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Abstract

While understanding natural language is easy for humans, it is complex for
computers. The main reasons for this can be found in the structural nature and
the inherent ambiguity of natural language. Correctly interpreting language
therefore requires one to take into account the necessary context. In order
to perform natural language understanding by means of machine learning
techniques, an appropriate representation is required that takes into account
this relational information and integrates the necessary background knowledge
into the learning process.

Statistical relational learning is well-suited to represent this structural
information, and to incorporate the necessary context and background knowledge
for natural language understanding. Furthermore, its inherent probabilistic
nature offers opportunities to deal with linguistic ambiguity. This thesis
investigates the promise of statistical relational learning for natural language
processing and provides evidence for the utility of this approach.

As a first contribution, we demonstrate the expressiveness and interpretability
of the relational representation on two natural language learning problems.
Furthermore, we explore the importance of the declarative approach for the
inclusion of contextual information, and analyze the influence of the relational
representation by a comparison of several machine learning techniques. A second
contribution is the extension of the graph kernel–based relational learning
framework kLog with a natural language processing module, in order to obtain
a full relation learning framework for natural language learning. As a third
contribution, we introduce relational regularization and feature ranking in order
to assess the importance of the relational features. Finally, we extend rule
learning to a probabilistic setting and explore its application in the context of
machine reading.
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Beknopte samenvatting

Het begrijpen van natuurlijke taal is gemakkelijk voor mensen, maar is erg
complex voor computers. De belangrijkste redenen hiervoor zijn het structurele
karakter en de inherente dubbelzinnigheid van natuurlijke taal. Bijgevolg is
voor een correcte interpretatie van taal context vereist. Om het begrijpen van
natuurlijke taal uit te voeren door middel van technieken uit machinaal leren is
een gepaste voorstelling noodzakelijk die deze relationele informatie in rekening
brengt, en de nodige achtergrondkennis opneemt in het leerproces.

Statistisch relationeel leren is bijzonder geschikt voor het uitdrukken van deze
structurele informatie, en laat ook toe om de context en achtergrondkennis
op te nemen die nodig is voor het begrijpen van natuurlijke taal. Bovendien
biedt de probabilistische aard van deze aanpak perspectieven voor het omgaan
met linguïstische ambiguïteit. Deze thesis onderzoekt de belofte van statistisch
relationeel leren voor natuurlijke taalverwerking en toont het nut van deze
aanpak aan.

Als eerste bijdrage tonen we de expressiviteit en interpreteerbaarheid van de
relationele representatie voor twee problemen in natuurlijke taalverwerking. We
verkennen ook het belang van de declaratieve aanpak voor het opnemen van
contextuele informatie, en analyseren de invloed van de relationele representatie
door een vergelijking van verschillende technieken voor machinaal leren. Een
tweede bijdrage is de uitbreiding van kLog, een framework voor relationeel
leren met kernels, met een module voor natuurlijke taalverwerking, om zo een
raamwerk voor relationeel leren van natuurlijke taal te bekomen. Als derde
bijdrage introduceren we technieken voor relationele regularisatie en feature
ordening, die toelaten het belang van relationele eigenschappen te beoordelen.
Tenslotte breiden we het leren van regels uit naar een probabilistische setting,
en verkennen de toepassing hiervan in het kader van machinaal lezen.
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Chapter 1

Introduction

Since the origin of the domain more than sixty years ago, understanding language
by means of computers is one of the longstanding goals of Artificial Intelligence
(AI). While this is an easy task for humans, it is complex to do this automatically.
To illustrate this, consider the following example:

Example 1.1. Alan Turing is one of the most influential scientists of all times.
The English mathematician is often considered as the father of modern Computer
Science.

In order to answer the question Which logician is seen as the founder of
Computer Science?, one needs to know that mathematician refers to Alan Turing
and father is figurative language referring to the role of founding the Computer
Science field. Furthermore, knowing that logic is a subfield of mathematics is
essential to get to the right answer. Language thus is inherently relational in
nature.

While processing this information is natural for humans, in order for it to be
done computationally, it needs to be transformed into a representation that can
be understood by computers. This representation needs to encompass both the
data and the background knowledge. Traditional approaches often resort to a
so-called propositional representation, in which the data is represented as a table
consisting of columns representing particular properties and rows representing
examples with values for each of the properties. A simplified propositional
representation of part of the text in Example 1.1 is given in Table 1.1. It
represents the words in the text, with for each word its two surrounding words
as context and their respective part-of-speech (POS) tags, which indicate the
linguistic type of a word in the sentence.

3
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word POS-tag prev. word prev. POS-tag next word next POS-tag
. . .

most adverb the determiner influential adjective
influential adjective most adverb scientist noun
scientist noun influential adjective of preposition

. . .

Table 1.1: Propositional representation of a part of the text in Example 1.1.

However, to encode the necessary information in order to be able to learn from
and interpret language, this representation is often impractical or insufficient.
Statistical relational learning is a technique in AI which allows one to represent
both the necessary data and encode additional background knowledge which
might be useful to solve a particular problem. A relational representation, again
representing the text from Example 1.1, is shown in Figure 1.11. In addition to
the individual words (purple rectangles) and the POS-tags (yellow ovals), now
also the dependency relations between words (orange diamonds), indicating the
structure of the sentence, are represented. Furthermore, the named entities
(pink ovals), indicating which words are proper names, and the coreference
relations (green diamonds), which connect words that refer to the same entity
in the real world (in this case, all coreferent words refer to Alan Turing), are
included as well. The IS_A relation represents some additional background
knowledge, namely that a mathematician is a scientist. As may be clear, the
relational representation is more concise, and offers a more flexible approach to
take contextual information into account when compared to the propositional
representation. In the first half of this thesis we will study the advantages of
statistical relational learning to represent the contextual, relational information
and background knowledge which is necessary for a machine to learn from text.

The relational information contained in text is also a valuable source to extract
knowledge from. Let us again consider the text in Example 1.1. For a human, it
is easy to extract that Alan Turing was a logician. In a machine, this information
can be expressed as hasProfession(Alan Turing, logician). Furthermore,
if one also knows that a logician studies logic, i.e., studies(logician,
logic), this allows one to infer that Alan Turing’s research area is logic.
This knowledge can be represented in the form of the following rule: if
hasProfession(Alan Turing, logician) and studies(logician, logic)
then hasResearchArea(Alan Turing, logic). While it is in the human nature
to extract and reason about this information, for a machine this is not a
trivial operation, and often comes along with uncertainty about the extracted

1For the ease of understanding, only a part of the linguistic information is represented.
The notation will be introduced and explained in more detail in Chapter 2.
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Alan Turing is one of the most influential scientists of all times

person person

The mathematician is often considered as the father of modern Computer Science

coreferent

coreferent

coreferent

subject

subject

determiner

determiner

IS_A

modifier

auxiliary

noun nounadjectiveverb

verb

adjectivedeterminer noun prepositionadverb

Figure 1.1: Relational representation of the text in Example 1.1.

information. The second half of this thesis will be concerned with automatically
extracting rules from text in the presence of uncertainty.

This research is part of computational natural language learning, a subfield of
Artificial Intelligence. Both the origin of this subfield and the actual interest in
the relational representation stem from the parallel course of the history of AI
and linguistics.

John McCarthy was the first to use the term “Artificial Intelligence” to refer
to “the science and engineering of making intelligent machines, especially
intelligent computer programs” in 1956. However, Alan Turing already lectured
on “Intelligent Machines” in 1947, and he may have been the first to propose
that AI was best researched by programming computers rather than by building
machines (McCarthy, 2007).

At around the same time, modern linguistics emerged. In 1957, Burrhus F.
Skinner proposed a behaviorist approach to language learning in his book Verbal
Behaviour (Skinner, 1957), in which he accounted for language development by
means of environmental influence. Not only his book, but also a critical review
of it by Noam Chomsky (Chomsky, 1959) attracted a lot of attention. In this
review, Chomsky argued that the behaviorist approach did not account for the
creativity that is present in human language acquisition. For example, children
cannot understand sentences, but still come up with new ones solely based on
the input they get from their environment. He defended the theory he presented
in Syntactic Structures (Chomsky, 1957), namely that some linguistic knowledge
is innate, and children already have prior knowledge about language structure,
but still need to learn the idiosyncratic features of the language. The theory is
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based on syntactic models that could be formally represented. This attracted
the interest of the AI community, and led to the development of computational
linguistics and natural language processing. The boundary between these two
fields is rather vague. Computational linguistics is commonly defined as the
discipline that studies linguistic processes from a computational perspective,
while natural language processing is generally considered as referring to the field
studying the automation of textual and linguistic analysis.

In order to test the ability of a machine to exhibit intelligent behavior, Alan
Turing proposed the “Imitation Game”, which evolved into the well-known
Turing Test (Turing, 1950). The test consists of a human interrogator posing
written questions. The test is successful if the interrogator cannot tell whether
the responses to these questions come from a person or a computer. In order
to pass it, a computer needs to possess a number of capabilities: knowledge
representation to store what it knows and hears, automated reasoning to use
this knowledge to answer questions and draw conclusions, machine learning to
detect patterns in this knowledge and adapt to new circumstances, and natural
language processing to be able to communicate (Russell and Norvig, 2009). Later,
a number of variations on the original Turing Test were designed. For example,
the Total Turing Test by Harnad (1991) adds two additional requirements to
the original test, in order to be able to test the ability of the subject to perceive
and manipulate objects. On top of the original capabilities, this also requires
computer vision and robotics respectively. Despite the controversy around the
test (Moor, 2003), the six disciplines corresponding with these capabilities
represent the current main research areas of artificial intelligence.

The requirement of the original Turing Test to interact with the interrogator in
a text-based manner led to the longstanding goal of natural language processing,
and one of the ultimate goals of AI in general, namely acquiring human
knowledge by automatically understanding texts. Initially, this was expected to
be a relatively easy problem, as witnessed by the claim from participants in the
Georgetown experiment, an influential demonstration of machine translation.
They stated that machine translation would be a solved problem in three to
five years (Dostert, 1955), which nourished the presumption that automatic
language understanding and knowledge acquisition would be an easily-solved
problem. After a decade of high expectations and disillusionment, attention
shifted from Chomskyan to corpus linguistics, i.e., the analysis of language by
studying large collections of text (corpora). Together with the introduction
of statistical techniques and machine learning in natural language processing,
this revolutionized the domain (the so-called statistical revolution). One of the
first attempts toward the goal of natural language understanding was SHRDLU
(Winograd, 1972). It consisted of a language parser that allowed the user to
instruct the program to move various objects around in a so-called “blocks
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world”; a setting containing blocks in different forms. Over the past decades,
tremendous progress has been made in this field, with IBM’s Watson (Ferrucci
et al., 2010) as one of the most prominent examples to date. It is an AI system
that is able to answer questions posed in natural language, and has won the
quiz show Jeopardy! against the reigning human champions.

This thesis is situated at the intersection of these two domains; machine learning
and natural language processing. Section 1.1 will briefly introduce both, as well
as their respective subfields, statistical relational learning and computational
natural language learning, that are in the focus of this work. This will be followed
by the motivation and research questions (Section 1.2) and the contributions
of this thesis (Section 1.3). Finally, an overview of the outline of the text is
provided in Section 1.4.

1.1 Context
In this section, we will briefly introduce machine learning and natural language
processing, the two research fields in which this thesis is situated. Subsequently,
we will turn to statistical relational learning and computational natural language
learning, which are the specific areas of interest in this thesis.

1.1.1 Machine Learning and Natural Language Processing

The term “Machine Learning” (ML) was coined in 1952 by Arthur Samuel,
who defined it as “a field of study that gives computers the ability to learn
without being explicitly programmed”. Later, this definition was formalized by
Tom Mitchell as “A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E” (Mitchell, 1997).

Figure 1.2 illustrates the general process of a machine learning system. In order
to learn, machine learning algorithms start from a set of examples originating
from a certain domain. In the context of this thesis, the examples will consist
of textual data, e.g., sentences or documents. As an example, consider a set of
product reviews on smartphones, in which the goal is to distinguish the positive
reviews from the negative ones. First, some specific characteristics from these
examples are extracted, called features. This can be seen as translating the
examples into a format the algorithm can understand. For the smartphone
review example, this could be a vocabulary of words, where for each review it
is known which of the words from the vocabulary appear in a particular review.
The task is now to devise a mapping from these features to the output. In
terms of the example, this means finding out which combination of words leads
to a positive (resp. negative) smartphone review. In machine learning, this
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Figure 1.2: General process of a machine learning system (taken from Flach,
2012)

mapping is referred to as a model. In order to learn this model, a machine
learning algorithm analyses a training dataset, which consists of examples for
which the output is already known. This is referred to as the learning problem.
Flach (2012) summarizes this process as follows: “machine learning is concerned
with using the right features to build the right models that achieve the right
tasks”.

A natural language is commonly defined as a language that has evolved naturally
as a means of communication among people and has developed through use
rather than by prescription. It stands in contrast to formal or artificial languages,
such as programming languages or mathematical logic. Natural Language
Processing (NLP) is a subfield of artificial intelligence and linguistics concerned
with the computational analysis of natural language. This can be as simple
as separating a chunk of continuous text into separate words or as complex as
automatically reading texts and answering questions about it.

Although using and learning language is relatively easy for humans, it is very
hard for a computer. The goals of NLP are thus not easy to reach, since
understanding language means identifying words and phrases that refer to
higher-level concepts, interpreting these concepts and linking them together in
a meaningful way. This requires one to solve a set of separate subproblems.

1.1.2 Computational Natural Language Learning

In the early days of NLP research, systems were based on symbolic techniques
that required manual knowledge engineering, e.g., in the form of handcrafted
production rules (Allen, 1988). This approach worked for small amounts of data
(as illustrated by the SHRDLU system of Winograd (1972) that was mentioned
earlier), but did not generalize to larger amounts of data.
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The successful application of statistical methods on large amounts of data in
speech recognition (Jelinek, 1976), which eventually caused a paradigm shift
in the domain (Jelinek, 1997), combined with the limitations of the manual
knowledge engineering approaches, led to the introduction of statistical methods
in NLP. More advanced ML methods made their appearance and started to
show promising results on tasks such as part-of-speech tagging and parsing, i.e.,
analyzing the structure of a sentence.

