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ABSTRACT

Forward stratigraphic modelling aims at represgnthe spatial distribution of lithology as a
function of physical processes and environmentadlitions at the time of deposition so as to integra
geological knowledge into the reservoir modellingrikflow, thus increasing predictive capabilities of
reservoir models and efficient exploitation of hyclirbons. Application of process-based modelsverse
mode is not yet well-established due to our limitezight into the information content of common
subsurface data and the computational overheadvato

In this paper we examine inverse modelling oftigjraphy by using a typical dataset acquired in the
hydrocarbon industry, which consists of seismi@adatd standard logs from a limited number of wéllse
approach is based on the use of a forward modeldc8imClast, developed at Delft University of
Technology, to generate facies distribution andtiggcture at the regional scale. Three differemtdyeess of
fit functions were proposed for model inversiorldwing an inference approach. A synthetic researuait
was used to investigate the impact of the unceytaifiecting the input parameters and the infororati
content of seismic and well data.

The case study showed that the model was moréigers the initial topography and to the
location of the sediment entry point than to sealleThe depth of the seismic reflector correspogdo the
top-reservoir surface was the most informative datace; the initial and boundary conditions of the
simulation were constrained by evaluating the depthis reflector across the whole basin aredhén
reservoir area, where the seismic-to-well tie wsialdished, the depth of the reservoir top doegivet
enough information for constraining the model paetars. Our results thus indicate that evaluatiopasin-
scale data permits reduction of uncertainty in gtggtistical) reservoir models relative to the cotre
workflow, in which only local data are used. Efigetuse of well data to generate reservoir models
conditioned to basin-scale scenarios requires pastessing methods to downscale the output ofcivesfrd

model used in the experiments.



1 INTRODUCTION

The current workflow for obtaining static resemaiodels relies on integration of quantitative well
and seismic data by geostatistical (geometric-ststit) methods. Kriging-like procedures are useobitd
a “best-guess” static reservoir model, from whinhkeasemble of equiprobable realisations is prodbged
conditional simulation (Deutsch, 2002). Conditiosmhulation implies that the large-scale geomefrg o
reservoir (and its enveloping geological unit) asvkd from seismics is respected and well data are
honoured. Each realisation is transformed intordgicoous 3-D porosity and permeability field by
appropriate averaging (upscaling) procedures twesas boundary conditions for dynamic models of
reservoir behaviour. Uncertainties associated veiiervoir behaviour are modelled by regarding the
ensemble of equiprobable realisations obtainedbgitional simulation as a representative sampke of
population of (geologically realistic) subsurfaceduals that is consistent with the observations. The
underlying geological scenario is in most casesha source of uncertainty (Deutsch, 2002; Berdieg
Smith, 2008) and therefore multiple scenarios ghbel subjected to this geostatistical modellingkfltow
for any reservoir.

In the geostatistical approach to geological resemodelling, the aim is to mimic the present-day
spatial distribution of geological entities withdaking into account how a particular spatial disttion of
lithology (porosity and permeability) has been gatedl. Geological objects, such as channel bélgde s
lenses, and sandy lobes are introduced into sudelsnby invoking templates, so called "analoguak&mn
from outcrops of rocks inferred to have formed ursimilar conditions (Deutsch, 2002). This “product
based” approach to prediction of reservoir architecdoes provides limited opportunities for inaading
knowledge of the physical laws which govern ba#iimd into the modelling workflow (Karssenbergat,
2001; Imhof and Sharma, 2006; Charvin et al., 2@091; Weltje et al., 2013). A recently conducted
experiment in which a continuous outcrop was spasanpled to mimic subsurface data (Deveugle.et al
2014) illustrates the limitations of state-of-the-geostatistical algorithms for prediction of bibgy
between wells.

The use of process-based stratigraphic simulatiotefs facilitates the integration of basin-scalelggical

constraints into static reservoir models by pravidguantitative predictions of the spatial disttibo of



lithology (stratigraphic architecture) based orolggical information that is in principle indepemd®f the
local data to which reservoir models are typicatiynditioned.

The capability to predict stratigraphic architeetis relevant to reservoir modelling because high-
resolution sequence-stratigraphic representatib(lecal) basin-fill architecture may be used todgu
different stages of the reservoir-modelling workfldrom the early phase of stratal pattern recasiton by
well correlation and definition of possible depimsitl scenarios (Wendebourg and Harbaugh, 199°gd3ar
et al., 2006; Falivene et al., 2014) to the fitage of constraining stochastic lithofacies distiiitns for the
assessment of reservoir volumes and connectivity tlze planning of infill wells (Doligez et al., 29).
Instead of building inferences about reservoir geckure solely upon models which honour the watbadof
a particular reservoir, which may not contain eroinformation to constrain stochastic models
(Karssenberg et al., 2001), process-based stratigranodelling allows us to reduce the solutioncepaf
reservoir architecture to a subset of models whish honour basin-scale geological constraints. For
practical purposes, however, the added value afigtaphic modelling relies on our capability tanddion
these highly non-linear models to case-specifienlagions, such as seismic and well data (Burtah. et
1987; Heller et al., 1993; Lessenger and Cross5;1080ss and Lessenger, 1999; Bornholdt et al.9:199
Wijns et al., 2004; Imhof and Sharma, 2006; Falévehal., 2014). If this can be accomplished, wg ma
narrow down the range of possible scenarios (i@#diss) in the exploration stage, which should ltesu
more reliable uncertainty estimates associated iegbrvoir-architecture models.

