
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Sound Modular Verification of C Code
Executing in an Unverified Context

Pieter Agten Bart Jacobs Frank Piessens
iMinds-DistriNet, KU Leuven

{firstname}.{lastname}@cs.kuleuven.be

Abstract
Over the past decade, great progress has been made in the static
modular verification of C code by means of separation logic-based
program logics. However, the runtime guarantees offered by such
verification are relatively limited when the verified modules are part
of a whole program that also contains unverified modules. In partic-
ular, a memory safety error in an unverified module can corrupt the
runtime state, leading to assertion failures or invalid memory ac-
cesses in the verified modules. This paper develops runtime checks
to be inserted at the boundary between the verified and the unveri-
fied part of a program, to guarantee that no assertion failures or in-
valid memory accesses can occur at runtime in any verified module.
One of the key challenges is enforcing the separation logic frame
rule, which we achieve by checking the integrity of the footprint of
the verified part of the program on each control flow transition from
the unverified to the verified part. This in turn requires the pres-
ence of some support for module-private memory at runtime. We
formalize our approach and prove soundness. We implement the
necessary runtime checks by means of a program transformation
that translates C code with separation logic annotations into plain
C, and that relies on a protected module architecture for providing
module-private memory and restricted module entry points. Bench-
marks show the performance impact of this transformation depends
on the choice of boundary between the verified and unverified parts
of the program, but is below 4% for real-world applications.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords separation logic; verification; runtime checking

1. Introduction
The construction of reliable software in unsafe languages like C
or C++ is known to be challenging. Yet, because of the excellent
performance of these languages, and because they can give the
programmer access to low-level details of the machine on which
the program is executing, they are often the languages of choice for
infrastructural software such as hypervisors, operating systems and
servers, and for embedded software.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17 2015, Mumbai, India.
Copyright © 2015 ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676972

One way of significantly increasing assurance in the reliability
of software is the use of program verification. Over the past decade,
program verification technology for C-like programming languages
has reached a level of maturity that makes it possible to verify real-
world software, albeit with considerable effort. Two high-profile
examples are the verification of Microsoft’s hypervisor Hyper-V
using the VCC verifier [11], and the verification of seL4 [24], a
microkernel of the L4 family. But there are many other examples
of projects that formally verify the safety and/or functional correct-
ness of (parts of) C programs.

For large systems, it is essential that the verification technique
used is modular. Each module (for instance each function) is ver-
ified to comply with its specification, relying only on the specifi-
cation of the other modules that the verified module is interacting
with. Several sound modular verification tools for C have been pro-
posed [10, 22]. However, the soundness properties of these veri-
fiers have an important limitation. To the best of our knowledge,
all soundness results for modular C verifiers have the form: un-
der the condition that all modules of a program have been verified,
any execution of that program will comply with the specification.
In other words, as soon as there is one unverified module, all bets
are off. The implementations of modules that are not verified are
part of the trusted computing base; it is assumed that they comply
with the specifications for these modules that were used to verify
the verified part of the program. Such assumptions are particularly
troublesome for memory-unsafe languages such as C, as a single
memory-safety error (such as a buffer overflow) in one unverified
module can in principle mess up the runtime state of all modules.
This has several undesirable consequences:

• While testing a partially verified program, failures may still
occur in the verified part of the program, and the root cause
for such failures may be hard to track down. This includes
both memory safety failures (e.g. dereferencing invalid memory
addresses) as well as failures of assertions that were statically
verified to hold.

• Security properties verified to hold in a module are not guaran-
teed to hold when that module is used as part of a larger, unveri-
fied program. Hence, the benefits of partial verification for secu-
rity purposes are limited. In particular, in a security setting, one
must consider that memory safety errors may be exploited by
means of code injection attacks [14]. Maintaining the integrity
of a verified module in such a setting is very challenging.

What is needed is a technique for ensuring that failures cannot
occur in the verified part of the program. Any runtime error should
either (1) lead to a failure in the unverified part, or (2) be detected
on entry to the verified part. This will entail that the state of the
verified module is always valid, and that no properties that were
verified to hold for this module state will ever be violated.

The approach we suggest is based on performing runtime checks
at the boundary between the verified and unverified part of the pro-
gram. While sound approaches for such dynamic contract check-
ing exist for safe languages [15, 16], to the best of our knowledge
there is no system that achieves such sound contract checking for
unsafe languages such as C. Furthermore, existing approaches in-
strument each memory access in the unverified part [29] or verified
part [34], entailing a large performance cost, while we will perform
our checks only when crossing the verified-unverified boundary.

The main contribution of this paper is the development of a pro-
gram transformation that, given a C program partitioned into an
unverified module and a module verified by means of separation
logic, transforms the verified module into a hardened module that
includes sound and complete runtime checks at the boundaries of
the module. A key problem that needs to be solved is how to make
sure that memory errors (or alternatively, malicious code) in the un-
verified part cannot corrupt the state of the verified module, while
still only performing explicit checks at the boundary. We solve this
problem in two steps. First, the boundary checks perform integrity
checks on the heap footprint of the verified module: on re-entry
to the verified module, we check that the heap memory “owned”
by the verified part has not been changed by the unverified part of
the program. This ensures that bad writes to the heap performed
by the unverified part are detected. Second, we need a mechanism
for protecting the integrity of local variables and control flow meta-
data of the verified module. For this, we rely on the recent work on
protected module architectures (PMAs), which are low-level secu-
rity architectures providing support for module-private data regions
and restricted module code entry points. Early prototypes [26, 35]
are hypervisor-based [37], while the most recent research proto-
types [30] implement this protection in hardware, thereby reducing
the trusted computing base to just the processor itself. Intel recently
announced hardware support for PMA’s under the name Intel Soft-
ware Guard Extensions (SGX) [20], hence this type of protection
mechanisms will be broadly available in the near future.

The combination of the module boundary checks and the PMA
protection of local variables and control flow gives us a very strong
modular soundness guarantee: no verified assertion in the verified
module will ever fail at runtime, even if the module runs as part of
a vulnerable application that is subject to code injection attacks.
The main contributions of this paper are:

• The development of runtime checks for separation logic con-
tracts at the boundary between a verified and an unverified part
of a C program.

• A formal correctness proof of these runtime checks.
• The observation that existing fully abstract secure compilation

techniques [2, 31] to a PMA ensure the soundness of these
runtime checks even in the presence of code injection attacks
exploiting memory safety errors in the unverified part.

• The development of a robust prototype, based on the Veri-
Fast [22] verifier.

• The quantification of the performance cost of the technique by
means of micro and macro benchmarks.

The remainder of this paper is structured as follows. First, we
elaborate on the problem we solve and on our proposed solution
in Sections 2 and 3. Section 4 gives an informal explanation of
our program transformations, and Section 5 illustrates them using
an example program. Section 6 formalizes the transformations. In
Section 7 we discuss our prototype implementation and the results
of our benchmarks. Finally, we discuss related work in Section 8
and conclude in Section 9.

2. Problem Statement
We assume as given a separation logic-based program logic for
C [33], and a sound modular static verifier that checks compliance
of C functions with contracts expressed in the program logic. For
concreteness, we work in this paper with the VeriFast verifier [22],
but our results are not specific to VeriFast. We use VeriFast syntax
in our examples: separating conjunction is written as &*&, and ?x
introduces an existentially quantified logic variable.

For programs in which each function is statically verified and
where the main function has an empty precondition, verification
ensures that no routine ever performs an illegal memory operation
and each routine upholds its contract. However, verifying the entire
code base of a program is often infeasible, for instance because
it is too costly in terms of programmer effort. Trying to prove
full program correctness properties for partially verified programs
would clearly be overambitious, since there are no guarantees about
the behavior of the unverified parts. However, as this section will
point out, even statements concerned only with the verified parts
of the program cannot be proven in general for partially verified
programs written in memory unsafe languages.

We consider single-threaded C programs consisting of two
parts: an unverified context and a statically verified module. Each
function of the verified module and each function prototype used
by it specifies a separation logic contract, consisting of a precon-
dition (requires) and a postcondition (ensures). Static verification
ensures that the verified functions are memory safe and comply
with their specifications, but only under the assumption that the
precondition holds on function entry and that any function called
from those functions complies to its own specification.

// Prototypes
int med(struct lst *l);

// Unverified functions
int main()
{
struct lst *l =
read_list();

print(med(l));
}

void srt(struct lst *l)
{
< unverified sort
implementation >

}

// Prototypes
void srt(struct lst *l);
req list(l, ?v0);
ens list(l, ?v1) &*&

val_eq(v0, v1) &*&
sorted(v1);

// Verified functions
int med(struct lst *l)
req list(l, ?v0) &*&

0 < length(v0);
ens list(l, v0) &*&

res == median(v0);
{
int s = len(l);
struct lst *l0 = copy(l);
srt(l0);
<proof statements>
return nth(l0, s/2);

}

Consider the example program shown above. On the left is the
context, consisting of a main function, a srt function and a proto-
type for a function med. On the right is the verified module, which
contains the function med and a prototype for srt. The med function
takes as input a non-empty list and claims that, after execution, the
list still contains the original values and the return value will be the
median of the input list. This function relies on functions len, nth
and srt to perform its task. The verifier relies on the contracts of
those functions, in addition to the proof statements in med itself, to
prove that the function will uphold its contract. The implementation
of len and nth is not shown in the example, but they are assumed
to be part of the verified module, hence the verifier can verify those
functions as well. On the other hand, for the srt function the veri-
fied module only contains a prototype. Hence the verifier can only
assume that its implementation will uphold the specified contract.

Linking the two parts of the example program together and exe-
cuting them may still lead to violations of the verified module spec-

ifications, if one of the functions has a bug. We say that a function
has a bug if it does not comply with its contract. That is, there ex-
ists an execution of the function that satisfies its precondition, but
exhibits an invalid memory access, violates the postcondition, or
performs another function call and violates the precondition of the
called function. We assume that the static verifier is sound, i.e., it
rejects any function with a bug. Hence there are only bugs in the
unverified context, not in the verified module.

