, 20]. The first known attack, and the one
we built on, is the Beck and Tews attack [27]. It decrypts
a packet byte by byte and requires that QoS is supported,

Listing 1: Code which sets EDCA parameters for a
specific access class in the ath9k htc driver.

1 int ath_htc_txq_update(...):
2 qi.tqi_aifs = qinfo->tqi_aifs;
3 qi.tqi_cwmin = qinfo->tqi_cwmin / 2; /* XXX */
4 qi.tqi_cwmax = qinfo->tqi_cwmax;

which is the case for most modern devices [18, 29]. The
attack works by guessing the last byte of an encrypted packet
and then removing this byte. The ICV of the (encrypted)
shortened packet can be corrected if the guess was correct.
Because TKIP uses a unique TSC for each QoS channel,
we can inject the corrected packet on a QoS channel with a
lower TSC. If the guess was wrong, the ICV will be wrong,
and the receiver drops the packet. However, if the guess
was correct, the receiver will respond with a MIC failure.
Hence the last byte of a packet can be found by trying all
possible values and detecting a correct guess using the MIC
failure report. This technique is then recursively applied to
the shortened packet. To avoid the TKIP countermeasures
at most one byte can be decrypted per minute. In the Beck
and Tews attack this technique is used to decrypt an ARP
packet. From the decrypted packet, the MIC key for that
communication direction can be derived. This attack, and
its variations, have previously only been designed to attack
unicast traffic [27, 18, 28, 10, 29, 20].

For a more detailed background on TKIP, including prac-
tical attacks, we refer the reader to our earlier work [29].

2.4 Atheros Firmware Implementation
The open source ath9k_htc firmware runs on AR7010 and

AR9271 chips, and is sent to the device after power up.
The AR7010 is a system-on-chip that generally uses PCIe
to connect to an external AR9280 wireless chip, while the
AR9271 is a single-chip solution with onboard wireless chip.
The AR7010 supports both the 2.4 GHz and 5 GHz band,
but can only use its built-in 2x2 MIMO antenna. On the
other hand, the AR9271 can use an external antenna, but
only supports the 2.4 GHz band.

The wireless chip in both devices is controlled using mem-
ory mapped registers. For example, the AR_QTXDP register
contains a pointer to the transmit queue, and writing to the
AR_Q_TXE register will start the transmit process.

3. UNFAIR CHANNEL USAGE
In this section we study (contending) selfish stations using

off-the-shelf Wi-Fi dongles. This is done by implementing
several strategies and measuring the resulting throughput.
Finally we bypass system designed to detect selfish users.

3.1 Experimental Setup
In order to implement selfish strategies we modified the

ath9k_htc driver to get direct control over MAC layer pa-
rameters. While doing this we found that the original driver
wrongly divided CWmin by two, while other parameters were
properly configured (see Listing 1 line 3). This leads to an
unfair advantage, and motivates other stations to act selfish
as well. The driver was patched to properly set CWmin .

A Linksys WAG320N with firmware v1.00.08 is used as
the AP. It is connected to a HP 8510p running Linux 3.7.2

normal 1 2 3
0

10

20

30

40

2
8
.3 3

4
.2 3
7
.3

3
6
.4

1
4
.5

2
6
.6

3
7
.1

3
6
.2

1
4
.6

3
.5

0
.1 0
.2

Strategy of selfish station

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Sole
(selfish)

Far
(selfish)

Close
(fair)

Figure 3: Throughput in case of one selfish station
for the strategies in Sect. 3.2. Close and far denote
contending stations, with far being the selfish one.
Sole represents only one connected station. Stan-
dard deviation of all results were below 0.28 Mbps.

using a gigabit ethernet connection. For the clients we cre-
ated two identical VMWare Player instances, each having
2GB RAM and running Linux 3.7.2. One client uses a TL-
WN722N placed 10 cm from the AP, while the other uses a
AWUS036nha placed 1 meter from the AP (close distances
reduce packet loss, making measurements more accurate).
We refer to them as the close and far station, respectively.
Reported results are over 10 runs of iperf 2.0.5 in UDP mode,
using the maximum payload of an ethernet frame (1500
bytes minus 28 bytes for the IP and the UDP header), in
the form bandwidth± standard deviation. We use 802.11g,
a channel width of 20 MHz, do not use the RTS or CTS pro-
tection mechanism, and do not use encryption. We assume
the AP to be trusted and only consider selfish clients.

3.2 One Selfish Station
We study the behaviour a single selfish station in two

phases. First when the selfish station is the only (sole) device
connect to the network, and then when other fair stations
are also connected to the network. For the first phase we let
the close station be the only (sole) selfish station connected
to the network. We implemented the following selfish strate-
gies to determine whether they are effective or not:

1. Disabling backoff using the AR_DMISC register.

2. Setting AIFSN to zero in the AR_DLCL_IFS register.

3. Decreasing SIFS in the AR_D_GBL_IFS_SIFS register.

The result of these (incremental) strategies, including nor-
mal throughput, are shown in Figure 3 under“Sole (selfish)”.
Only results where SIFS was lowered to 6 are shown (our
conclusion is the same for other values). We verify these
results theoretically. It takes 218 µs to send 1472 bytes of
UDP payload at 54 Mbps (the highest 802.11g bitrate), and
23 µs to send the long PLCP preamble and header. We have
an overhead of a 34 bytes MAC header, a 20 byte IP header,
a 8 byte UDP header, and a 4 byte FCS. At 54 Mbps this
results in a overhead of 33 µs for each frame encapsulating
a 1472 byte UDP payload. Since an ACK is 14 bytes and
sent at 24 Mbps, it takes 38 µs to transmit when includ-
ing the LPCP and SIFS timeout. Before sending the data
frame, we wait on average SIFS +(AIFSN + CWmin

2
) ·SLOT .