In this study we focus on the first step of thekflow, i.e. conditioning of a process-based maddel
seismic and well data. We carry out stratigraphiwsations with SimClast, an aggregated basin-scale
process-based model of a fluvio-deltaic system with-grid parameterizations of fluvial channel rests
and coastal dynamics (Dalman and Weltje, 2008, R@EithClast is a so-called 2DH model (depth-avedage
model of flow in the two-dimensional horizontal pé&g. The term sub-grid parameterization originatetthe
field of computational fluid dynamics (Meneveau 1@ In the case of SimClast, it refers to the
implementation of processes which govern the eimludf drainage networks (such as avulsions) as sub
grid scale routines into the large-scale basimflimodel. The visualization and investigationta# sub-grid
alluvial stratigraphy generated implicitly by thedel may be performed by post-processing of modgiud

in order to attain the level of detail required f@ological reservoir modeling.



It is well known that the parameters of a model lsa inferred by means of inverse methods
(optimization or sample based). Inversion of highby-linear models of sedimentary systems is aatite
process in which the stratigraphic model is rum,dbtput is compared with the data according to an
objective function (or likelihood function in Bayar approaches), the parameters are adjusted bysméa
the selected technique and the model is run agdihausatisfactory match with the target has beached
(Lerche, 1992, 1996; Bornholdt et al. 1999; Wijhale 2004; Charvin et al., 2009, Karssenberd.ef@01;
Karssenberg et al., 2007; Verga et al., 2013). @nke potential problems in stratigraphic inversis the
non-uniqueness of the solution, i.e. multiple sohg which fit the data equally (or nearly) as wellen in
cases where a good match between model and datedaschieved. Moreover, the inversion of
sedimentary models tends to be computationally msige and is sometimes regarded as unfeasible §Wijn
et al., 2004; Burgess, 2012). An alternative metisaded for situations in which limited data avaitable
(Heller et al., 1993; Burgess et al., 2006) corsi$tsystematically searching the likely paramesperce in
order to form a map of the model properties (ggtial distribution of net to gross). In the apmivadopted
in this study, each input parameter was assumgadiéev a uniform distribution over a given intervdlhe
solution space was explored with a Quasi-MontedOathod in order to obtain a set of solutions
corresponding to each possible combination of ipauameters. Conditioning of the model to well and
seismic data was achieved by an inferential apjra#sing different goodness of fit functions, fumctions
expressing the misfit between simulated data amfesence case mimicking real data. Because théicol
space contained a ‘reference case’, the effectsgeakthe goodness of fit functions could be evalian
the light of possible limitations of the forward de and/or the data. This approach allowed expltoraif
the parameter space and robust assessment ofdéeainty in a fully non-linear manner. This apmioa
differs from local (i.e. gradient methods) and glbf.e. Genetic Algorithm) optimization methodshiah
are primarily designed to find a single ‘best-§itlution (Lerche, 1996), in that it was aimed a&iitifying
multiple scenarios of input parameters charactdrigea likely stratigraphic realization. Systematic
exploration of the parameter space provided théysisaof the influence of each of the parametend, a
allows us to evaluate how the uncertainty of irgarameters propagated to the modelled stratigraphy.

In a follow-up study of the present paper we idtemuse the obtained basin-scale results to

constrain sedimentary architecture at the resesgaile. This will allow us to assess how the assedi



uncertainty propagates to the reservoir scale,inpghe way to a full-risk analysis on the hydrdmars

initially in place and the recoverable reservea &mction of a given field development plan.