For instance, if read_list (called from main) has a bug and re-
turns an invalid (e.g., unallocated) memory address, the len func-
tion or some other verified function could perform an illegal mem-
ory operation. Likewise, if srt has a bug and violates the contract
specified in its function prototype, then the verified function med
might not uphold its contract either. Furthermore, because C is a
memory unsafe language, srt can write to arbitrary memory loca-
tions, thereby modifying data belonging to the med function. For
instance, srt could write to the original list l, instead of the copy
l0 that it was given. Hence, any properties verified to hold by the
verifier about l while verifying med might be violated at runtime af-
ter a call to the unverified function srt. Note that srt can also read
memory that it is not allowed to by its contract. This is also a bug,
but it will not violate any property of the verified module assumed
by the verifier, hence our runtime checks will allow this.

How bad the effects of bugs in the unverified part of the program
can be, depends on how the program is executed. A safe execution
performs complete runtime checking and will detect bugs as soon
as they appear. Nguyen et al. [29] propose a way to perform such
executions. Every memory access is checked and contracts are
checked on each function entry and exit. Hence, safe executions
are expensive. It is sound to remove the runtime checks from the
verified module, as the soundness of verification implies that these
checks will never fail in the safe execution. But as long as there is
a significant unverified part, the performance cost will be high.

Because of this performance cost, executions of C programs are
usually not safe. Hence, executions can enter an error state and
continue executing. We say an execution is in an error state if it
has performed memory accesses resulting in undefined behavior
according to C semantics or if the execution has violated some of
the separation logic specifications. An execution can only enter an
error state in a function with a bug. That function is the root cause
of the error state. An execution fails at the point where it detects the
error state and terminates. Safe executions fail immediately at the
root cause of a bug, but other executions may continue after enter-
ing an error state. Typically what happens then is implementation-
dependent: the program behavior depends on details of the com-
piler and the machine on which the compiled code is executed.
Most C compilers will generate code that may detect some error
states such as the dereference of a memory address that the oper-
ating system has not even allocated to the program. But in general,
failure of the execution may happen long after going into an error
state. As a consequence, executions may enter an error state in the
unverified context, but then fail in the verified module. The verified
module may also be operating while in an error state, yet not fail,
and possibly further mess up the runtime state and worsen the error
state of the execution. This is exactly why partial verification is less
useful than it could be, as discussed in the introduction.

Our approach is to develop efficient runtime checks to be in-
serted at the boundary between verified and unverified code, that
make sure that no failures can occur in the verified module. Exe-
cutions can enter an error state while executing in the unverified
context and the execution may then continue in an error state, but
we have the guarantee that any error state that might impact the
verified module will be detected before control flow enters the ver-
ified module. As a consequence, we have that the execution never
fails while control is inside the verified module.

3. Overview of our solution
To guarantee that error states never impact verified modules, we
need to model the execution of programs with memory safety
errors. We describe two such models below.

3.1 Control-flow safe execution
The control-flow safe execution models programs as commands
that operate on a heap. This is a standard model of unsafe impera-
tive programs in the separation logic literature [33]. Memory safety
errors may impact any part of the heap, but they cannot modify
local variables or the control flow. In other words, code-injection
attacks or stack smashing are not modeled.

For the control-flow safe execution, it is sufficient to perform
runtime checks at the boundary between the verified module and
the unverified context. Roughly speaking, the checks that need to be
performed at the boundary are the following. Each function of the
verified module should (1) check that its precondition holds on en-
try from an unverified function, (2) check that the callee’s postcon-
dition holds after an outcall (i.e., a call from the verified module to
an unverified function), and (3) ensure that unverified functions did
not modify any heap locations that could affect the verified func-
tion’s correct execution. In our approach, the first two checks are
based on a translation of separation logic pre- and postconditions
into equivalent C code that will check the validity of those condi-
tions at runtime. For the third check, our approach keeps track of
the footprint of the verified module, i.e., the memory locations that
the module can read or write, and it uses an integrity check to en-
sure that unverified functions do not modify the contents of those
locations (except for the locations explicitly allowed by the precon-
dition of the called unverified function). Right before performing a
call from a verified function to a function of the unverified con-
text, a cryptographic checksum is calculated over the contents of
the verified module’s footprint, which is recalculated and compared
against the original on re-entry of the verified module.

We develop a program transformation on the verified module
that injects the necessary runtime checks in Section 4, and we prove
them correct for the control-flow safe execution of programs in
Section 6.

3.2 Unsafe execution
Of course, for most realistic C compilers, the control-flow safe ex-
ecution model is too abstract. Control flow information and local
variables (i.e., the runtime stack) are stored in the same memory
space as the heap, and hence memory safety errors can also mod-
ify control flow or contents of local variables. This is particularly
relevant if we consider the possibility that our program might be
under attack, and an adversary provides input that triggers a mem-
ory safety error in the unverified part of the program by performing
one of the many possible low level attacks against C programs [14].

Hence, we also consider unsafe executions, where programs are
compiled in the standard way to a Von Neumann style processor
architecture. Under such unsafe executions, the boundary checks
discussed above are insufficient, as memory safety errors might
corrupt the integrity checksum that the boundary checks compute.
Also corruption of the control flow or of local variables in the
verified functions may lead to failures in the verified module.

To restore the property that no failures occur in the verified mod-
ule, we build on a recently proposed fully abstract secure compila-
tion technique towards protected module architectures [2, 31]. This
compilation technique protects modules from a potentially mali-
cious context and ensures that any possible effect that the mali-
cious context can have on the hardened module can be understood
at source code level. By composing this secure compilation tech-
nique with the program transformation for the control-flow safe ex-
ecution, we get the desired property that no failures can occur in

the verified module, even in the presence of stack-smashing, code
injection attacks or other exploitations of memory safety errors in
the unverified context.

4. Program transformations
This section describes how a verified module can be transformed
into a hardened module containing runtime boundary checks, and
how our prototype implements these checks. At an architectural
level, the hardened module can be divided into a functional part and
a boundary checking part. The former is essentially a copy of the
verified module given as input, where the separation logic contracts
and proof statements have been removed and the functions have
been given a fresh name and marked static in order to remove
them from the module’s public interface. The latter part contains
new functions and data structure definitions to actually perform
the runtime boundary checks. The hardened module is constructed
such that each transition between the context and the functional part
passes through the appropriate function of the boundary checking
part. The transformation is based solely on the source code of the
verified module and the annotated function prototypes of the unver-
ified part. Hence, the transformation does not require access to the
source code of the unverified part. The resulting hardened module
can be linked with the unverified part as-is: no recompilation of the
unverified part is necessary.

The sections below explain concretely how different kinds of
separation logic constructs can be translated into C code for check-
ing them. We assume the control-flow safe execution model, since
it is the execution model provided to us by the fully abstract com-
pilation scheme, as described in Section 3.2.

4.1 Pure assertions
Pure assertions, as opposed to spatial assertions, only reference
local variables and hence do not make claims about the heap. Such
assertions can be translated straightforwardly into a C expression,
as shown by the example below.

// Original module
int fac(int x)
req x >= 0;
ens res > 0;
{
if (x == 0) return 1;
int p = prod(x,
fac(x-1));

return p;
}

int prod(int x, int y);
req true;
ens res == x * y;

// Hardened module
// (Functional part)
static int _fac(int x) {
if (x == 0) return 1;
int p = _prod(x,
_fac(x-1));

return p;
}

// (Boundary checking part)
static
int _prod(int x, int y) {
int r = prod(x, y);
if (! (r == x * y)) trap();
return r;

}

int fac(int x) {
if (! (x >= 0)) trap();
return _fac(x);

}

All assertions in this example, i.e., the contracts of fac and
prod, are pure. In the hardened module, fac has been replaced by
an entry stub that first checks the precondition, before calling _fac,
which is a slightly modified version of the original fac. The only
functional difference is that the modified version calls the _prod
outcall stub instead of the original function prod in the context. The
outcall stub first calls prod in the context and then checks whether
the postcondition holds. If any check fails, the trap function is
called, which ends execution. The functions _prod and _fac have
been marked static to indicate they are not in the public interface
of the hardened module.

4.2 Spatial assertions
Spatial assertions describe (parts of) the heap: they indicate that
a certain memory region should contain certain values. The as-
sertions need not necessarily specify exactly what those values are,
they can instead existentially quantify over them, by binding a logic
variable (see, for instance, the logic variable bindings ?a and ?b in
the precondition of the original module in the example below). The
difficulty with spatial assertions is that a function in the context can
overwrite these values, even though that function might not be al-
lowed to do so by its contract, thereby possibly violating properties
of the verified module verified to hold by the verifier. In separa-
tion logic terms, this corresponds to a violation of the frame rule.
As described in Section 3, we use a cryptographic checksum over
the memory footprint of the hardened module to solve this problem.

// Original module
struct pair {int a, b;};

void f(struct pair* p)
req p->a |-> ?a &*&

p->b |-> ?b
ens p->a |-> _ &*&

p->b |-> _;
{
<...>
ct(p);
<...>
}

void ct(struct pair* p);
req p->a |-> ?n;
ens p->a |-> ?m &*&

m == n + 1;

// Hardened module
struct pair {int a, b;};

static
void _f(struct pair* p) {
<...>
_ct(p);
<...>
}

static
void _ct(struct pair* p) {
char h0[32], h1[32];
int n = intp(&(p->a),C);
fp_hash(h0);
ct(p);
fp_hash(h1);
if (!eq(h0, h1)) trap();
int m = intp(&(p->a),P);
if (m != n+1) trap();
}

void f(struct pair* p) {
a = intp(&(p->a),P);
b = intp(&(p->b),P);
_f(p);
intp(&(p->a),C);
intp(&(p->b),C);
}

The code above shows our approach. In the hardened module
on the right, the verified function f has been replaced by an entry
stub that first calls intp for both integer points-to assertions in the
precondition of the original f, then calls _f and finally calls intp
again for both integer points-to assertions in the postcondition.