Normally, when SIFS is 10 µs, SLOT is 9 µs, AIFSN is 3,

0 1 2 3 4 5 6 7 8

5.5/11

11/11

11/54

54/54

7.14

7.24

3.22

0.25

0.15

0.03

3.33

0.25

Throughput (Mbps)

B
it

ra
te

o
f

fa
r/

cl
o
se

(M
b
p
s)

Far station

Close station

Figure 4: Impact of bitrate on contending selfish sta-
tions. Y-axis shows bitrate of far and close station,
respectively. Error bars denote standard deviation.

and CWmin is 15, this is equal to 104.5µs. Hence it takes
on average 393 µs to send 1472 bytes of data, resulting in a
theoretical throughput of 29.96 Mbps. For the three selfish
strategies we get 36.18 Mbps, 39.45 Mbps, and 40.53 Mbps,
respectively. Our results are slightly lower because a bea-
con is transmitted every 102.4 ms and not all packets arrive
successfully. Notice that reducing SIFS may negatively im-
pact frame delivery. Hence a sole selfish station will disable
backoff and set AIFSN to zero, but will not change SIFS .

The experiments were repeated when a fair station was
also present. Since a malicious station may be unable to
move arbitrarily close to the AP, we pick the far station
as the selfish one. The results are shown in figure 3 under
“Close (fair)” and “Far (selfish)”. Again the optimal strategy
of the selfish station is to keep the default value of SIFS , dis-
able backoff, and set AIFSN to zero. We found this strategy
works independent of the distances between stations.

3.3 Multiple Selfish Stations
We experimentally investigate the behaviour of contend-

ing selfish stations, by letting both the close and far station
act selfishly. Because selfish stations generate so much traf-
fic they hinder the arrival of beacons, it was necessary to
modify the stations so they would not disconnect when too
many beacons were lost. We found two strategies to increase
throughput, both with as goal to exploit the capture effect:

1. Reducing the bitrate of transmissions.

2. Increasing transmit power.

These strategies work because, in case of a collision, the
receiver tends to decode the frame having the lowest bitrate
and the highest signal strength. Since collisions are now
desired selfish stations will disable carrier sense. This can
be done using the AR_DIAG_SW register. To avoid the station
from lowering its bitrate after a failed transmission, we force
both stations to use a fixed bitrate in each experiment.

First we performed experiments when contending selfish
stations reduce their bitrate. We found that stations keep
lowering their bitrate until this no longer provides any ad-
vantages (see Figure 4). In particular, both stations start
with a 54 Mbps bitrate. Due to collisions at high bitrates
most frames are lost. Assuming the far station lowers its bi-
trate, while the close station still uses 54 Mbps, the bitrate
resulting in the maximum throughput for the far station was
11 Mbps. In response the close station will maximize its

own throughput by using 11 Mbps as well. This arms race
continues until lowering the bitrate no longer provides any
advantages. We conjecture that the final bitrates depend
on the devices being used and on the environment. In our
setting the close station ends up using 11 Mbps while the far
station uses 5.5 Mbps. At this point neither station could
increase throughput. Hence contending selfish stations will
lower their bitrate in order to get a higher throughput.

A higher transmit power can also increase throughput,
though it is more sensitive to distances. If the close station
is 10 cm from the AP, the far station could not increase
its throughput using a higher transmit power. However,
when placing the close station 70 cm from the AP the sit-
uation changes. Assuming both stations act selfish and use
11 Mbps, the throughputs of the close and far station are
0.50±0.52 and 2.10±1.05 Mbps, respectively. When the far
station uses an amplifier as external antenna, its through-
put increases to 3.66±2.08 Mbps while the close station gets
0.44 ± 0.28 Mbps. Hence selfish stations will use a higher
transmit power in an attempt to increase their throughput.

At higher distances both strategies still work. However,
as the distance increase, it gets harder for a selfish station
to beat other stations and increase its own throughput.

3.4 Defeating Countermeasures
We now investigate mechanisms which are designed to

detect (and prevent) selfish behaviour. Unfortunately we
found that even advanced detection mechanisms such as
DOMINO [25] have weaknesses. Though they can reliably
detect manipulations of interframe spaces and the backoff
procedure, defending against stations which jam others ap-
pears difficult. The goal of jamming others is to increase
their contention window (backoff counter), increasing the
chance the cheater can access the channel. Frames of other
stations can be jammed by a selective jammer (see Sect. 4.2).

An attacker only jams frames of other clients. It detects
such frames based on the addresses in the MAC header.
Hence detection mechanisms assume the header of frames
remain valid, and use this to count the number of failed
(jammed) transmissions of stations [25]. If a station has
a significantly lower failed transmission count than all oth-
ers, it is assumed to be jamming the other stations, and is
punished (e.g. thrown of the network). The flaw in this tech-
nique is that the authenticity of jammed (corrupted) frames
cannot be guaranteed. An attacker can forge jammed frames
and fool the mechanism into thinking a station is jamming
others. The targeted station is then wrongly punished.

We created a tool to forge jammed frames. In particular
we used the AR_DIAG_SW register to force the wireless chip to
append a bad FCS to every transmitted frame. To target a
victim we forge jammed frames which appear to come from
all other stations. As a result the victim will appear to have
a significant lower number of failed transmissions compared
to the others, and will be wrongly punished.

We conclude that existing systems tend to underestimate
the power of attackers, and hope our work gives a better
overview of both the capabilities and behaviour of attackers.