1.1 Process-based stratigraphic simulators

Stratigraphic forward models may be subdivided o main categories: geometric and dynamic
models (Paola, 2000; Burgess, 2012). Geometric lmade relatively simple as they do not aim at
describing the physical processes involved, bueadsfocus on direct simulation of the resultingtst
geometries (Burton et al., 1987; Bowman and V&89 Cross and Lessenger, 1999). Dynamic models are
more complex as they attempt to simulate time-dépenherosion and sedimentation processes using
empirical and/or process-based equations. Two agpnoaches can be distinguished within the latter
method: hydraulic models and diffusion-based mod#¢ysiraulic models use flow laws based on
simplifications of the Navier-Stokes equations ésaribe sediment transport and deposition (Tetaladif
Harbaugh, 1989; Griffiths et al., 2001; Warnerlgt2008), whereas diffusion-based models represent
sediment transport and deposition as a functigdghefopographic gradient (Granjeon and Joseph,;1999
Meijer, 2002). Stratigraphic forward models mayodie classified in terms of targeted sedimentary
environments. Siliciclastic models describe theldng forms of clastic basin fills as a functiongtiysical
erosion, transport and deposition (Tetzlaff andddagh, 1989; Storms et al., 2002; Clevis et aD320
Dalman and Weltje, 2012), whereas carbonate maaplement bio-chemical constraints to calculate
situ precipitation and production of carbonate sedinfBatgess, 2001, Warrlich et al., 2008). Models of
complete sedimentary systems are obtained by dy@digncoupling single-environment models (Huttom an
Syvitski, 2008; Warner et al., 2008).

The synthetic reservoir studied in this paper te®f sediments deposited in a fluvio-deltaic
environment. The forward model employed is SimC{Bstiman and Weltje, 2008, 2012), an aggregated,
basin-scale 2DH stratigraphic model which comprgmaseral coupled sedimentary environments. It was
developed between 2005 and 2009 at Delft Univedsifiyiechnology to study the complex interactions
between fluvial and marine processes and theicefien fluvio-deltaic stratigraphy. The numericaideal
uses loading and accounting schemes based on N#G@2). The model is capable of simulating fluvial

channel network dynamics, plume deposition and viagieced cross-shore and long-shore transport. ISmal
6



scale processes governing the dynamics of flukiahoel networks and shoreface evolution have been
implemented as sub-grid parameterizations, withritent to achieve realistic morphodynamic behawiou
and stratigraphic architecture without significgrtbmpromising computational efficiency. Sub-grid
sediment transport and channelization are derin@d physical equations, capable of producing cayeer
and divergent drainage networks, trunk channelsmaogdt importantly, a detailed representation of
crevasses, avulsions and bifurcations (Dalman aeltj&y2008).

SimClast can model siliciclastic sedimentary bssip to 18 kn? (with spatial resolution of 1 to 5
km) over time scales from 1@ 10 years (with temporal resolution of 1 to 10 yeakddel output consists
of multiple maps (shapshots) of topography, sediatem pattern and liquid discharge. Furthermore, a
volume comprising discrete stratigraphic informatan sediment thickness, grain size and age (dyatia
averaged over each cell) is created for the egtice Additional information on channel archite@unay be
extracted from the sub-grid parameterization. Tienoel-belt pattern is described in terms of flustgle
(braided or meandering), the volume of channeldgaubsits, the flow direction and channel-top elievat
for each grid cell. Exact locations, widths anakhiesses of the channel-belt deposits are notvexsdbut
can be constructed by dedicated post-processitgaef employing geostatistical simulation technigjue
The sub-grid parameterization is the main reasothi®high computational efficiency of SimClast

compared to other process-based models whichgedhis level of architectural detail during rungim

1.2 Reference case and synthetic dataset

In order to perform simulations with SimClast sevenvironmental parameters need to be set: the
initial surface and subsurface sediment propertsggmtially variable) subsidence, sea level, rinlow
location(s), liquid discharge and sediment supgigin size of the sediment feed, wave regime, head t
current pattern at the grid boundaries. The refar@ase consists of a synthetic dataset generated b
SimClast. We selected a reservoir unit correspanttirone major aggradational episode within a tuvi
deltaic sedimentary system, which took 8000 sinealgears to form. Over the course of this compagbti
short time interval (geologically speaking), thdiggent entry point did not migrate laterally, seadl was
stable, and climate fluctuations as mirrored innges of liquid and solid discharge were absentoyted

for the maximum spatial and temporal resolution ased grid cells of 1x1 km and time steps of 1 y€he
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grid extended 50 km in the East-West direction 4ném in the North-South direction. As each siniolat
encompassed only 8000 years, the simulation tingeslvart enough for systematic searches of the gdeam
space.

The objective of the simulations was to illustrite effect of three main environmental parameters
on reservoir properties:

« Initial topography;

» Location of water/sediment entry point;

* Seallevel.
The three parameters taken into considerationyafarihe most important forcing factors, in vietwloe
short time span involved in the generation of #geervoir unit under consideration. Hence, each hrode
was conducted under time-invariant forcing factoes,constant sea level, liquid discharge andnsent
supply. The grain size of the sediment feed coragrie/o discrete classes: sand, representing teeves
units (such as crevasse splays, channel depasitéezees), and clay, representing the floodplajmogits.
A base case was generated by assigning an impabtaphic elevation ranging from 24 m to 74 m &ov
the reference level, with an average slope of abdi9 dipping to the north-east. The sediment guigt
was fixed at the intermediate location (grid ceiimber 24, corresponding to 30 km) along the westdge
of the model and the sea level was set equal ®m4above the topographic reference level. It vezsimed
that four wells (labeled A, B, C and D) had beeilatt to explore and delimit the reservoir. Figdrehows
the vertically averaged net-to-gross ratio (thepprton of sand), the reservoir area and the mrstof the
four wells in the central part of the model. A dyatic dataset was generated from the referencendtiséhe
objective to mimic the typical data available f@ogpgical reservoir modelling in the appraisal ghaka
field's life cycle. The dataset consisted of:

* The lithology intercepted by the wells (fig. 2), it is usually derived from the analysis of thetiogis
during perforation as well as from the correlati@mtween wireline logs (such as gamma-ray or
spontaneous potential logs) and core data. Dowingddle SimClast output to the reservoir scale was
achieved by post-processing the sub-grid infornmatiioobtain a 3D distribution of the channel volume
fraction, representative of the chanaeturrence probability d?) for each grid cell. The lithology has

a vertical resolution of 10 cm, which reflects thelity of the underlying data (core descriptidasi|



logs, or deconvolved ‘conventional’ well logs). Tikata are schematically interpreted as channel-belt

deposits (thick sands), crevasse splays (thin 3aadd floodplain fines.

* The top reservoir surface extracted from the basitte simulation. This information is typically trefd
through seismic interpretation and is subject tocemtainty due to the adoption of a velocity moael f

time-to-depth conversion.

» The well control points for bottom (initial topognay) and top surfaces, which are typically defined

from well log analysis and, as a consequence, itotesthe least uncertain data.

2 INPUT DISTRIBUTIONS OF UNKNOWN PARAMETERS

This study focused on the initial topography, $ba level and the sediment entry point. Since the
exact value of the parameters characterizing thedia model cannot be estimategriori, a considerable

range of uncertainty was assumed for each parameter

2.1 Initial topography

The geometry of the stratigraphic surfaces boupdireservoir is inferred from seismic data. The
seismic data are then integrated with well datdefine a velocity model for time-to-depth convensio
Usually, the availability of 3D seismic data is iied to the reservoir zone and its immediate surdings.
The 2D seismic data acquired in the exploratiorsptieas a regional coverage, and their densityalpic
allows identification of large-scale geologicalustiures through interpolation. The difference ia liével of
knowledge of the reservoir zone compared to theanding region is further emphasized by the wall-t
seismic ties which drastically reduce the uncetyaassociated with time-to-depth conversion.

For the purpose of this study we assumed that is were available to constrain the seismic and

stratigraphy at the regional scale except for thue fvells which had intercepted the reservoir zéoegted
in the central area of the model grid. The impl@abf this assumption was a significant uncertaaftthe
initial topography away from the reservoir zoneeTmcertainty associated with the initial topogsaplas
captured by a set of 22 realizations (fig. 3), whieere generated by introducing the following peréion

to generate the surface realizati®s

Sr = Snc +U10U sgs (1)



where:

Sec. base case, or reference surface

U,,: depth error on the reference surface with assigtendard deviatioo

Ugs: Stochastic error surface obtained by SequenaaisGian simulation with zero mean and unit

standard deviation, conditioned to wells A, B, &d ®.
All realizations were based on the semi-variograndeh derived from the reference surface, and wede t
to the well locations (A, B, C, D). The goodnessiodf the realizations is represented by themikarity to
the reference surface. The misfit was evaluateiddakto account the uncertainty of the velocitydab
used to convert the seismic data from time to deyisfits up to 5 m were considered negligible, in
agreement with assumed uncertainties of seismieelbties. The misfit was computed over the entiasin
area and over the reservoir zone only (fig. 4)aA&®nsequence of constraining all the realizationsell
data, the uncertainty decreases towards the wetitms. Therefore, all initial topographies aissle
uncertain in the reservoir area than in the sumgarea. The realizations were ranked accordinbeir
goodness of fit over the entire basin area: noefirésenting the actual initial topography) coroesfs to the

best-fit topography and no. 22 to the worst fittireglisation.

2.2 Sediment entry point

Soft constraints on the sediment entry point araraonly provided by the knowledge of regional
paleo-topographic gradients and lateral thicknesléos grain-size trends. In the present studynglsi
sediment entry point was considered at the westdge of the model grid, broadly consistent with the
general dipping of the initial topography towarhs hortheast. A range of uncertainty of 20 km & North-
South direction was assumed (grid cell number® 1!t corresponding to the range 20-40 km), as shiow

figure 5.

2.3 Sea level

The sea level may be constrained by paleo-bathigraatalysis or by facies analysis at the well
locations. We assumed that the sea level was curditaing the geologically short simulated peris@q0
years). A range of variability of 35 meters arotinel reference value, thus a variation between &0d565.5

m, was considered (fig. 5).
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3 MODEL INVERSION AND UNCERTAINTY EVALUATION

In order to assess the uncertainty of the inptdrpaters, we propagated the probability distrilyutio
functions (PDFs) of the input distributions througk model to obtain the PDF of the output distidns.