The intp function is a data type checking function provided by
our runtime checking system. It takes as arguments a pointer p to
an integer and an enumeration value, and performs two important
functions. The function first checks whether p points to a valid in-
teger, which it does by simply reading *p. Secondly, the function
adds or removes the memory region occupied by the integer (i.e.,
the memory region of sizeof(int) bytes starting at address p)
to or from a global data structure describing the hardened module’s
footprint. When the enumeration value is P (for produce), the mem-
ory region is added to the footprint and when it is C (for consume)
the region is removed. When adding a region to the footprint, intp
checks that the region does not overlap with the existing footprint.
This corresponds to the semantics of the separating conjunction,
which requires that the footprint of each of its conjuncts occupies
a disjoint part of the heap. We do not support non-separating con-
junction but argue in Section 6.3 that this does not pose expressibil-
ity problems. If all checks pass, the intp function returns the in-
teger value at the given address, or ends execution by calling trap
otherwise. Functions similar to intp are provided for other prim-

itive data types (char, unsigned int, . . .) and pointers, because
the memory sizes of those data types can differ.

In the function _f of the hardened module, the call to the ct
function of the context has been replaced by a call to the _ct out-
call stub. This stub first removes (consumes) the footprint of ct’s
precondition from the hardened module’s footprint, before calcu-
lating a hash over the memory regions described by the remaining
footprint. This hash is stored in the local variable h0, where it is
protected from the context by the secure compilation scheme. Next,
the stub calls ct, handing over control to the context. When the
context function returns, the outcall stub verifies that the memory
described by the footprint has not been tampered with, by recal-
culating the hash and comparing it to the original value stored in
h0. Finally, the stub checks whether the postcondition of ct holds
by producing its footprint and checking whether the values in the
corresponding memory region adhere to the contract. Note that we
do not prevent the context from reading memory it is not supposed
to by its contract, because this can never violate properties of the
verified module assumed by the verifier.

For our prototype, we implemented the footprint data structure
as a radix trie. This data structure supports O(k) addition, removal
and overlap testing, and O(n) traversal, with k the number of
bits in a memory address (e.g. 64 for a 64-bit CPU) and n the
number of memory regions in the trie. The footprint description
must be protected from being overwritten by memory safety errors
in the unverified context and hence we store it in the module-private
memory section provided by the PMA.

4.3 Predicates
Separation logic predicates are named, parameterized assertions,
used to provide data encapsulation and to describe recursive data
structures. For instance, the following predicate describes a linked
list of integers of a certain size.

struct list { int value; struct list* next; };

pred list_pred(struct list* l; int size) =
l == 0 ? size == 0 : l->value |-> _ &*& l->next |-> ?n

&*& list_pred(n, ?size0) &*& size == size0 + 1;

Predicates can have an arbitrary number of parameters and sep-
aration logic allows us to existentially quantify over each of them.
For instance, a valid precondition could be list_pred(?l, 5),
meaning that there must be a linked list of size 5 somewhere on the
heap. Translating this quantification into a runtime check would
however be problematic, since in general the entire heap would
need to be examined in order to bind a value to l at runtime. Hence,
we require predicates to be precise: predicates must separate their
parameters into input and output parameters and only output pa-
rameters can be quantified over when using a predicate. In a predi-
cate definition, each output parameter of the predicate must be as-
signed a value in all execution paths of the predicate’s body. We
discuss the implications of this requirement in Section 6.3. In Veri-
Fast syntax, parameters before the semicolon in the parameter list
of a predicate definition are input parameters and the other param-
eters are output parameters. Hence, for list_pred defined above,
l is an input parameter and size is an output parameter.

static void
list_pred(struct list* l, int* size, enum op_type op) {
if (l == 0) { *size = 0; }
else {
intp(&(l->value), op);
struct list* n = ptrp(&(l->next), op);
int size0;
list_pred(n, &size0, op);
*size = size0 + 1;

}
}

The code above shows the transformation of the list_pred
predicate. It is a predicate checking function with one more pa-
rameter than the original predicate. This extra parameter is an enu-
meration value indicating whether the predicate will be used for
consumption or production and its value is simply passed on to
the data type checking functions (e.g. intp) described in Sec-
tion 4.2. Input parameters have the same type in the runtime check-
ing function as in the original predicate and output parameters
are pointers to the type of the parameter in the original predicate.
The predicate’s body is transformed straightforwardly into equiva-
lent C code. When an output parameter is assigned a value in the
predicate body, the corresponding pointer parameter in the run-
time checking function is assigned a value as well. As exempli-
fied by the recursive call to list_pred, a predicate call assertion
is transformed into a call to the corresponding predicate check-
ing function. If an assertion uses a constant value or previously
bound variable for an output argument instead of binding a new
variable (e.g. list_pred(l, s) with s already bound, instead of
list_pred(l, ?s)), then this is pre-transformed to first binding
a fresh variable to the output parameter and then constraining it
with an equality (e.g. list_pred(l, ?s0) &*& s0 == s). This
allows the core transformation to assume that output arguments are
always existentially quantified.

4.4 Inductive data types
While spatial assertions and predicates are in some cases sufficient
to prove memory safety, they are insufficient to prove full func-
tional correctness for most programs. For instance, the list_pred
predicate defined in the previous section specifies the size and
memory footprint of a linked list, but does not say anything about
its contents. VeriFast supports a rich specification language with
inductive data types and fixpoint functions (i.e., primitive recursive
functions) over them. The example below shows how such con-
structs can be used for specifying functional correctness properties.
induct ints = ints_nil() | ints_cons(int, ints);

pred list_pred(struct list* l; ints values) =
l == 0 ?
values == ints_nil()

:
l->value |-> ?v &*& l->next |-> ?n &*&
list_pred(n, ?vs_tail) &*&
values == ints_cons(v, vs_tail);

fixpoint int head(ints lst) {
switch (lst) {
case ints_nil(): return 0;
case ints_cons(v, tail): return v;

}
}

int get_first(struct list* l)
req list_pred(l, ?values);
ens list_pred(l, values) &*& res == head(lst);

{
<implementation omitted>

}

The behavior of get_first is completely specified by its contract.
Our transformation translates such inductive data type specifica-
tions into tagged structures, a known technique for implementing
variant types in C. The code below shows the data structure defini-
tions corresponding to ints and its two constructors.

struct ints { int tag; };

struct ints_nil {
int tag;
// No members

};

struct ints_cons {
int tag;
int _1;
struct ints* _2;

};

To prevent the context from tampering with instances of these
data structures when the context is in control, the data must either
be stored in the private memory section provided by the PMA, or
be included in the module’s footprint such that it’s incorporated in
the cryptographic checksum described in Section 4.2. We chose to
store the data in the private memory section, which is faster than the
checksum-based approach, but does require more private memory.

Besides these structure declarations, the transformation also
generates an equality comparison function for each inductive data
type. Finally, fixpoint function definitions are translated straight-
forwardly into equivalent C functions.

4.5 Function pointers
VeriFast allows programs using function pointers to be verified, by
letting users associate contracts with classes of functions. The code
below shows how a verified module can use a function pointer to
call a function in the unverified part.

typedef
int int_func(int x);
req true;
ens result > 0;

void f(int_func* g, int x)
req is_int_func(g);
ens true;

{
int y = g(x);
<...>

}

The typedef on the left defines int_func as the class of func-
tions that take an integer argument and return a strictly positive
integer result. On the right, the function f takes a pointer g to such
a function, applies it to a local variable x and stores the result in y.
The contract for g is specified by the is_int_func(g) assertion in
the precondition of f, which refers to the typedef on the left.

Our transformation handles function pointer calls almost the
same way it handles regular calls. That is, an outcall stub is gen-
erated for each defined function pointer typedef, and the hardened
module calls this outcall stub instead of calling corresponding func-
tion pointers directly. Function pointer outcall stubs take as an ar-
gument a pointer to the concrete function to call. For instance, for
the example code above, the function pointer outcall stub would be:

static int _int_func(int_func* f, int x) {
<calculate footprint hash>
int result = f(x);
<verify footprint hash, check postcondition>
return result;

}

Indirect function calls from the context to the hardened module
are also supported naturally. Since all functions of the functional
part of the hardened module have been made static, the only
publicly accessible functions of the module are those in the bound-
ary checking part. The fully abstract compilation scheme uses the
PMA’s restriction on module entry points to ensure that only those
public functions can be called from the context at runtime. Hence,
the necessary runtime checks are performed whenever the unveri-
fied part calls the hardened module through a function pointer.

5. Example program
This section uses an example program to illustrate how the trans-
formations described above affect the hardened module’s footprint
description. Figure 1 depicts the example program and the footprint
at various execution points. Note that the program is an abstract
example created to illustrate the footprint evolution under various
control flow transitions, and is not intended to model any useful
computation. The program consists of the verified functions vf1,
vf2 and vf3, and, in addition to the standard C library, two un-
verified functions main and uvf. The unverified function uvf is
annotated with a separation logic contract, so it can be called from

Figure 1. When executing the example program on the left, the
footprint evolves as shown on the right. The single-bordered boxes
on the left are unverified functions while the double-bordered boxes
are verified functions. The boxes on the right represent the heap,
with the grayed-out parts representing the hardened module’s foot-
print. Solid lines are function calls and dashed lines are returns.

the verified functions. The function signatures and contracts shown
in Figure 1 refer to a struct m and predicate chars, defined as:

struct m {
int x; int sz;

};

pred chars(char *a, int sz) =
sz <= 0 ? true :
char(a) &*& chars(a+1, sz-1);

A chars(a, sz) instance represents a character array of size
sz, starting at heap address a. The char predicate used by chars
is a VeriFast primitive which asserts that its argument points to a
valid character in memory. Its translation is a call to the charp data
type checking function (similar to intp described in Section 4.2).

We now discuss how each of the function calls shown in Fig-
ure 1 affects the hardened module’s footprint description. Assume
main allocates an array A of N bytes and an instance M of struct
m, using the standard (unverified) malloc function, and assigns the
value N to M’s sz field. At this point, the heap contains A and M
and the footprint description is empty. Next, main calls the veri-
fied function vf1(A, M), and hence this function’s entry stub will
check whether its precondition holds. The precondition check con-
sists of reading the sz field of M and verifying that A is in fact a char-
acter array of size N. As part of this check, the memory occupied
by M’s sz field and the entire array A will be added to the footprint
description. The memory occupied by M’s x field is not mentioned
in vf1’s precondition and hence is not added to the footprint de-
scription.

Next, vf1 calls vf2(a, m->sz) directly, without passing through
a boundary checking function, because both caller and callee are in
the hardened module. No runtime checks are performed and hence
the footprint description remains the same.

