
ar
X

iv
:1

40
2.

67
58

v2
 [

m
at

h.
N

T
]

 1
0

Se
p

20
14

COUNTING POINTS ON CURVES USING A MAP TO P1.

JAN TUITMAN

Abstract. We introduce a new algorithm to compute the zeta function of a
curve over a finite field. This method extends Kedlaya’s algorithm to a very
general class of curves using a map to the projective line. We develop all the
necessary bounds, analyse the complexity of the algorithm and provide some
examples computed with our implementation.

1. Introduction

Let Fq denote the finite field of characteristic p and cardinality q = pn. Moreover,
let Qp denote the field of p-adic numbers and Qq its unique unramified extension
of degree n. As usual, let σ ∈ Gal(Qq/Qp) denote the unique element that lifts the
p-th power Frobenius map on Fq. Finally, let Zq denote the ring of integers of Qq,
so that Zq/pZq

∼= Fq. Suppose that X is a smooth proper algebraic curve of genus
g over Fq. Recall that the zeta function of X is defined as

Z(X,T) = exp

(

∞
∑

i=1

|X(Fqi)|
T i

i

)

.

It follows from the Weil conjectures that Z(X,T) is of the form

χ(T)

(1− T)(1− qT)
,

with χ(T) ∈ Z[T] a polynomial of degree 2g, the inverse roots of which have complex

absolute value q
1
2 and are permuted by the map t→ q/t. Moreover, by the Lefschetz

formula for rigid cohomology, we have that

χ(T) = det
(

1− T Fn
p |H

1
rig(X)

)

,

where Fp denotes the p-th power Frobenius map.
In [Ked01], Kedlaya showed how Z(X,T) can be determined efficiently, in the

case when X is a hyperelliptic curve and the characteristic p is odd, by explicitly
computing the action of Fp on H1

rig(X). His algorithm was then extended to char-

acteristic 2 [DV06b] and also to superelliptic curves [GG01], Cab curves [DV06a]
and nondegenerate curves [CDV06]. However, for Cab and nondegenerate curves
these algorithms have proved a lot less efficient in practice than for hyperelliptic
and superelliptic curves. The main reason for this is that the algorithms for Ca,b

and nondegenerate curves use a more complicated Frobenius lift that does not send
x to xp anymore. Moreover, in the case of nondegenerate curves, the linear algebra
that is used to compute in the cohomology is not very efficient and when the curve
admits a low degree map to the projective line, as is the case for most nondegenerate
curves, this is not fully exploited.

1

http://arxiv.org/abs/1402.6758v2

2 JAN TUITMAN

In this paper we propose a new algorithm for computing Z(X,T) that avoids
these problems and can be applied to more general curves as well. Our approach
combines Kedlaya’s original algorithm and Lauder’s fibration method [Lau06]. In
the work of Lauder, the Frobenius lift is computed by solving a p-adic differential
equation. For curves it turns out to be more efficient to compute the Frobenius lift
directly by Hensel lifting as in Kedlaya’s algorithm, especially since this allows one
to avoid the radix conversions that take up most of the time in the examples of the
fibration method computed by Walker in his thesis [Wal10].

Our approach can be summarised as follows. We start with a finite separable
map x from the curve X to the projective line. After removing the ramification
locus of x from the curve, we can choose a Frobenius lift that sends x to xp, which
we compute by Hensel lifting as in Kedlaya’s algorithm. We then compute in the
cohomology as in Lauder’s fibration method to find the matrix of Frobenius and
the zeta function of X .

Let x : X → P1
Fq

be a finite separable map of degree dx and y : X → P1
Fq

a rational function that generates the function field of X over Fq(x), such that
Q(x, y) = 0 where Q ∈ Fq[x, y] is irreducible and monic in y (of degree dx). The
polynomial Q is the natural input to our algorithm. The degree of Q in x will
be denoted by dy. The time complexity of the algorithm is then Õ(pd6xd

4
yn

3) by

Theorem 4.6 and the space complexity Õ(pd4xd
3
yn

3) by Theorem 4.7.
When Q is nondegenerate with respect to its Newton polygon Γ, which is com-

mon in the sense of [CDV06, §7.2], we have that dxdy ∈ O(g). The time and space

complexity of the algorithm are then Õ(pg6n3) and Õ(pg4n3), respectively. Note
that this slightly improves the complexity estimate from [CDV06]. Now if addi-
tionally we fix dx, then dy ∈ O(g), so that the time and space complexities of the

algorithm are Õ(pg4n3) and Õ(pg3n3), respectively. This extends the complexity
estimate from [Ked01] from the case where dx = 2 to the case where dx is only
fixed.

Note that the time and space complexities of our algorithm are quasilinear in
p and hence not polynomial in the size of the input which is log(p)dxdyn. This is
also the case for Kedlaya’s algorithm and the algorithm from [CDV06]. However,
for hyperelliptic curves, the dependence on p of the time and space complexities of
Kedlaya’s algorithm has been improved to Õ(p1/2) [Har07] and average polynomial
time [Har14] by Harvey. It is an interesting problem whether these ideas can be
used to improve the dependence on p of the complexity of our algorithm as well.

We need some assumptions for the algorithm to work. First, we assume that
we have a lift Q ∈ Zq[x, y] of the polynomial Q such that Assumption 1 below
is satisfied. This basically means that over Qq the branch points of the map x
and the points lying over it are all distinct modulo p. Second, we assume that
the zero locus of Q in the affine plane with coordinates x, y is smooth. The first
of these assumptions is essential, but the second one can probably be removed, as
sketched in Section 4. Finally, we suppose that we can compute certain integral
bases in function fields and exclude the time and space required to do so from our
complexity estimates.

We have written a publicly available implementation of our algorithm in the
computer algebra package Magma [BCP97]. This implementation turns out to be
quite practical and seems to work for almost all polynomials Q as illustrated by the
example files that come with the code. This should be contrasted with the algorithm

COUNTING POINTS ON CURVES USING A MAP TO P1. 3

from [CDV06], which was never fully implemented because it was expected not to be
practical. Indeed, in some special cases where we have compared our new algorithm
against our experimental implementation of the algorithm from [CDV06], the new
algorithm runs faster by at least two orders of magnitude.

The author was supported by FWO-Vlaanderen. We thank the referees for their
useful comments and suggestions.

2. Lifting the curve and Frobenius

Recall that X is a smooth proper algebraic curve of genus g over the finite field
Fq of characteristic p and cardinality q = pn. Let x : X → P1

Fq
be a finite separable

map of degree dx and y : X → P1
Fq

a rational function that generates the function

field of X over Fq(x), such that Q(x, y) = 0 where Q ∈ Fq[x, y] is irreducible
and monic in y (of degree dx). The degree of Q in x will be denoted by dy. Let
Q ∈ Zq[x, y] be a lift of Q that contains the same monomials in its support as Q
and is still monic in y.

Proposition 2.1. The ring A = Zq[x, y]/(Q) is a free module of rank dx over
Zq[x] and a basis is given by [1, y, . . . , ydx−1].

Proof. This follows from the fact that Q is monic in y. �

Definition 2.2. We let ∆(x) ∈ Zq[x] denote the discriminant of Q with respect

to the variable y and r(x) ∈ Zq[x] the squarefree polynomial r = ∆/(gcd(∆, d∆dx)).

Note that ∆(x) 6= 0 (mod p) since x : X → P1
Fq

is separable. We denote

S = Zq [x, 1/r] , R = Zq [x, 1/r, y] /(Q),

and write V = SpecS, U = SpecR, so that x defines a finite étale morphism from
U to V. Finally, we let U = U ⊗Zq

Fq, V = V ⊗Zq
Fq denote the special fibres and

U = U ⊗Zq
Qq, V = V ⊗Zq

Qq the generic fibres of U and V, respectively.

Assumption 1. We will assume that:

(1) There exists a smooth proper curve X over Zq and a smooth relative divisor
DX on X such that U = X \ DX .

(2) There exists a smooth relative divisor DP1 on P1
Zq

such that V = P1
Zq

\DP1 .

We write X = X ⊗Qq for the generic fibre of X .