This gave rise to Computational Natural Language Learning (CoNLL) (Manning
and Schütze, 1999) as the area of research that applies machine learning
techniques to natural language understanding. The progress in this new domain
was driven and accelerated by the increasing availability of additional (annotated)
resources (e.g., the Penn Treebank (Marcus et al., 1993)). Furthermore,
new techniques quickly entered the domain, and the increased availability
of computational power facilitated their successful deployment.

1.1.3 Statistical Relational Learning

Many machine learning methods traditionally resort to a propositional or
attribute-value representation of the examples they learn from. Intuitively,
this can be seen as a table in which the columns represent the attributes,
and the rows are descriptions of examples in terms of those attributes. The
process of transforming a relational representation of a learning problem into a
propositional one is referred to as propositionalization (Kramer et al., 2000).
However, in many cases this propositionalization step results in information
loss, and consequently suboptimal generalization during learning.

The need to deal with increasingly complex data that is structural or relational
in nature, led to the consensus within the fields of artificial intelligence, and
machine learning in particular, that both logical and relational representations
were needed to solve many real-life applications. This insight resulted in an
emerging new area of research known as inductive logic programming (ILP)
(Muggleton and De Raedt, 1994), multi-relational data mining (Lavrač and
Džeroski, 2001), or logical and relational learning (De Raedt, 2008). As the name
indicates, ILP combines the inductive machine learning paradigm of learning
from examples with first-order logical representations from logic programming,
which are used to describe the data. Logical predicates allow one to represent the
data in a relational format, as well as specify additional background knowledge
declaratively.

In order to deal with uncertainty, which is often inherent in real-world
applications (e.g., originating during data collection), the aforementioned logical
and relational representations can be extended by probability theory. This gave



10 INTRODUCTION

UncertaintyRelational
representation

Learning

Machine
Learning

Natural
Language
Processing

Computational
Natural Language

Learning

= Statistical Relational Learning of Natural Language

SRL

Figure 1.3: Situating statistical relational learning of natural language

rise to the field of statistical relational learning (SRL) (Getoor and Taskar, 2007),
which is also known as probabilistic inductive logic programming (De Raedt and
Kersting, 2004; De Raedt et al., 2008) or probabilistic logic learning (De Raedt
and Kersting, 2003).

Today a large number of different representations and approaches exist for
integrating logical, relational and probabilistic representations with machine
learning. Prominent examples include Markov Logic (Richardson and Domingos,
2006), which integrates Markov networks with first-order logic, and systems such
as PRISM (Sato and Kameya, 2001), ICL (Poole, 2000) and ProbLog (De Raedt
et al., 2007), which integrate the logic programming language Prolog with
probabilistic annotations. At the same time several applications of statistical
relational learning in areas such as natural language processing, bioinformatics
and social network analysis are being developed, and they often outperform
alternative state-of-the-art methods. Domingos (2006) has argued that one
of the reasons for this is that statistical relational learning models act as an
interface layer for artificial intelligence because they allow one to combine and
integrate various sources of information and knowledge.

We now have the necessary building blocks to describe the area of research
in which this thesis is situated. This is graphically illustrated in Figure 1.3.
Statistical relational learning of natural language is a research area at the
intersection of computational natural language learning and statistical relational
learning. We will now explain why combining these two domains is particularly
interesting, and give an overview of the research questions of this thesis.
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1.2 Motivation and Research Questions
Since the emergence of computational natural language learning more than two
decades ago, there has been much progress. A number of promising results have
been obtained on a wide variety of language learning tasks such as part-of-speech
tagging and parsing. These tasks were mostly syntactic in nature, i.e., they
mainly focused on the analysis of the structural relationships between words,
with the goal of studying the way that words are arranged together.

Semantic analysis deals with giving words, phrases, sentences or paragraphs
meaning, i.e., coupling them to elements and concepts in the real world.
Examples of well-established semantic processing tasks are semantic role labeling
and word sense disambiguation. This type of tasks still remains challenging
because the broader context of words at sentence or discourse level has to
be considered in order to account for aspects of meaning that are expressed
by certain combinations of words. Often these tasks require one to combine
syntactic with semantic dependencies, structured with unstructured data, local
with global models, and probabilistic with logical information. It is unclear how
to realize this using state-of-the-art language learning techniques, since most of
these are rooted in the traditional local token-based approaches based on the
lexico-syntactic features of individual words.

On the other hand, statistical relational learning, with its integrated approach
to probability, logic and learning, may well be able to contribute to solving
these problems. Language is full of relational structure, and SRL enables to
exploit this knowledge. Furthermore, SRL allows one to compactly incorporate
additional background knowledge about the domain. This is summarized by
Bunescu and Mooney (2007) as:

“Natural language processing problems are particularly suited for
statistical relational learning methods that combine the strengths of
first-order predicate logic and probabilistic graphical models.”

The goal of this thesis is to strengthen this observation and provide additional
insights into how statistical relational learning techniques can be applied to
natural language processing. There are already a number of promising initial
results in applying statistical relational learning to natural language, e.g., for
information extraction (Bunescu and Mooney, 2007; Roth and Yih, 2007; Kok
and Domingos, 2008) and semantic role labeling (Riedel and Meza-Ruiz, 2008).
While these results definitely show the promise of SRL for language learning, we
still lack a deep understanding of the possibilities and limitations of statistical
relational learning, and we are still far away from the routine application of
SRL techniques to language learning.
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This overall goal of studying how statistical relational learning can contribute
to natural language learning leads to the following specific research questions.

The first research question focuses on the specific characteristics of statistical
relational learning, namely the ability to represent structured data in a relational
representation and the declarative approach that offers the opportunity to specify
additional background knowledge. As indicated before, these properties are
particularly interesting in the context of natural language. Current semantic
processing tasks require the integration of lower-level features (e.g., the lexico-
syntactic features at word level) and higher-level (syntactical) structure and
(semantic) relations. This research question can thus be summarized as

Q1 What are the advantages of the relational representation and the declarative
approach, as offered by SRL, for natural language learning?

As indicated before, we are still far away from a routine application of SRL for
natural language learning. In order to achieve the goal of SRL as an interface
layer for artificial intelligence, a first step is to come to SRL frameworks
that abstract away from the underlying details and offer a fully declarative
specification of the learning problem. In natural language learning, a lot
of attention needs to be given to the modeling of the task. The process of
modeling a task in a relational representation that can be used as input to an
SRL framework is often seen as an obstacle to applying SRL methods, with
the consequence that one often resorts to the traditional propositional methods.
This forms the subject of the following research question.

Q2 Can an SRL system be tailored for use in natural language learning, in
order to achieve a full relational learning framework for NLP?

The high-level declarative specification of the domain, and the ability to encode
additional background knowledge using logical predicates as declarative features,
offers an increased expressivity of the model and interpretability of the results,
especially when contrasted with traditional propositional approaches. This
functionality proves particularly useful in the context of natural language
learning, and its increased expressivity and interpretability can lead to new
insights. This requires a way to calculate the importance of these high-level
declarative features. Whereas this problem is well-studied for the propositional
case, it is not yet well understood in the context of statistical relational learning.
This leads to the following research question:

Q3 How can the importance of declarative, relational features be assessed in
the case of statistical relational learning?
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Relations not only form the input, but are often also part of the output of
natural language learning tasks. One of these tasks is information extraction
from structured and unstructured documents. Recently, this task has attracted a
lot of attention in the context of Machine Reading, i.e., the automatic extraction
of knowledge from text. In this respect, several systems have been developed
for extracting relations from words or phrases from text. Furthermore, these
relations often have a probability attached that represents the confidence of the
method in the extracted relation. Due to its probabilistic reasoning capabilities,
statistical relational learning could provide an added value here, which is the
subject of the last research question:

Q4 How can statistical relational learning be leveraged to reason about and
extend probabilistic relational information in the context of Machine
Reading?

Answering these research questions resulted in the following contributions.

1.3 Contributions
Themain contribution of this thesis is a set of new insights into how statistical
relational learning can be advantageous for natural language learning. We will
now give a detailed overview of the specific contributions according to the
research questions outlined above.

The main contributions with respect to Q1, what are the advantages of the
relational representation and the declarative approach, as offered by SRL, for
natural language learning, are the following:

• An expressive and interpretable relational representation for natural
language learning problems, and the use of graph kernel–based relational
learning for two (semantic) processing tasks; hedge cue detection as
a binary sentence classification task at the sentence level and the
identification of evidence-based medicine categories as a multiclass
multilabel classification task at the document level.

• An exploration of the importance of the declarative approach for the
inclusion of contextual information in natural language processing tasks.
This will be illustrated by means of declarative feature construction for
including context at the sentence level (hedge cue detection) as well as at
the document level (evidence-based medicine category identification).

• An analysis of the influence of the relational representation and
declarative approach on the performance by a comparison of several
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machine learning techniques along two dimensions: a propositional versus
a relational representation for both lazy and eager learning. To this end
we integrated the graph-based relational distance into a memory-based
learner in order to attain a relational memory-based learning setting.

With regard to Q2, can an SRL system be tailored for use in natural language
learning, in order to achieve a full relational learning framework for NLP, the
following contribution was derived:

• The introduction of kLogNLP, a natural language processing module for
kLog, that enriches it with NLP-specific preprocessors, and in this way
enables the use of state-of-the-art libraries and toolkits within an elegant
and powerful SRL framework. Furthermore a declarative, relational model
that fits most natural language learning tasks is introduced. This results
in a full relational learning framework for NLP.

This leads to Q3, how can the importance of declarative features be assessed in
the case of statistical relational learning, with the following contributions:

• The introduction of relational regularization, which takes into account
the relational structure of the domain during regularization. The relations
are used to tie the parameters of a predictive linear model. In this way,
one can assess the importance of the original elements in the relational
model based on the resulting importance scores for the individual features.

• An embedded and a wrapper approach for relational feature selection
and ranking, which allows one to get deeper insights into the relative
importance of the elements in the relational model of the domain, i.e., the
declarative features.

• An empirical evaluation on the aforementioned binary sentence
classification task for hedge cue detection illustrates the use of relational
regularization and feature ranking for natural language learning.

Finally, the contributions related to Q4, how can statistical relational learning
be leveraged to reason about and extend probabilistic relational information in
the context of Machine Reading, are:

• The exploration of probabilistic rule learning to expand NELL,
the Never-Ending Language Learner, a knowledge base of probabilistic
facts extracted from textual Web data. This takes place in the general
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problem setting of inducing probabilistic logic programs from probabilistic
examples. It combines the principles of the rule learner FOIL with
ProbLog, a probabilistic Prolog.

1.4 Outline of the Dissertation
This thesis is organized into four main parts. Part I continues with an
introduction of the necessary foundations on statistical relational learning
and natural language processing. In addition, a thorough review of related
work on statistical relational learning of natural language is provided. Part II
focuses on graph kernel–based relational learning of natural language, whereas
Part III turns to probabilistic rule learning for knowledge base expansion.
Part IV concludes and outlines opportunities for future work. In the following,
a brief overview of each of the parts is given.

Part I continues with an overview of relevant concepts and techniques from
machine learning and natural language processing, and lays the foundations for
the rest of this thesis (Chapter 2). Furthermore, Chapter 3 will review related
work in statistical relational learning of natural language, the interdisciplinary
domain that is the focus of this research.

Part II focuses on graph kernel–based relational learning of natural language.
The work in this part is rooted in kLog, a logical and relational language for
graph kernel–based learning. Its graph-based relational representation will
prove particularly useful for modeling natural language learning problems. The
relational distance between examples is based on graph kernels, which enables
one to incorporate the contextual information invaluable for natural language
learning tasks. Furthermore, as an SRL framework, it offers a declarative
approach, which allows one to specify additional background knowledge about
the domain. Chapter 4 introduces a relational representation for natural
language learning problems in the context of kLog and illustrates the approach
using hedge cue detection, a binary sentence classification task. In order to
show the importance of the relational representation of kLog and its respective
distance measure for natural language learning, a propositional and a relational
representation are compared, both for lazy and eager learning. To this end, we
also integrate the relational distance measure in a memory-based learner. In
Chapter 5, we extend the relational representation to the document level and
the learning problem to a multiclass multilabel sentence classification setting for
identifying evidence-based medical categories. On this task, another advantage
of the SRL approach will be illustrated, namely the inclusion of additional
document context by means of declarative feature construction. In Chapter 6,
kLogNLP is presented. Based on the models from the previous chapters, a
general model that fits most language learning tasks is devised. It is part of a
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natural language learning module for kLog, which results in a full relational
learning framework for NLP. Chapter 7 introduces relational regularization
and feature ranking. These techniques were developed to gain deeper insights
into the elements of the relational model, which is particularly interesting in the
case of natural language learning. The chapters in this part are largely based
on the following papers:

Mathias Verbeke, Paolo Frasconi, Vincent Van Asch, Roser Morante,
Walter Daelemans, and Luc De Raedt. Kernel-based logical and relational
learning with kLog for hedge cue detection. In Stephen H. Muggleton,
Alireza Tamaddoni-Nezhad, and Francesca A. Lisi, editors, Proceedings
of the 21st International Conference on Inductive Logic Programming,
Inductive Logic Programming, Windsor Great Park, UK, 31 July 2011 - 3
August 2011, pages 347–357. Springer, 2012.

Mathias Verbeke, Vincent Van Asch, Walter Daelemans, and Luc
De Raedt. Lazy and eager relational learning using graph-kernels. In
Laurent Besacier, Adrian-Horia Dediu, and Carlos Martín-Vide, editors,
Proceedings of the Second International Conference on Statistical Language
and Speech Processing, International Conference on Statistical Language
and Speech Processing, Grenoble, France, 14-16 October 2014. Springer,
2014. Accepted.