Methods to determine the probability distributimfran output quantity from the probability
distributions assigned to the input quantities meynalytical (Taylor1982; Amaefule and Keelan, 1989),
numerical (Bornholdt et al. 1999; Nakayama, 200@ai@in et al., 2009; JCGM, 2008; Viberti et al.12)
or interactive (Boschetti and Moresi, 2001ijns et al,2004). Analytical methods of error propagation,
although preferable because they are exact, wecardied because they are applicable to simple oases
(i.e. linear or linearized problems). Instead, agiMonte Carlo approach with systematic sampliag w
chosen. In this method, the input distributionppraximated by sampling according to a specifi¢guat for
example at equally-spaced intervals along a line giid. The first element is selected randomly tued
selection of the remaining elements is determinethb pattern (Cochran, 1963). This kind of sangpls
also called quasi-random (Naval, 2009). It diffiecsn a classical Monte Carlo because a quasi-random
sequence in place of a random sequence is exploitteé sampling stage (Caflisch, 1998). A Quasink4o
Carlo method requires a smaller number of samplggt the same accuracy as a Monte Carlo method whe
the population is homogeneous because it emphdsitesverage of the area of interest (Pal, 198&)
eliminates the clumping phenomenon, which is atiigifactor in the accuracy of the Monte Carlo noeth
(Caflisch, 1998). As a consequence, the computatioost is significantly reduced.

The input parameters of the stratigraphic simafativere assumed to be independent and uniformly
distributed. Theoretically a dependence between sediment eainy, sea level and initial topography is
present but it had already been taken into acdauhe preliminary study conducted to choose tingeaof
variation of each parameter. Within the chosene&arige degree of uncertainty over each single peteam
makes the independence assumption reasonablés ktuldy, the forward stratigraphic model was agaptio
each sample of input parameters, giving a setafit®that constituted the output distributiontiédiy,
scenarios representative of the uncertainty affgdtie input parameters were selected by systematic
sampling in a reasonable range, defined fegmiori knowledge of the system. The sampling pattern was
based on considerations arising from preliminansgeity analyses. Initially, a coarse grid based

equally-spaced sampling was defined for all paramsetesulting in the definition of 1100 scenariosa
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second phase, a locally refined parameter spadgstaas conducted around the most promising
parameter sets identified in the first phase. Semgplas then conducted with a quasi-uniform disiidm
on the new parameter space. Approximately 2000estEnwere realized overall. Sensitivity analysis
showed that a further refinement would not addalyable information. .

The input parameters were considered variablesiled by a probability distribution. This
probability distribution (first stage distributionyas formulated before the simulation results vesrapared
with the available data. However, the uncertairfitycing the input parameters was significantlyuesd by
excluding all the scenarios that did not fit thaitable data. When a sample (i.e. a parametensepased
by initial topography, sea level and sediment eptiyt) was taken, the outcome (i.e. the correspand
basin simulation results) was observed and compaithdhe available data (posterior knowledge). The
goodness of fit between the simulated and referdatiewas expressed as the probability that thiahiea
data could be reproduced by a model characterigé¢ldebsampled set of input parameters. A misfit
threshold was then introduced in order to discaslrbscenarios that had high misfits and, in ttormeduce
the uncertainty associated with the input paramdgacond stage distribution).

The entire approach was conceived so as to becapf#ito real-world cases where the typical dataset
consists of well and seismic data. Thus, we contptre stratigraphic surfaces provided by basin rinogle
with the stratigraphic surfaces obtained from s&snterpretation, and compared the lithology pecesti by
the model with the lithology observed at the atlations. In the case analyzed in this study {f{jghe
lithology was assumed to be available at the sitésur appraisal wells A, B, C and D (fig. 2).

Caution is needed when comparing basin-scale sfioaleesults with available hard data, such as well
lithology. In fact, well logs provide informatiomdhe system architecture at the reservoir scdiereas the
basin-scale simulations provide the spatial distitm of entire channel belts, which is one order o
magnitude larger. Although the channel-belt voluthe,number of channels, the direction of the ckhnn
belt and the depth of the channels bottom are aitigligiven by the basin model, these quantitiasnca be
directly converted into a prediction of the wethtlogy without post-processing of the model outpetause
lithology is not spatially uniform within each graell. Therefore, the comparison was limited to the
elevation of the reservoir tops at the wells anthéoprobability that a channel was interceptea lmell.

Finally, a goodness of fit function was calculate@ccount for the mismatch with soft data, expneskow

12



the simulated top surface fits the seismic topas@f The uncertainty associated with the top regerv
surface derived from seismic data is mainly duea¢ovelocity model used to convert two-way travelet
into depth. This uncertainty was considered byoifiticing a confidence interval for the top surfadee

mathematical definitions of the goodness of fitdtions are reported in the Appendix.