4. JAMMING
In this section we show how to implement continuous and

selective jamming on commodity Wi-Fi devices. To the best
of our knowledge we are the first to accomplish this.

Register Description

AR_DIAG_SW Disable carrier sense, abort ongo-
ing reception, append bad FCS

AR_D_GBL_IFS_SIFS SIFS
AR_D_GBL_IFS_SLOT SLOT
AR_DLCL_IFS CWmin , CWmax , and AIFSN

Table 1: Important registers and their functionality.

Type Wireless Chip Device

USB

Atheros AR9271 Alfa AWUS036nha
Atheros AR9271 TP-Link WN722N
Atheros AR9280 Netgear WNDA3200
Realtek RTL8187L Alfa AWUS036h
Ralink RT2720 Belkin F5D8053 v3
Ralink RT3070 Digiflex aw-u150bb

PCI

Atheros AR5112 Wistron NeWeb CM9
Broadcom bcm4334 Galaxy i9305
Intel jc82535rde Intel 4965AG
Intel wg82541rde Intel 5100AGN

Access
Point
(PCI)

Atheros AR2413 Sagem F@st 3464
Broadcom bcm2050 WRT54g v2
Broadcom bcm4322 Linksys WAG320N
Broadcom bcm5356 Asus RT-N10

Table 2: Devices and their wireless chips. Monitor
mode is supported by all USB and Intel PCI devices.

4.1 Continuous Jamming
A continuous jammer transmits noise for an indefinite

amount of time. The noise can consist of random energy
pulses or data resembling the protocol being jammed. Gen-
erally one of these options is preferred. For instance, in-
jecting random Wi-Fi frames might trigger warnings from
intrusion detection systems, while random noise will be seen
as non-Wi-Fi devices using the same frequency.

To turn a commodity Wi-Fi device into a continuous jam-
mer we need to be able to carry out the follow tasks:

1. Disable carrier sense.

2. Reset all interframe spaces and disable backoff.

3. Prevent the chip from waiting for an ACK.

4. Queue a large number of frames for transmission.

Achieving the first two points is explained in Sect. 3. The
most important registers we used are summarized in Table 1.

To address the last two points we need to know how
the wireless chip is instructed to transmit frames. The
ath9k_htc firmware maintains a linked list of frames to be
sent. Each frame is encapsulated by a transmit descriptor,
which includes metadata describing how it should be trans-
mitted. Among the metadata is the HAL_TXDESC_NOACK flag.
When set, the wireless chip does not wait for an ACK and
will not retransmit the frame. To queue an infinite number
of frames we turn the linked list into one self-linked element.

We have implemented the continuous jammer by modify-
ing the ath9k_htc firmware and created a tool to send com-
mands to the firmware [1]. Since the AR7010 chip supports
2.4 and 5 GHz we can jam both bands on any channel. It is

PLCP MAC DATA FCS

tdetect tinit tjam

Figure 5: Timing requirements of selective jamming.
After a frame header is detected and decoded, the
jammer is initiated to jam the remaining content.

straightforward to turn our continuous jammer into a peri-
odic jammer, which transmits only during certain intervals.
An advantage of a periodic jammer is a lower consumption.

We tested our implementation using a WNDA3200 and
AWUS036nha. Both devices are able to jam any channel in
the 2.4 GHz band, with the WNDA3200 also able to jam
channels in the 5 GHz band. All devices in Table 2 were
susceptible to the attack: once the jammer was activated
they all lost their connection to the AP. When monitoring
the channel we observed that only the first frame injected
by the jammer was visible. All devices in table 2 support-
ing monitor mode displayed this behaviour. This highlights
an important difference between our jammer and the un-
fair channel usage described in Sect. 3. Though the high
load of a selfish node could at times cause a fair station to
disconnect, all its traffic would be visible in monitor mode.

The effectiveness of the jammer depends on how it is
blocking frames. They can be blocked by triggering the
carrier sense mechanism of the transmitter (preventing it
from sending frames) or by mangling the frame at the re-
ceiver. Generally it is easier to silence a transmitter, since
less power is required to trigger the carrier sense mechanism
compared to mangling incoming frames. To establish an up-
per bound on the effectiveness of our jammer we tested the
maximum distance for which the AWUS036nha could silence
a TL-WN722n. This was done with a clear line-of-sight be-
tween the victim and the jammer. Testing whether a device
was silenced was done by letting it inject a frame, and us-
ing a second device to monitor whether it was transmitted.
With an AWUS036nha as the jammer, it was effective up
to roughly 80 meters. When using an amplifier as external
antenna the range was extended to roughly 120 meters.

Cheap and readily available jammers for the 2.4 and 5 GHz
bands can have a high impact since many devices operate in
these bands (e.g., security webcams, baby monitors, etc).

4.2 Selective Jamming
Selective jammers are arguably the most sophisticated and

efficient. By targeting only selected frames an attacker can
stealthy block specific frames from reaching their destina-
tion. In its simplest form a selective jammer emits noise
whenever radio activity is detected. More sophisticated ones
decode a prefix of a frame and then decide whether to jam
the remaining content. In other words, they use higher-layer
information to decide whether to jam it. The downside is
that selective jammers can be difficult to implement, since
they must adhere to strict timing requirements. This is il-
lustrated in Figure 5 where tdetect is the time it takes to
detect and decode the frame header, tinit the time needed to
start the jammer, and tjam the time when the frame is being
jammed. To successfully jam a frame tdetect + tinit must be
lower than the time it takes to transmit the frame.