Mathias Verbeke, Vincent Van Asch, Roser Morante, Paolo Frasconi,
Walter Daelemans, and Luc De Raedt. A statistical relational
learning approach to identifying evidence based medicine categories. In
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning,
Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP - CoNLL),
Jeju Island, Korea, 13-14 July 2012, pages 579–589. Association for
Computational Linguistics, 2012.

Mathias Verbeke, Paolo Frasconi, Kurt De Grave, Fabrizio Costa, and Luc
De Raedt. kLogNLP: Graph kernel-based relational learning of natural
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Chapter 2

Foundations

As outlined in the introduction, this thesis is situated at the intersection between
two domains: statistical relational learning and natural language processing. In
this chapter, we provide the relevant background knowledge on the concepts
and techniques which we will build on in the rest of this thesis. In Section 2.2,
we review the basic principles of machine learning in general, to continue with
an introduction to statistical relational learning. Finally, Section 2.3 discusses
the core concepts in natural language processing.

2.1 Machine Learning
In this section we review the basic principles and notation of machine learning
that will be used and extended in the rest of this thesis. We first discuss
classification, as one of the most common predictive machine learning scenarios,
before continuing with the evaluation measures that will be used to evaluate
the performance of the methods to be presented. The section concludes with
a description of a number of machine learning techniques that were used as
part of these methods. For additional details, Flach (2012) offers a thorough
introduction to machine learning.

2.1.1 Classification

Machine learning problems can be structured into a taxonomy of which the
two major branches distinguish between supervised and unsupervised learning
problems. In supervised learning problems, the goal is to infer a model from
a set of labeled training data, whereas unsupervised learning problems try to
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extract the hidden structure in an unlabeled data set.

Supervised learning algorithms study a set of objects from a certain domain,
called instances, each originating from an instance space X . An instance x ∈ X
is represented by a d-dimensional feature vector x = (x(1), . . . , x(d)). Each
dimension of this vector is called a feature, and can either be continuous or
discrete. An instance thus represents a point in a d-dimensional feature space. It
is an abstract representation of an object in the dataset. Recall the smartphone
review classification example from the introduction. In that case, the feature
space consisted of a vocabulary of all words from all documents, whereas an
individual feature represented the number of times a particular word appeared
in a particular document.

Classification is one of the most common tasks in supervised predictive machine
learning. It focuses on assigning a label or class to an example from a
predetermined set of categories. The set of all instance labels defines the
output space Y . As it is a supervised classification task, the learning algorithm
starts from a training set T = {(x1, y1), (x2, y2), . . . , (xn, yn)} where xi =
(x(1)
i , . . . , x

(d)
i ) ∈ X and yi ∈ Y, consisting of n examples for which the labels

are known. The assumption is that these instances are sampled independently
from an unknown distribution P (x, y). This is denoted by (xi, yi)

i.i.d.∼ P (x, y),
where i.i.d. stands for independent and identically distributed. The goal of
classification is now to learn a discriminant function f : X → Y from a function
family F , such that f(x) predicts the true label y on unseen test data x, where
(x, y) i.i.d.∼ P (x, y). This function is often referred to as the classifier, whereas
the function family of possible classifiers is called the hypothesis space.

In order to estimate the quality of the classifier, a loss function ` is used to
calculate the prediction error or empirical risk E(x,y)∼P [`(x, y, f(x))] on the
training set. For classification, a frequently used loss function is the 0-1 loss,
which calculates the number of misclassified cases: 1

n

∑n
i=1(f(xi) 6= yi).

In sum, the classification problem can now be formalized as follows:

Given: A training set T , a function family of possible classifiers F = {f |f :
X → Y} and a loss function ` : Y × Y → R.

Find the classifier f̄ ∈ F with the lowest prediction error E(x,y)∼P [`(x, y, f̄(x))]
on the training set, i.e.,

f̄ = arg min
f∈F

E(x y)∼P [l(x, y, f(x))] (2.1)

This is often referred to as empirical risk minimization.
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Regularization When the training set only contains a small number of
examples or the hypothesis space is large, a possible risk is that the learning
algorithm starts memorizing the training examples without being able to
generalize to the unseen examples in the test set. This is referred to as overfitting.
A way to deal with this problem is by enforcing simplicity constraints on the
classifier, i.e., preferring simple classifier functions over more complex ones. This
can be done by structural risk minimization, i.e., integrating a regularization
penalty in the optimization function.

One way to enforce these simplicity constraints is to reduce the effective degrees
of freedom of the classifier by tying together its parameters in some prescribed
way. Consider the case of a linear classifier, with a function of the form

f(x) =
d∑
i=1

wixi (2.2)

In order to control the complexity of this function, it is now possible to constrain
the values of w using a regularization function Ω. A few popular regularization
penalties are the L0 norm, which counts the number of non-zero wi’s, the L1
norm, which is defined as

∑
i |wi| and the L2 norm, which corresponds to the

squared Euclidean norm of the weights, i.e.,
∑
i w

2
i . In Chapter 7, we will study

regularization for relational domains.

We can now define the regularized risk as the weighted sum of the empirical risk
and the regularization penalty E(f) + λΩ(f), where λ ≥ 0. The classification
problem can now be reformulated as minimizing the regularized risk, i.e.,

f̄ = arg min
f∈F

E(f) + λΩ(f) (2.3)

Classification tasks are often distinguished based on the number of possible
labels in the output space Y. When it only contains two possible classes,
i.e., y ∈ {−1,+1}, the problem is referred to as a binary classification task,
whereas if the output space contains multiple labels, the classification task
becomes a multiclass classification problem. Furthermore, if an instance can
be assigned more than two labels at the same time, the task is referred to
as a multiclass multilabel classification problem. Both binary and multiclass
multilabel classification will be considered in this thesis.

We will now turn to a number of statistical machine learning algorithms that
can be used to solve this classification problem.
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2.1.2 Statistical Learners

In order to solve the classification task above (and other machine learning
problems in general) a number of different approaches can be taken. Depending
on the task at hand and the available input data, an appropriate learning
algorithm needs to be chosen. We will now discuss a number of (statistical)
learning algorithms that will be used in the context of this thesis.

k-Nearest Neighbors

Instance-based or memory-based learning (MBL) is a family of learning
algorithms that refrains of performing explicit generalization by learning a
model. Instead, it stores a particular representation of the training data in
memory, and classifies unseen data points by comparing them with these stored
instances and extrapolating from the most similar stored cases. It exists under
different variants and is referred to by a variety of names such as memory-based,
exemplar-based, case-based and lazy learning, depending on the context (Stanfill
and Waltz, 1986; Aha et al., 1991; Cost and Salzberg, 1993; Kolodner, 1992).
Due to the lack of performing explicit generalization, these algorithms are
categorized as lazy learning methods.

The most well-known instantiation of this class of algorithms, which formed the
foundation for a number of related techniques is the k-nearest neighbor (kNN)
algorithm (Fix and Hodges, 1951). It can be summarized as follows:

Given: A training set T = {(x1, y1), . . . , (xn, yn)}, a distance function δ, the
number of neighbors k, and a test instance x∗.

1. Find the k training instances xi1 , . . . , xik closest to x∗ according to
distance δ.

2. Output y∗ as the majority class of class labels yi1 , . . . , yik , for which ties
are broken randomly.

When the examples are represented in propositional format, one of the most
frequently used distances between two examples is the Euclidean distance.
Distance-weighted kNN (Dudani, 1976) also takes the distance into account
during classification. The closer an example is to the instance to be classified,
the more its vote counts. In Chapter 4, the integration of a relational distance
measure into the kNN algorithm will be studied.

The algorithm is graphically illustrated in Figure 2.1 on a small dataset of 11
training examples from 2 different classes, black and white, for k = 3 and k = 5.
The inner circle with small dashes includes the 3 nearest neighbors of the unseen
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    ?

Figure 2.1: Example of kNN classification for k = 3 (inner circle, - -) and k = 5
(outer circle, — —)

example, represented by a diamond. As two out of the three training examples
are white, the unseen example will be classified as white. When the number of
nearest neighbors is set to 5, the unseen example will be classified as black, as
three out of the five training examples are black (outer circle with big dashes).

Support Vector Machine

Whereas kNN was an example of a lazy learning algorithm, Support Vector
Machines (SVM) (Cortes and Vapnik, 1995) are one of the most prominent
examples of eager learning algorithms to date. The simplest case to calculate
such a model appears when the data to classify is linearly separable, i.e., it is
possible to draw a straight line that separates the examples of each class. The
resulting model is a linear function of the form:

f(x;w, b) =
d∑
i=1

wix
(i) + b = w> · x+ b (2.4)

where x ∈ Rd is a vector input in the d-dimensional feature space and w ∈ Rd
is the associated parameter vector. The model is linearly separable if a w and b
can be found such that:

sgn(f(xi;w, b)) = yi ∀1 ≥ i ≥ n (2.5)

However, in most cases, the ranges of w and b allow many possible lines to be
drawn. The goal is now to find the parameter settings such that the resulting
line intuitively corresponds to a line that runs evenly between the data. This
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Figure 2.2: Support Vector Machine in a two-dimensional feature space

forms the regularization criterion for SVMs which is known as finding a maximal
margin hyperplane.

In the case of binary classification, the following set of equations follows from
Equation 2.5:

y(x) =
{

+1, if w> · x+ b > 0,
−1, if w> · x+ b ≤ 0.

(2.6)

This now allows to derive the geometric width of the margin between the positive
and the negative examples, which corresponds to 2

||w|| . Maximizing the margin
thus equals to minimizing 1

2 ||w||
2, which results in the following optimization

problem:

min
w,b

1
2 ||w||

2

s.t. yi(w> · xi + b) ≥ 1 ∀i
(2.7)

Figure 2.2 illustrates a support vector machine for a two-dimensional feature
space. The points located on the margin are called the support vectors. These
are indicated in red in the figure.
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Until now, only the case in which the data is perfectly linearly separable has
been considered. When this is not the case, slack variables ξ can be introduced
that measure the misclassification rate of these noisy data points. This allows a
number of data points to be inside the margin or at the wrong side of the decision
boundary. These points are referred to as the margin errors. Equation 2.7 can
be updated accordingly to the soft margin optimization problem as follows:

min
w,b,ξi

1
2 ||w||

2 + C

n∑
i=1

ξi

s.t. yi(w> · xi + b) ≥ 1− ξi and ξi ≥ 0 ∀i

(2.8)

The hyperparameter C represents the cost of the error term, i.e., it controls
the amount of training error allowed. A large value of C thus results in less
training error and smaller margins but an increased generalization error, as the
model becomes more complex.

Kernel Trick Until now, we have focused on the optimization problem of
finding a maximum margin separating hyperplane for input data drawn from a
finite-dimensional feature space Rd. However, in some cases the data in Rd is
not linearly separable, or comes from a discrete space. The latter is a common
problem in NLP, where the feature space often consists of the space of all words,
or in case the data is structured, the space of all (parse) trees or graphs.

The kernel trick (Mercer, 1909; Boser et al., 1992) offers a solution to this
problem. To illustrate its principle, consider the feature space in Figure 2.3
(left) in which the data is not linearly separable. By using a feature mapping Φ,
the feature space can be mapped to a higher-dimensional (and possibly infinite)
one in which the data is linearly separable, as shown in the right part of the
figure. One way to solve the optimization problem in this new feature space
is to explicitly calculate the feature mapping Φ(x). However, to reduce the
computational complexity of this explicit calculation, one can also leave this
computation implicit by means of a kernel function κ(xi, xj) = Φ(xi) · Φ(xj).
It implicitly computes the dot product between xi and xj in the new feature
space without explicitly transforming them to points in this feature space. This
enables efficient computation of nonlinear decision boundaries for SVMs. To
this end, we will now turn to a brief explanation of the mathematical intuition
behind the kernel trick.

The goal is to convert the optimization problem of Equation 2.8 into an equivalent
optimization problem that does not need the explicit feature mapping Φ(x),
and consequently avoids the computation of a (possibly infinite) weight vector
w in this space. This can be solved using Lagrange multipliers α, a method
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Φ

Figure 2.3: The kernel trick: by means of feature map Φ, the feature space
can be transformed such that the data becomes linearly separable (inspired by
Flach, 2012).

from optimization theory to find local minima or maxima of a function that is
subject to equality constraints, as follows:

α∗1, . . . , α
∗
n = arg max

α1,...,αn

− 1
2

n∑
i=1

n∑
j=1

αiαjyiyjxi · xj +
n∑
i=1

αi

s.t. αi ≥ 0 and
n∑
i=1

αiyi = 0

(2.9)

Whereas Equation 2.8 is called the primal optimization problem, this is called
the dual optimization problem. As this is defined in terms of a dot product
between the instances and given that κ(xi, xj) = Φ(xi) ·Φ(xj), this leads to the
following optimization problem in the high-dimensional feature space Φ(x):

α∗1, . . . , α
∗
n = arg max

α1,...,αn

− 1
2

n∑
i=1

n∑
j=1

αiαjyiyjκ(xi, xj) +
n∑
i=1

αi

s.t. αi ≥ 0 and
n∑
i=1

αiyi = 0

(2.10)

Kernels Several possible kernels exist. We will discuss three of the most
common ones that were used in the context of this thesis.
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The linear kernel is the simplest one, as the feature space is exactly the same
as the input space. It is defined as:

κ(xi, xj) = xi · xj (2.11)

Polynomial kernels represent a feature space over polynomials of the original
instances. A polynomial kernel of degree ρ is defined as

κ(xi, xj) = (ν + ψxi · xj)ρ (2.12)

with constants ν and ψ as hyperparameters.