The vf2 function now makes an outcall uvf(a, sz), which
passes through the corresponding outcall stub. The stub first re-
moves the array A from the footprint description, because it is ref-

erenced in uvf’s precondition, and then hashes the memory in the
remaining footprint description (consisting of only the sz field of
M), before calling uvf.

We assume uvf allocates an array B of eight integers, again us-
ing the standard malloc function, and then calls vf3(B). This func-
tion’s entry stub will verify that B is a valid array of eight integers
and will add B to the footprint description. The vf3 function now
executes its (unspecified) body and then returns, thereby removing
B from the footprint description, as specified by its postcondition.

Now uvf is back in control and returns to its outcall stub in the
hardened module. The stub will first check that the memory in the
footprint (still consisting of only M’s sz field) has not been modi-
fied, by recalculating the hash and comparing it to the original. Exe-
cution is aborted if any change is detected. If the new hash matches
the original, the stub checks whether uvf’s postcondition holds and
adds the second half of A back to the footprint description, as spec-
ified by uvf’s postcondition. The stub then returns control to vf2.
Note that it is impossible that vf2 now tries to access the first half
of A, since this would have been detected by the static verifier when
verifying vf2.

The vf2 function now returns to vf1, without any change in the
footprint description, because both functions are part of the hard-
ened module. Finally, vf1 returns to main, removing the second
half of A and M’s sz field from the footprint description, as specified
by vf1’s postcondition. Control is now back at the main function
and the footprint description is empty.

6. Formalization
This section formalizes the transformations described in Section 4
and shows that they are safe and precise. Safety means that the
hardened module does not fail, even when it is interacting with a
context that does not uphold its contracts. Precision means that the
hardened module behaves exactly like the original verified module
when interacting with a context that does uphold its contracts. Fo-
cusing on the essentials of the transformation, we do not formalize
inductive data types nor function pointers. Due to space constraints,
we only give a high-level overview of the formalization here and
leave the full text and proofs for our extended technical report [3].

6.1 Programming language
We first define a simple imperative programming language that
models C. The syntax of this language is defined in Figure 2 and
its operational semantics are described in Figure 3. We write JeKs
to indicate the value of an expression e evaluated under a store s,
assuming standard non-negative integer expression evaluation. In
addition to standard imperative language constructs such as heap
lookup, mutation, allocation and deallocation, the language pro-
vides two assertion commands. The first is assert(b), which asserts
that the boolean expression b holds and the other is alloced(l),
which asserts that the memory address l is allocated. Both com-
mands evaluate to skip if the assertion succeeds and to trap other-
wise. Trapping (as opposed to failing) is a clean way of indicating
an abnormality: our runtime checks trap whenever they discover a
bug in the context. Once a program traps, it remains in the trapped
state forever (i.e., it diverges).

Program states Σ ` 〈s, h〉 | c consist of a map Σ from routine
names to routine definitions, a stack s, a heap h and the program
under execution c. The stack is a list of stores s, each of which is
a partial function from Vars to N+. The heap is a partial function
from memory locations in N+ to values in N+. Execution starts
from an empty store and heap.

We assume our programs are well-formed. That is, they never
try to use a variable that was not defined earlier in the code, and
they do not refer to undefined routines.

Definition 1 (Failure). We say a program c fails when it is stuck.
For well-formed programs this corresponds to reading, writing or
deallocating an unallocated memory location.

Since we prove safety for any hardened module, absence of fail-
ure according to this definition also implies absence of assertion
failures.

6.2 Separation logic
We define separation logic triples of the form Γ ` {P} c {Q}
and ∆ � {P} c {Q}. Triples of the first form mean that the static
verifier asserts that, given the function Γ mapping routine names
to contracts, if P holds then c will not fail and Q will hold after
executing c. The Γ corresponds to the prototypes of the functions
of the context (including their contracts). Triples of the latter form
mean that if P holds in some state (stack and heap), then executing
c under the context ∆ won’t fail and Q will hold in the resulting
state. The ∆ corresponds to a concrete context, in the form of a
map from routine names to routine definitions.

Because the verifier is sound, Γ ` {P} c {Q} implies ∆ �
{P} c {Q}, under the critical condition that the routines of ∆ up-
hold the contracts defined in Γ. The essence of our formalization
is to show that our program transformation will allow us to discard
this critical condition. We are only concerned with partial correct-
ness, so c is allowed to diverge, which is what happens when our
runtime checks trap (see Figure 3). The assertions P and Q are
defined as:

P,Q ::= b | b ? P : Q | e 7→?x | p(e, ?x) | y := e |P ∗Q |
P ∧Q |P ∨Q | ¬P | >

where booleans b and expressions e are defined as in Figure 2, p
refers to a user-defined predicate pred p(x, y) = a and ?x intro-
duces a logic variable x. The first parameter of a user-defined pred-
icate is an input parameter and the second is an output parameter.
The assignment assertion y := e is used to bind a value to predicate
output parameters. The formal semantics of this assertion language
are defined in Figure 4, where a judgment s, h � P s′ means
that P holds under store s and heap h and binds new logic variables
(using e 7→?x and p(e, ?x)) to end up with the updated store s′.

6.3 Contract assertion language
Although assertions in our meta-theory range over the full language
defined above, routine and predicate contracts come from a more
restricted language of precise assertions.

a ::= b | b ? a : a | e 7→?x | p(e, ?x) | y := e | a ∗ a

In particular, routine and predicate assertions do not include stan-
dard conjunction, disjunction, negation nor top. Furthermore, we
require user-defined predicates to constrain their output parameter
to a single value (using the y := e construct) exactly once on each
possible execution path of their body. These requirements make ex-
istential quantification constructive: assertions indicate how each
variable can be assigned a value, thereby avoiding an exhaustive
search which would entail an enormous runtime performance cost.

While excluding disjunction, negation and non-separating con-
junction between spatial predicates might seem to limit the expres-
siveness of the contract assertion language, this language subset
corresponds exactly to the assertion languages supported by Veri-
Fast [22], Smallfoot [6] and other separation logic-based program
verifiers [8, 13]. Extensive experience with these tools has shown
that this subset is sufficiently expressive for practical purposes [32].

In the rest of the text, we will consistently use symbols P and
Q for meta-level assertions and symbol a for contract assertions.

6.4 Transformations
In this section, we formalize the transformations described in Sec-
tion 4. We start by defining a function prod(a) from assertions to
commands that models the production of a (see Section 4.2). The
code generated by this function assumes there is a program variable
fp containing a set of memory locations that represents the hard-
ened module’s current footprint. The generated code will (1) trap if
a does not hold or if its footprint would overlap with the footprint
in fp, (2) create a program variable x for each logic variable ?x in
a and (3) add the assertion’s footprint to fp. The function is defined
as follows.

prod(y := e) = (y := e)

prod(b) = assert(b)
prod(b ? a1 : a2) = if b then prod(a1) else prod(a2)

prod(e 7→?x) =

 x := e; x := in(x, fp);
assert(x = 0); x := e; alloced(x);
fp := add(x, fp); x := [x]

where fp is the program variable that stores the footprint, in(x, y)
returns 1 if x is in the list represented by y and 0 otherwise, and
add(x, y) adds x to the list represented by y.

prod(p(e, ?x)) = (x := e; {fp, x} := prodp(fp, x))

where prodp implements the production part of the predicate
checking routine for p, defined as routine prodp(fp, x) = prod(a);
res := {fp, y} with a the body of pred p(x, y). The {fp, x} is
syntactic sugar for a tuple consisting of fp and x.

prod(a1 ∗ a2) = prod(a1); prod(a2)

Next we define the additional transformation functions required
to safely perform outcalls from a hardened module to routines of
the context that might not uphold their contract. We first define
cons(a), a function that models the consumption of an assertion.
As explained in Section 4.2, this function needs to be called right
before making an outcall, to consume (remove) the footprint of the
context function’s precondition from the current footprint fp. The
structure of cons(a) is identical to that of prod(a), but it has to
remove a’s footprint instead of adding it. Furthermore, there is no
need for cons(a) to check that a actually holds, because the static
verifier already ensured this when checking the verified module.
Hence, we do not need to use the assert and alloced commands in
the definition of cons(). The function is defined as follows.

cons(y := e) = (y := e)

cons(b) = skip
cons(b ? a1 : a2) = if b then cons(a1) else cons(a2)

cons(e 7→?x) = x := e; fp := rem(x, fp); x := [x]

where rem(x, y) removes x from the list represented by y.

cons(p(e, ?x)) = (x := e; {fp, x} := consp(fp, x))

where consp implements the consumption part of the predi-
cate checking routine for p, defined as routine consp(fp, x) =
cons(a); res := {fp, y}with a the body of predicate pred p(x, y)

cons(a1 ∗ a2) = cons(a1); cons(a2)

Now we just need a function harnessΓ(r) that can generate out-
call stubs for routines r(x) of the context. This function takes a
mapping Γ from routines to contracts, corresponding to the proto-
types of functions defined in the context. For Γ(r) = (apre, apost),

harnessΓ(r) is defined as:

routine stubr(fp, x) =
cons(apre); s := snap(fp);
res := r(x);
s′ := snap(fp); assert(s = s′);
prod(apost); res := {fp, res}

where we assume all introduced variables are fresh and snap(x)
returns a snapshot of the contents of the footprint x (corresponding
to calculating the hash of the footprint, as described in Section 4.2).

Finally, we can define the full transformation function [c]Γ,a,
using a helper function [c]′Γ, as follows:

[x := r(x)]′Γ = {fp, x} := stubr(fp, x)

where r is a routine of the context and stubr is the name of the
outcall stub routine generated by harnessΓ(r)

[c1; c2]′Γ = [c1]′Γ; [c2]′Γ

[if b then c1 else c2]′Γ = if b then [c1]′Γ else [c2]′Γ

[x := alloc]Γ = x := alloc; fp := add(x, fp)

[dealloc(x)]Γ = dealloc(x); fp := rem(x, fp)

[c]′Γ = c (for all other kinds of c)

The full transformation function [c]Γ,a then is

[c]Γ,a = (fp := ∅; prod(a); [c]′Γ)

6.5 Safety and precision
We now come to the two crucial properties our transformation must
have: safety and precision.We only state the theorems here, but
leave the full proofs for our extended technical report [3]. We first
need a new definition before we can state these main theorems.