Remark 2.3. A relative divisor D on a smooth curve over Zq is smooth over Zq

if and only if it is reduced and all of the points in its support are smooth over Zq,
or equivalently if and only if it reduces modulo p to a reduced divisor D. Hence by
Assumption 1, all branch points of the map x restricted to X, and all points on X

lying over these branch points, are distinct modulo p.

At every point P ∈ X \ U , we let zP denote an étale local coordinate on X . By
a slight abuse of notation, we write ordP (·) for the discrete valuation on OX,P . We
let eP denote the ramification index of the map x. Note that the eP are the same
on X as on X, since they can only increase under reduction modulo p, but add up
to dx in every fibre.

Assumption 2. We will assume that the zero locus of Q(x, y) in A2
Qq

is smooth.

4 JAN TUITMAN

Proposition 2.4. The element

s(x, y) = r(x)/
∂Q

∂y

of Qq(x, y) is contained in A.

Proof. For k ∈ N, we letWk denote the free Zq[x]-module of polynomials in Zq[x, y]
of degree at most k− 1 in the variable y. Let Σ be the matrix of the Zq[x]-module
homomorphism:

Wd−1 ⊕Wd →W2d−1, (a, b) 7→ aQ+ b
∂Q

∂y
, (1)

with respect to the bases [1, y, . . . , ydx−2], [1, y, . . . , ydx−1] and [1, y, . . . , y2dx−2].
By definition we have ∆ = det(Σ), so that ∆ is contained in the image of (1) and
∆(x)/∂Q

∂y is contained in A. By Assumption 2, the ring A ⊗ Qq is the integral

closure of Qq[x] in Qq(x, y). Note that the basis [1, y, . . . , ydx−1] of A ⊗ Qq is
therefore an integral basis for Qq(x, y) over Qq[x]. Since Q is monic in y, for any

irreducible polynomial π ∈ Qq[x] the element ∂Q
∂y /π of Qq(x, y) is not integral at

the place (π), and hence its inverse π/∂Q
∂y is integral (even zero) at (π). Hence s is

contained in A. �

Definition 2.5. We denote the ring of overconvergent functions on U by

R† = Zq〈x, 1/r, y〉
†/(Q).

Note that R† is a free module of rank dx over S† = Zq〈x, 1/r〉
† and that a basis is

given by [y0, . . . , ydx−1]. A Frobenius lift Fp : R† → R† is defined as a σ-semilinear
ring homomorphism that reduces modulo p to the p-th power Frobenius map.

Theorem 2.6. There exists a Frobenius lift Fp : R† → R† for which Fp(x) = xp.

Proof. Define sequences (αi)i≥0, (βi)i≥0, with αi ∈ S† and βi ∈ R†, by the following
recursion:

α0 =
1

rp
,

β0 = yp,

αi+1 = αi(2− αir
σ(xp)) (mod p2

i+1

),

βi+1 = βi −Qσ(xp, βi)s
σ(xp, βi)αi (mod p2

i+1

).

Then one easily checks that the σ-semilinear ringhomomorphism Fp : R† → R†

defined by

Fp

(

x
)

= xp, Fp (1/r) = lim
i→∞

αi, Fp

(

y
)

= lim
i→∞

βi,

is a Frobenius lift. �

Proposition 2.7. Let G ∈Mdx×dx
(Zq[x, 1/r]) denote the matrix such that

d
(

yj
)

=

dx−1
∑

i=0

Gi+1,j+1y
idx,

for all 0 ≤ j ≤ dx − 1. Then we can write G =M/r with M ∈Mdx×dx
(Zq[x]).

COUNTING POINTS ON CURVES USING A MAP TO P1. 5

Proof. This follows from the formula

d
(

yj
)

= −jy(j−1)
(s

r

) ∂Q

∂x
dx. (2)

�

In the terminology of the fibration method, Gdx is the matrix of the Gauss–
Manin connection ∇ on the 0-th higher direct image R0x∗(OU) with respect to the
basis [1, y, . . . , ydx−1]. By Proposition 2.7, this matrix has at most a simple pole at
all points 6= ∞ in the support of DP1 . At x = ∞ we will have to make a change of
basis for this to be the case.

Assumption 3. We will assume that a matrix W∞ ∈ Gldx
(Zq[x, x

−1]) is known

such that if we denote b∞j =
∑dx−1

i=0 W∞
i+1,j+1y

i for all 0 ≤ j ≤ dx − 1, then

[b∞0 , . . . , b
∞
dx−1] is an integral basis for Qq(x, y) over Qq[x

−1].

Proposition 2.8. Let G∞ ∈Mdx×dx
(Zq[x, x

−1, 1/r]) denote the matrix such that

db∞j =

dx−1
∑

i=0

G∞
i+1,j+1b

∞
i dx,

for all 0 ≤ j ≤ dx − 1. Then G∞dx has at most a simple pole at x = ∞.

Proof. We denote t = 1/x and let H ∈ Mdx×dx
(Qq(t)) be defined by H(t)dt =

G∞(x)dx. Note that ordP (dt/t) = −1 at every point P ∈ X \ U lying over t = 0.
At every such P and for all 0 ≤ i ≤ dx − 1 we clearly have ordP (db

∞
i) ≥ 0, so that

ordP (tdb
∞
i) − ordP (dt) ≥ 1. Since [b∞0 , . . . , b

∞
dx−1] is an integral basis for Qq(x, y)

over Qq[t], we conclude that tH does not have a pole at t = 0, so that Hdt has at
most a simple pole there. �

Definition 2.9. Let x0 6= ∞ be a geometric point of P1(Q̄q). The exponents of
Gdx at x0 are defined as the eigenvalues of the residue matrix (x − x0)G|x=x0 .
Moreover, the exponents of G∞dx at x = ∞ are defined as its exponents at t = 0,
after substituting x = 1/t.

Proposition 2.10. The exponents of Gdx at any point x0 6= ∞ and the exponents
of G∞dx at x = ∞ are elements of Q∩Zp and are contained in the interval [0, 1).

Proof. Let λ ∈ Q̄q denote an exponent of Gdx at x0 6= ∞. Then there exists

f =
∑dx−1

i=0 aiy
i with a0, . . . , adx−1 ∈ Q̄q such that

df =

(

λf

x− x0
+ g

)

dx (3)

as 1-forms on U⊗ Q̄q, where g ∈ O(U⊗ Q̄q) satisfies ordP (g) ≥ 0 at all points P ∈
x−1(x0). Note that for at least one P ∈ x−1(x0) we have ordP (f) < ordP (x− x0),
since otherwise f/(x−x0) would be integral overQq[x], contradicting Assumption 2.
For such a P , dividing by f in (3) and taking residues, we obtain

ordP (f) = λ ordP (x− x0) = λeP .

Since 0 ≤ ordP (f) < ordP (x − x0), we see that λ ∈ Q ∩ [0, 1). By Assumption 1,
elements of S have p-adically integral Laurent series expansions at x0, so that
(x − x0)G|x=x0 ∈ Mdx×dx

(Zq). Since p-adically integral matrices have p-adically
integral eigenvalues, we conclude that λ ∈ Zp. To obtain the same result for the

6 JAN TUITMAN

exponents of G∞dx at x = ∞, replace x0 by ∞ and (x − x0) by t = 1/x in the
argument. �

Definition 2.11. For a geometric point x0 ∈ P1(Q̄q), we let ordx0(·) denote the
discrete valuation on Q̄q(x) corresponding to x0. We extend these definitions to
matrices over Q̄q(x) by taking the minimum over their entries.

Proposition 2.12. Let N ∈ N be a positive integer.