To implement selective jamming on commodity devices we
must be able to accomplish the following tasks:

Radio Main
CPU

RAM

Incoming frame

DMA
while (recvbuff[0] == 0): pass

Figure 6: Using commodity devices to detect and
process frames while they are still in the air.

1. Read the decoded header of a frame still in transit.

2. Abort receiving the current frame.

3. Immediately jam the channel.

Point 3 can be done by disabling carrier sense, setting all
interframe spaces to zero, disabling the backoff procedure,
and then injecting a dummy frame (see Sect. 4.1). Point 2
can be accomplished using the AR_DIAG_SW register.

There is no support to read the already decoded bytes of a
frame still in transit. Nevertheless, one can still accomplish
this if the wireless chip uses Direct Memory Access (DMA)
to write already decoded bytes to memory. In that case
we can monitor the receive buffer using the main CPU (see
Figure 6). We first initialize the receive buffer with values
that do not occur in valid 802.11 frames. Once these bytes
are being modified, we know a frame is being received, and
can read the already decoded bytes.

4.2.1 Implementation
We implemented the selective jammer by modifying the

ath9k_htc firmware [1]. Currently it is designed to jam bea-
cons and probe responses from a particular AP. The user can
specify which SSID or MAC address to target and for how
long to attack it. It is straightforward to modify our im-
plementation to target different frames. In particular, the
following fields can be used to target other frames: (1) MAC
addresses in the header; (2) type and priority of frame;
(3) sequence and fragment number. One can also use the
first bytes of data in the packet, though this may make it
difficult to jam the frame in time. Once decided to jam the
frame, we inject a dummy frame transmitted at 1 Mbps to
create a collision and mangle the frame. This will cause the
FCS of the targeted frame to be invalid making the receiver
drop the frame. To prevent the injected frame from being
retransmitted we use the HAL_TXDESC_NOACK flag. When tar-
geting unicast frames it is possible to inject an ACK imme-
diately after jamming the frame. This prevents the sender
from retransmitting the frame.

The selective jammer can also be modified to assure an
attacker is the first to reply to certain frames. For example,
an attacker can detect a probe request while it is still being
transmitted, and immediately queue the transmission of a
probe reply. To assure the reply is transmitted before any
other station we disable backoff and set AIFSN to zero. A
proof of concept of this attack has been implemented. The
tool detects probe requests, jams them, and replies with a
custom probe response. In Section 5 we use this to send
probe responses with a modified channel number. Being
able to reply faster than the legitimate source is known to
facilitate other attacks as well. For example, it can also be
used to forge DNS replies in an (unencrypted) network.

We conjecture that, with sufficient efforts, all operations
can be implemented on other commodity devices as well.

4.2.2 Experiments
We selectively jammed beacons with the victim at 70 cm

from the AP and the jammer at 1 m (all devices were lo-
cated on a single line). The victim was put in monitor mode
to track how many beacons were malformed. In each ex-
periment we carried out the attack for 2 minutes. When an
AWUS036nha jams a WNDA3200, on average 52% of the
beacons are malformed. However, when an AWUS036nha
is jamming a TL-WN722N, 99% of the beacons are mal-
formed. Hence the effectiveness depends on the device of
the victim. More precisely, the type of antenna, radio chip,
internal noise filters, etc. can all influence how vulnerable a
victim is. The device of the attacker also plays an important
role. As mentioned, when an AWUS036nha uses its default
antenna to jam a WNDA3200, on average 52% of the bea-
cons are malformed. But when connecting an amplifier to
the AWUS036nha and then jamming the WNDA3200, 92%
of all beacons are jammed. The location of the victim and
attacker also plays an important role. When a WNDA3200
jams another WNDA3200 in the 2.4 GHz band, 51% of bea-
cons were jammed. If we switch the location of the attacker
and victim, all beacons were jammed. This is expected, since
the signal strength of the AP is now lower for the victim,
meaning it becomes easier for the attacker to overpower it.
More precisely, the attacker must transmit a signal powerful
enough to overcome capture effect, otherwise the victim still
correctly receives the original frame. Finally we tested our
jammer in the 5 GHz band by using two WNDA3200’s. In
this case all beacons were jammed.

With beacons sent at 1 Mbps in the 2.4 GHz band, both
the AWUS036nha and WNDA3200 start mangling bytes at
position 52 of the beacon. When beacons are sent at 6 Mbps
in the 5 GHz band, the WNDA3200 starts mangling bytes at
position 88. This is sufficient to jam beacons, probe requests,
probe responses, and other packets of similar size. Currently
the jammer is limited by the time it takes the wireless chip
to write the first decoded bytes to RAM. In particular we
observed that the wireless chip writes to RAM only after it
has decoded the first 48 bytes. Further reverse engineering
may reveal a technique to force to chip to write to RAM
earlier, resulting in faster reaction times.

An interesting observation was made when selectively jam-
ming an AR5112 chip. When the signal power of the jammer
was ±16 dB higher than that of the AP, the AR5112 re-
turned a prefix of the beacon, followed by the dummy frame
injected by jammer. This was caused by the Message in Mes-
sage (MiM) support of the AR5112. Devices that support
MiM can resynchronise to a stronger frame while receiving
a weaker frame, even if the stronger frame arrives after the
preamble of the weaker frame [16]. Hence our selective jam-
mer is an ideal tool to test whether a device supports MiM.
For comparison, Lee et al. had to resort to more tedious
experiments to show the AR5112 supports MiM [14].