Definition 2 (No-fail). The function nofail(∆) returns a non-
failing variant of the program ∆.

How nofail works is of no importance to our formalization, but
one can see that the alloced command could be used to check each
memory location before accessing it, thereby preventing failure.

The safety theorem states that if the context does not fail, but
does not necessarily uphold its contracts either, then the hardened
module will never fail.

Theorem 1 (Safety). For any command c, environment Γ, asser-
tions apre and apost such that Γ ` {apre} c {apost}, and an arbi-
trary context ∆, we have nofail(∆) � {>} [c]Γ,apre {>}.

Finally, our precision theorem states that our transformations do
not change the expected behavior of the hardened module when the
context upholds its contracts.

Theorem 2 (Precision). For any command c and assertions
apre and apost such that Γ ` {apre} c {apost}, we have that
∀∆. ∆ � Γ⇒ ∆ � {apre} [c]Γ,apre {apost}.

The ∆ � Γ condition means that the context ∆ upholds the con-
tracts specified by Γ. Under standard separation logic, this means
(amongst other conditions) that context functions cannot read out-
side the footprint specified by their precondition. However, our pre-
cision theorem can actually be slightly stronger than this, because
the theorem holds even if the context is allowed to read outside its
designated footprint, as argued in Section 4.2.

7. Prototype performance
We have implemented the transformations described in Section 4
as a source-to-source translator written in OCaml. This translator

e ::= n |x | e + e | e− e

c ::= x := e |x := [x] | [x] := x |x := r(x)

| if b then c else c |x := alloc | dealloc(x)

| assert(b) | alloced(x) | skip | c; c

b ::= true | false | e = e | e < e | ¬b
l, n ∈ N+ x, y, z ∈ Vars

Routine ::=routine r(x) = c

Program := P(Routine)

Figure 2. Syntax definition of our imperative language

E ::= 〈 〉 |E; c Evaluation contexts trapLoop
Σ ` 〈s, h〉 | trap→ Σ ` 〈s, h〉 | trap

s = s ::st JeKs = n s′ = s[x→ n] ::st
varAssign

Σ ` 〈s, h〉 | E[x := e]→ Σ ` 〈s′, h〉 | E[skip]

skip
Σ ` 〈s, h〉 | E[skip; c]→ Σ ` 〈s, h〉 | E[c]

s = s ::st JeKs = true
ifTrue

Σ ` 〈s, h〉 | E[if e then c else c′]→ Σ ` 〈s, h〉 | E[c]

s = s ::st JeKs = false
ifFalse

Σ ` 〈s, h〉 | E[if e then c else c′]→ Σ ` 〈s, h〉 | E[c′]

s = s ::st

l→ n ∈ h

s(x′) = l

s′ = s[x→ n] ::st
heapRead

Σ ` 〈s, h〉 | E[x := [x′]]→ Σ ` 〈s′, h〉 | E[skip]

s = s ::st

l→ n′ ∈ h

s(x) = l

h′ = h[l→ s(x′)]
heapWrite

Σ ` 〈s, h〉 | E[[x] := x′]→ Σ ` 〈s, h′〉 | E[skip]

s = s ::st

s′ = {x→ n} ::s

s(y) = n

Σ(r) = (routine r(x) = c)
call

Σ ` 〈s, h〉 | E[z := r(y)]→ Σ ` 〈s′, h〉 | E[c; z := ret]

s = s ::s′ ::st s′ = s′[x→ s(‘res’)] ::st
return

Σ ` 〈s, h〉 | E[x := ret]→ Σ ` 〈s′, h〉 | E[skip]

s = s ::st

s′ = s[x→ l] ::s

l 6∈ {l′|l′ → n ∈ h}
h′ = h[l→ n′]

alloc
Σ ` 〈s, h〉 | E[x := alloc]→ Σ ` 〈s′, h′〉 | E[skip]

s = s ::st

l→ n ∈ h

s(x) = l

h′ = h \ {l→ n}
dealloc

Σ ` 〈s, h〉 | E[dealloc(x)]→ Σ ` 〈s, h′〉 | E[skip]

s = s ::st JxKs = l l 7→ n ∈ h
allocedTrue

Σ ` 〈s, h〉 | E[alloced(x)]→ Σ ` 〈s, h〉 | E[skip]

s = s ::st JxKs = l l 7→ n 6∈ h
allocedFalse

Σ ` 〈s, h〉 | E[alloced(x)]→ Σ ` 〈s, h〉 | trap

s = s ::st JbKs = true
assertTrue

Σ ` 〈s, h〉 | E[assert b]→ Σ ` 〈s, h〉 | E[skip]

s = s ::st JbKs = false
assertFalse

Σ ` 〈s, h〉 | E[assert b]→ Σ ` 〈s, h〉 | trap

Figure 3. Small-step operational semantics of our imperative language

JbKs = true h = ∅
pure

s, h � b s

JeKs = l h = {l→ n}
pointsTo

s, h � e 7→?x s[x→ n]

JbKs = true s, h � P s′
condTrue

s, h � b ? P : Q s′
JbKs = false s, h � Q s′

condFalse
s, h � b ? P : Q s′

pred p(x, y) = P

{x→ n}, h � P s′
JeKs = n

m = s′(y)
predicate

s, h � p(e, ?z) s[z → m]

s, h1 � P s′

h1 ⊥ h2

s′, h2 � Q s′′

h = h1 ∪ h2 sepConj
s, h � P ∗Q s′′

Where h1 ⊥ h2 ⇔ dom(h1) ∩ dom(h2) = ∅

s, h � P s′
disjL

s, h � P ∨Q s′
s, h � Q s′

disjR
s, h � P ∨Q s′

s, h1 � P s′ s′, h2 � Q s′′ h = h1 = h2
conj

s, h � P ∧Q s′′

pred p(x, y) = P

{x→ n}, h � P s′
JeKs = n

s(z) = s′(y)
concrPredicate

s, h � p(e, z) s

JeKs = l h = {l→ n} s(x) = n
concrPointsTo

s, h � e 7→ x s

JeKs = n h = ∅
assign

s, h � y := e s[y → n]
top

s, h � > s

¬∃s′ : s, h � P s′
negation

s, h � ¬P s

s, h � P s′
assertion

s, h � P

Figure 4. Semantics of our assertion language

Module
(1)

(2)

(3)
(4)
return

call
outcall

return

Check
assertion
validity

Add/remove
assertion
footprint

Hash
module

footprint
(1) X (pre) X
(2) X X
(3) X (post) X X
(4) X

Figure 5. Actions performed for all types of boundary transitions.

takes as input a verified C module with VeriFast annotations (in-
cluding annotated function prototypes for any function of the con-
text called from the verified module), and outputs a hardened ver-
sion of the module. The translator reuses significant parts of the ex-
isting VeriFast codebase, such as its lexer, parser and typechecker.
Although VeriFast’s license prevents us from releasing the source
code at this time, a binary version of the translator is available on-
line1. The translator has been approved by the POPL Artifact Eval-
uation Committee.

In the sections below, we describe the results of measuring the
performance impact of the inserted runtime checks versus the veri-
fied module without any runtime checks. We ran micro and macro
benchmarks on a standard desktop system, without a protected
module architecture, in order to quantify the overhead of just the
runtime checks, and we discuss the additional overhead introduced
by a PMA in Section 7.3. All benchmarks were compiled with
GCC 4.8.2, using optimization level 3, and were executed on a sys-
tem with a 3.10 GHz Intel Core i5-2400 CPU with 8 GiB of RAM,
running Ubuntu 14.04. The hash function used to calculate the hash
over the footprint when performing an outcall is BLAKE2b [19].

7.1 Micro benchmarks
Since our transformations introduce checks at the boundary be-
tween the verified and unverified part, there will be a performance
overhead when crossing the verified-unverified boundary. During
a boundary check, up to three actions are performed: (1) check-
ing whether the assertion (pre- or postcondition) holds, (2) adding
or removing the assertion’s footprint from the footprint descrip-
tion maintained by the module, and (3) hashing the memory in the
module’s footprint description. Figure 5 shows which actions are
performed for each kind of boundary transition. We measured the
contribution of each of these factors using two micro benchmarks
based on simple data structures, similar to those used in [29].

The first micro benchmark is a verified module that takes as
input a linked list of integers and sorts it using insertion sort. The
second micro benchmark is another verified module that does an
in-order traversal of a binary search tree to produce a sorted linked
list. Both modules have been verified for memory safety (i.e., not
for full functional correctness). The entry point signatures of these
two modules are as follows.

struct list_node* insertion_sort(struct list_node* l);
req list_pred(l);
ens list_pred(result);

struct list_node* bst_to_list(struct bst_node* bst);
req bst_pred(bst, ?v);
ens bst_pred(bst, v) &*& list_pred(result);

Figure 6 shows the distribution of execution time over the differ-
ent actions performed by the runtime checks for these benchmarks,
for input lengths of 101, 102, 103 and 104 elements. The number

1 https://distrinet.cs.kuleuven.be/software/
sound-verification

 0

 20

 40

 60

 80

 100

101 102 103 104 101 102 103 104 101 102 103 104

T
im

e
 f

ra
ct

io
n
 (

%
)

Orig code
ASN validity

FP add/remove
Hashing

32
x

20
x

3x

6%

29
x

17
9x

16
30
x

88
76
x

27
x

44
x

39
x

36
x

BST to list*BST to listInsertion sort

Figure 6. The execution time distribution over the different run-
time checking actions for our micro benchmarks, for different in-
put lengths. The numbers above the bars indicate the total execution
time overhead in comparison to the unhardened code.

above each bar indicates the total overhead in comparison to the
unhardened code.

The left bar chart shows that, for small input sizes, the inser-
tion sort module spends significant time modifying the footprint
description and checking assertion validity. As the input size in-
creases however, the relative overhead due to these actions drops to
the point where it becomes insignificant. This is because modifying
the footprint and checking assertion validity are O(n) operations
that are only performed when entering or exiting the module, and
insertion sort is a O(n2) algorithm. Hence, the time spent doing
useful calculations inside the module increases faster than the time
spent performing runtime checks. No time is spent on hashing, be-
cause the benchmark does not make any outcalls.