(1) The element Fp(1/r) of S
† is congruent modulo pN to

pN
∑

i=p

ρi(x)

ri
,

where ρi ∈ Zq[x] satisfies deg(ρi) < deg(r) for all p ≤ i ≤ pN .
(2) For all 0 ≤ i ≤ dx − 1, the element Fp(y

i) of R† is congruent modulo pN

to
∑d−1

j=0 φi,j(x)y
j , where

φi,j =

p(N−1)
∑

k=0

φi,j,k(x)

rk

for all 0 ≤ j ≤ dx − 1 and φi,j,k ∈ Zq[x] satisfies

deg(φi,j,0) ≤ − ord∞(W∞)− p ord∞((W∞)−1),

deg(φi,j,k) < deg(r),

for all 0 ≤ j ≤ dx − 1 and 1 ≤ k ≤ p(N − 1).
(3) For all 0 ≤ i ≤ dx − 1, the element Fp(y

i/r) of R† is congruent modulo pN

to
∑dx−1

j=0 ψi,j(x)(y
j/r), where

ψi,j =

pN−1
∑

k=0

ψi,j,k(x)

rk

for all 0 ≤ j ≤ dx − 1 and ψi,j,k ∈ Zq[x] satisfies

deg(ψi,j,0) ≤ − ord∞(W∞)− p ord∞((W∞)−1)− (p− 1) deg(r),

deg(ψi,j,k) < deg(r),

for all 0 ≤ j ≤ dx − 1 and 1 ≤ k ≤ pN − 1.

Proof.

(1) Since rσ(xp) ≡ rp (mod p), this follows from

Fp

(

1

r

)

=
1

rσ(xp)
=

1

rp

(

1−
rp − rσ(xp)

rp

)−1

=
1

rp

∞
∑

i=0

(

rp − rσ(xp)

rp

)i

.

(2) The matrix Φ = (φi,j) ∈ Mdx×dx
(S†) defines a p-th power Frobenius

structure on the higher direct image R0x∗(OU). By definition we have
ordp(Φ) ≥ 0 and by Poincaré duality we find that ordp(Φ

−1) ≥ 0 as well.
The result now follows from a theorem of Kedlaya and the author [KT12,
Corollary 2.6] using Proposition 2.10.

(3) Analogous to (2).

�

COUNTING POINTS ON CURVES USING A MAP TO P1. 7

3. Computing (in) the cohomology

Definition 3.1. The rigid cohomology of U in degree 1 can be defined as

H1
rig(U) = coker(d : R† → Ω1(U)⊗R†).

Theorem 3.2.

H1
rig(U) ∼= H1

dR(U)

Proof. This follows as a special case from the comparison theorem between rigid and
de Rham cohomology of Baldassarri and Chiarellotto [BC94], since by Assumption 1
DX is smooth over Zq. �

We can effectively reduce any 1-form to one of low pole order using linear algebra
following work of Lauder [Lau06]. The procedure consists of two parts, reducing
the pole order at the points not lying over x = ∞ and at those lying over x = ∞,
respectively. From now on we let r′ denote the polynomial dr

dx . We start with the
points not lying over x = ∞.

Proposition 3.3. For all ℓ ∈ N and every vector w ∈ Qq[x]
⊕dx , there exist vectors

u, v ∈ Qq[x]
⊕dx with deg(v) < deg(r), such that

∑dx−1
i=0 wiy

i

rℓ
dx

r
= d

(

∑dx−1
i=0 viy

i

rℓ

)

+

∑dx−1
i=0 uiy

i

rℓ−1

dx

r
.

Proof. Note that since r is separable, r′ is invertible in the ring Qq[x]/(r). One
checks that v has to satisfy the dx × dx linear system

(

M

r′
− ℓI

)

v ≡
w

r′
(mod r)

overQq[x]/(r). However, since ℓ ≥ 1 is not an exponent of Gdx by Proposition 2.10,
we have that det(ℓI −M/r′) is invertible in Qq[x]/(r), so that this system has a
unique solution v. We now take

u =
w − (M − ℓr′I) v

r
−
dv

dx
.

�

We now move on to the points lying over x = ∞.

Proposition 3.4. For every vector w ∈ Qq[x, x
−1]⊕dx with

ord∞(w) ≤ − deg(r),

there exist vectors u, v ∈ Qq[x, x
−1]⊕dx with ord∞(u) > ord∞(w) such that

(

dx−1
∑

i=0

wib
∞
i

)

dx

r
= d

(

dx−1
∑

i=0

vib
∞
i

)

+

(

dx−1
∑

i=0

uib
∞
i

)

dx

r
.

Proof. We still denote t = 1/x. By Proposition 2.8, we can expand

G∞dx =

(

G∞
−1

t
+G∞

0 + . . .

)

dt,

8 JAN TUITMAN

where G∞
i ∈Mdx×dx

(Qq) for all i ≥ −1. Writing m = − ord∞(w)− deg(r) + 1, we
can also expand

w
dx

r
=

∞
∑

j=−(m+1)

w̄jt
jdt,

where w̄j ∈ Q⊕dx
q for all j ≥ −(m+ 1). Note that m ≥ 1. By Proposition 2.10, we

have that det(mI −G∞
−1) is nonzero, so that the linear system

(G∞
−1 −mI)v̄ = w̄−(m+1)

has a unique solution v̄ ∈ Q⊕dx
q . We can now take

v = v̄xm, u = w − r

(

G∞v +
dv

dx

)

.

�

Remark 3.5. Note that when ord∞(w) ≤ ord0(W
∞) − deg(r) + 1, we have that

ord0(v) ≥ − ord0(W
∞), so that the function

∑dx−1
i=0 vib

∞
i only has poles at points

lying over x = ∞.

We now give an explicit description of the cohomology space H1
rig(U).

Theorem 3.6. Define the following Qq-vector spaces:

E0 =

{(

dx−1
∑

i=0

ui(x)y
i

)

dx

r
: u ∈ Qq[x]

⊕dx

}

,

E∞ =

{(

dx−1
∑

i=0

ui(x, x
−1)b∞i

)

dx

r
: u ∈ Qq[x, x

−1]⊕dx , ord∞(u) > ord0(W
∞)− deg(r) + 1

}

,

B0 =

{ dx−1
∑

i=0

vi(x)y
i : v ∈ Qq[x]

⊕dx

}

,

B∞ =

{ dx−1
∑

i=0

vi(x, x
−1)b∞i : v ∈ Qq[x, x

−1]⊕dx , ord∞(v) > ord0(W
∞)

}

.

Then E0 ∩ E∞ and d(B0 ∩B∞) are finite dimensional Qq-vector spaces and

H1
rig(U) ∼= (E0 ∩ E∞)/d(B0 ∩B∞).

Proof. First, note that elements of E0, B0 have bounded poles everywhere but at
the points lying over x = ∞ and elements of E∞, B∞ everywhere but at the points
lying over x = 0. So elements of E0 ∩ E∞ and d(B0 ∩ B∞) have bounded poles
everywhere on X. Hence these vector spaces are contained in the space of global
sections of some line bundle on X and are therefore finite dimensional.

Next, we show that every class in H1
rig(U) can be represented by a 1-form in

E0 ∩ E∞. Note that by Theorem 3.2 we can restrict to classes in H1
dR(U). Now

every such class can be represented by a 1-form in E0 by (repeatedly) applying
Proposition 3.3. Then we change basis by the matrix W∞ from Assumption 3.
Observe that this change of basis might introduce a pole at x = 0. Now our
cohomology class can be represented by 1-form in E0∩E∞ by (repeatedly) applying
Proposition 3.4 and Remark 3.5.

COUNTING POINTS ON CURVES USING A MAP TO P1. 9

Finally, we have to prove that if a 1-form ω ∈ E0 ∩ E∞ is exact, then it lies in
d(B0 ∩B∞). So let ω ∈ E0 ∩E∞ denote such an exact 1-form. From Assumption 2
and the definition of [b∞0 , . . . , b

∞
dx−1], it follows that ordP (ω) ≥ −1 all points P

not lying over x = ∞ and ordP (ω) ≥ ord0(W
∞ + 1)eP − 1 at all points P lying

over x = ∞. Note that the exterior derivative lowers the order by at most 1. So
if ω = df for some f ∈ O(U), then ordP (f) ≥ 0 at all points P not lying over
x = ∞ and ordP (f) ≥ (ord0(W

∞) + 1)eP at all points P lying over x = ∞. Using
Assumption 2 and the definition of [b∞0 , . . . , b

∞
dx−1] again, it follows that f is an

element of B0 ∩B∞. �

Note that by the proof of Theorem 3.6, we can effectively reduce any 1-form to
one in E0∩E∞ with the same cohomology class. However, the reduction procedure
will introduce p-adic denominators and therefore suffer from loss of p-adic precision.
In the following two propositions we bound these denominators. Our bounds and
their proofs generalise the ones from [Ked01].