4.2.3 Discussion
One limitation of our jammer is that it does not have ac-

cess to the PLCP header of a frame still in transmit. In par-
ticular this means we are unable to access the length field in
the PLCP header, and thus do not know how long the frame
is. Normally the AR_DataLen field in the receive descriptor
contains the length of the frame. However, for frames still in
transmit, it contains the number of bytes written to RAM
so far. We found no other data from which the length can be

derived, though more analysis may overcome this obstacle.
Essentially our cheap selective jammer is capable of de-

terministically creating collisions. Apart from being used as
a jammer, it can also be used to test new collision detection
techniques, experiment with Message in Message radios, etc.
In short, a cheap and easily available selective jammer not
only shows that jamming poses a more serious threat than
previously thought, it also facilitates research experiments.

5. CHANNEL-BASED MITM
In this section we present a man-in-the-middle attack on

WPA1/2 secured networks. Our goal is not to decrypt traf-
fic, but to reliable intercept and manipulate it. In Section 6
we use this to attack TKIP when used as a group cipher.

5.1 Background
If the goal of an attacker is to reliably sniff and manip-

ulate traffic, merely monitoring the channel is insufficient.
Inevitably packets will be missed, and it is difficult to block
and manipulate traffic. Though a selective jammer can block
certain packets, it is not reliable enough (see Sect. 4.2.2).
Another problem is that selective jammers inherently do not
have access to the complete frame, giving an attacker lim-
ited information to decide whether to block it. All these
limitations disappear when having a MitM position.

Establishing a MitM position in a WPA1/2 secured net-
work is difficult due to the 4-way handshake. This is because
the generated session keys depend on the MAC address of
the AP and client. Therefore, if we use a rogue AP with a
different MAC address, the handshake will fail. Using the
same MAC address as the real AP is not possible since the
client and AP would simply communicate with each other.

5.2 Intercepting Encrypted Traffic
To intercept all traffic we will clone the AP on a different

channel and forward all traffic to the real AP. This requires
two Wi-Fi dongles: one operating on the channel of the real
AP, and one cloning the AP on a different channel. Because
both Wi-Fi dongles are physically close to each other they
can receive each others frames, even though they operate
on different channels. Hence, blindly forwarding packets be-
tween both channels may create an infinite loop. To avoid
this we keep track of recently forwarded frames using their
sequence numbers, and only forward new frames. To adver-
tise our rogue AP we transmit a beacon every 102.4 ms and
reply to probe requests using custom probe responses.

Once our rouge AP is started, we want to force clients to
connect to it. Unfortunately, injecting probe responses con-
taining the channel of the rogue AP does not cause clients
to switch channels. Selectively jamming all beacons and
probe responses is also not reliable, as some frames will in-
evitably be missed. Additionally we found that if a client
was recently connected to an AP, it will simply assume it is
still present, and immediately send an authentication frame.
This technique allows a mobile device to quickly reconnect
to a network. The authentication message is only 34 bytes
long and too short to be selectively jammed. Hence selec-
tive jamming cannot be used to force clients connect to the
rogue AP. To avoid all these issues we continuously jam the
channel of the real AP (see Sect. 4.1). This forces the clients
to switch to our channel and connect to our rogue AP. Once
the clients have switched, we can stop the jammer, and start
forwarding frames between the clients and the real AP.

5.3 Implementation
We implemented the attack in a command-line tool [1]. It

allows a user to specify which AP to clone, whether to jam
the channel of the real AP until clients connect to our AP,
and whether to write all intercepted traffic to file.

The firmware was modified so injected frames are retrans-
mitted in case of failure, and so ACKs are generated when
frames are sent to us. Retransmitting frames is done by dis-
abling the HAL_TXDESC_NOACK flag. Generating ACKs on the
device cloning the AP is straightforward, as it only needs to
listen on the MAC address of the AP. However, the device
on the channel of the real AP must listen to the MAC ad-
dresses of all connected clients. To accomplish this we rely
on virtual interface support, a hardware technology enabling
a single device to listen on multiple MAC addresses. When
a client is trying to connect to the rogue AP, our modified
firmware simulates the addition of a new virtual interface.

We had to patch the driver and firmware to prevent mod-
ifications to forwarded frames. In particular we made the
driver treat injected data frames as management frames. In
the firmware we marked injected frames as CF-Poll frames
to prevent the sequence number from being overwritten.

After establishing a MitM position an attacker will reli-
ably capture all traffic. Additionally, packets can be blocked
by not forwarding them. It is straightforward to update the
tool so the attack can be executed even when the target is far
away from the AP by forwarding frames over the internet.

5.4 Experiments
We performed several experiments to measure the relia-

bility and impact of the attack. For the victim we used a
Latitude E6500 running Linux 3.7.2, for the AP a Linksys
WAG320N using firmware v1.00.08, and as attack machine
a VMWare player instance having 2 GB RAM and running
Linux 3.7.2 with our modified drivers and firmware. We
used a TL-WN722N and WNDA3200 to intercept and for-
ward traffic, and an AWUS036nha as the jammer. The AP
was configured to operate in 802.11g mode.

When using continuous jamming to force clients to con-
nect to our rogue AP, we consistently established a MitM
position. Even clients already connected to the real AP
switched to the rogue AP. We then measured the impact
on latency, bandwidth, and web page loading times. When
connected to the real AP the victim had a latency of 3.82±
10.4 ms. This increased to 7.45±12.9 ms when connected to
our rogue AP. Hence latency is doubled, which is expected
since every packet must be forwarded by our rogue AP, and
is thus transmitted twice. To test the impact on throughput
we let the victim download a 100 MB file. Under normal
conditions this takes place at 18.6 Mbps. When being at-
tacked the speed is lowered to 8 Mbps. Finally we tested
the impact on page load times when surfing the web. Un-
der normal conditions a page was loaded in 0.76± 0.07 ms,
which increased to 0.83± 0.08 ms when under attack. Since
this is only a 9% slowdown users are unlikely to notice this
and will not realise they are under attack.