The middle bar chart shows that the BST module spends al-
most all of its time hashing its footprint, resulting in a huge per-
formance overhead that increases with increasing input size. This
is because the benchmark performs an outcall to malloc for each
node of the input BST that it visits: the memory for the output list is
allocated piece-by-piece while traversing the input. Because hash-
ing the module footprint is an O(n) operation and it is performed
n times, we have anO(n2) hashing overhead. Since the BST to list
algorithm itself is only O(n), the hashing overhead quickly domi-
nates the execution time. It is however possible to reduce the hash-
ing overhead to O(n) by using a slightly modified algorithm that
first calculates the size of input BST and then allocates memory for
the entire output list with a single malloc call. This will cause the
module footprint to be hashed only once, instead of n times. The
performance overhead of this algorithm is shown in the right bar
chart of Figure 6. While the relative overhead is still significant, it
now remains constant with increasing input size. This shows that
the choice of boundary between verified and unverified code, and
the number of times this boundary is crossed, can have a large im-
pact on performance.

7.2 Macro benchmarks
While the micro benchmarks from Section 7.1 show how the exe-
cution time overhead is distributed over the different actions per-
formed during a runtime check, they do not show the major advan-
tage of our approach: the fact that there is no performance impact
on code running completely in the verified or in the unverified part
but not transitioning between the two. To show this effect and to as-
sess the real-world feasibility of our approach, we have constructed
three realistic macro benchmarks in which we verify and harden a
small, security-critical part of an application, but leave the bulk of
the application unverified. We measured both the execution time
and memory overhead for these macro benchmarks.

https://distrinet.cs.kuleuven.be/software/sound-verification
https://distrinet.cs.kuleuven.be/software/sound-verification

7.2.1 Apache httpd modules
The first two macro benchmarks are modified Apache httpd authen-
tication modules, which are used by the web server for verifying
user credentials (for instance as part of HTTP Basic Authentica-
tion). The first Apache benchmark is based on the mod_authn_anon
module, and uses a single pair of valid username/password cre-
dentials hardcoded in memory. The other benchmark is based on
mod_authn_file, which reads the list of valid credentials from a
file on disk. Both modules provide a single entry point function
that takes client credentials (sent to the web server by the browser)
as input and returns an integer indicating whether or not they are
valid. The signatures of these functions are shown below.

int check_password_mem(char *u, char *p);
req string(u, ?user) &*& string(p, ?pass);
ens string(u, user) &*& string(p, pass) &*&

result == 1 ?
user == "username" &*& pass == "secret"

:
result == 0 ? true : result == 2;

int check_password_file(char *u, char *p);
req string(u, ?user) &*& string(p, ?pass);
ens string(u, user) &*& string(p, pass);

The modules’ code consists mainly of a number of outcalls to
various I/O and string processing functions of the standard library.
In particular, the memory-based module performs 2 such outcalls
per HTTP request, while the file-based module performs 34. As can
be seen from the signatures above, the memory-based module has
been verified for full functional correctness, while the file-based
module has only been verified for memory safety, but this makes
no difference at runtime. The path of the valid credentials file has
been hardcoded in the source of the file-based module.

We set up the pre-forked version of Apache httpd 2.4.7 to serve
the default WordPress 3.9.1 sample website with a MySQL 5.5.37
database backend. We used the Apache HTTP server benchmark-
ing tool ab to measure the time required to perform 5,000 HTTP
requests using 10 concurrent client threads. The client and server
were executed on the same host to eliminate any network bottle-
necks, and we made sure the web server did not use any form of
credential caching. The memory overhead was measured by com-
paring the peak resident set size of the modules.

The first two rows of Table 1 show the results for the Apache
benchmarks. The execution time overhead is low, averaging at
0.68% and 3.74% over three benchmarking runs for the memory-
based and file-based module respectively. The memory overhead is
also low, averaging at 0.08% and 6.60%. The difference in overhead
between the two modules is due to the different number of outcalls
they perform and because the file-based module needs a relatively
large buffer for reading lines from the password file. This buffer is
part of the module’s footprint and hence needs to be described by
the footprint description and hashed when making outcalls.

7.2.2 NetKit FTP daemon
The NetKit FTP daemon is an FTP daemon shipped with many
current Linux distributions. It contains a checkuser function that is
used to determine whether the names of users trying to log in appear
in the /etc/ftpusers file of blocked users. We have verified this
function and have moved it into a separate module, which we
then hardened with our prototype translator. The signature of this
function is shown below.

int checkuser(char *fname, char *name);
req string(fname, ?fn) &*& string(name, ?n);
ens string(fname, fn) &*& string(name, n);

The implementation of this function is quite similar to the
mod_authn_file Apache module, performing 30 outcalls to var-

ious I/O and string processing functions per FTP session. The
benchmark consists of performing 500 FTP sessions using 10 con-
current client threads, where each session consists of a user logging
in, downloading a 1 KiB file and then disconnecting again.

The third row of Table 1 shows the results obtained by taking
the average of three benchmarking runs. Both the execution time
and memory overhead are again low, confirming our claim that
real-world applications consisting mainly of unverified code plus a
small hardened module, incur only a small performance overhead.

7.3 PMA overhead
As explained in Section 3, our runtime checks assume a control-
flow safe execution model, which we propose to achieve using a
fully abstract compilation [2, 31] of the hardened source code to
a PMA. Since the micro and macro benchmarks described above
were performed on a standard desktop system without a PMA, their
results do not yet represent the overhead of our full end-to-end
approach. While recent developments [20] indicate low-overhead
hardware-based PMA platforms will be available for commodity
desktop systems in the near future, the currently available PMAs for
desktop systems are still in an experimental state, which prohibits
us from running our benchmarks on top of them.

In order to still quantify the overhead of a fully abstract compiler
and a PMA, we developed a benchmark to be run on Sancus [30],
which is a fully-functional PMA for low-end networked microcon-
trollers. The Sancus prototype consists of a fully abstract compiler
towards a small PMA-enabled 16-bit microcontroller (based on the
TI MSP430) featuring 48 KiB of ROM and 10 KiB of RAM. The
benchmark consists of a hardened module that provides a function
for calculating the median of a linked list of integers, similar to
the code example given in Section 2. The function’s precondition
asserts that the list is a valid non-empty linked list and its body per-
forms three outcalls: one to copy the list, one to sort the copy and
one to free the copy before returning. The hash function used for
this benchmark was SHA-256. The results indicate the overhead of
Sancus (both the compiler and the platform) is below 1%.

7.4 Reducing hashing overhead
The micro benchmarks show that considerable time can be spent
hashing the module’s footprint. One way of reducing this overhead
is to do away with hashing and instead copy the entire module
footprint contents to a secure location in memory (e.g., the PMA’s
private memory region) when making an outcall and to check the
footprint against this copy on return. Experiments show that this
gives a performance benefit of between 0% and 20% in comparison
with hashing, but it obviously requires much more memory.

Another potential performance issue is that, as the verified code-
base of an application grows, the size of the hardened module’s
footprint grows as well, which means more data must be hashed on
each boundary transition. However, as the verified codebase grows,
the part of the data that is used exclusively by the verified part of the
application is likely to grow as well. Hence, this data can be placed
in private memory, where it can be accessed only by the hardened
module and hence need not be hashed on boundary transitions.

An interesting way to solve both issues is by taking advantage
of hardware page protection support to reduce the amount of data
needing to be hashed on boundary transitions. If an entire memory
page is part of the module’s footprint, it can be marked read-only
in hardware before making an outcall and be reverted to read-write
access on return. However, memory pages are typically at least
4 KiB in size, making this approach too coarse-grained to be used
directly. A hybrid approach where pages that are completely in the
footprint description are set read-only and the rest of the footprint
is hashed or copied, is viable, but we consider it out of scope for
this paper.

Execution time (s) Peak resident set size (KiB)
unhardened hardened overhead unhardened hardened overhead

mod_authn_anon 33.164 33.388 0.224 (0.68)% 33, 356 33, 384 28 (0.08%)

mod_authn_file 33.554 34.809 1.255 (3.74)% 33, 324 35, 524 2, 200 (6.60%)

ftpd 23.193 23.242 0.049 (0.21)% 952 976 24 (2.52%)

Table 1. The macro benchmarks show a low real-world performance overhead in terms of execution time and memory consumption.

7.5 Summary
Our micro benchmarks show that the performance overhead of the
runtime checks can be significant if there is little computation in- or
outside the verified module, compared to the computation required
for the boundary checks. Most of this overhead is due to hash-
ing the module’s footprint and adding/removing memory regions
to/from the footprint description. Nevertheless, the macro bench-
marks show that this overhead becomes negligible once more com-
putation is performed in the unverified context. Hence, when de-
veloping modules to be verified and hardened, it is critical that the
boundary between verified and unverified code is chosen wisely.
That is, developers should try to minimize the number of veri-
fied/unverified boundary crosses in order to minimize the perfor-
mance overhead. Although we could not run our full set of bench-
marks on a PMA-enabled system, a separate benchmark performed
on Sancus indicates the platform overhead is negligible. These re-
sults demonstrate the practical feasibility of our approach.

8. Related work
Separation logic-based formal verification ensures memory safety,
which can be considered one of its main advantages for memory
unsafe languages such as C. There are however many other no-
table solutions for making C memory safe, such as Safe-C [4],
CCured [28] and Cyclone [23]. These systems rely on a combina-
tion of type system extensions, static analyses and runtime checks
to ensure memory safety, but make no attempt at providing correct-
ness guarantees beyond that. Furthermore, these solutions protect
against input-providing attackers, while we protect against more
powerful in-code attackers (i.e., attackers that have already gained
the ability to execute code in the unverified part).

The idea that software modules should specify contracts in the
form of pre- and post-conditions was popularized by Meyer [27]
in the programming language Eiffel. Such contracts can then be
checked statically or dynamically, and there is a huge amount of lit-
erature both on static and on dynamic checking of contracts. Some
notable examples include the Java Modeling Language (JML)
based tools [7], and .NET Contracts [5].