Proposition 3.7. Let ω ∈ Ω1(U) be of the form

ω =

∑dx−1
i=0 wiy

i

rℓ
dx

r
,

where ℓ ∈ N and w ∈ Zq[x]
⊕dx satisfies deg(w) < deg(r). We define

e = max{eP |P ∈ X \ U , x(P) 6= ∞}.

If we represent the class of ω in H1
rig(U) by
(

dx−1
∑

i=0

uiy
i

)

dx

r
,

with u ∈ Qq[x]
⊕dx as in the proof of Theorem 3.6, then

p⌊logp(ℓe)⌋u ∈ Zq[x]
⊕dx .

Proof. We have

ω = df +

(

dx−1
∑

i=0

uiy
i

)

dx

r

with f =
∑ℓ

j=1(
∑dx−1

i=0 (vj)iy
i)/rj , where vj ∈ Qq[x]

⊕dx satisfies deg(fj) < deg(r)

for all 1 ≤ j ≤ ℓ. Note that it is sufficient to show that p⌊logp(ℓe)⌋f ∈ R. By
Assumption 1, we have that

O(X − x−1(∞))/(r)k ∼=
∏

P∈X\U ,x(P) 6=∞

OX ,P/(z
eP
P)k,

for all k ∈ N. Moreover, we have that O(X−x−1(∞)) ∼= A⊗Qq by Assumption 2.

To show that p⌊logp(ℓe)⌋f is integral, it is therefore enough to show that for every
P ∈ X \ U with x(P) 6= 0, the Laurent series expansion

a−ℓeP z
−ℓeP
P + . . .+ a−eP−1z

−eP−1
P +O(z−eP

P)

of p⌊logp(ℓe)⌋f is integral. However, the differential df has a pole of order at most
ℓeP + 1 at P , and its Laurent series expansion

(

b−ℓeP−1z
−ℓeP−1
P + . . .+ b−eP−2z

−eP−2
P +O(z−eP−1

P)
)

dzP

10 JAN TUITMAN

is integral since ω is integral. The worst denominator we get by integrating this
series is therefore p⌊logp(ℓe)⌋ and the result follows. �

Proposition 3.8. Let ω ∈ Ω1(U) be of the form

ω = (

dx−1
∑

i=0

wi(x, x
−1)b∞i)

dx

r
,

where w ∈ Zq[x, x
−1]⊕dx satisfies ord∞(w) ≤ ord0(W

∞)− deg(r) + 1. We define

m = − ord∞(w) − deg(r) + 1,

e∞ = max{eP |P ∈ X \ U , x(P) = ∞}.

If we represent the class of ω in H1
rig(U) by
(

dx−1
∑

i=0

uiy
i

)

dx

r
,

with u ∈ Qq[x, x
−1]⊕dx such that ord∞(u) > ord0(W

∞)−deg(r)+1 as in the proof
of Theorem 3.6, then

p⌊logp(me∞)⌋u ∈ Zq[x, x
−1]⊕dx .

Proof. We have

ω = df +

(

dx−1
∑

i=0

uiy
i

)

dx

r

with f =
∑m

j=− ord0(W∞)(
∑dx−1

i=0 (vj)iy
i)xj , where vj ∈ Q⊕dx

q for all − ord0(W
∞) ≤

j ≤ m. Note that it is sufficient to show that p⌊logp(ℓe)⌋f ∈ R. By Assumption 1,
we have that

O(X − x−1(0))/(t)k ∼=
∏

P∈X\U ,x(P)=∞

OX ,P/(z
eP
P)k, (4)

for all k ∈ N. Moreover, by definition [b∞0 , . . . , b
∞
dx−1] is a basis for O(X− x−1(0))

over Qq[x
−1]. To show that p⌊logp(ℓe∞)⌋f is integral, it is therefore enough to show

that for every P ∈ X \ U with x(P) = 0, the Laurent series expansion

a−meP z
−meP
P + . . .+ a(ord0(W∞)+1)eP−1z

(ord0(W
∞)+1)eP−1

P +O(z
(ord0(W

∞)+1)eP
P)

of p⌊logp(ℓe∞)⌋f is integral. However, the differential df has a pole of order at most
meP + 1 at P , and its Laurent series expansion
(

b−meP−1z
−meP−1
P + . . .+ b(ord0(W∞)+1)eP z

(ord0(W
∞)+1)eP

P +O
(

z
(ord0(W

∞)+1)eP−1
P

))

dzP

is integral since ω is integral. The worst denominator we get by integrating this
series is therefore p⌊logp(me∞)⌋ and the result follows. �

Remark 3.9. Note that Propositions 3.3, 3.4, 3.7 and 3.8 can be used to give an
alternative effective proof of Theorem 3.2.

Recall that in Theorem 3.6 the computation of a basis for H1
rig(U) was reduced

to a (small) finite dimensional linear algebra problem. However, the dimension of
H1

rig(U) is generally about dx times the dimension of H1
rig(X), so that we would

like to compute a basis for this last space. For this we will need to compute the
kernel of a cohomological residue map.

COUNTING POINTS ON CURVES USING A MAP TO P1. 11

Definition 3.10. For a 1-form ω ∈ Ω1(U) and a point P ∈ X \ U , we let

resP (ω) ∈ OX ,P/(zP)

denote the coefficient a−1 in the Laurent series expansion

ω = (a−kz
k
P + . . .+ a−1z

−1
P + · · ·)dzP .

Moreover, we denote

res =
⊕

P∈X\U : x(P) 6=∞

resP , res∞ =
⊕

P∈X\U : x(P)=∞

resP .

Theorem 3.11. We have an exact sequence

0 −−−−→ H1
rig(X) −−−−→ H1

rig(U)
(res⊕res∞)⊗Qq

−−−−−−−−−−−→
⊕

P∈X\U

OX ,P/(zP)⊗Qq.

Proof. This is well known. �

The kernels of res and res∞ can be computed without having to compute the
Laurent series expansions at all P ∈ X \ U using the following two propositions.
We start with the residues at the points not lying over x = ∞.

Proposition 3.12. Let ω ∈ Ω1(U) be a 1-form of the form

ω =

(

dx−1
∑

i=0

ui(x)y
i

)

dx

r
,

with u ∈ Qq[x]
⊕dx . Then

res(ω) = 0 ⇔
∂Q

∂y

dx−1
∑

i=0

uiy
i = 0 in O(X− x−1(∞))/(r).

Proof. Let P run over all points in X \ U such that x(P) 6= ∞. One checks
that ordP (

dx
r) = −1 and ordP (ω) ≥ −1. Hence resP (ω) = 0 if and only if

ordP (
∑dx−1

i=0 uiy
i) ≥ 1. However, since ordP (

∂Q
∂y) = eP − 1 by Assumption 2,

this is the case if and only if ordP (
∂Q
∂y

∑dx−1
i=0 uiy

i) ≥ eP . Finally, we have that

ordP (
∂Q
∂y

∑dx−1
i=0 uiy

i) ≥ eP at all P in X \ U such that x(P) 6= ∞ if and only if
∂Q
∂y

∑dx−1
i=0 uiy

i maps to 0 in O(X− x−1(∞))/(r). �

We now move on to the residues at the points lying over x = ∞.

Proposition 3.13. Let ω ∈ Ω1(U) be a 1-form of the form

ω =

(

dx−1
∑

i=0

ui(x, x
−1)b∞i

)

dx

r
,

where u ∈ Qq[x, x
−1]⊕dx satisfies ord∞(u) > − deg(r), and let v ∈ Q⊕dx

q be defined

by v =
(

x1−deg(r)u
)

|x=∞. Moreover, let the residue matrix G∞
−1 ∈ Mdx×dx

(Qq)
be defined as in the proof of Proposition 3.4, and let Vλ denote the generalised
eigenspace of G∞

−1 with eigenvalue λ, so that Q⊕dx
q decomposes as

⊕

Vλ. Then

res∞(ω) = 0 ⇔ the projection of v onto V0 = 0.