These results can be optimized by implementing a rate
adaptation algorithm when forwarding packets, and by using
unfair MAC parameters as described in Sect. 3.

5.5 Countermeasures
There are legitimate reasons for an AP to change channel,

for example to switch to a less occupied one. In the 5 GHz

band, switching channels is even required to avoid interfer-
ence with radars [11, §4.5.5.3]. Hence storing the channel of
an AP you previously connected to is not feasible.

The attack can be detected by including the channel of
the AP in the 4-way handshake. Unfortunately this requires
a change in the existing protocol, making this difficult to
realise in practise. Ideally the impact of the attack is reduced
by using a secure encryption protocol such as CCMP.

6. TKIP AS A GROUP CIPHER
In this section we attack TKIP when used as a group

cipher, which is the default security setting for most routers.

6.1 Attack Details
Previously TKIP was only investigated when used to pro-

tect unicast traffic (see Sect. 2.3). Our goal is to show that
TKIP can also be attacked when used as a group cipher, i.e.,
when used to protect broadcast and multicast frames.

Directly applying the Beck and Tews attacks on broadcast
packets fails when multiple clients are connected to the AP.
In that case all clients will simultaneously send a MIC fail-
ure report (instead of only the targeted client as in the uni-
cast scenario). Hence the AP immediately starts the TKIP
countermeasures. Recall that the countermeasures disable
all TKIP traffic for one minute, after which a new GTK is
generated and clients can reconnect. Thus we would only
be able to decrypt one byte. Our selective jammer cannot
be used to block the MIC failure reports, because they are
detected based on their unique length. More troublesome,
MIC failures are generally sent at high bitrates, meaning
even more advanced selective jammers are unable to reliably
jam them. Instead we use the MitM attack from Sect. 5, al-
lowing us to block MIC failure reports by not forwarding
them. Note that we must still assure that individual clients
do not send more than one MIC failure report every minute.
Otherwise the client will disconnect from the network, even
if the AP did not start the TKIP countermeasures.

Once a MitM position has been achieved we wait until a
small broadcast packet is transmitted. We prefer small pack-
ets as these take less time to decrypt. Since ARP requests
are small and sent when a client (re)connects to a network,
they are an ideal candidate. After capturing an ARP re-
quest we decrypt its ICV and MIC using the Beck and Tews
method, and guess the remaining content. Since we do not
forward MIC failures to the AP, the TKIP countermeasures
will not be actived when multiple clients send a MIC failure
report. Once the packet has been decrypted we learn the
keystream corresponding to the sequence counter (TSC) of
the ARP request, and we can derive the MIC key for broad-
cast traffic [27]. With this we can inject 3 to 7 small packets
to any client connected to the AP (the amount depends on
the number of supported QoS channels). Furthermore, exist-
ing attacks relying on knowing the MIC key can be modified
to work on broadcast packets. For example, by modifying
the attacks presented in [29], we can abuse fragmentation to
inject an arbitrary amount broadcast of packets, and we can
efficiently decrypt arbitrary broadcast packets.

We continue by speeding up the attack. There are several
techniques to accomplish this. First, if we do not detect a
MIC failure after trying all possible 256 values, we know the
target did not receive the packet with the correct guess. If it
did, it would retransmit the MIC failure until we responded
with an ACK. Hence we can immediately retry guessing all

values without fear of generating two MIC failures within
one minute. In contrast, previous attacks on TKIP had to
wait one minute because the attacker might have missed the
MIC failure report while the AP did receive it.

If we are able to send broadcast packets to only one client
we can further speed up the attack. We start the attack
by sending guesses to one particular client. Once it sends a
MIC failure report, we can immediately continue the attack
by targeting another client. Each client will only see one
MIC failure every minute, and the AP will see none, hence
the TKIP countermeasures are never activated. We keep
targeting different clients while assuring that an individual
client will never send more than one MIC failure report ev-
ery minute. The difficulty is in sending a broadcast packet
to a specific client. Though it is possible by cloning the AP
on multiple channels and spreading the clients out over these
channels, such an approach is cumbersome and requires mul-
tiple Wi-Fi devices. Instead we rely on the observation that
most devices do not process their own broadcast packets.
That is, most devices will drop broadcast packets with as
source address their own MAC address. Assuming we are
attacking two clients simultaneously, we can target one client
by using the source address of the other client. Finally we do
not have to wait one minute when guessing the last remain-
ing bytes. Though a client may send more than one MIC
failure report within one minute, and therefore disconnect
from the network, the AP will not see these MIC failures.
Hence the AP will not activate its countermeasures.

6.2 Implementation and Experiments
We implemented the attack by extending the MitM imple-

mentation (see Sect. 5). To attack two clients we rely on the
fact that a client will not process broadcast packets with as
source its own MAC address. Once the clients are connected
to our rogue AP, and completed the 4-way handshake, we
wait for an ARP request. The ARP request is decrypted
byte by byte, and finally the MIC key is derived.

Our experimental setup is the same as in Sect. 5.4, ex-
cept that we now also use a Samsung Galaxy i9305 running
Android 4.3 as a second victim. During the experiment we
first let the two victims connect to the real AP, after which
we started the attack. The execution time over 10 runs was
7.3±0.6 minutes. This is the time from launching the tool to
decrypting the APR reply and deriving the MIC key. Note
that the execution time can be further reduced by targeting
more stations simultaneously. Program output and network
traces of the attack are available for download [1].