Finally, the Gaussian or radial basis function (RBF) kernel is defined as

κ(xi, xj) = exp

(
−||xi − xj ||2

2σ2

)
(2.13)

Intuitively this kernel draws circles around the instances, where the hyperpa-
rameter σ corresponds to the size of these circles.

These were all kernels over Rd. There also exist kernels over discrete spaces. In
Section 2.2.3, we will discuss the Neighborhood Subgraph Pairwise Distance
Kernel (NSPDK) (Costa and De Grave, 2010), which is the graph kernel used
in the context of the SRL framework kLog.

Hidden Markov Support Vector Machine

The SVMs introduced in the previous section can now be generalized to
structured SVMs (Tsochantaridis et al., 2004, 2005), for which not only the
input space, but also the output space can be multivariate or structured. It
enables to predict complex objects such as sets, sequences, or graphs.

One instantiation is the Hidden Markov Support Vector Machine (HM-SVM or
SVM-HMM) (Altun et al., 2003), a structured SVM for sequence tagging. In
contrast to regular SVMs, where for each instance xi a single output value yi is
predicted, SVM-HMM allows to predict a label sequence y = (y1, . . . , ym) for a
given input sequence of feature vectors x = (x1, . . . , xm). Each label is taken
from a label set Υ, i.e., yi ∈ Υ. The output space Y thus consists of all possible
label sequences.

Instead of learning a direct mapping from X to Y, a discriminant function in
structured output learning assigns a score to each input-output pair, which
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leads to the following function family F of possible discriminant functions:
F : X ×Y → R. The optimal w-parametrized discriminant function f̄ can then
be found by maximizing this score over all possible output structures:

f̄(x) = arg max
y∈Y

F (x,y;w) (2.14)

As F represents a set of functions in some combined feature representation of
inputs and outputs, this requires a mapping Φ(x,y) to extract features from
pairs of sequences of input vectors and label sequences (x,y). The goal is to
find an F that is linear in this combined feature representation, i.e.,

F (x,y;w) = w · Φ(x,y) (2.15)

An efficient computation is possible by avoiding the explicit mapping Φ, which
is possible when a kernel κ exists such that

κ((xi,yi), (xj ,yj)) = Φ(xi,yi) · Φ(xj ,yj) (2.16)

When the output consists of label sequences, inspiration for this combined
feature representation can be found with Hidden Markov Models (HMM), which
suggest defining two kinds of features. A first kind are the emissions, i.e., the
dependencies between the input vectors and a specific label, whereas a second
are the transitions, i.e., the dependencies between neighboring labels in the
Markov chain.

Given a training set T = {(x1,y1), . . . , (xn,yn)} of input-output sequences,
this leads to the following linear discriminant function:

f̄(x) = arg max
y∈Y

w>emis · Φemis(x,y) + w>trans · Φtrans(y) (2.17)

in which wemis, wtrans, Φemis and Φtrans are the respective emission and
transition weight and feature vectors. The maximum margin optimization
problem in terms of the combined feature representation Φ(x,y) is now defined
as:

min
w,bi,ξi

1
2 ||w||

2 + C

n∑
i=1

ξi

s.t. zi(y)(w · Φ(xi,y) + bi) ≥ 1− ξi and ξi ≥ 0 ∀i,∀y ∈ Y

(2.18)
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in which the L1 norm is used as the regularization penalty, and zi(y) is defined
as

zi(y) =
{

1, if y = yi,
−1, otherwise.

(2.19)

For more details, the interested reader is referred to (Altun et al., 2003).

2.1.3 Evaluation Measures

Machine learning algorithms are evaluated using a wide variety of evaluation
measures. We will limit ourselves to a discussion of the evaluation measures
that will be used in the rest of this thesis.

Contingency Table

The performance of classifiers can be summarized by means of a contingency
table or confusion matrix. This is graphically represented in Table 2.1. In this
contingency table, the rows represent the actual classes, whereas the columns
represent the predictions of the classifier. The last row and column in this
table represents the marginals, i.e., the row and column sums. The following
terms will be used to describe the performance at the class level; positives
and negatives that are correctly predicted are referred to as true positives (tp)
and true negatives (tn) respectively. Positives that are incorrectly classified as
negatives are called false negatives (fn), whereas negatives that are incorrectly
classified as positives are referred to as false positives (fp).

Predicted ⊕ Predicted 	 Marginals
Actual ⊕ True Positives (tp) False Negatives (fn) pos = tp+ fn
Actual 	 False Positives (fp) True Negatives (tn) neg = fp+ tn

Marginals tp+ fp fn+ tn
tp+ tn+ fp+ fn

= n

Table 2.1: Contingency table

We will now turn to a number of evaluation measures that can be defined in
terms of these numbers.
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Accuracy

One of the simplest evaluation measures is accuracy, which is defined as the
proportion of correctly classified test instances, or formally:

acc = tp+ tn

pos+ neg
(2.20)

Despite its simplicity, the downside of accuracy is that the more prevalent class
contributes more strongly. Particularly when the dataset is highly unbalanced
(i.e., when there are considerably more positive then negative examples or
vice versa), accuracy may give the impression that the classifier does a good
job in classifying the instances when this is not the case. For example, for a
dataset of 1000 bank accounts, of which 10 are considered fraudulent, a classifier
that classifies every bank account as non-fraudulent will obtain an accuracy of
990
1000 = 0.99, or 99%. Although the high accuracy score, this is not the kind of
classifier a bank manager would like to have. For unbalanced datasets, where
the minority class is of interest, accuracy gives a distorted picture of the results.
We will now turn to a number of alternative evaluation measures that give a
more detailed view on the results.

Precision, Recall and F1 measure

Precision and recall are two measures originating from the field of information
retrieval, referring to the fraction of retrieved documents that are relevant to
the search and the fraction of the documents that are relevant to the query
that are successfully retrieved respectively. Currently, these measures are more
broadly used to measure the performance of a classifier. They are defined as
follows:

precision = tp

tp+ fp
(2.21)

recall = tpr = tp

tp+ fn
(2.22)

Recall is equivalent to the true positive rate (tpr), i.e., the proportion of predicted
positives among the actual positives. Similarly, the false positive rate (fpr)
is defined as the proportion of the negatives incorrectly classified as positives
among the actual negatives.
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fpr = fp

fp+ tn
(2.23)

The F-measure, Fβ , was introduced in information retrieval by Van Rijsbergen
(1979) to measure the “effectiveness of retrieval with respect to a user who
attaches β times as much importance to recall as precision”. It is defined as

Fβ = (1 + β2) · precision · recall
β2 · precision+ recall

(2.24)

The commonly used F1 score is the harmonic mean of precision and recall,
obtained by setting β to 1:

F1 = 2 · precision · recall
precision+ recall

(2.25)

We will use the latter score when talking about the F-score in the rest of this
thesis.

In order to visualize the performance of a binary classifier, one can use a receiver
operating characteristic, or ROC curve. It plots the true positive rate against
the false positive rate.

Macro- and Micro-average

The aforementioned evaluation measures give results for a single class. When
the classification problem consists of multiple classes Υ = {υi : i = 1, . . . , q},
these results can be averaged over all classes in order to get a view on the overall
results. Two commonly used techniques are macro- and micro-averaging.

Macro-averaging If we let B denote a binary evaluation measure and tpυ,
tnυ, fpυ, and fnυ the true positives, true negative, false positives and false
negatives after binary evaluation for label υ, then the macro-averaged score
(Tsoumakas et al., 2010) for B is defined as:

Bmacro = 1
q

q∑
υ=1

B(tpυ, tnυ, fpυ, fnυ) (2.26)

As the label set for the training and test data can differ (if there are no instances
for a particular class label in the test set), in most cases, the set of class labels
from the training data is used to calculate the macro-averaged score.
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Micro-averaging Whereas the macro-averaged score weights each class equally,
the micro-averaged score (Sebastiani, 2002) joins classification decisions across
classes, after which the measure is calculated on the joint contingency table. It
is defined as follows:

Bmicro = B

(
q∑

υ=1
tpυ,

q∑
υ=1

tnυ,

q∑
υ=1

fpυ,

q∑
υ=1

fnυ

)
(2.27)

As discussed by Sebastiani (2002), there is no agreement on which one of
the two averaging techniques should be used. Some believe that micro-
averaging is misleading since more frequent classes are weighted heavier in the
average, whereas others believe that classes should be counted proportionally
to their frequency. As large classes dominate small classes in micro-averaging,
Manning et al. (2008) argues to use macro-averaged scores to get an idea of the
performance on small classes.

Although the discussion above focused on binary classification, note that all
of the aforementioned evaluation measures and averaging techniques can be
generalized to multi-class and multi-label classification problems, i.e., tasks
where the label set consists of more than two classes and where each example
can have multiple classes respectively.

2.2 Statistical Relational Learning

As mentioned in the introduction, traditional machine learning methods (e.g.,
the statistical learners introduced in Section 2.1.2) assume a propositional
representation of the data. It consists of fixed-length vectors of attribute-value
pairs in which each vector represents an example, and each element of the
vector represents the value for a particular attribute. A set of examples can
thus be represented as a table in which the rows represent the examples that
are described in terms of a set of attributes in the columns.

While a lot of successful machine learning systems have been developed which rely
on a propositional representation, gradually the need increased to represent more
complex, relational data. One approach to take this relational representation
into account is propositionalization (Kramer et al., 2000), i.e., translating the
relational structures into a propositional format that can still be used as input for
propositional learners. Despite the advantage of being able to reuse the existing
propositional techniques, this translation step also results in information loss
(De Raedt, 2008). Since this affects the learning capabilities and generalization
power of an algorithm, this motivated research into techniques that can represent
multiple entities with their properties and the relationships among them.
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This gave rise to the field of Inductive Logic Programming (ILP) (Muggleton and
De Raedt, 1994) or logical and relational learning (De Raedt, 2008), in which
first-order logic is used as an expressive formalism, both for representing the
data as for reasoning on it. It allows one to express complex relational structures
and at the same time is able to express additional background knowledge on
the domain. Statistical Relational Learning (SRL) (Getoor and Taskar, 2007)
combines ILP with statistical machine learning techniques and probability
theory in order to deal with uncertainty, which is often inherently present in
the data.

We will first introduce logic programming as a strong relational formalism on
which SRL systems are built, and subsequently discuss two SRL frameworks
that are central to this thesis. kLog is a language for logical and relational
learning with graph kernel–methods. ProbLog is a probabilistic extension of
Prolog that offers a suite of efficient algorithms for various inference tasks.
For additional details, we refer the interested reader to De Raedt (2008) and
Getoor and Taskar (2007) for a comprehensive overview of logical and relational
learning and statistical relational learning respectively.

2.2.1 Logic Programming

Logic programming is a programming paradigm based on logic. In contrast
to imperative programming languages such as Java, in which you describe a
number of steps on how to solve the problem, logic programming languages are
declarative in nature, i.e., you describe what the solution looks like, but not
necessarily how to get there. In order to describe the solution, the search space
in which the solution needs to be found is constrained by employing a so-called
declarative bias. As the name indicates, the bias should be declarative, i.e.,
explicit and easily understandable for the user. To this end, logic programming
uses first-order logic. Prolog is one of the most prominent logic programming
languages, and will also be used in this thesis.

We will first introduce the syntax of clausal logic by means of the following
example:
Example 2.1. The following logic program represents the contents of a bag
filled with blocks, which can be either cubes or spheres, each with a particular
color and weight. Each block also has a identifier, which uniquely characterizes
the object. The first part of the program enumerates all spheres and cubes in
the bag. The last part of the program states that two cubes have the same color.

sphere(s1,r,2).
sphere(s2,g,2).
sphere(s3,g,3).
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sphere(s4,r,1).

cube(c1,g,1).
cube(c2,r,2).
cube(c3,g,4).
cube(c4,r,3).

cub_eq_col(CubeX,CubeY) ←
cube(CubeX,Color,_),
cube(CubeY,Color,_).

Example 2.1 contains a number of constants, such as s1, c3 and r, as well
as the variables CubeX, CubeY and Color. Both constants and variables are
terms. If t1, ..., tn are terms and a is an n-ary predicate, a(t1, ..., tn) is an atom.
Example 2.1 contains three predicates, namely sphere, cube and cub_eq_col.
sphere(s1,r,2) is an example atom. It describes a red (r) sphere with identifier
s1 of a weight 2 kg. An atom is also referred to as a positive literal, whereas its
negation, e.g., not(sphere(s1,r,2)) is referred to as a negative literal. Note
that Example 2.1 used the notational conventions of Prolog, i.e., variable names
start with an uppercase letter, while all other syntactic entities start with a
lowercase letter. In the rest of this thesis, the typewriter font will be used
to refer to code snippets that should be read as Prolog code.

We are now able to define a clause as a disjunction of literals. When a clause
contains only one positive literal, it is referred to as a definite clause, which in
Prolog notation is denoted by

h ← b1,...,bm

where the atom h is called the head and the atoms b1, ..., bm are called the body.
The arrow symbol ← separates the head (the defined atom) from the body (a
condition which, if satisfied, makes the head true). All variables in a clause
are universally quantified. If a definite clause has the body true, the body can
be omitted. Such a clause is referred to as a fact, e.g., cube(c1,g,1). A logic
program is defined as a finite set of definite clauses.

A term or clause is called ground if it does not contain variables. A substitution
θ = {V1/t1, · · · , Vm/tm} maps variables Vi to terms ti. Applying θ to an atom
a, denoted as aθ, means that all occurrences of Vi in a are replaced by ti.

Example 2.2. Applying θ = {Identifier/c5, Color/r, Weight/6} to
cube(Identifier, Color, Weight) yields cube(c5,r,6)
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Two terms t1 and t2 are unifiable if there exist substitutions θ1 and θ2 such that
t1θ1 = t2θ2. A substitution is the most general unifier mgu(a, b) of atoms a and
b if and only if aθ = bθ and for each substitution θ′ such that aθ′ = bθ′, there
exists a non-trivial substitution γ such that θ′ = θγ. A non-trivial substitution
is a substitution that maps at least one variable to a term different from itself.
Note that a most general unifier is not necessarily unique.