4 RESULTS

In order to analyze the propagation of uncerta@rgyociated with the selected input parameters
(sediment entry point, sea level and initial to@giy) to the model output, we examined the vartgiof
several quantities extracted from the realizations.

The predicted volume fraction of the channelizepladéts in the reservoir area is shown as a funafdhe
input parameters in figure 6. This quantity isuefhced by the location of the sediment entry p@mving
maxima for the northernmost locations) and to adesxtent by the initial topography. The corresiog
histogram shows that predictions of the volumetioaicof the channelized deposits range between 2086
40% (fig. 7a); this interval contains the valudlod reference case (35%). The distribution of trenoel-
belt directions in the reservoir area (fig. 7bj@ sensitive to the input parameters. In fags dymmetrical,
with a mean of 270° and variance of 45° (the valuihe reference case is 270°).

The degree of similarity in terms of stratigrapaichitecture and channel-occurrence probabilityregno
simulated scenarios was examined with a hierarcbiagster analysis technique. The inter-clustetadise
was calculated using the squared Euclidean m&eigeral linkage approaches were considered (Hatsdile
2009), but the inner squared distance (Ward, 19&3%he minimization of the total within-clustesriance,
proved to give the best separation between clusters

Four clusters were identified based on the elemaifdhe bounding surfaces in the overall basia.afée
cutoff distance, distinguishing between clusteras whosen in order to maximize the distances artieng
clusters, based on the dendrogram plot (fig. 8athé dendrogram it is clearly visible that theealt$ tend to
form four different groups. These groups are coteteby three longer links, which are inconsisteith the
links below them in the hierarchy. The locatiorttté sediment entry point and the initial topograpppear
to be the dominant controlling factors on the shafptbe reflectors bounding the reservoir unit.(88). A

sharp discontinuity in the cluster affiliation ocsun the proximity of the central position of thediment
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entry point (i.e. 30 km), which corresponds to dletual location. Similar results were obtained lngtering
the scenarios based on the channel occurrenceljlipbi the reservoir area. Three main clusteesev
identified in this case (fig. 9a). Again, clustapgpear to be controlled by the location of thersedit entry
point and by the initial topography (fig. 9b). Altenarios in which the sediment entry points acatid in
the northern area (from 35 km to 40 km) belondhdame cluster.

The values of the goodness of fit function useeMaluate the mismatch of the stratigraphic sugface
with the available seismic data (Eq. 6) are shawiigures 10 and 11. The goodness of fit of the
stratigraphic surface showed a strong dependentigedocation of the sediment entry point and a@n th
initial topography, and much less on sea-levelatems (fig. 10). A roughly symmetrical impact bkt
sediment entry point relative to the reference ¢ase30 km) can be observed. The 100 most likely
scenarios out of the 2000 basin simulations (fé)lindicate that the sediment entry point wastieda
between 26 and 32 km and that the sea level vhaideen 41.5 m and 49.5 m. Furthermore, only a few
likely initial topographies were identified. If tigodness of fit evaluation of the top surfacénstéd to the
reservoir area (fig. 11), trends related to thBahiopography cannot be observed. The differdreteveen
basin and reservoir-area goodness of fit inferrethfseismic data is evident from the histogrampldisd
in Figure 12, where the scenarios showing a ndgégliscrepancy with the reference case repres@ntdf
the simulations when evaluated on the reservoa andy (fig. 12a) against 4% of the simulations wiiee
whole basin area is taken into account (fig. 12R)is is a direct consequence of constraininghallinitial
topographies to the well data. Therefore, the nledebp surfaces were subject to less uncertaimtiye
reservoir area than in the surrounding area andatidontain much information on stratigraphic abiiity.

The goodness of fit relative to the well data Wwased on the well tops (representing the depth at
which each well intersected the top reservoir s@fand on the lithology of each well (a sand/shale
sequence representing channel-belt versus floaddigiosits). Figure 13 shows the depth mismatch
between the well tops for wells A, B, C, D and thge surfaces at the corresponding grid cells (Eqt 2an
be observed that most scenarios are characteryzaddow misfit. The general asymmetric trend as a
function of the sediment-entry-point location washably induced by the selection of the well looas.
The results seem to be insensitive to the initipbgraphy. Figure 14 shows the mismatch between the

lithostratigraphy at wells A, B, C, D and the prblligdy of channel occurrence, expressed in terms of
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channel-volume fraction for the corresponding getls (Eq. 3). Again, no clear trend can be idédif
Thus, differently from seismic surfaces, the haathdextracted from the reservoir (i.e. well topd an
lithological logs) do not seem to be very effectiwethe inversion process.