12 JAN TUITMAN

Proof. Let P run over all points in X \ U such that x(P) = ∞. One checks that
ordP (

dx
r) = −1+(deg(r)−1)eP and ordP (ω) ≥ −1. Since ordP (x) = −eP , we have

that resP (ω) = 0 if and only if ordP (
∑dx−1

i=0 vib
∞
i) ≥ 1. We still denote t = 1/x.

Note that [b∞0 , . . . , b
∞
dx−1] is a Qq-basis for O(X− x−1(0))/(t) and that

O(X− x−1(0))/(t) ∼=
∏

P∈X\U ,x(P)=∞

OX,P /(z
eP
P). (5)

Under this isomorphism every factor on the right-hand side is an invariant subspace
for G∞

−1 since ordP (f) ≥ eP implies that ordP (tdf/dt) ≥ eP .
We know from Proposition 2.10 that the eigenvalues ofG∞

−1 are elements ofQ∩Zp

contained in the interval [0, 1) and that if f ∈ O(X− x−1(0))/(t) is an eigenvector
with eigenvalue λ and ordP (f) < eP for some P , then we have that ordP (f) = λeP .
We claim that the eigenvalues of G∞

−1 on the factor corresponding to the point P in
(5) are [0, 1/eP , . . . , (eP − 1)/eP]. In particular they are all different, so that G∞

−1

is diagonalisable. This follows since locally around the point P the map t is the
eP -th power map, so the eigenvalues of its monodromy are all the eP -th roots of
unity, but these eigenvalues of monodromy are of the form e2πiλ where λ runs over
the eigenvalues of G∞

−1 on the factor corresponding to the point P in (5).
Now, if we decompose v onto a basis of eigenvectors compatible with the decom-

position (5), then we see that ordP (
∑dx−1

i=0 vib
∞
i) ≥ 1 for all P in X \ U such that

x(P) = ∞ if and only if the components along the eigenvectors with eigenvalue 0
all vanish. �

Remark 3.14. For any ω ∈ Ω1(U) we can first apply Propositions 3.3 and 3.4
to represent the class of ω in H1

rig(U) by 1-forms to which we can apply Proposi-
tions 3.12 and 3.13.

4. The complete algorithm and its complexity

In this section we describe all the steps in the algorithm and determine bounds
for the complexity. Recall that X is a curve of genus g over a finite field Fq with
q = pn and that dx and dy denote the degrees of the defining polynomial Q in the
variables y and x, respectively. All computations are carried out to p-adic precision
N which will be specified later. We use the Õ(−) notation that ignores logarithmic

factors, i.e. Õ(f) denotes the class of functions that lie in O(f logk(f)) for some

k ∈ N. For example, two elements of Zq can be multiplied in time Õ(log(p)nN).
We let θ denote an exponent for matrix multiplication, so that two k × k matrices
can be multiplied in O(kθ) ring operations. It is known that θ ≥ 2 and that one
can take θ ≤ 2.3729 [Wil12]. We start with some bounds that will be useful later
on.

Proposition 4.1. Let ∆, s, r be defined as in Section 2 and e, e∞ as in Section 3.
We have:

deg(∆), deg(r), deg(s) ≤ 2(dx − 1)dy ∈ O(dxdy), (6a)

e, e∞ ≤ dx ∈ O(dx), (6b)

g ≤ (dx − 1)(dy − 1) ∈ O(dxdy). (6c)

Proof. (6a) Note that the matrix Σ from Proposition 2.4 is a (2dx − 1)× (2dx − 1)
matrix over Zq[x] of degree at most dy and that the row corresponding to y2dx−2

COUNTING POINTS ON CURVES USING A MAP TO P1. 13

has degree 0. Since ∆ = det(Σ), this implies that deg(∆) ≤ (2dx − 2)dy. Writing

s =
∑dx−1

i=0 si(x)y
i with si ∈ Zq[x], the si are in fact entries of rΣ−1, so that

deg(si) ≤ (2dx − 2)dy for all 0 ≤ i ≤ dx − 1.
(6b) All the ramification indices eP are at most dx.
(6c) It is known [BP00] that g is at most the number of interior points of the
Newton polygon of Q, which is clearly bounded by (dx − 1)(dy − 1). �

Proposition 4.2. We have

ord∞(W∞) ≥ −(dx − 1)dxdy ∈ −O(d2xdy), (7a)

ord∞((W∞)−1) ≥ −(dx − 1)dy ∈ −O(dxdy). (7b)

Moreover, we may assume that

ord0(W
∞) ≥ −(dx − 1)dy ∈ −O(dxdy). (7c)

Proof. We still denote t = 1/x. One easily checks that the minimal polynomial
Q∞ of y′ = y/xdy over Qq[t] is monic. Hence the functions 1, y′, . . . , y′dx−1 are
Qq[t]-linear combinations of b∞0 , . . . , b

∞
dx−1, so that ord∞((W∞)−1) ≥ −(dx − 1)dy.

Since the degree of Q∞ in the variable t is at most dxdy, its discriminant ∆∞ ∈
Zq[t] with respect to the variable y′ has degree ≤ 2(dx − 1)dxdy by the argument

from Proposition 4.1. Defining the matrix W∞′

∈ Gldx
(Zq[x, x

−1]) such that

b∞j =

dx−1
∑

i=0

W∞′

i+1,j+1y
′i

for all 0 ≤ j ≤ dx − 1, it follows from basic properties of the discriminant that
ord∞(W∞′

) ≥ − deg(∆∞)/2. Clearly ord∞(W∞) ≥ ord∞(W∞′

), so this implies
that ord∞(W∞) ≥ −(dx − 1)dxdy.

We may assume that ord0(W
∞′

) ≥ 0. When this is not the case, we can proceed

as in [vH94] to obtain another integral basis such that ord0(W
∞′

) ≥ 0. Note
that this does not involve computing Puiseux expansions etc. as in [vH94], since
we already have the integral basis [b∞0 , . . . , b

∞
dx−1] at our disposal. Finally, clearly

ord0(W
∞′

) ≥ 0 implies that ord0(W
∞) ≥ −(dx − 1)dy. �

In general algorithms like the one from [vH94] are available for computing inte-
gral bases in function fields. In the following important special case we can write
down [b∞0 , . . . , b

∞
dx−1] directly.

Proposition 4.3. For positive integers a, b ∈ N, let Γ denote the triangle in the
plane with vertices (0, 0), (a, 0) and (0, b). If Q is nondegenerate with respect to Γ,
then we can take [b∞0 , . . . , b

∞
dx−1] to be

[

1, x⌊−a/b⌋y, x⌊−2a/b⌋y2, . . . , x⌊−(b−1)(a/b)⌋yb−1
]

.

Proof. Let Γ′ be the translation of Γ defined by Γ′ = Γ−(a, 0). If Q is nondegenerate
with respect to Γ, then so is Q by [CDV06, Corollary 6]. The toric surface YΓ
associated to Γ contains 3 divisors at infinity, corresponding to the edges of Γ.
Now, a Laurent polynomial is regular on X− x−1(0) if and only if is regular at the
points lying on the intersection of X with the divisors at infinity of YΓ corresponding

14 JAN TUITMAN

to the horizontal and the diagonal edges of Γ. Therefore, it follows from (the proof
of) [CDV06, Lemma 2] that

O(X− x−1(0)) ∼= Qq[Γ
′]/(x−aQ),

where Qq[Γ
′] is the algebra over Qq generated by the monomials supported on the

cone generated by Γ′. Note that we can substract a multiple of x−aQ from an
arbitrary element of Qq[Γ

′] to eliminate all powers of y greater than b. Therefore,
O(X− x−1(0)) is generated as a Qq[x

−1]-module by the set
{

1, x⌊−a/b⌋y, x⌊−2a/b⌋y2, . . . , x⌊−(b−1)(a/b)⌋yb−1
}

.