Example 2.3. A most general unifier of the atoms
sphere(Identifier,r,Weight) and sphere(Identifier,Color,W) is
θ = {Color/r, W/Weight}

Now that we have defined the syntax of clausal logic, we can turn to its semantics.
It is based on the concept of interpretations. We will describe one particular
instance of interpretations, namely the Herbrand interpretation. The Herbrand
base of a logic program is the set of all ground atoms that can be constructed
by the terms in this logic program. Each subset of the Herbrand base is a
Herbrand interpretation. Formally, a Herbrand interpretation I is a model of a
clause h ← b1,...,bm. if for every substitution θ with biθ ∈ I, hθ is contained in
I as well. The Herbrand interpretation is a model of the logic program if it is a
model of all clauses in the program. The model-theoretic semantics of a logic
program is given by its least Herbrand model, which is defined as the smallest
Herbrand model of this logic program.

Example 2.4. The Herbrand base of the logic program from Example 2.1 is
{sphere(s1,r,2), sphere(s2,g,2), sphere(s3,g,3), sphere(s4,r,1),
cube(c1,g,1), cube(c2,r,2),cube(c3,g,4), cube(c4,r,3),
cub_eq_col(c1,c3), cub_eq_col(c3,c1), cub_eq_col(c2,c4),
cub_eq_col(c4,c2)}
An example of a possible Herbrand interpretation is
i = {sphere(s1,r,2), cube(c3,g,4), cub_eq_col(c3,c1)}.

2.2.2 Relational Learning

The goal of logical and relational learning is now to find a hypothesis h, i.e., a
logic program, from a set of positive and negative examples. Analogous to the
learning problem for classification as defined in Section 2.1.1, the logical and
relational learning problem can be formalized as follows:

Given: A set of training examples T over a language LE , a background theory
B, a hypothesis language Lh that specifies the clauses that are allowed in the
hypotheses, and a relation covers(e,H,B) which determines the classification
of an example e with respect to H and B.
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Find a hypothesis h ∈ H that covers all positive training examples and none of
the negative ones with respect to background theory B.

The specific learning setting is determined by LE , the language chosen for
representing the examples, together with the covers relation (De Raedt, 1997).
Two of the most popular learning settings are learning from entailment (Plotkin,
1970) and learning from interpretations (De Raedt and Džeroski, 1994).

Learning from entailment In learning from entailment, the examples are
definite clauses. A hypothesis h covers an example e with respect to the
background theory B if and only if H ∪B |= e.

Learning from interpretations In learning from interpretations, the examples
are Herbrand interpretations. A hypothesis h covers an example e with respect
to the background theory B if and only if e is a model of B ∪H.

Whereas in learning from entailment, an example can consist of just a single
fact, in learning from interpretations all facts that hold in the example are
known. In the latter setting, typically more information is available to the
learner. In Part II, a learning from interpretations setting will be adopted,
whereas in Part III, we will upgrade learning from entailment to a probabilistic
setting. We will now discuss kLog and ProbLog, the two SRL frameworks that
will be used in these respective parts.

2.2.3 kLog

kLog1 (Frasconi et al., 2014) is a language for logical and relational learning with
kernels. It is embedded in Prolog, and builds upon and links together concepts
from database theory, logic programming and learning from interpretations.
As an SRL framework, kLog allows one to declaratively represent both data,
background knowledge and the problem description in a concise and high-level
fashion. In this sense it is related to standard ILP systems such as Progol
(Muggleton, 1995) and Tilde (Blockeel and De Raedt, 1998). In contrast to
traditional SRL systems, such as Markov Logic (Richardson and Domingos, 2006)
or Bayesian Logic Programs (Kersting and De Raedt, 2007), which combine
probabilistic (graphical) models with logical and relational representations,
kLog uses a kernel-based approach. It thus does not directly represent a
probability distribution. In contrast, kLog employs a logical and relational
data representation rooted in the entity/relationship (E/R) model (Chen, 1976)
originating from database theory. For each interpretation, kLog computes the
corresponding graphicalization, that is, it declaratively converts instances into
graphs. In practice, the graphicalization corresponds to the unrolled E/R model

1http://klog.dinfo.unifi.it/

http://klog.dinfo.unifi.it/
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Figure 2.4: General kLog workflow

of the example, which lists all relations that hold in the example. Using these
graphicalized interpretations, a new feature space can be defined using graph
kernels. In this new (high-dimensional) feature space, the learning of a (linear)
statistical model takes place. kLog’s workflow is depicted in Figure 2.4. We will
now discuss each of the steps in more detail by means of the following artificial
example.

Example 2.5. Consider the following artificial game: equipped with a bag filled
with cubes and spheres as described in Example 2.1, the game consists of drawing
a random sequence of 5 objects from the bag. The game can only be won if two
spheres with the same color are drawn without drawing two cubes with the same
color. In any other case the game is lost.

Data Modeling

kLog employs a learning from interpretations setting. As introduced before,
each interpretation is a set of tuples that are true in the example. kLog assumes
a closed world, which means that atoms that are not known to be true, are
assumed to be false. An example interpretation for one particular instance of
the artificial game is shown in Listing 2.1.

1 sphere (s1 ,r ,2). next_SC (s1 ,c1).
2 cube(c1 ,g ,1). next_SC (s2 ,c1).
3 sphere (s2 ,g ,2). next_S (s2 ,s3).
4 sphere (s3 ,g ,3). next_SC (s3 ,c2).
5 cube(c2 ,r ,2).
6 diff_shape_eq_weight (s1 ,c2).
7 sph_eq_col (s2 ,s3).
8 diff_shape_eq_weight (s2 ,c2).

Listing 2.1: Artificial example: example interpretation for one particular game.

Since kLog is rooted in database theory and each interpretation can be seen as
an instance of a (small) relational database, the modeling of the problem domain
is done using an entity/relationship model. E/R modeling is a commonly used
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Figure 2.5: Artificial example: E/R diagram modeling the domain

design principle from database theory that is tailored to represent the domain
at hand. An E/R model gives an abstract representation of the interpretations.
As the name indicates, E/R models consist of entities and relations. Both
entities and relations can have several attributes. Some of the attributes are
denoted as key attributes, and uniquely identify an instance of an entity. Two
additional database assumptions are made to ensure that the the subsequent
graphicalization procedure is well-defined. First, it is required that the primary
key of every relation consists solely of the identifiers of the entities that are
involved in the relation. As a special case, relations of zero relational arity (i.e.,
relations for which the length of the primary key is zero) are allowed. This kind
of relations is useful to represent global properties of an interpretation. Second,
for every set of entities, there needs to be a distinguished relation of relational
arity 1 (to represent the primary key of the entity).

The E/R diagram for the artificial game is shown in Figure 2.5. It contains
two entities2 (i.e., sphere and cube), which each have a key attribute (i.e.,
sphere_id and cube_id respectively) and two regular attributes, namely color
and weight. For example, sphere(s1,r,2) represents a red sphere with
identifier s1 and a weight of 2 kg. Several relations exist between the entities.
The next relations (i.e., next_s, next_c and next_sc) represent the sequence
in which the entities are drawn from the bag during the game. For example, a
next_s relation is present between spheres if they are drawn consecutively from
the bag. The relation sph_eq_col indicates that two spheres have the same
color, whereas the diff_shape_eq_weight relation indicates that a sphere and
a cube are of different shape, but have an equal weight. The target relation is

2Note that one could also model spheres and cubes as a single object entity with an
additional attribute that represents the shape. However, in order to better illustrate the
different concepts, here we used two different entities. Similarly, different relations were used
to model the sequence in which the entities are drawn from the bag.
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the one that needs to be predicted by the classifier, and represents if a game is
won or lost.

The E/R model can now be coded declaratively in kLog using an extension of the
logic programming language Prolog. Every entity or relation that will be used
in a later step to generate features is declared with the keyword signature.
This resembles the declarative bias as used in logic programming. There
are two types of signatures: extensional and intensional ones. For extensional
signatures, all ground atoms have to be listed explicitly in the database, whereas
intensional signatures implicitly define ground atoms using Prolog definite
clauses (i.e., declarative feature construction). Intensional signatures are mostly
used to introduce additional background knowledge on the domain in the learning
process. The latter is one of the key characteristics of kLog, and one of the major
strengths of SRL systems in general. Subsequently, the intensional predicates are
grounded. This is a process similar to materialization in databases, that is, the
atoms implied by the background knowledge and the facts in the example are all
computed using Prolog’s deduction mechanism. This leads to the extensionalized
database, in which both the extensional as well as the grounded intensional
predicates are listed.

The declarative kLog model for the artificial game can be found in Listing 2.2.
As can be seen, a signature is characterized by a name and a list of typed
arguments. There are three possible argument types. First of all, the type can
be the name of an entity set which has been declared in another signature (e.g.,
the next_s signature represents the sequence relation between two entities of
type sphere). The type self is used to denote the primary key of an entity.
An example is sphere_id (line 2), which denotes the unique identifier of a
certain sphere in the interpretation. The last possible type is property, in
case the argument is neither a reference to another entity nor a primary key
(e.g., color in line 2). Similar to the extensional signature sph_eq_col (lines
16-19), which represents the relation between two spheres of equal color, we also
defined the relation between two cubes of equal color, cub_eq_col by means of
an intensional signature.3

Graphicalization and Feature Generation

In this step, a technique called graphicalization transforms the relational
representations from the previous step into graph-based ones and derives features
from a grounded entity/relationship diagram using graph kernels. This can be
interpreted as unfolding the E/R diagram over the data. Each interpretation is
converted into a bipartite graph, for which there is a vertex for every ground

3Note that also the diff_shape_eq_weight relation could be defined by means of an
intensional signature.
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1 begin_domain .
2 signature sphere ( sphere_id :: self , color :: property , weight :: property )

:: extensional .
3

4 signature cube( cube_id :: self , color :: property , weight :: property )::
extensional .

5

6 signature next_s ( sphere1_id :: sphere , sphere2_id :: sphere )::
extensional .

7

8 signature next_c ( cube1_id :: cube , cube2_id :: cube):: extensional .
9

10 signature next_sc ( sphere_id :: sphere , cube_id :: cube):: extensional .
11

12 signature sph_eq_col ( sphere1_id :: sphere , sphere2_id :: sphere )::
extensional .

13

14 signature diff_shape_eq_weight ( sphere_id :: sphere , cube_id :: cube)::
15 extensional .
16

17 signature cub_eq_col ( cube1_id :: cube , cube2_id :: cube):: intensional .
18 cub_eq_col (CubeX , CubeY ) ←
19 cube(CubeX ,Color ,_),
20 cube(CubeY ,Color ,_).
21

22 end_domain .

Listing 2.2: Artificial example: declarative kLog model for the artificial game.

atom of every E-relation, one for every ground atom of every R-relation, and an
undirected edge {e, r} if an entity e participates in relationship r. In contrast
to existing propositionalization approaches, graphicalization does not transform
the data into an attribute-value format but rather into a graph-based one. This
enables the use of graph kernels in the subsequent feature generation step, due to
which the full relational representation can be taken into account. Consequently,
the resulting feature vectors in a high-dimensional feature space are much richer
than most of the other direct propositionalization techniques. Graphicalizations
for three instances of the artificial game are shown in Figure 2.6. The top figure
depicts the graphicalization of the interpretation of Listing 2.1. Note that for
the sake of clarity, attributes of entities and relations are depicted inside the
respective entity or relation. We will adopt this convention in the rest of this
thesis.



STATISTICAL RELATIONAL LEARNING 41

CUBE(c1,g,1)SPHERE(s1,r,2) NEXT_SC SPHERE(s2,g,2) SPHERE(s3,g,3) CUBE(c2,r,2)NEXT_SC NEXT_SCNEXT_SPOSITIVE

SPH_EQ_COL

DIFF_SHAPE
EQ_WEIGHT

CUBE(c3,g,1)SPHERE(s4,b,2) NEXT_SC SPHERE(s5,r,2) SPHERE(s6,g,1) CUBE(c4,r,2)NEXT_SC NEXT_SCNEXT_SNEGATIVE

CUBE(c5,g,3)SPHERE(s7,r,2) NEXT_SC SPHERE(s8,r,1) SPHERE(s9,g, 2) CUBE(c6,g,1)NEXT_SC NEXT_SNEXT_SNEGATIVE

DIFF_SHAPE
EQ_WEIGHT

DIFF_SHAPE
EQ_WEIGHT

DIFF_SHAPE
EQ_WEIGHT

DIFF_SHAPE
EQ_WEIGHT

DIFF_SHAPE
EQ_WEIGHTSPH_EQ_COL

CUB_EQ_COL

Figure 2.6: Artificial example: graphicalizations (i.e., unrolled E/R) for 3
instances.

The feature generation from the resulting graphs is performed by the
Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) (Costa and
De Grave, 2010), a particular type of graph kernel. NSPDK is a decomposition
kernel (Haussler, 1999), in which pairs of subgraphs are compared to each other
in order to calculate the similarity between two graphs. These subgraphs can
be seen as circles in the graph, and are defined by three hyperparameters. First
of all, there is the root or center of the subgraph, the kernel point, which can be
any entity or relation in the graph. The entities and relations to be taken into
account as kernel points are marked beforehand as a subset of the intensional
and extensional domain relations. The radius r determines the size of the
subgraphs and defines which entities or relations around the kernel point are
taken into account. Each entity or relation that is within a number of r edges
away from the kernel point is considered to be part of the subgraph. The third
hyperparameter, the distance d, determines how far apart from each other the
kernel points can be. Each subgraph around a kernel point that is within a
distance d or less from the current kernel point will be considered. The kernel
notion is finally given as the fraction of common fragments between two graphs.
For the sake of self-containment we briefly report the formal definitions.