Beyond giving information on the most likely vatuef the simulation parameters, goodness of fit
functions were primarily constructed in order tduee the uncertainty affecting the 3D channel aecure
probability (R). This 3D channel occurrence probability was otgdias an outcome of basin simulations.
In a follow-up study this information will be imped as a soft constraint to the Kriging-like generaof
reservoir realizations and will complement the ¢@ists provided by well and seismic data. A 2D map
restricted to the reservoir domain area, of thgvlues averaged over the reservoir depth is shioigure
15a, b, and c. Figure 15a shows thg\Rluesaveraged over all the simulated scenarios; figbtedrovided
the Ry valuesaveraged over a selection of the most likely saeagselected according to thg fand
Fop_sursCriteria applied sequentially); finally, figure dShows the &, values for the reference case. The
comparison reveals how the selection of the mhstyiscenarios reduces the uncertainty relateddo t
sandy channel occurrence.

The Ry variability in the vertical direction was evaluat®r the locations W1-W9, displayed in
fig.16. The selected locations follow a regulatgmat so as to uniformly monitor the reservoir aidee Ry
median value over all the considered scendfigsre 17a) and over the 100 most likely scenaffigsire
17b) are compared to the reference case valugascas be observed, a clear improvement of the P
median was observed when the scenarios were @lareording to the goodness of fit criteria, esglcat

locations W3, W6 and W9.

5 DISCUSSION AND CONCLUSIONS

Reservoir description could significantly bendfibom the integration of quantitative basin-scale
information into the reservoir simulation workflowhe ability to predict the occurrence and distiiiiu of
pay facies is known to be crucial during the agaigphase of a field, when decisions have to beerbaded
on a limited amount of available data, as well asng) the field development for placement of newnditl
wells. This study was aimed at demonstrating thaterical modeling of the basin-scale stratigrapduy lbe

used to effectively steer prediction of reservoah@ecture in fluvio-deltaic sedimentary envirormtse
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The study demonstrated that accurate estimatiomoolel input parameters, especially the initial gmaphy
and the location of the sediment entry point, isd&el to achieve a reliable prediction of both thencel
locations and the sand/shale volume fraction. Treerainties associated with the input parametesagly
affected the overall channelized volume fractionval as the elevation of the bounding surfacesthad
spatial distribution of the channelized deposits.

The hard data extracted from the reservoir (i.dl twps and lithological logs) were not very effigetfor the
inversion process. Given that the information eoted from the basin model derived from a coarsa @nid
that the well data referred to a specific locafiothe reservoir, a direct comparison could nobiaele
without downscaling the model output by post-preoes Inversion of the basin model based on the
stratigraphic surfaces interpreted from seismia gapved to be much more successful. A clear cglakiip
was found between the initial environmental paranmseand the geometry of the bounding surfaces wien
entire basin area was considered. Converselyntiesion was much less successful when it was based
the elevation of the seismic surfaces in the researea only. As a direct consequence of constrgiall
the realizations to the well data, the uncertatlggreased towards the well locations. Therefol¢hal
initial topographies were subject to less uncetyaimthe reservoir area than in the surroundirgpand did
not contain much information on stratigraphic vaility. Similarly, the modelled top stratigraphiaréaces
are less sensitive to initial topography if res&itto the reservoir area. This result clearly stubtinat
attempts to fit (geostatistical) reservoir modelfocal data only, which happens to be the standaréflow
in reservoir modeling, might not be the most sustegpproach to constraining reservoir models.i&teg
seismic surveys, which are commonly available eappraisal phase, provide a wealth of information
the area surrounding the targeted reservoir voleffiectively acting as boundary conditions for the
reservoir model. Thus, the definition of a corneglocity model to minimize the uncertainty of thire-to-
depth conversion has a significant impact on theii@cy of the stratigraphic inversion. If the utiaeties
associated with the initial and boundary conditiohbasin-scale simulations can be significantijuaed,
the lithostratigraphic record generated by the guidbparameterization can be used to predict th&ap
distribution of lithology at the reservoir scaledagh application of appropriate geostatisticaltpos
processing tools such as multipoint statistics yald Caers, 2010). This will be the subject aflbfv-up

study.
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APPENDIX

The functionF,e_op measuring the well-top misfit was defined as fato

2
1 = Z(Opiw a z[C‘F’iw
Foal top = Z - (2)
- nvvells iw=1 Ztopiw

wherez,, ~andZz,, are the elevation of the final topography atithe well estimated from simulation

and log, respectively, ang, is the number of wells.