As a comparison we measured the execution time of the
original Beck and Tews attack. The attacker used a TL-
WN722N and the victim an AWUS036h. They were placed
close to each other to reduce packet loss, an hence repre-
sents an optimal case. We used the tkiptun-ng tool from
aircrack-ng. The execution time over 10 runs was 14.6± 1.1
minutes, more than twice the time of our attack.

6.3 Countermeasures
To prevent the interception of MIC failure reports, APs

should securely acknowledge them. If the client does not
receive the acknowledgement within time, it may be under
attack, and should activate its TKIP countermeasures. This
prevents an attacker from blocking MIC failure reports and
attacking multiple stations simultaneously.

The attack can be mitigated by using a short rekeying

timeout of 2 minutes or less. Ideally the attack is prevented
by using a more secure encryption protocol such as CCMP.

7. RELATED WORK
Atheros drivers are popular for low-layer control over ex-

periments, relevant examples are [25, 14, 8]. Custom firm-
ware has also been used for low-layer control [3, 4, 9].

A significant amount of research on the behaviour of self-
ish stations rely only on analytic models and simulations [23,
6, 24]. Raya et al. perform experimental tests when a sin-
gle node manipulates the contention window of the backoff
procedure [25]. Pelechrinis et al. also perform experiments,
but only consider stations which modify their CCA thresh-
old [22]. However, an attacker can easily change additional
parameters. We are not aware of any works doing a de-
tailed experimental study on the behaviour of selfish sta-
tions, where multiple strategies are tested, and the capture
effect is taken into account. The capture has been observed
for 802.11 on Prism and Atheros chipsets [13, 8]. In [8] the
authors attempt to reduce the unfairness caused by this ef-
fect. Lee et al. perform a detailed study on when the capture
effect takes places, and found that the Atheros AR5112 not
only exhibits capture effect but also supports Message in
Message mode [14].

Bayraktaroglu et al. required a USRP to continuously jam
the 2.4 GHz band [2]. Kim et al. modify the MadWifi driver
of the Atheros 5212 to continuously emit meaningless frames
in the 2.4 GHz band [12]. Noubir et al. used one USRP1
and two RFX2400 boards to build a selective jammer [19].
Unfortunately the reaction time of their setup was too slow
to reliably jam frames [19, §6.1.4]. Cassola et al. required
two USRP2s and two RFX2400 boards, totalling more than
$3600, to selectively jam frames in the 2.4 GHz band [7].
Their jammer starts mangling frames sent using 1 Mbps at
byte 38, while our jammer does this at byte 52. However,
our dongle costs only $15, can jam both frequency bands,
and is easier in use due to it’s smaller size. In concurrent and
independent work, Berger et al. used custom microcode to
have control of medium access and de/encoding operations,
and used this to implement selective jamming in the 2.4 GHz
band [4]. The advantage of our approach is that we do not
require such low-level control over medium access operations
performed in the chip. Continuous and selective jammers
have also been created to target other wireless protocols [30,
31]. Our selective Wi-Fi jammer is unique because it is both
cheap and portable. Jamming can also be used as a defensive
mechanism [6, 4, 30].

Beck and Tews found the first practically exploitable vul-
nerability in TKIP, which required QoS enhancements to
be enabled [27]. Ohigashi and Morri used a MitM position
to execute the attack even if QoS was not enabled [20]. In
particular they assumed the client was not in range of the
AP, and that the attacker acted as a repeater by forward-
ing all frames between the client and AP. In contrast, our
MitM attack does not require that the client and AP are
out of range. Over the years additional improvements of
the Beck and Tews attack have been found [10, 18, 28, 29].
Several more theoretical attacks on TKIP have also been
published [17, 26, 21]. Finally, the closest related work to
our channel-based MitM attack we are aware of is the Air-
Jack tool [15]. It clones an unencrypted network on a differ-
ent channel and forwards all traffic over ethernet. Hence it
cannot clone encrypted networks, whereas our attack can.

8. CONCLUSION
We were able to implement several low-layer attacks on

Wi-Fi using open source Atheros firmware. This is surpris-
ing, since we only have access to a limited API to control the
radio (e.g. we cannot transmit arbitrary signals, do not have
access to raw signal data, don’t modify medium access al-
gorithms, etc). Additionally we bypassed systems designed
to prevent some of these attacks, indicating that previous
works have underestimated the capabilities of attackers. We
also showed that our low-layer attacks facilitate attacks on
higher-layer protocols, by attacking TKIP when used as a
group cipher. Since TKIP is used significantly more as a
group cipher than as a unicast cipher, this demonstrates
that weaknesses in TKIP are still of high practical value.

Finally, the selective jammer, channel MitM, and TKIP
attacks are available for download [1]. We hope these results
aid in the creation of better countermeasures, and motivate
people to only use the more secure (AES)-CCMP.

9. ACKNOWLEDGEMENTS
This research is partially funded by the Research Fund

KU Leuven, and by the EU FP7 project NESSoS. With the
financial support from the Prevention of and Fight against
Crime Programme of the European Union (B-CCENTRE).
Mathy Vanhoef holds a Ph. D. fellowship of the Research
Foundation - Flanders (FWO).

10. REFERENCES
[1] http://modwifi.bitbucket.org/.

[2] E. Bayraktaroglu, C. King, X. Liu, G. Noubir,
R. Rajaraman, and B. Thapa. On the performance of
IEEE 802.11 under jamming. In INFOCOM, 2008.

[3] J. Bellardo and S. Savage. 802.11 denial-of-service
attacks: real vulnerabilities and practical solutions. In
Proc. of the 12th USENIX Security Symp., 2003.