We rely on fully abstract secure compilation for providing a
control-flow safe execution platform and ensuring the soundness
of our runtime checks in the presence of code injection attacks.
Full abstraction was pioneered by Abadi [1], and has recently been
used as a basis for secure compilation to machine code [2, 31]
and JavaScript [17]. A related approach is that of TS* [36], a
gradually-typed subset of JavaScript that ensures type-safety even
when interacting with an untrusted JavaScript context. Although
the techniques used in TS* are different from our approach, this
work shares our goal of providing a robust foundation for security-
sensitive code, while still allowing interaction with an untrusted
environment. In the remainder of this section, we limit our attention
to the most relevant and closely related works.

Our approach combines modular static verification with runtime
checking, to achieve a non-trivial soundness property in the con-
text of an unsafe programming language. The approach is based on
separation logic [33] so that there is a clear notion of memory own-

ership and we can compute the footprint (i.e., the owned region of
memory) of a module and take a snapshot of that region’s contents.
For our implementation and experiments we have used the Veri-
Fast [21, 22] separation logic-based assertion language and static
program verification tool for C and Java. Other separation logic-
based program verifiers include Smallfoot [6], JStar [13], HIP [9],
and Space Invader/Infer [8]. Another notable modular static verifi-
cation tool for C programs is VCC [10]. However, instead of sep-
aration logic, it uses a verification logic that is heavily based on
ghost variables, so it is not clear how one would generate runtime
checks for module specifications written in VCC’s annotation lan-
guage.

Runtime checking of separation logic assertions is known to
be challenging because of the frame rule. A related approach is
that of Nguyen et al. [29]. Although some of the techniques used
in their approach are similar to ours (e.g., tracking footprints and
splitting predicate parameters into input and output parameters),
their objective is different from ours. Their runtime checker aims
to stay as close to the standard separation logic semantics as pos-
sible, while our approach only aims to ensure that no failures can
occur in verified code. We can hence allow unverified code to read
arbitrary memory, which is not allowed under standard separation
logic. Nguyen et al. use a heap coloring technique and runtime
checks at every method invocation and field access in unverified
code to check framing. This introduces a large performance over-
head (on the order of 10, 000× if all necessary checks are done)
that increases as the size of the unverified code grows. As shown
in Section 7, the relative performance impact of our approach de-
creases with a larger unverified codebase. Also, since the imple-
mentation of Nguyen et al. needs to instrument unverified code, the
entire codebase must be recompiled, whereas we only need access
to the verified module. Finally, the implementation of Nguyen et al.
is for Java, so they do not address the complications related to the
lack of memory safety of C.

Another related approach is that of Yarra [34], in which run-
time checks are used to protect C programs from non-control data
attacks. Developers must annotate critical data structures with spe-
cial type declarations, from which point on they should only access
those data structures using those special types. In its whole pro-
gram protection mode, runtime checks are inserted throughout the
entire codebase to detect illegal accesses to the critical data struc-
tures, causing a large performance overhead. In its library protec-
tion mode however, only the memory accesses of a small core of
the application (loosely corresponding to the verified module of
our approach) are instrumented. Critical memory writes in the core
are modified to maintain a shadow copy of critical objects on sepa-
rate memory pages, which are made read-only using hardware page
protections before calling untrusted code. Critical memory reads
in the core are instrumented to check consistency of both copies,
thereby detecting unauthorized writes to critical objects from un-
trusted code. The library protection mode is similar to how we
enforce the separation logic frame rule, in the sense that critical
regions of memory are integrity protected when calling untrusted
code. Our solution provides stronger guarantees than Yarra, since
we ensure validity of arbitrary separation logic assertions, instead

of only data structure integrity. Also, Yarra does not prevent un-
trusted code from disabling the shadow page protections, making
it vulnerable to code-injection attacks in the unprotected part. Fi-
nally, although the performance cost of Yarra’s library protection
mode is low, it grows with both the number of boundary crossings
and the number of reads and writes to critical data in the core part
of the application.

Kosmatov et al. [25] described the runtime checking of E-
ACSL annotations for C programs, in the context of the Frama-C
platform. E-ACSL is an executable subset of ACSL, a behavioral
specification language for C programs. Both function contracts and
in-body annotations can be specified and can be translated into
runtime checks by the E-ACSL2C translator. In order to perform
such runtime checks, each memory allocation, deallocation and
variable assignment is instrumented to record information about the
modified region of memory into a dedicated data store. This store
hence contains a copy of the program’s data and some meta data
about it. The runtime pre, post and in-body annotation checks query
the store in order to determine the annotations’ validity. Although
the approach mentions the use of static analyses to statically discard
some of the runtime checks, there is no notion of a verified and an
unverified part. Hence, the entire program must be instrumented for
the checks to be sound and complete. This results in a high overall
performance cost, ranging from 13× to 800×.

The problem of checking contracts at the boundary between
statically checked modules and unchecked modules has also been
studied extensively in higher-order programming languages. Find-
ler and Felleisen pioneered this line of work and proposed higher-
order contracts [15], which have been implemented in the Racket
programming language [16]. The main challenge addressed is that
of function values passed over the boundary. Compliance of such
function values with their specified contract is generally undecid-
able. But it can be handled by wrapping the function with a wrap-
per that will check the contract of the function value at the point
where the function is called. This is similar to how we handle func-
tion pointers: the corresponding contract is checked when the func-
tion is called. One concern that has received extensive attention
is the proper assignment of blame once a contract violation is de-
tected [12, 18]. While this line of research shares our goal of safely
composing a statically checked module with an unchecked mod-
ule, the issues of higher order contracts and blame assignment are
largely orthogonal to the problems we address in this paper.

9. Conclusion
Separation logic-based verification of C code is a powerful tech-
nique for guaranteeing the absence of code failures. However, ver-
ifying large programs is difficult and requires significant expertise
and developer effort. Modular verification tools support partial ver-
ification, where only the most critical modules are verified, and
where over time more and more modules get verified. Unfortu-
nately, this kind of partial verification gives only limited guarantees
at runtime. Bugs in the unverified part of the program can also im-
pact the state of the verified part, and hence might trigger failures
in verified modules.

We have proposed a way to transform and compile partially
verified programs such that the runtime guarantees are significantly
better, without imposing severe performance penalties. After our
code transformations, no failures can ever occur in the verified
module; if a bug is triggered in the unverified part of the program,
this is detected before it can impact the state or control flow of the
verified module. This is useful for testing, as it detects bugs faster,
and for security as it can guarantee verified properties of modules
even in the presence of code injection attacks against the unverified
part of the program.

Acknowledgments
We thank Greta Yorsh and our anonymous reviewers for their
valuable comments and suggestions that have improved the quality
of this paper. This work has been supported in part by the Intel
Lab’s University Research Office, and by the Research Fund KU
Leuven. Pieter Agten holds a PhD fellowship of the Research
Foundation - Flanders (FWO).

References
[1] M. Abadi. Protection in programming-language translations. In Pro-

ceedings of the 25th International Colloquium on Automata, Lan-
guages and Programming, ICALP ’98, pages 868–883, London, UK,
UK, 1998. Springer-Verlag. ISBN 3-540-64781-3.

[2] P. Agten, R. Strackx, B. Jacobs, and F. Piessens. Secure compilation to
modern processors. In Proceedings of the 2012 IEEE 25th Computer
Security Foundations Symposium, CSF ’12, pages 171–185, Washing-
ton, DC, USA, 2012. IEEE Computer Society. ISBN 978-0-7695-
4718-3. . URL http://dx.doi.org/10.1109/CSF.2012.12.

[3] P. Agten, B. Bart Jacobs, and F. Piessens. Sound modular verification
of C code executing in an unverified context: extended version. Tech-
nical Report CW 676, KU Leuven, 2014. URL http://www.cs.
kuleuven.be/publicaties/rapporten/cw/CW676.abs.html.

[4] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection
of all pointer and array access errors. In Proceedings of the ACM
SIGPLAN 1994 Conference on Programming Language Design and
Implementation, PLDI ’94, pages 290–301, New York, NY, USA,
1994. ACM. ISBN 0-89791-662-X. . URL http://doi.acm.org/
10.1145/178243.178446.

[5] M. Barnett and W. Schulte. Runtime verification of .net contracts. J.
Syst. Softw., 65(3):199–208, Mar. 2003. ISSN 0164-1212. . URL
http://dx.doi.org/10.1016/S0164-1212(02)00041-9.

[6] J. Berdine, C. Calcagno, and P. W. O'Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In Proceedings of
the 4th International Conference on Formal Methods for Components
and Objects, FMCO’05, pages 115–137, Berlin, Heidelberg, 2006.
Springer-Verlag. ISBN 3-540-36749-7, 978-3-540-36749-9. . URL
http://dx.doi.org/10.1007/11804192_6.

[7] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of jml tools and
applications. Int. J. Softw. Tools Technol. Transf., 7(3):212–232, June
2005. ISSN 1433-2779. . URL http://dx.doi.org/10.1007/
s10009-004-0167-4.

[8] C. Calcagno, D. Distefano, and V. Vafeiadis. Bi-abductive resource
invariant synthesis. In Proceedings of the 7th Asian Symposium on
Programming Languages and Systems, APLAS ’09, pages 259–274,
Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-10671-
2. . URL http://dx.doi.org/10.1007/978-3-642-10672-9_

19.
[9] W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated veri-

fication of shape, size and bag properties via user-defined predicates
in separation logic. Sci. Comput. Program., 77(9):1006–1036, Aug.
2012. ISSN 0167-6423. . URL http://dx.doi.org/10.1016/j.
scico.2010.07.004.

[10] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. Vcc: A practical system
for verifying concurrent c. In Proceedings of the 22nd Interna-
tional Conference on Theorem Proving in Higher Order Logics,
TPHOLs ’09, pages 23–42, Berlin, Heidelberg, 2009. Springer-Verlag.
ISBN 978-3-642-03358-2. . URL http://dx.doi.org/10.1007/
978-3-642-03359-9_2.

[11] M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte. Vcc:
Contract-based modular verification of concurrent c. In 31st Interna-
tional Conference on Software Engineering, ICSE 2009, pages 429–
430, May 2009. .