For a given graph G = (V,E), and an integer r ≥ 0, let Nv
r (G) denote the

subgraph of G rooted in v and induced4 by the set of vertices V vr
.= {x ∈ V :

4In a graph G, the induced subgraph on a set of vertices W = {w1, . . . , wk} is a graph that
has W as vertex set and contains every edge of G whose endpoints are in W .
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Figure 2.7: NSPDK features. Top: instance with two vertices v, u selected as
roots for neighborhood subgraphs at distance d = 2. Bottom: neighborhood
pairs (NSPDK features) at distance d = 2 with radius r = 0 and 1 respectively.
Note that neighborhood subgraphs can overlap.

d(x, v) ≤ r}, where d(x, v) is the shortest-path distance between x and v. A
neighborhood Nv

r (G) is therefore a topological ball with center v and radius r.
The NSPDK feature concept is illustrated in Figure 2.7.

We introduce the relation Rr,d, which is defined in terms of neighborhood
subgraphs, as:

Rr,d = {(Nv
r (G), Nu

r (G), G) : d(u, v) = d} (2.28)

It identifies pairs of neighborhoods of radius r whose roots are exactly at distance
d. Subsequently:

κr,d(G,G′) =
∑

A,B ∈ R−1
r,d

(G)
A′, B′ ∈ R−1

r,d
(G′)

1A∼=A′ · 1B∼=B′ (2.29)

where R−1
r,d(G) indicates the multiset of all pairs of neighborhoods of radius r

with roots at distance d that exist in G, and where 1 denotes the indicator
function and ∼= the isomorphism between graphs. The normalized version of
κr,d is
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κ̂r,d(G,G′) = κr,d(G,G′)√
κr,d(G,G)κr,d(G′, G′)

(2.30)

To increase efficiency and generalization power, the zero-extension of K is
considered, obtained by imposing upper bounds on the radius and the distance
parameter, with values to be determined e.g., via cross-validation:

Krmax,dmax
(G,G′) =

rmax∑
r=0

dmax∑
d=0

κ̂r,d(G,G′) (2.31)

The result is an extended high-dimensional feature space5 on which a statistical
learning algorithm can be applied. Different learning tasks can be performed on
this resulting feature space. To this end, kLog interfaces with several solvers,
including LibSVM (Chang and Lin, 2011) and SVM SGD (Bottou, 2010).

2.2.4 ProbLog

ProbLog6 (De Raedt et al., 2007; Kimmig et al., 2008) is a probabilistic Prolog
that allows one to work with probabilistic facts and background knowledge. A
ProbLog program consists of a set of definite clauses D and a set of probabilistic
facts pi :: ci, which are facts ci labeled with a probability pi that their ground
instances ciθ are true. It is also assumed that the probabilities of all ground
instances ciθ are mutually independent.

Given a finite set of possible substitutions {θj1, . . . θjij} for each probabilistic
fact pj :: cj , a ProbLog program T = {p1 :: c1, · · · , pn :: cn} ∪ D defines a
probability distribution

P (L | T ) =
∏

ciθji∈L
pi
∏

ciθji∈LT \L
(1− pi) (2.32)

over ground subprograms L ⊆ LT = {c1θ11, . . . c1θ1i1 , · · · , cnθn1, . . . , cnθnin}
ProbLog is then used to compute the success probability

Ps(T |= q) =
∑

L⊆LT
L∪D|=q

P (L|T ) (2.33)

5Note that often a graph kernel is just an efficient procedure to compute a dot product
between two instances and the feature representation is only available in an implicit fashion.
For those kernels the explicit representation would lead to unacceptable storage and running
times. Due to the specific assumptions in the NSPDK graph kernel however, while maintaining
a very large overall feature space dimension, we operate with a small number of features for
each instance, with the size being typically linear (with a small multiplicative constant) w.r.t.
the input graph size (see (Costa and De Grave, 2010) for a detailed analysis).

6http://dtai.cs.kuleuven.be/problog/

http://dtai.cs.kuleuven.be/problog/
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of a query q in a ProbLog program T , where P (q|L ∪D) = 1 if there exists a
θ such that L ∪D |= qθ, and P (q|L ∪D) = 0 otherwise. In other words, the
success probability of query q corresponds to the probability that the query q is
entailed using the background knowledge together with a randomly sampled set
of ground probabilistic facts.

As a clarifying example, consider the following windsurfing problem. It is
inspired by Quinlan’s playtennis example (Quinlan, 1986). The difference
between playing tennis and going windsurfing is that windsurfing typically
needs to be planned ahead of time, say on the previous day. The effect is that
the weather conditions on the next day will still be uncertain at the time of
deciding whether to go surfing or not. The forecast might state that tomorrow
the probability of precipitation (pop) is 20%, the wind will be strong enough
with probability 70%, and the sun is expected to shine 60% of the time, which
could be represented by the facts:

0.2::pop(t). 0.7::windok(t). 0.6::sunshine(t).

where the t indicates the identifier for the example. Furthermore, additional
background knowledge can be provided by means of the following logical rules:

surfing(X):- not pop(X), windok(X).
surfing(X):- not pop(X), sunshine(X).

where the argument X specifies the identifier of the example. The first rule
states that if the expected precipitation is low and the wind is ok, the surfing
is likely to be good. There is thus a declarative logical reading of these rules,
but also a probabilistic one. The lower the precipitation is and the higher
the probability of windok and sunshine the higher the probability that the
surfing will be enjoyable. Assuming all facts in the description are independent,
ProbLog can now compute the probability of the query surfing(t) as follows:

P (surfing(t)) = P ((¬pop(t) ∧ windok(t)) ∨ (¬pop(t) ∧ sunshine(t))

= P ((¬pop(t) ∧ windok(t)) ∨ (¬pop(t) ∧ sunshine(t)

∧¬windok(t)))

= 0.8× 0.7 + 0.8× 0.6× 0.3 = 0.704

where the rewriting is needed to make the two events mutually exclusive.
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2.3 Natural Language Processing
As already mentioned in the introduction, understanding natural language
by means of a computer is a challenging problem that requires one to solve
a set of different subproblems. For example, for a computer (e.g., a robot),
being able to interpret a particular sentence means knowing the meaning
of the individual words, learning how these words stand in relation to one
another, and being able to relate this to what has been said earlier in the
conversation. Each of these challenges is situated in one of the subfields
of linguistics: phonology, morphology, lexicography, syntax, semantics, and
discourse. For every subfield a computational complement exists. Since natural
language can contain information at different levels of granularity, from simple
word or token-based representations, over syntactic representations at sentence
level, to high-level representations across documents, in most cases, information
from different levels needs to be combined in order to do the analysis.

In this section, we discuss the most relevant tasks that will be used throughout
the rest of the thesis. Some of these tasks are considered to be solved by the
natural language processing community (i.e., on most morphological, lexical
and syntactic tasks, promising results have been obtained over the last decade),
whereas other (semantically-oriented) tasks are still a challenge. However, most
of the tasks that we outline below, will be considered as preprocessing steps for
our methods, for which state-of-the-art techniques were used. For more details,
we refer the interested reader to Manning and Schütze (1999) and Mitkov (2003)
for a thorough introduction to the field.

2.3.1 Morphology

Natural languages are characterized by a richness of hundreds of thousands
of words, which each describe a particular concept in the real world. While a
number of these words drop out of use over time, new words are invented on
a daily basis. These words are constructed from a finite collection of smaller
units. This is exactly the topic of morphology, which studies how words and
word forms are constructed from smaller units, morphemes, in a systematic way.
Computational morphology deals with the automated processing of words in both
their written and spoken form. We frequently used one particular application
of computational morphology as a preprocessing step in our methods, namely
lemmatizers. However, we will first discuss stemming, the naive predecessor of
lemmatization.

Stemming Stemming is the process of normalizing the morphological variants
of a word. The resulting word is referred to as the stem of the original word.
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This is done by removing the affixes (prefixes or suffixes) from the word. For
example, the words learner, learning and learned can all be reduced to their
stem learn. Note that the stem is not necessarily identical to the morphological
root of the word. For example, the stem of mining, mine, mined and miner is
min, not mine. Different types of stemming algorithms exist, with the Porter
stemmer (Porter, 1980) being one of the most widely used algorithms to date.

Lemmatization For almost all applications, more accurate syntactic and
semantic information on individual words is required, in which case stemming
does not suffice. A word lexeme pairs a particular form of a word with its
meaning, and a lemma is the grammatical form to represent this lexeme, i.e.,
the base or dictionary form of a word. Lemmatization uses a vocabulary
and morphological analysis of the word to obtain the lemma. This is a non-
deterministic process, as it depends on the context in which a particular word
is used. For example, when lemmatizing the word saw, the result can either be
saw, referring to the tool, if the word is used a a noun, or see, in case the word
is used as a verb.

2.3.2 Lexicography and Lexical Analysis

A lexicon is the inventory of the lexemes of a particular language. A well-known
instantiation of a lexicon is a dictionary, which is essentially an alphabetical
listing of the lexicon of a given language. Lexicons, as inventories of words, exist
in different formats and are used for a wide variety of NLP tasks. Lexicography
refers to the process of compiling lexicons. Computational lexicography is the
study of the representation and use of lexical knowledge in NLP systems.

Tokenization and sentence splitting In order to construct these lexicons from
existing collections of texts (i.e., corpora), the texts need to be segmented into
linguistic units such as words, punctuation symbols, numbers, etc. This process
is called tokenization, whereas tokenizers are the methods to perform this task.
In most cases, sequences of words are delimited by sentence boundaries, which
requires methods to segment text into sentences. This is referred to as sentence
splitting. These tasks are relatively simple, especially in the case of so-called
segmented languages, such as English, where words and sentences are separated
by spaces and punctuation symbols. Consequently, most tokenization and
sentence splitting algorithms are based on regular expressions, which keep track
of a set of these symbols as possible delimiters for words or sentences.



NATURAL LANGUAGE PROCESSING 47

2.3.3 Syntactic Analysis

Syntax refers to the knowledge of the structural relationships between words,
i.e., the way that words are arranged together. The goal of syntactic analysis is
thus to determine this underlying structure. Two of the most important tasks
in this process are part-of-speech tagging and parsing.

Part-of-speech tagging

Based on the syntactic role a word fulfills in a sentence, it can be assigned a
particular tag that indicates this role. Some of the most frequent roles are nouns,
verbs, adverbs and adjectives. The goal of part-of-speech tagging (POS tagging)
is to assign these tags to words in a sentence. One of the most commonly used
tag sets is the Penn Treebank tag set (Marcus et al., 1993). As an example,
consider the following annotated sentence:

NNP/Natural NNP/Language NNP/Processing VBZ/is DT/an JJ/exciting
NN/research NN/domain ./!

For example, the tag VBZ indicates that is is a verb in the third person singular
present, DT that an is a determiner and NN that research is a noun.

As language is often ambiguous, a particular word can take on different roles
dependent on the context, which increases the complexity of the problem.
However, over the past decade, a lot of progress has been made on this task,
resulting in state-of-the-art POS taggers with high accuracy (e.g., Toutanova
et al. (2003)), due to which POS tags are often used as reliable features for
machine learning systems in NLP tasks.

Parsing

Parsing assigns a syntactic analysis to a sequence of words according to a
formal grammar. Whereas part-of-speech tagging assigns a syntactic meaning
to the individual words in a sentence, parsing focuses on the relations between
the words. The most basic approach is chunking or shallow parsing, which
partitions the input into a sequence of non-overlapping units, and assigns a
syntactic category to each of these sequences. Two other, more advanced
methods for finding the syntactic structure of a sentence are constituent-based
and dependency-based parsing.

Chunking In contrast to part-of-speech tagging, which focuses on assigning
labels to individual words, chunking or shallow parsing assigns tags to phrases,
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i.e., groups of word that belong together. Consider the same example sentence,
which is now annotated with chunk tags:

NP/[Natural Language Processing] VP/[is] NP/[an exciting research domain] !

The example contains two of the most common tags; NP indicates that Natural
Language Processing and an exciting research domain are two noun phrases,
whereas VP shows that is is a verb phrase. Chunking can be seen as in
intermediate step towards full parsing.

Constituent-based parsing A constituent is defined as a group of words that
may behave as a single unit or phrase. Constituent-based parsing organizes the
words in a sentence into nested constituents. This structure is ordered as a tree,
due to which the result is referred to as a parse tree. The tree is constructed
according to the rules in a formal grammar, which can either be constructed by
hand by a linguist, or can be induced automatically from a treebank (i.e., a text
corpus in which each sentence is annotated with its syntactic structure).

For English, most commonly a context-free grammar (CFG) is used. A CFG
is a formal grammar consisting of production rules of the form N → t, in
which N represents a non-terminal symbol, and t a string of terminal and/or
non-terminal symbols. In parsing, the set of terminal symbols consists of the
words in the vocabulary that appear in the sentences generated by the grammar,
whereas the non-terminal symbols are the grammatical categories. Using the
production rules that form the the grammar, the non-terminal symbols can
then be replaced with terminal symbols.

A constituent-based parse tree for the example sentence is given in Figure 2.8.
Among others, the parse tree illustrates the production rule S → NP V P , which
states that a sentence S can be decomposed in a noun phrase NP (Natural
Language Processing) and a verb phrase V P (is).

Dependency-based parsing Dependency-based parsing uses dependency gram-
mars7 to determine the syntactic structure of a sentence. In contrast to the
context-free grammars used in constituent-based parsing, dependency grammars
see all nodes as terminal symbols, i.e., they do not distinguish between terminal
and non-terminal symbols. The dependency parse tree shows which words
depend on (i.e., are arguments of or modify) which other words.8

7Note that also dependency grammars can be induced automatically from a corpus.
8Note that a dependency parse tree can be translated into a constituent-based parse tree

and vice versa.
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Figure 2.8: Constituent-based parsing example.
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Figure 2.9: Dependency-based parsing example.

Figure 2.9 shows a dependency parse tree for the example sentence. The relation
COP indicates that domain is the complement of the copular verb is. As for
constituent-based parsing, DET indicates that an is the determiner of domain.