Since the rank of O(X− x−1(0)) over Qq[x
−1] is b, this finishes the proof. �

Assumption 4. In the complexity analysis we will assume a couple of times (with
explicit mention) that ord∞(W∞) ∈ −O(dxdy).

4.1. Step I: Determine a basis for the cohomology.

We want to find ω1, . . . , ωκ ∈ (E0 ∩E∞) ∩Ω1(U) such that:

(1) [ω1, . . . , ωκ] is a basis for H1
rig(U) ∼= (E0 ∩ E∞)/d(B0 ∩B∞),

(2) the class of every element of (E0 ∩ E∞) ∩ Ω1(U) in H1
rig(U) has p-adically

integral coordinates with respect to [ω1, . . . , ωκ],
(3) [ω1, . . . , ω2g] is a basis for the kernel of res⊕res∞ and hence for the subspace

H1
rig(X) of H1

rig(U).

This can be done using standard linear algebra over Zq, i.e. by computing the
Smith normal forms (including unimodular transformations) of two matrices. Note
for an element

(

dx−1
∑

i=0

ui(x)y
i

)

dx

r
∈ E0 ∩ E∞,

we have that deg(u) ≤ deg(r)−2−ord0(W
∞)−ord∞(W∞). Hence the dimensions

of the matrices involved are at most

dx (deg(r) − 1− ord0(W
∞)− ord∞(W∞)) .

Therefore, (under Assumption 4) we need O((d2xdy)
θ) ring operations in Zq by

[Sto00, Chapter 7], each of which can be carried out in time Õ(log(p)nN), so that
the time complexity of this step is

Õ
(

log(p)d2θx d
θ
ynN

)

.

4.2. Step II: Compute the map Fp.

We use Theorem 2.6 to compute approximations:

Fp(1/r) = αi +O(p2
i

),

Fp(y) = βi +O(p2
i

),

for i = 1, . . . , ν = ⌈log2(N)⌉. We carry out all computations using r-adic expansions
for the elements of R and S, e.g. we represent αi, βi as:

αi =
∑

j∈J

αi,j(x)

rj
, βi =

dx−1
∑

k=0

(

∑

j∈J

βi,j,k(x)

rj

)

yk,

COUNTING POINTS ON CURVES USING A MAP TO P1. 15

where J ⊂ Z is finite and αi,j , βi,j,k ∈ Zq[x] satisfy deg(αi,j), deg(βi,j,k) < deg(r),
for all i, j, k. By Propositions 2.12 and 4.2, we have that

|min J |, |maxJ | ∈ O
(

p
(

N + d2xdy/ deg(r)
))

.

Hence, a single ring operation in R takes time

Õ(log(p)|max J −min J |nN) ⊂ Õ
(

pd2xdy
(

N + dx
)

nN
)

.

Moreover, the image of an element of Qq under the map σ can be computed in time

Õ(log2(p)n + log(p)nN) by [Hub10]. We need O(dx log(N)) ring operations in R
and O(dxdy) applications of σ in order to compute (αν , βν). Therefore, this can be
done in time

Õ
(

pd3xdy
(

N + dx
)

nN
)

.

Now for each ωi = (
∑d−1

k=0 uk(x)y
k)dxr with 1 ≤ i ≤ 2g, we compute

Fp(ωi) =

dx−1
∑

k=0

pxp−1uσk(x
p) Fp

(yk

r

)

dx =

dx−1
∑

k=0

pxp−1uσk(x
p)ανβ

k
νdx+O(pN). (8)

For a single ωi this takes O(dx) ring operations in R and O(dx deg(r)) applications
of σ. Hence the complete set of Fp(ωi) can be computed in time

Õ
(

gpd3xdy
(

N + dx
)

nN
)

⊂ Õ
(

pd4xd
2
y

(

N + dx
)

nN
)

,

which is also the total time complexity of this step.

4.3. Step III: Reduce back to the basis.

We want to find the matrix Φ ∈M2g×2g(Qq) such that

Fp(ωi) =

2g
∑

j=1

Φj,iωj

in H1
rig(U). In the previous step, we have obtained an approximation

Fp(ωi) =
∑

j∈J

(

dx−1
∑

k=0

wi,j,k(x)

rj
yk
)dx

r
+O(pN), (9)

where J ⊂ Z is finite and wi,j,k(x) ∈ Zq[x] satisfies deg(wi,j,k(x)) < deg(r) for all
i, j, k. We now use Proposition 3.3 and Proposition 3.4 (repeatedly) to reduce this
1-form to an element of E0 ∩ E∞ as in Theorem 3.6.

To carry out the reduction procedure, it is sufficient to solve a linear system with
parameter (ℓ or m, respectively) only once in Propositions 3.3 and 3.4. After that,
every reduction step corresponds to a multiplication of a vector by a dx×dx matrix
(over Qq[x]/(r) or Qq, respectively). First, the linear systems with parameter can
be solved in time

Õ(log(p)dθ+1
x deg(r)nN) ⊂ Õ(log(p)dθ+2

x dynN),

where one factor dx is from the degree in the parameter. Then, the number of
reduction steps at the points not lying over x = ∞ is O(pN) for each Fp(ωi).

16 JAN TUITMAN

Every single finite reduction step takes time Õ(log(p)d2x deg(r)nN), so all Fp(ωi)
can be reduced in time

Õ(g(pN)d2x log(p) deg(r)nN) ⊂ Õ(pd4xd
2
ynN

2).

Finally, the number of reduction steps at the points lying over x = ∞ is O(pd2xdy)

for each Fp(ωi). Every single infinite reduction step takes time Õ(log(p)d2xnN), so
all Fp(ωi) can be reduced in time

Õ(g(pd2xdy) log(p)d
2
xnN) ⊂ Õ(pd5xd

2
ynN).

After this reduction procedure, we project from E0∩E∞ onto the basis [ω1, . . . , ω2g]
and read off the entries of Φ. This involves computing O(g) products of a vector by
a matrix of size O(d2xdy) (under Assumption 4). Therefore, it can be done in time

Õ(log(p)g(d2xdy)
2nN) ⊂ Õ(log(p)d5xd

3
ynN).

Combining all of this, the total time complexity of this step is

Õ(pd4xd
2
ynN

2 + d5xd
3
ynN).

4.4. Step IV: Determine Z(X,T).

It follows from the Lefschetz formula for rigid cohomology that

Z(X,T) =
χ(T)

(1 − T)(1− qT)
,

where

χ(T) = det
(

1− Fn
p T |H

1
rig(X)

)

.

Since Fp is not linear but σ-semilinear, the matrix of Fn
p with respect to the basis

[ω1, . . . , ω2g] is given by

Φ(n) = Φσ(n−1)

Φσ(n−2)

· · ·Φ.

Note that χ(T) is the reverse characteristic polynomial of Φ(n). It is known (see

for example [PT13]) that Φ(n) can be computed from Φ in time Õ(log2(p)gθnN)

and that χ(T) can be computed from Φ(n) in time Õ(log(p)gθnN). Therefore, the
total time complexity of this step is

Õ(log2(p)gθnN) ⊂ Õ(log2(p)(dxdy)
θnN).

4.5. The p-adic precision.

So far we have only obtained an approximation to χ(T), since we have computed
to p-adic precision N . Moreover, because of loss of precision in the computation,
in general χ(T) will not even be correct to precision N . So what precision N is
sufficient to determine χ(T) exactly?

Proposition 4.4. The least p-adic precision N that is sufficient to determine χ(T)

satisfies N ∈ Õ(dxdyn).

COUNTING POINTS ON CURVES USING A MAP TO P1. 17

Proof. We assume for simplicity as in [Ked01] that ordp(Φ) ≥ 0. After the proof
we will say something more about the general case.

It follows from the Weil conjectures that χ(T) is determined by the bottom half

of its coefficients, all of which are bounded in absolute value by
(

2g
g

)

q
g

2 . Therefore,

if χ(T) is known to p-adic precision at least ⌈logp
(

2
(

2g
g

)

q
g

2

)

⌉, then it is determined

exactly. Since ordp(Φ) ≥ 0, there will be no loss of precision in computing Φ(n) and

χ(T), so that it is sufficient to compute Φ to p-adic precision ⌈logp
(

2
(

2g
g

)

q
g

2

)

⌉.