[12] C. Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen. Correct
blame for contracts: No more scapegoating. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

http://dx.doi.org/10.1109/CSF.2012.12
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW676.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW676.abs.html
http://doi.acm.org/10.1145/178243.178446
http://doi.acm.org/10.1145/178243.178446
http://dx.doi.org/10.1016/S0164-1212(02)00041-9
http://dx.doi.org/10.1007/11804192_6
http://dx.doi.org/10.1007/s10009-004-0167-4
http://dx.doi.org/10.1007/s10009-004-0167-4
http://dx.doi.org/10.1007/978-3-642-10672-9_19
http://dx.doi.org/10.1007/978-3-642-10672-9_19
http://dx.doi.org/10.1016/j.scico.2010.07.004
http://dx.doi.org/10.1016/j.scico.2010.07.004
http://dx.doi.org/10.1007/978-3-642-03359-9_2
http://dx.doi.org/10.1007/978-3-642-03359-9_2

Programming Languages, POPL ’11, pages 215–226, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0490-0. . URL http://doi.
acm.org/10.1145/1926385.1926410.

[13] D. Distefano and M. J. Parkinson J. jstar: Towards practical verifi-
cation for java. In Proceedings of the 23rd ACM SIGPLAN Confer-
ence on Object-oriented Programming Systems Languages and Appli-
cations, OOPSLA ’08, pages 213–226, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-215-3. . URL http://doi.acm.org/
10.1145/1449764.1449782.

[14] U. Erlingsson. Low-level software security: Attacks and defenses. In
A. Aldini and R. Gorrieri, editors, Foundations of Security Analysis
and Design IV, pages 92–134. Springer-Verlag, Berlin, Heidelberg,
2007. ISBN 3-540-74809-1, 978-3-540-74809-0. URL http://dl.
acm.org/citation.cfm?id=1793914.1793919.

[15] R. B. Findler and M. Felleisen. Contract soundness for object-oriented
languages. In Proceedings of the 16th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA ’01, pages 1–15, New York, NY, USA, 2001. ACM.
ISBN 1-58113-335-9. . URL http://doi.acm.org/10.1145/
504282.504283.

[16] M. Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-
1, PLT Inc., 2010. http://racket-lang.org/tr1/.

[17] C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and
B. Livshits. Fully abstract compilation to javascript. In Proceed-
ings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’13, pages 371–384, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-1832-7. . URL
http://doi.acm.org/10.1145/2429069.2429114.

[18] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made mani-
fest. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’10, pages
353–364, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-479-
9. . URL http://doi.acm.org/10.1145/1706299.1706341.

[19] J. Guo, P. Karpman, I. Nikolic, L. Wang, and S. Wu. Analysis of
blake2. Cryptology ePrint Archive, Report 2013/467, 2013. http:
//eprint.iacr.org/.

[20] Intel Corporation. Intel software guard extensions, 2013. URL http:
//software.intel.com/en-us/intel-isa-extensions#
pid-19539-1495.

[21] B. Jacobs and F. Piessens. Expressive modular fine-grained con-
currency specification. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’11, pages 271–282, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0490-0. . URL http://doi.acm.org/10.
1145/1926385.1926417.

[22] B. Jacobs, J. Smans, and F. Piessens. A quick tour of the verifast
program verifier. In Proceedings of the 8th Asian Conference on
Programming Languages and Systems, APLAS’10, 2010.

[23] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of c. In Proceedings of the
General Track of the Annual Conference on USENIX Annual Technical
Conference, ATEC ’02, pages 275–288, Berkeley, CA, USA, 2002.
USENIX Association. ISBN 1-880446-00-6. URL http://dl.acm.
org/citation.cfm?id=647057.713871.

[24] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. sel4: Formal verification of an os kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, pages 207–220, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-752-3. . URL http://doi.acm.
org/10.1145/1629575.1629596.

[25] N. Kosmatov, G. Petiot, and J. Signoles. An optimized memory
monitoring for runtime assertion checking of C programs. In Runtime
Verification - 4th International Conference, RV 2013, Rennes, France,
September 24-27, 2013. Proceedings, pages 167–182, 2013. . URL
http://dx.doi.org/10.1007/978-3-642-40787-1_10.

[26] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An execution infrastructure for tcb minimization. In Pro-
ceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008, Eurosys ’08, pages 315–328, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-013-5. . URL http:
//doi.acm.org/10.1145/1352592.1352625.

[27] B. Meyer. Applying "design by contract". Computer, 25(10):40–51,
Oct. 1992. ISSN 0018-9162. . URL http://dx.doi.org/10.
1109/2.161279.

[28] G. C. Necula, S. McPeak, and W. Weimer. Ccured: Type-safe
retrofitting of legacy code. In Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’02, pages 128–139, New York, NY, USA, 2002. ACM. ISBN 1-
58113-450-9. . URL http://doi.acm.org/10.1145/503272.
503286.

[29] H. H. Nguyen, V. Kuncak, and W.-N. Chin. Runtime checking for
separation logic. In Proceedings of the 9th International Conference
on Verification, Model Checking, and Abstract Interpretation, VM-
CAI’08, pages 203–217, Berlin, Heidelberg, 2008. Springer-Verlag.
ISBN 3-540-78162-5, 978-3-540-78162-2. URL http://dl.acm.
org/citation.cfm?id=1787526.1787545.

[30] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens. San-
cus: Low-cost trustworthy extensible networked devices with a zero-
software trusted computing base. In Proceedings of the 22nd USENIX
Conference on Security, SEC’13, pages 479–494, Berkeley, CA, USA,
2013. USENIX Association. ISBN 978-1-931971-03-4. URL http:
//dl.acm.org/citation.cfm?id=2534766.2534808.

[31] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and
F. Piessens. Secure compilation to protected module architec-
tures. ACM Transactions on Programming Languages and Systems
(TOPLAS), accepted for publication in ACM TOPLAS.

[32] P. Philippaerts, J. T. Mühlberg, W. Penninckx, J. Smans, B. Jacobs, and
F. Piessens. Software verification with VeriFast: Industrial case stud-
ies. Science of Computer Programming, 82(1):77–97, Mar. 2014. URL
https://lirias.kuleuven.be/handle/123456789/388689.

[33] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th Annual IEEE Symposium on
Logic in Computer Science, LICS ’02, pages 55–74, Washington, DC,
USA, 2002. IEEE Computer Society. ISBN 0-7695-1483-9. URL
http://dl.acm.org/citation.cfm?id=645683.664578.

[34] C. Schlesinger, K. Pattabiraman, N. Swamy, D. Walker, and B. Zorn.
Modular protections against non-control data attacks. In Proceedings
of the 2011 IEEE 24th Computer Security Foundations Symposium,
CSF ’11, pages 131–145, Washington, DC, USA, 2011. IEEE Com-
puter Society. ISBN 978-0-7695-4365-9. . URL http://dx.doi.
org/10.1109/CSF.2011.16.

[35] R. Strackx and F. Piessens. Fides: Selectively hardening software ap-
plication components against kernel-level or process-level malware. In
Proceedings of the 2012 ACM Conference on Computer and Commu-
nications Security, CCS ’12, pages 2–13, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1651-4. . URL http://doi.acm.org/
10.1145/2382196.2382200.

[36] N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen, P.-Y. Strub,
and G. Bierman. Gradual typing embedded securely in javascript.
In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, pages 425–437,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2544-8. .

[37] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta.
Design, implementation and verification of an extensible and modular
hypervisor framework. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy, SP ’13, pages 430–444, Washington, DC,
USA, 2013. IEEE Computer Society. ISBN 978-0-7695-4977-4. .
URL http://dx.doi.org/10.1109/SP.2013.36.

http://doi.acm.org/10.1145/1926385.1926410
http://doi.acm.org/10.1145/1926385.1926410
http://doi.acm.org/10.1145/1449764.1449782
http://doi.acm.org/10.1145/1449764.1449782
http://dl.acm.org/citation.cfm?id=1793914.1793919
http://dl.acm.org/citation.cfm?id=1793914.1793919
http://doi.acm.org/10.1145/504282.504283
http://doi.acm.org/10.1145/504282.504283
http://racket-lang.org/tr1/
http://doi.acm.org/10.1145/2429069.2429114
http://doi.acm.org/10.1145/1706299.1706341
http://eprint.iacr.org/
http://eprint.iacr.org/
http://software.intel.com/en-us/intel-isa-extensions#pid-19539-1495
http://software.intel.com/en-us/intel-isa-extensions#pid-19539-1495
http://software.intel.com/en-us/intel-isa-extensions#pid-19539-1495
http://doi.acm.org/10.1145/1926385.1926417
http://doi.acm.org/10.1145/1926385.1926417
http://dl.acm.org/citation.cfm?id=647057.713871
http://dl.acm.org/citation.cfm?id=647057.713871
http://doi.acm.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
http://dx.doi.org/10.1007/978-3-642-40787-1_10
http://doi.acm.org/10.1145/1352592.1352625
http://doi.acm.org/10.1145/1352592.1352625
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1109/2.161279
http://doi.acm.org/10.1145/503272.503286
http://doi.acm.org/10.1145/503272.503286
http://dl.acm.org/citation.cfm?id=1787526.1787545
http://dl.acm.org/citation.cfm?id=1787526.1787545
http://dl.acm.org/citation.cfm?id=2534766.2534808
http://dl.acm.org/citation.cfm?id=2534766.2534808
https://lirias.kuleuven.be/handle/123456789/388689
http://dl.acm.org/citation.cfm?id=645683.664578
http://dx.doi.org/10.1109/CSF.2011.16
http://dx.doi.org/10.1109/CSF.2011.16
http://doi.acm.org/10.1145/2382196.2382200
http://doi.acm.org/10.1145/2382196.2382200
http://dx.doi.org/10.1109/SP.2013.36

	Introduction
	Problem Statement
	Overview of our solution
	Control-flow safe execution
	Unsafe execution

	Program transformations
	Pure assertions
	Spatial assertions
	Predicates
	Inductive data types
	Function pointers

	Example program
	Formalization
	Programming language
	Separation logic
	Contract assertion language
	Transformations
	Safety and precision

	Prototype performance
	Micro benchmarks
	Macro benchmarks
	Apache httpd modules
	NetKit FTP daemon

	PMA overhead
	Reducing hashing overhead
	Summary

	Related work
	Conclusion