2.3.4 Semantic Analysis

Whereas syntax refers to the structure, semantics studies the meaning that
is used for understanding and conveying human expression through language.
Semantic analysis deals with giving words, phrases, sentences or paragraphs
meaning, i.e., coupling them to elements and concepts in the real world. The
goal is to relate their syntactic structure to their language-independent meaning.
We will briefly discuss four of the most commonly studied semantic analysis
problems that are considered benchmark tasks in NLP.
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Named entity recognition Named entity recognition (NER) determines which
words or phrases in the text map to proper names. The assigned tags represent
the type of the element in the world, such as the names of persons, organizations,
locations, etc. A first task in this process is to locate the proper names in a
sentence, whereas the second step classifies each of the identified proper names
into one of the categories. NER is a subtask of information extraction. As an
example, consider the following sentence:

The ORGANIZATION/[University of Leuven] is a university in
LOCATION[Belgium] that was founded in DATE[1425].

for which the named entity recognizer was able to identify that University of
Leuven is an organization, Belgium is a location and 1425 is a date.

Word sense disambiguation A lot of words can have several meanings. For
example, the word bank can refer to the financial institution, the border of a
river, or to one of its meanings when used as a verb. As knowing the meaning
of a word is a primary condition for natural language understanding, the goal
of word sense disambiguation (WSD) is to determine the meaning of a word
given its context. A number of lexical databases list words together with their
possible senses, and thus are helpful resources in solving this task.

WordNet9 (Miller, 1995) is one of the most frequently used lexical databases of
English. It groups nouns, verbs, adjectives and adverbs into sets of synonyms,
referred to as synsets. Each synset is accompanied by a short definition. In
addition to the dictionary functionality, WordNet is invested with an ontological
structure that interlinks synsets by means of semantic and lexical relations. The
most frequent relation among synsets is the super-subordinate relation (also
referred to as hyperonymy-hyponymy, or more commonly as the IS-A relation,
e.g., car and vehicle). Other encoded relations are meronymy, the part-whole
relation (e.g., car and wheel), and antonymy (e.g., young and old). Verb synsets
are also arranged into hierarchies.

Semantic role labeling A semantic role is defined as the relationship that a
syntactic constituent has with a predicate, i.e., the verb. The goal of semantic
role labeling is now to identify all syntactic constituents that fill a semantic
role, and determine this role. We will illustrate this by means of the following
labeled sentence:

[A0 They] [V visited] [A1 Bruges] [AM-TMP during the weekend].
9http://wordnet.princeton.edu

http://wordnet.princeton.edu
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They, labeled as A0, refers to the visitors and forms the agent of the visit (V)
action, whereas Bruges (A1) is the visited place and is the object of the action.
The phrase during the weekend is an adjunct that refers to the timing of the
action. Intuitively, one uses semantic role labeling when answering wh-questions
(e.g., Who visited Bruges?, What place did they visit?). Semantic role labeling
is also referred to as shallow semantic parsing. Just as chunking gave a shallow
view on the structure of a sentence, semantic role labeling can be seen as a
shallow view on its meaning.

Coreference resolution An anaphor is a word or phrase that refers to an
other word or phrase that was previously mentioned in the text. The latter is
called the antecedent. When both the anaphor and the antecedent refer to the
same entity in the real world, they are called coreferent. As the name indicates,
coreference resolution refers to the identification of words or phrases in a text
that refer to the same entity in the real world. This is illustrated in the following
example:

[The manager]1 said [he]1 would propose [it]2 to [the Board]3.

The words and phrases between brackets are called mentions. Their subscripts
indicate the coreferences. The manager and he are coreferent, as they both
refer to the same entity in the real world.

2.4 Conclusions
As this thesis is situated at the intersection between statistical relational
learning and natural language processing, this chapter reviewed the relevant
background knowledge on the relevant concepts and techniques in both of these
domains. First, the basic principles and notation of machine learning that will
be used and extended in the rest of this thesis were discussed. Subsequently,
logic programming was introduced as a strong relational formalism on which
SRL systems are built, followed by a discussion of kLog and ProbLog, two
SRL frameworks that are central to this thesis. Finally, an overview of the
most relevant natural language processing tasks was given, that will be used
throughout the rest of the thesis, mostly as preprocessing steps for our methods.
The principles and techniques in which this thesis is founded thus form a strong
basis on which will be built in the rest of this thesis.





Chapter 3

Related Work

This chapter will provide an overview of related work at the intersection of
statistical relational learning and natural language processing. In the following
chapters, some tasks in natural language learning will be tackled using SRL
techniques. Related work which is specific to these tasks will be discussed at
the start of the respective chapters.

The foundations for the interest in statistical relational learning of natural
language were laid when the importance of the role of logic in natural language
processing became clear. Logic-based approaches enabled an increased flexibility
and expressivity. Furthermore, their clean representation of a wide range of
linguistic information proved well-suited for a number of problems in NLP.
For example, the grammatical production rule S → NP V P introduced in the
parsing example of Section 2.3.3 can naturally be represented by the definite
clause grammar rule s(Start, End) → np(Start,Middle), vp(Middle, End),
where the variables indicate index vertices in between words. This representation
of grammars, referred to as Definite Clause Grammars (Colmerauer, 1978;
Pereira and Warren, 1986), is one of the prime successes of logic programming for
natural language processing. Dahl (1994) studies the use of logic programming
for NLP from a theoretical perspective. Covington (1993) examines the
application of the logic programming language Prolog for NLP from a practical
point of view.

The downside of logic programming is that it requires the programmer to
manually encode the language descriptions, which is infeasible in a real-
world setting. This problem was partly alleviated by the introduction of
statistical NLP approaches, which were able to learn from examples in large
text corpora. However, the resulting models were less interpretable than their

53
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Figure 3.1: Situating Learning Language in Logic (Adapted from Džeroski et al.,
1999).

logical counterparts, due to which alternatives were sought that offered the best
of both worlds. The solution was offered by inductive logic programming.

3.1 Inductive Logic Programming
As outlined before, in contrast to logic programming, which is concerned with
deductive inference, inductive logic programming uses inductive inference. This
allows one to find hypotheses by generalizing from examples in the presence
of background knowledge. The application of inductive logic programming to
NLP led to the research domain of Learning Language in Logic (LLL). Whereas
definite clause grammars, as an example of logic grammars (LG), combined
computational logic and natural language processing, LLL is situated at the
intersection of machine learning, NLP and computational logic, as illustrated in
Figure 3.1.

The motivation for the use of ILP for NLP was summarized by Muggleton in
(Cussens and Džeroski, 2000) as follows:

“From the NLP point of view the promise of ILP is that it will be
able to steer a mid-course between the two alternatives of large scale,
but shallow levels of analysis, and small scale, but deep and precise
analyses, and produce a better balance between breadth of coverage
and depth of analysis.”

A general introduction to the field is given by Džeroski et al. (1999). Main results
in the area have been reported in the Learning Language in Logic workshop
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series (Cussens and Džeroski, 2000). In this section, we will give an overview
of the area. For a comprehensive survey, we refer the interested reader to the
proceedings of the LLL workshops1. Other research efforts along this line of
research took place in various initiatives of the ACL special interest group on
Natural Language Learning2 (SIGNLL) and the European Association for Logic,
Language and Information3 (FoLLI).

3.1.1 ILP for Morphological and Syntactic Processing Tasks

Initial research in LLL mainly focused on natural language processing problems
for which ILP could overcome the shortcomings of logic programming and
statistical approaches. As outlined before, ILP has increased the flexibility
using a rich knowledge representation language and has limited the amount
of manual feature engineering, which were two of the main issues of empirical,
propositional NLP systems.

One of these problems is parsing. An early approach to grammar learning using
ILP was presented by Wirth (1988, 1989). It starts from a set of two clauses
and uses ILP to find the missing clause in order to learn a small definite clause
grammar. Chill (Zelle and Mooney, 1993) was one of the first specialized
systems applying ILP to NLP. Similar to the approach of Wirth, it starts from
an overly-general parser, and subsequently learns heuristics from a training
corpus of parsed sentences, which are added to the parser to control it. This
method was able to achieve results comparable to contemporary statistical
methods. Also other ILP approaches to parsing were developed. For example,
Cussens and Pulman (2000) used ILP within a chart-parsing framework for
grammar learning. Given a general grammar and a set of unparsable sentences,
ILP finds the missing grammar rules that are needed to parse the sentences.
Besides this top-down approach, the same authors also present a bottom-up
approach on the same task, in which they use linguistic constraints to generate
new grammar rules, starting from a set of highly-specific rules. Cussens et al.
(1997) demonstrated the use of Stochastic Logic Programs, a generalization of
stochastic grammars, for learning grammars from children’s books. The Emile
system of Adriaans and de Haas (2000) uses a less expressive variant of first-order
logic, substructural logic, for ILP in order to reduce the computational cost. Its
applicability for language learning was illustrated on grammar induction. Finally,
the Grind system of Nepil (2001) combines ILP with transformation-based
learning, an error-driven rule learning technique. Besides parsing, grammar
learning has also been employed for other tasks, e.g., to recognize a specific
class of proteins using the ILP system CProgol (Muggleton et al., 2000).

1http://www.cs.york.ac.uk/aig/lll/
2http://ifarm.nl/signll/
3http://www.folli.info/

http://www.cs.york.ac.uk/aig/lll/
http://ifarm.nl/signll/
http://www.folli.info/
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ILP approaches have been developed for other syntactic tasks as well. Eineborg
and Lindberg (2000) presented an overview of ILP for part-of-speech tagging.
One particular instance of such a system uses the ILP framework Progol
to induce the tagging rules in the form of definite clauses (Cussens, 1997).
A Progol-based POS-tagger was also integrated in RTDF (Alexin et al.,
2001), a rule-based tagger. Jorge and de Andrade Lopes (2000) described the
application of iterative induction, in which a theory is iteratively specialized to
cover more examples, to part-of-speech tagging. Also Aleph, a successor of the
Progol system, has proved to be useful for syntactic processing tasks (such
as part-of-speech tagging (Nepil et al., 2001) and chunking (Konstantopoulos,
2002).

Also tasks in morphology proved helpful in illustrating the additional capabilities
of ILP for natural language processing. For example, Mooney and Califf (1995)
showed that their ILP system, Foidl, was able to outperform neural network
and decision tree methods for the generation of past tenses of English verbs.
Muggleton and Bain (1999) were able to improve on the results of Foidl using
analogical prediction, a technique on the intersection between memory-based
learning and ILP. FOIDL has also been used to learn the inflectional paradigms
(i.e., the different modifications of a word to express different grammatical
categories) of Slovene nouns (Džeroski and Erjavec, 1997). The same authors
also employed Clog, a system similar to Foidl that learns first-order decision
lists, to lemmatize Slovene words (Džeroski and Erjavec, 2000). A combination
of ILP (by means of the Progol system) and kNN to lemmatize Czech words
was presented by Popelínský and Pavelek (1999). This technique was later
integrated into a system for recognizing and tagging compound verb groups
(i.e., sets of words that together determine the meaning of a verb) in Czech
(Žáčková et al., 2000). Manandhar et al. (1998) compared Clog and FOIDL
for learning inflectional paradigms of nouns and adjectives in different languages.
The clausal discovery engine Claudien (Dehaspe et al., 1995) was used for the
discovery of diminutive forms in Dutch. A general survey of ILP approaches to
learning tasks in morphology was offered by Kazakov (2000) .

3.1.2 ILP for Semantic Processing Tasks

Besides syntactic parsing, the Chill system mentioned in the previous section
also translates English database queries into an executable logical form, the so-
called semantic parsing. It proved to be more accurate than a manually-encoded
program. Mooney (1996) gave an overview of the evolution of the system and
outlined a number of challenges for the application of ILP to NLP problems;
namely solving NLP problems with generic ILP systems and extending ILP
systems beyond classification, allowing them to generate output rather than
testing existing tuples. This shift from classification to disambiguation in ILP



INDUCTIVE LOGIC PROGRAMMING 57

for solving NLP tasks was also addressed by Thompson and Califf (2000) and
Riezler (2000). In the former, the authors presented an active learning approach
using Chill and Rapier (Califf and Mooney, 2003), a bottom-up relational
learner, both for semantic parsing and learning information extraction rules.
The latter paper presented an approach to probabilistic modeling of constraint-
based grammars with log-linear distributions. The Cocktail system (Tang
and Mooney, 2001) combined Chill with mFoil, an ILP algorithm for rule
learning, for semantic parsing. Liakata and Pulman (2004a,b) presented a
method using Warmr, a relational frequent pattern mining algorithm, to learn
a simple domain theory (i.e., a set of rules that describe entities and relations
between these entities) from text.

The successful application of ILP on the aforementioned syntactic tasks, and
the initial results of Chill and Rapier for semantic parsing and information
extraction, have led to an increasing interest in applying ILP for tasks focused
on semantics. An initial ILP approach for document classification was presented
by Cohen (1995). He represented documents as a collection of words with
their position, with some additional predicates to allow for phrases and
extract sequence information. Interestingly, the author also compared the
relational method to its propositional counterpart. The aim of the SRV system
presented by Freitag (1998) was to offer a general-purpose learning approach
for information extraction, by separating domain-specific information from the
learning algorithm. The system’s feature representation includes both syntactic
and lexical information. The goal of Junker et al. (1999) was to develop a unified
representation of typical text patterns, which enables one to formulate rule
learning problems for text classification and information extraction, and can be
used in standard ILP techniques. Related to this, Sébillot et al. (2000) presented
an ILP approach for automatically extracting a semantic lexicon consisting of
noun-verb pairs which could serve as an index for information retrieval systems.
Only pairs that belong to a selected subset of meaningful semantic roles are
extracted. The extraction is based on the part-of-speech tags of the words
in the surrounding context of the pairs. This work was extended by Claveau
et al. (2003) with the inclusion of semantic tagging and additional contextual
information. Whereas all previous systems focused on English, Esposito et al.
(2000) studied the learning of information extraction rules for Italian starting
from a logic representation of parsed sentences.