From Proposition 2.12 and formula (8), it follows that in equation (9) we have
maxJ ≤ p(N − 1)− 1. Therefore, the loss of precision during the reductions at the
points not lying over x = ∞ is at most ⌊logp(p(N − 1)e)⌋ by Proposition 3.7.

Similarly, the coefficients of Fp(y
i/r) with respect to the basis [b∞0 , . . . , b

∞
dx−1]

have order at x = ∞ at least p(ord∞((W∞)−1) + deg(r)) by the proof of Proposi-
tion 2.12. It follows from formula (8) and the definition of E∞ that the coefficients
of Fp(ωi) with respect to the basis [b∞0 , . . . , b

∞
dx−1], which are elements of Ω1(V)

now, have order at x = ∞ at least

p
(

ord∞((W∞)−1) + deg(r)
)

− (p− 1) + p
(

ord0(W
∞)− deg(r) + 2

)

− 2 ≥

p
(

ord∞((W∞)−1) + ord0(W
∞)
)

− 1.

Note that the reductions at the points not lying over x = ∞ can introduce poles at
x = ∞, but these can be ignored since they have order at x = ∞ at least

ord∞((W∞)−1) ≥ p
(

ord∞((W∞)−1) + ord0(W
∞)
)

− 1,

using that ord∞((W∞)−1), ord0(W
∞) are both negative. Hence, when applying

Proposition 3.8 to the 1-form that remains after the reductions at the points not
lying over x = ∞, we have that m ≤ −p

(

ord∞((W∞)−1)+ord0(W
∞)
)

. Therefore,
the loss of precision during the reductions at the points lying over x = ∞ is at most

⌊logp

(

−p
(

ord∞((W∞)−1) + ord0(W
∞)
)

e∞

)

⌋.

By construction of our basis [ω1, . . . , ω2g], there will be no further loss of precision
computing the matrix Φ. We conclude that it is sufficient for N to satisfy

N − ⌊logp(p(N − 1)e)⌋ − ⌊logp

(

−p
(

ord∞((W∞)−1) + ord0(W
∞)
)

e∞

)

⌋ ≥

⌈logp
(

2

(

2g

g

)

q
g

2

)

⌉.

From this it follows that N ∈ Õ(dxdyn) using Propositions 4.1 and 4.2. �

Remark 4.5. If we do not assume that ordp(Φ) ≥ 0, then we can use Proposi-
tions 2.12, 3.7 and 3.8 to obtain a lower bound for ordp(Φ). Taking into account

the extra loss of precision (n−1) ordp(Φ) for computing Φ(n) and (2g−1)n ordp(Φ)

for computing χ(T), we still have that N ∈ Õ(dxdyn). However, a bound for N
obtained this way will not be very good in practice. One can obtain a much sharper
bound for ordp(Φ) and the loss of precision in computing Φ(n) and χ(T), using the
existence of the Fp-invariant Zq-lattice coming from the (log)-crystalline cohomol-
ogy inside the rigid cohomology.

Theorem 4.6. The time complexity of the algorithm presented in this section is
Õ(pd6xd

4
yn

3).

18 JAN TUITMAN

Proof. We take the sum of the complexities of the different steps using Proposi-
tion 4.4, leaving out terms and factors that are absorbed by the Õ. �

For the analysis of the space complexity, we will not go into the same detail as
for the time complexity. However, using Assumption 4 at the same two points as
in the analysis of the time complexity, one can prove the following theorem.

Theorem 4.7. The space complexity of the algorithm presented in this section is
Õ(pd4xd

3
yn

3).

Proof. The space complexity of the algorithm turns out to be that of storing a
single Fp(ωi), or equivalently an element of R, which is Õ(pd2xdy

(

N+dx
)

nN). The
result now follows using Proposition 4.4. �

Remark 4.8. There are some standard ways to improve the algorithm from this
section in practice:

(1) We computed the Frobenius lift by working with p-adic precision Ni = 2i in
the ith step of the Hensel lift. Setting Nν = N and Ni−1 = ⌈Ni/2⌉ for all
1 ≤ i ≤ ν, we still obtain the correct Frobenius lift to precision N , while
having to compute to lower precision in every step.

(2) The bound logp
(

2
(

2g
g

)

q
g

2

)

for the p-adic precision of χ(T) can be lowered

using the Newton-Girard identities [Ked08].

These improvements do not affect the complexity of the algorithm, but are important
in practice.

4.6. Our assumptions.

4.6.1. Assumption 1. Without this assumption, Theorem 3.2 does not hold and we
cannot compute in H1

rig(U) as in Section 3. Therefore, Assumption 1 is essential
and cannot be lifted. It would be interesting to know under what conditions a lift
satisfying this assumption can be found. Note that for a smooth curve and a map
x to the projective line defined over a number field K, Assumption 1 is satisfied at
all but finitely many prime ideals of OK .

4.6.2. Assumption 2. This assumption serves to simplify the exposition and can
be weakened as follows. Note that Assumption 2 is equivalent to asking that
[y0, . . . , ydx−1] is an integral basis for Qq(x, y) over Qq[x]. Let us now assume
instead that a matrix W 0 ∈ Gldx

(Zq[x, 1/r]) is known such that if we denote

b0j =
∑dx−1

i=0 W 0
i+1,j+1y

i for all 0 ≤ j ≤ d−1, then [b00, . . . , b
0
dx−1] is an integral basis

for Qq(x, y) over Qq[x]. Then our algorithm should continue to work, extending it
to arbitrary curves for which we can find a lift that satisfies Assumption 1. However,
since quite a lot of small changes are needed in the different steps of the algorithm
and, more importantly, we have not implemented this more general algorithm yet,
for now we limit ourselves to the less general case.

4.6.3. Assumption 3. Note that Assumptions 2 and 3 are in fact very similar: we
need an integral basis for Qq(x, y) over both Qq[x] and Qq[x

−1]. In both cases,
algorithms like the one from [vH94] are available for computing the integral bases.

COUNTING POINTS ON CURVES USING A MAP TO P1. 19

4.6.4. Assumption 4. This assumption is the least important of all the assump-
tions. We have used it a couple of times in the complexity analysis, to bound the
complexity of doing linear algebra in E0 ∩ E∞. Note that in Proposition 4.3, we
have that ord∞(W∞) = 0. For more general Newton polygons this also seems to
be the case experimentally. With large random searches we have not been able to
find a single example satisfying ord∞(W∞) ≤ −dxdy/2. Therefore, we expect that
Assumption 4 can be removed.

4.7. Implementation.

We have implemented our algorithm in the computer algebra system Magma
[BCP97]. In examples where we can compare against either [CDV06] or [Wal10],
our algorithm runs at least two orders of magnitude faster. The code can be found
at http://perswww.kuleuven.be/jan_tuitman and comes in two different pack-
ages: pcc_p for primefields and pcc_q for non-primefields. We give an example
for each package below, mainly to demonstrate how to use the code. More exam-
ples and timings can be found in the example files that come with the packages.
The computations were carried out with Magma v2.20-3 on a 3.0GHz Intel Core
i7-3540M processor.

Example 1. A random curve over F11 with dx = 4 and dy = 5 (genus 12).

load "pcc_p.m";

Q:=y^4+(6*x^5+10*x^4+8*x^3+5*x^2+7*x+5)*y^3+(4*x^5+x^4+8*x^3+6*x^2+6*x)*y^2+(3*x^5+5*x^4+9*x^3+2*x^2+10*x+4)*y

+6*x^5+3*x^4+7*x^3+10*x^2+4*x+3;

p:=11;

N:=9;

chi:=num_zeta(Q,p,N:verbose:=true);

The input consists of the polynomialQ ∈ Z[x, y], the prime p and the p-adic working
precision N . The output is the numerator χ(T) of the zeta function Z(X,T). In
this case it is

3138428376721*T^24-285311670611*T^23-233436821409*T^22+80170221494*T^21-20364093695*T^20+3799998345*T^19

+2657341500*T^18-754684986*T^17+182500065*T^16-37234725*T^15-9607037*T^14+6197609*T^13-939504*T^12+563419*T^11

-79397*T^10-27975*T^9+12465*T^8-4686*T^7+1500*T^6+195*T^5-95*T^4+34*T^3-9*T^2-T+1.