The functionFcy measuring the mismatch between the evidence oinghdacies from well logs and the
correspondinghannel occurrence probability (Pcy) from simulated results is expressed by the sutwof
terms; the first term expresses the fraction othi@pint in whichPc, =0 but well log exhibit channel (R=1)
and the second the fraction of depth point in witlgh=1 but well log exhibit floodplain (non-channel,

R=0):

_1 11 A2, 1 2 _ _
Fon == 2. Z[%J;(m(z)—m) +%J;(m(zj)¢CH) B,wherez | Rak2)=0. 2 | Ruf2)=1 ()

where R, (z ) is the lithology of weliw at the quotez,, CH is the channel lithologyR.,, (z ) is the

channel volume fraction of the grid cell intercegttheiw™ well at the deptte, ; nz.. is the number of

depth points of théw™ well that are expected for sure not to interceq:fhmnel(Fg:HiW(z ):O), analogously

nzyw is the number of depth points of the™ well that are expected for sure to intercept a nbhn

(PCHiW( Z ):]). The channel-occurrence probability for each vi|l,,(z,) is calculated as follows:

ifp

V
P.. (z. )=-—S1 4
CHiw ( ifp ) Vce” ( )

whereV,, is the channel volume in the grid cell containihg welliw at the depthy,, corresponding to the

intercepted floodplaiifp, andV,,, represents the cell volume of the correspondiidy §he channel
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occurrence probability is assumed to be constamigathe channel thickneﬂs). The latter is estimated

from the channel volume, given the thickness-totwitio (f ):

vV, OF

ICH

h(x, Y, z) = (5)

where the channel lenglp,, is approximated with the cell dimensiarx . The thickness-to-width ratio was
chosen as 1/250, according to Reynolds (1999).

The goodness of fit functiofr, ¢ measures the mismatch between the simulated arskibmic top

op _sur
surfaces, accounting for uncertainty on seismia ttaugh a tolerance interval for the top surface.

It reads:

> d(x,y )] ()

1
F =
top_surf (_nxny \/0_2 (Ztop_surf) =

wheren,n, is the number of cells of the grid covering thesaw (zmp_Surf ) is the variance among depth
data of the top surface anﬂ(xi Y ) Is the punctual distance between surfaces, compsted

d(XI ’yi ) = Maxqztop_surf ( XI ’yi )_ Zref _surf ( X| 1yi )‘ _tOH 10) (7)
wherez . (x,y;) is the elevation of the final topography in thé cerresponding to the coordinates

%,y andtoll is the tolerance interval.
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FIGURE CAPTIONS

Fig. 1: 3D view of basin-scale model in terms afteegross and fluvial architecture at reservoalsc
Reference wells A to D are also displayed.

Fig. 2: Stratigraphy at wells A, B, C, D. Top arattbom surfaces are displayed as dotted lines.

Fig. 3: Realizations of the initial topography witlell locations (A, B, C, D) and outline of reseirvbone
(white rectangle).

Fig. 4: Goodness of fit of initial topographies wiespect to the seismic data of the reference case
Fig. 5: Locations of possible sediment entry poard range of sea levels considered in the study.

Fig. 6: Channelized volume fraction (%) in the res& zone. Initial topographies are ranked acauydb
similarity to reference case.

Fig. 7: Histograms of the (a) sand fraction (%) émdchannel directions in the reservoir zone basethe
basin-scale model.

Fig. 8: Dendrogram (a) and cluster analysis (lhefconsidered scenarios based on the basin stiattig
The cut was selected at the level maximizing ik&adce between clusters.

Fig. 9: Dendrogram (a) and cluster analysis (fhefconsidered scenarios based on the 3D map nheha
occurrence probability. The cut was selected atdliel maximizing the distance between clusters.

Fig. 10: Goodness of fit of the basin scenariogtas the top stratigraphic surfacg/k.) across the
whole basin area: all scenarios (a) and 100/2004} likely scenarios (b).

Fig. 11: Goodness of fit of the basin scenariogtam the top stratigraphic surface k. restricted to
the reservoir zone: all scenarios (a) and 100/2006x likely scenarios (b).

Fig. 12: Distribution of the goodness of fit furmtiF,, sur based on the mismatch of the top stratigraphic
surface across the whole basin area (a) andéaegervoir area only (b).

Fig. 13: Goodness of fit of the basin scenariogtas the well tops (f ) at wells A, B, C, D: all
scenarios (a) and 100/2000 most likely scenarips (b

Fig. 14: Goodness of fit of the basin scenariogtam the lithological similarities ¢f) at wells A, B, C, D:
all scenarios (a) and 100/2000 most likely scesg(ti.

Fig. 15: Reduction of uncertainty over channel ommce probability (By): average over all scenarios (a),
average over a subset of selected scenarios f®enee case (c)cRvalues shown in 2D map
corresponding to the reservoir area are depth-gedra

Fig. 16: 3D distribution of Channel Occurrence Riabty in the reservoir area (Reference case) with

monitoring locations (W1-W9) displayed.

Fig. 17: Reduction of uncertainty over channel omnce probability (B;) at basin scale at selected
monitoring locations (W1-W9): all scenarios (a) d)/2000 most likely scenarios (b), whegg &nd
Fop_surt Criteria were sequentially applied.
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Fluvio-deltaic stratigraphy was simulated with a 2DH process-based model

Goodness of fit functions were used to infer boundary conditions from subsurface data
Information content of seismic and well data was evaluated

Depth of reservoir top across basin is best predictor of reservoir lithology