[4] D. S. Berger, F. Gringoli, N. Facchi, I. Martinovic,
and J. Schmitt. Gaining insight on friendly jamming
in a real-world IEEE 802.11 network. In WiSec, 2014.

[5] G. Berger-Sabbatel, A. Duda, O. Gaudouin,
M. Heusse, and F. Rousseau. Fairness and its impact
on delay in 802.11 networks. In GLOBECOM, 2004.

[6] M. Cagalj, S. Ganeriwal, I. Aad, and J.-P. Hubaux.
On selfish behavior in CSMA/CA networks. In
INFOCOM, 2005.

[7] A. Cassola, W. Robertson, E. Kirda, and G. Noubir.
A practical, targeted, and stealthy attack against wpa
enterprise authentication. In NDSS Symp., Apr. 2013.

[8] S. Ganu, K. Ramachandran, M. Gruteser, I. Seskar,
and J. Deng. Methods for restoring MAC layer
fairness in IEEE 802.11 networks with physical layer
capture. In REALMAN, 2006.

[9] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Tool
release: Gathering 802.11n traces with channel state
information. ACM SIGCOMM CCR, 2011.

[10] F. M. Halvorsen, O. Haugen, M. Eian, and S. F.
Mjølsnes. An improved attack on TKIP. In 14th
Nordic Conf. on Secure IT Systems (NordSec), 2009.

[11] IEEE Std 802.11-2012. Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY)
Specifications, 2012.

[12] Y. S. Kim, P. Tague, H. Lee, and H. Kim. Carving
secure wi-fi zones with defensive jamming. In
ASIACCS, 2012.

[13] A. Kochut, A. Vasan, A. U. Shankar, and
A. Agrawala. Sniffing out the correct physical layer
capture model in 802.11b. In ICNP, 2004.

[14] J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon,
and Y. Choi. An experimental study on the capture
effect in 802.11a networks. In Proc. of the 2nd ACM
Intl. Workshop on Wireless Network Testbeds,
Experimental Evaluation and Characterization, 2007.

[15] M. Lynn and R. Baird. Advanced 802.11 attack. In
Black Hat Briefings, 2002.

[16] J. Manweiler, N. Santhapuri, S. Sen,
R. Roy Choudhury, S. Nelakuditi, and K. Munagala.
Order matters: Transmission reordering in wireless
networks. In MobiCom, 2009.

[17] V. Moen, H. Raddum, and K. J. Hole. Weaknesses in
the temporal key hash of wpa. Mobile Computing and
Comm. Review, 2004.

[18] M. Morii and Y. Todo. Cryptanalysis for rc4 and
breaking wep/wpa-tkip. IEICE Trans., 2011.

[19] G. Noubir, R. Rajaraman, B. Sheng, and B. Thapa.
On the robustness of ieee 802.11 rate adaptation
algorithms against smart jamming. In WiSec, 2011.

[20] T. Ohigashi and M. Morii. A practical message
falsification attack on wpa. In Joint Workshop on
Information Security (JWIS), 2009.

[21] K. G. Paterson, B. Poettering, and J. C. Schuldt.
Plaintext recovery attacks against wpa/tkip, 2013.

[22] K. Pelechrinis, G. Yan, S. Eidenbenz, and
S. Krishnamurthy. Detecting selfish exploitation of
carrier sensing in 802.11 networks. In INFOCOM,
2009.

[23] O. Queseth. The effect of selfish behavior in mobile
networks using CSMA/CA. In Proc. of the 61st IEEE
Vehicular Technology Conf., 2005.

[24] S. Radosavac, J. S. Baras, and I. Koutsopoulos. A
framework for MAC protocol misbehavior detection in
wireless networks. In Proc. of the 4th ACM workshop
on Wireless security, WiSe ’05, 2005.

[25] M. Raya, J.-P. Hubaux, and I. Aad. DOMINO: a
system to detect greedy behavior in EEE 802.11
hotspots. In MobiSys, 2004.

[26] P. Sepehrdad, S. Vaudenay, and M. Vuagnoux.
Statistical attack on rc4 distinguishing wpa. In
EUROCRYPT, 2011.

[27] E. Tews and M. Beck. Practical attacks against WEP
and wpa. In WiSec, 2009.

[28] Y. Todo, Y. Ozawa, T. Ohigashi, and M. Morii.
Falsification attacks against wpa-tkip in a realistic
environment. IEICE Trans., 2012.

[29] M. Vanhoef and F. Piessens. Practical verification of
wpa-tkip vulnerabilities. In ASIACCS, 2013.

[30] M. Wilhelm, I. Martinovic, J. B. Schmitt, and
V. Lenders. Wifire: A firewall for wireless networks. In
SIGCOMM, 2011.

[31] W. Xu, W. Trappe, Y. Zhang, and T. Wood. The
feasibility of launching and detecting jamming attacks
in wireless networks. In Proc. of ACM MobiHoc, 2005.

http://modwifi.bitbucket.org/

	Introduction
	The 802.11 Standard
	Medium Access Control (MAC)
	Physical Layer (PHY)
	Temporal Key Integrity Protocol
	Atheros Firmware Implementation

	Unfair Channel Usage
	Experimental Setup
	One Selfish Station
	Multiple Selfish Stations
	Defeating Countermeasures

	Jamming
	Continuous Jamming
	Selective Jamming
	Implementation
	Experiments
	Discussion

	Channel-Based MitM
	Background
	Intercepting Encrypted Traffic
	Implementation
	Experiments
	Countermeasures

	TKIP as a Group Cipher
	Attack Details
	Implementation and Experiments
	Countermeasures

	Related Work
	Conclusion
	Acknowledgements
	References