The computation took 27.9s and less than 32MB of memory.

Example 2. A random curve over F710 with dx = 3 and dy = 5 (genus 8).

load "pcc_q.m";

Q:=y^3+((a^9+5*a^7+3*a^5+6*a^4+4*a^3+2*a^2+5*a+1)*x^5+(5*a^9+5*a^8+2*a^7+2*a^6+3*a^5+a^4+6*a^3+4*a+4)*x^4

+(2*a^9+6*a^7+6*a^6+2*a^5+6*a^4+5*a^3+6)*x^3+(3*a^9+2*a^8+3*a^7+3*a^6+a^5+4*a^4+5*a^3+4*a^2+3*a+3)*x^2

+(5*a^9+3*a^8+a^7+2*a^6+4*a^5+a^4+3*a^3+5*a^2+2)*x+(4*a^8+2*a^7+4*a^6+a^4+4*a^3+a^2+2*a+4))*y^2

+((2*a^9+3*a^8+3*a^7+6*a^6+6*a^5+6*a^4+4*a^3+5*a^2+6*a)*x^5+(5*a^9+3*a^8+2*a^6+2*a^5+4*a^4+2*a^3+4*a^2+3*a+6)*x^4

+(3*a^9+3*a^8+6*a^7+5*a^6+3*a^5+3*a^4+5*a^3+4*a^2+4*a+1)*x^3+(2*a^9+2*a^8+5*a^7+5*a^6+5*a^5+6*a^4+a^3+a^2+2*a+2)*x^2

+(3*a^8+3*a^6+3*a^5+5*a^3+4*a^2+4*a+2)*x+(4*a^9+2*a^8+5*a^7+5*a^6+2*a^5+5*a^4+6*a^3+2*a+4))*y

+(a^9+a^8+2*a^7+4*a^6+2*a^5+a^4+2*a^3+4*a^2+6*a+2)*x^5+(4*a^9+5*a^7+a^6+a^5+3*a^4+2*a^3+6*a+6)*x^4

+(4*a^9+4*a^8+4*a^7+a^6+a^5+5*a^4+2*a^3+a^2+2*a)*x^3+(5*a^9+5*a^7+6*a^6+3*a^5+6*a^4+4*a^3+3*a^2+6*a)*x^2

+(5*a^8+2*a^7+2*a^6+3*a^2+a)*x+a^9+6*a^8+6*a^7+2*a^6+6*a^5+4*a^4+3*a^3+5*a+2;

p:=7;

n:=10;

N:=45;

chi:=num_zeta(Q,p,n,N:verbose:=true);

The input consists of the polynomial Q ∈ Z[a][x, y], the prime p, the extension
degree n and the p-adic working precisionN . Here a represents a standard generator
for Zq/Zp, i.e. it is a root of a Conway polynomial. The output is the numerator
χ(T) of the zeta function Z(X,T). In this case it is

http://perswww.kuleuven.be/jan_tuitman

20 JAN TUITMAN

40536215597144386832065866109016673800875222251012083746192454448001*T^16

+734594936640916515108002147869799216237456127361200615126315631*T^15

+37833822114992619972303659616442535094177702647200606500823*T^14

+2969545553762454604862263614126054405430871338256835484*T^13+323896800674094517822826810513267326953587001034849*T^12

+22636175881373275379227578482427791310493422448*T^11+146359712260050195498039226426210033108323*T^10

+66506665686156219471818560867075857462*T^9+3128031304748736252054098124793644*T^8+235442453530348846499533702038*T^7

+1834259371881387520432323*T^6+1004296292146625341552*T^5+50872731607858849*T^4+1651155559516*T^3+74472823*T^2+5119*T+1.

The computation took 2458s and about 350MB of memory.

References

[BC94] Francesco Baldassarri and Bruno Chiarellotto. Algebraic versus rigid cohomology with
logarithmic coefficients. In Barsotti Symposium in Algebraic Geometry (Abano Terme,
1991), volume 15 of Perspect. Math., pages 11–50. Academic Press, San Diego, CA,
1994.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and
number theory (London, 1993).

[BP00] Peter Beelen and Ruud Pellikaan. The Newton polygon of plane curves with many
rational points. Des. Codes Cryptogr., 21(1-3):41–67, 2000. Special issue dedicated to
Dr. Jaap Seidel on the occasion of his 80th birthday (Oisterwijk, 1999).

[CDV06] W. Castryck, J. Denef, and F. Vercauteren. Computing zeta functions of nondegenerate
curves. IMRP Int. Math. Res. Pap., pages Art. ID 72017, 57, 2006.

[DV06a] Jan Denef and Frederik Vercauteren. Counting points on Cab curves using Monsky-
Washnitzer cohomology. Finite Fields Appl., 12(1):78–102, 2006.

[DV06b] Jan Denef and Frederik Vercauteren. An extension of Kedlaya’s algorithm to hyperel-
liptic curves in characteristic 2. J. Cryptology, 19(1):1–25, 2006.

[GG01] Pierrick Gaudry and Nicolas Gürel. An extension of Kedlaya’s point-counting algorithm
to superelliptic curves. In Advances in cryptology—ASIACRYPT 2001 (Gold Coast),
volume 2248 of Lecture Notes in Comput. Sci., pages 480–494. Springer, Berlin, 2001.

[Har07] David Harvey. Kedlaya’s algorithm in larger characteristic. Int. Math. Res. Not. IMRN,
(22):Art. ID rnm095, 29, 2007.

[Har14] David Harvey. Counting points on hyperelliptic curves in average polynomial time. Ann.
of Math. (2), 179(2):783–803, 2014.

[Hub10] Hendrik Hubrechts. Fast arithmetic in unramified p-adic fields. Finite Fields Appl.,
16(3):155–162, 2010.

[Ked01] Kiran S. Kedlaya. Counting points on hyperelliptic curves using Monsky-Washnitzer
cohomology. J. Ramanujan Math. Soc., 16(4):323–338, 2001.

[Ked08] Kiran S. Kedlaya. Search techniques for root-unitary polynomials. In Computational
arithmetic geometry, volume 463 of Contemp. Math., pages 71–81. Amer. Math. Soc.,
Providence, RI, 2008.

[KT12] Kiran S. Kedlaya and Jan. Tuitman. Effective convergence bounds for Frobenius struc-
tures on connections. Rend. Semin. Mat. Univ. Padova., pages 7–16, 2012.

[Lau06] Alan G. B. Lauder. A recursive method for computing zeta functions of varieties. LMS
J. Comput. Math., 9:222–269, 2006.

[PT13] Sebastian Pancratz and Jan Tuitman. Improvements to the deformation
method for counting points on smooth projective hypersurfaces. preprint, 2013.
http://arxiv.org/abs/1307.1250.

[Sto00] Arne Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss Federal
Institute of Technology – ETH, 2000.

[vH94] Mark van Hoeij. An algorithm for computing an integral basis in an algebraic function
field. J. Symbolic Comput., 18(4):353–363, 1994.

[Wal10] George Walker. Computing zeta functions of varieties via fibration. PhD thesis, Oxford,
2010.

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd
[extended abstract]. In STOC’12—Proceedings of the 2012 ACM Symposium on Theory
of Computing, pages 887–898. ACM, New York, 2012.

KU Leuven, Departement Wiskunde, Celestijnenlaan 200B, 3001 Leuven, Belgium
E-mail address: jan.tuitman@wis.kuleuven.be

	1. Introduction
	2. Lifting the curve and Frobenius
	3. Computing (in) the cohomology
	4. The complete algorithm and its complexity
	4.1. Step I: Determine a basis for the cohomology
	4.2. Step II: Compute the map `39`42`"613A``45`47`"603AFp
	4.3. Step III: Reduce back to the basis
	4.4. Step IV: Determine Z(X,T)
	4.5. The p-adic precision
	4.6. Our assumptions
	4.7. Implementation

	References