Due to the ability of ILP to incorporate background knowledge, its flexible
representation of semantic relations, and motivated by the successful applications
for semantic parsing and the extraction of information extraction rules, the
interest rose to apply ILP for ontology learning. The Asium system (Nédellec,
1999) learns ontologies and verb categorization frames in the form of logical
predicates from parsed corpora. These enabled the induction of a taxonomic
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hierarchy by conceptual clustering. Aitken (2002) presented an ILP approach
using the rule-based learning algorithm Foil for extracting ontological relations
from Web text in order to extend the Semantic Web. Related to ontology
learning, Cimiano et al. (2008) presented an ILP approach for computing
intensional answers given a set of extensional answers returned as a result of
a user query to an information system. The more recent work of Lisi (2012)
discussed the application of ILP for learning onto-relational rules, i.e., the rules
that complement and extend ontologies on the Semantic Web. Nakabasami
(2001) presented a system to identify the differences between documents. In a
first step, memory-based learning is employed to determine interesting lexical
and semantic word features. Subsequently, this information serves as background
knowledge for Aleph, which induces clauses that are used to determine the
difference between documents. Intermediate user feedback is given to the system
to increase the quality of the results.

Specia et al. (2006) and Specia (2006) investigated the role of integrating
additional background knowledge into the learning process for word sense
disambiguation. The declarative specification of additional background
knowledge is one of ILP’s distinguishing characteristics when compared to
statistical approaches. This was done in two different ways. In a first
approach, ILP was used both to specify the background knowledge and perform
the learning, whereas in a second approach it was employed solely for the
construction of interesting features which were subsequently used by standard
statistical learning algorithms. Results showed that the approaches, both
integrating a wide range of syntactic and semantic information, were able
to outperform contemporary state-of-the-art statistical learners using shallow
syntactic features. The authors also participated to the SemEval 2007-Shared
Task on lexical sample word sense disambiguation (Specia et al., 2007). Yang
et al. (2008) presented an entity-mention model for coreference resolution using
ILP. It can capture information beyond single mention pairs and express the
relations between an entity and its mention, in contrast to contemporary state-
of-the-art entity-mention models. Furthermore, rules expressing the existence
of a coreference relation between an entity and a mention in terms of the
declaratively specified features can be learned.

Also in the context of the genic interaction challenge (Nédellec, 2005), a shared
task at LLL’05 which focused on information extraction from biomedical texts,
a number of ILP approaches were developed. Given sentences describing
interactions between genes and proteins, where proteins are the agents of
interaction and genes are the targets, the goal of the challenge was to induce
rules for extracting gene/protein interactions. Gleaner (Goadrich et al., 2004),
the system of Goadrich et al. (2005), and the approach of Popelínský and
Blaťák (2005) used Aleph. The former system first learns a set of clauses, and
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subsequently combines them into a thresholded disjunctive clause, with the
aim of selecting the optimal tradeoff between precision and recall. The latter
approach learns two sets of rules to extract genic interactions: one set for simple
examples, and a more general set for all examples. The authors also compare
the relational representation with a propositionalized representation. Riedel
and Klein (2005) noted that due to the small size of the training set, the ILP
methods they tried were not able to generalize well. They decided to explore
the combination of ILP and statistical methods. To this end, they turned to
statistical relational learning, which we will now discuss in detail.

3.2 Statistical Relational Learning
As illustrated in the previous section, the interpretability of the logical
representations, and the possibilities to model relational information and
declaratively specify additional background knowledge, resulted in a number
of successful applications of inductive logic programming for natural language
processing tasks. At around the same time, statistical approaches for NLP tasks
were on the rise. This awakened the interest in applying statistical relational
learning, which extends ILP with statistical learning theory, to NLP problems.

A wide range of statistical relational learning systems exist (Getoor and Taskar,
2007). Two of these, kLog and ProbLog, were already discussed in Section 2.2.
In principle, many SRL systems are useful to solve NLP problems. In this
section, we will discuss the main results in this area according to the technique
with which the problem was solved.

3.2.1 Markov Logic

One of the most popular SRL formalisms, Markov logic (Richardson and
Domingos, 2006), was one of the first techniques to be applied to NLP tasks.
Markov logic extends first-order logic by attaching weights to formulas. This
set of weighted first-order clauses is referred to as a Markov logic network
(MLN). It can can be seen as a template for constructing Markov networks, a
particular type of undirected graphical model that allows to represent relational
information.

Bunescu and Mooney (2004, 2007) studied the problem of information extraction
from biomedical texts. The goal is to identify relations between words or phrases
that occur in different parts of a sentence or paragraph. This typically requires
one to take into account some context, and integrate features from different
levels (e.g., morphologic, syntactic and semantic information). Inspired by the
integer programming approach of Roth and Yih (2004), Bunescu and Mooney
(2004) investigated the use of Relational Markov Networks (Taskar et al., 2002)
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for the information extraction problem. The system is able to outperform
a traditional conditional random fields approach. It illustrates the ability of
SRL to integrate uncertain evidence at multiple levels in order to collectively
determine a globally coherent solution. This formed the inspiration for a number
of applications of Markov networks and Markov logic for both supervised and
unsupervised learning tasks in NLP.

In the supervised setting, McCallum and Wellner (2004) illustrated the use
of Markov networks for noun phrase coreference resolution. Due to their
relational nature, their models did not assume that pairwise coreference decisions
should be made independently from each other, in contrast to most of the
earlier approaches. Furthermore, they can represent features at different levels
simultaneously. Singla and Domingos (2006) presented a follow-up approach
that represents the noun phrase coreference resolution problem in Markov logic.
It allowed them to model the problem using a small number of predicates, and
enabled them to outperform the original approach of McCallum and Wellner
(2004). A similar joint learning approach combining pairwise classification and
mention clustering with Markov logic was presented by Song et al. (2012).

Poon and Domingos (2007) studied information extraction, but besides
segmentation (i.e., locating the candidate fields) (Bunescu and Mooney, 2004),
they also performed entity resolution (i.e., identifying duplicate records). This
was done using joint inference, i.e., the segmentation and entity resolution are
performed in a single inference process. Satpal et al. (2011) used MLNs to extract
data from the Web, integrating both properties of individual words, as well as
the structure of the pages and sites. Riedel et al. (2009) presented a Markov
logic approach for bio-molecular event extraction, in which a joint probabilistic
model over events in a sentence is learned. By using a similar approach, but a
novel formulation for the model, Poon and Vanderwende (2010) were able to
improve on the state-of-the-art results on this task. Yoshikawa et al. (2010)
extended the earlier methods by incorporating coreference relations as additional
cross-sentence information and tackled the task of cross-sentence event-argument
relation extraction. Yoshikawa et al. (2009) focused on the extraction of temporal
relations. By using Markov logic, logical constraints that hold between events
and time expressions (e.g., before, after, or overlap) can easily be incorporated,
which were neglected by previous approaches. Furthermore, as in earlier work,
these relations can be predicted jointly. The TIE system of Ling and Weld
(2010) went one step further, in that it was able to extract facts from text
while inducing as much temporal information as possible. Furthermore, the
authors used global inference to enforce transitivity to bound the start and
end times for each event. The systems of UzZaman and Allen (2010) combine
deep semantic parsing, Markov logic networks and conditional random fields.
A number of other approaches for information extraction using MLNs exist.
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For example, the StatSnowball system (Zhu et al., 2009) was developed for
open information extraction (i.e., extracting relations without predefining which
ones), the approach of Yu and Lam (2008) for extracting relations between
entities in Wikipedia articles.

A number of approaches were proposed for solving some other semantic tasks
using Markov logic. Toutanova et al. (2008) presented a model for semantic
role labeling, and showed that the SRL approach was able to outperform a
state-of-the-art approach that did not include dependencies among different
arguments, but only considered local context. Meza-Ruiz and Riedel (2009)
combined semantic role labeling with predicate senses using a Markov logic
formulation in which they jointly identify predicates, arguments and senses.
They also discussed the benefit of this joint approach when compared to a
pipeline system. Che and Liu (2010) extended this approach into a joint model
of semantic role labeling and word sense disambiguation, in which all senses are
used.

The application of Markov logic for unsupervised learning was also explored.
One of the first unsupervised approaches was presented by Kok and Domingos
(2008). In a first step, a set of tuples is extracted from text. Subsequently, these
tuples are used to induce semantic networks consisting of general concepts and
relations by jointly clustering the objects and relations in the tuples. Poon and
Domingos (2008) presented an unsupervised coreference resolution approach.
Their MLN approach leverages syntactic relations that are useful for the task
and can easily be represented. It was the first unsupervised approach that was
as accurate as supervised systems on this task. Hou et al. (2013) presented a
global model using MLNs for bridging anaphora resolution, a particular type of
coreference resolution.

USP (Poon and Domingos, 2009) was the first approach for unsupervised
semantic parsing. This is done by converting dependency trees into quasi-logical
forms. These are subsequently clustered together to abstract away the syntactic
variations with the same meaning. The clustering is performed by Markov
logic, which starts by clustering tokens of the same type together, after which
expressions whose subexpressions belong to the same clusters are recursively
joined. This work was extended by the same authors to OntoUSP, a system
that induces and populates a probabilistic ontology based on unsupervised
semantic parsing (Poon and Domingos, 2010). Since the clusters induced
by USP do not align with the concepts in a database, Poon (2013) combined
unsupervised semantic parsing with grounded learning from a database. Related
to this is the Markov logic-based framework of Niepert et al. (2010) for ontology
matching, and their declarative framework for web data integration (Niepert
et al., 2011). The overall goal is to arrive at an integrated approach for machine
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reading4, i.e., the automated knowledge extraction from text (Poon, 2011).

3.2.2 kLog

As already indicated in Section 2.2.3, kLog will be one of the two SRL frameworks
which we will focus on in the rest of this thesis. Besides a number of successful
applications in computer vision, e.g., for hierarchical image understanding
(Antanas et al., 2012) and scene classification (Antanas et al., 2013), kLog has
also shown its effectiveness for natural language processing. Kordjamshidi et al.
(2012) presented a relational representation in kLog for the task of spatial role
labeling, where the goal is to extract generic spatial semantics from natural
language. The authors point out the appropriateness of the NSPDK graph
kernel to capture long-distance dependencies in language, and the flexibility of
the logical language for performing experiments in relational domains.

3.2.3 Other SRL Frameworks

Kurihara and Sato (2006) proposed a variational Bayesian learning method for
probabilistic context-free grammars. This method was later added to the SRL
system PRISM (PRogramming In Statistical Modeling) (Sato and Kameya,
1997; Sato et al., 2008). As in ProbLog, a PRISM program defines a probability
distribution over a set of Herbrand interpretations, but in contrast to ProbLog,
it imposes a number of constraints on the allowed programs to limit complexity.

Church (Goodman et al., 2008) is a probabilistic programming language which
adds probabilistic semantics to the programming language Scheme. O’Donnell
et al. (2009) illustrated its use for modeling language structure. To this end, the
authors introduce fragment grammars as a structure that optimizes the amount
of linguistic knowledge that needs to be stored and the computations that need
to be executed in order to construct linguistic structures (e.g., sentences).

As Poon and Domingos (2007), Singh et al. (2009) focused on joint inference for
information extraction in the context of citation matching. Both approaches use
a conditionally-trained factor graph, a particular type of graphical model,
on which inference is performed. However, in contrast to the first-order
logic representation as used by Poon and Domingos, Singh et al. leverage
Factorie (McCallum et al., 2009), a probabilistic programming language that
uses imperative procedures to define the factor template structure.

Blog (Milch et al., 2005), an acronym for Bayesian logic, is an SRL system
for generative learning that uses elements of first-order logic and approximate
inference. It has been used on the information extraction task in the context

4A detailed discussion of related work on machine reading is offered in Chapter 8.
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of citation matching discussed in the previous paragraph (Carbonetto et al.,
2005). This approach was later adapted by Yu and Lam (2012) to work
in a discriminative learning setting and to be able to incorporate more
complex dependencies among inputs. The work of Culotta et al. (2007) on
coreference resolution uses a similar representation as Blog, but also works in
a discriminative learning setting.

Raghavan et al. (2012) explored the use of Bayesian Logic Programs (BLP)
(Kersting and De Raedt, 2007) in the context of machine reading. As indicated
before, related work on this topic will be discussed in detail in Chapter 8.

Probabilistic Soft Logic (PSL) (Kimmig et al., 2012) is an SRL modeling
language whose models are templates for hinge-loss Markov random fields, a
particular class of probabilistic graphical models. Its use for natural language
processing has been explored by Beltagy et al. (2014), who use it for assessing
the semantic similarity of natural-language sentences. To this end, PSL was
used to combine logical and distributional representations of meaning. The
distributional information, i.e., statistics on contextual data from large corpora
to predict semantic similarity of words and phrases, is represented as weighted
inference rules.

A number of approaches that are closely related to SRL have been proposed
for natural language processing tasks. For example, a number of techniques
using integer linear programming have been proposed. These include the work
by Roth and Yih (2007), who developed a linear programming formulation
to address global inference for entity and relation identification. Another
example is the work by Jenatton et al. (2012), who propose a latent factor model
for multi-relational data, and illustrate their approach on learning semantic
representations of verbs. The main difference with the definition of SRL adopted
in this thesis, is that no explicit underlying logical representation is used.

3.3 Graph Kernels
As indicated before, kLog is one of the two SRL frameworks that will be used
and extended in this thesis. Since it is rooted in learning with graph kernels,
we also provide a brief overview of related work in this area. A general survey
on kernels for structured data is offered by Gärtner (2003). A wide range of
approaches that use kernels specifically for natural language processing tasks
exist, for example for named-entity tagging (Cumby and Roth, 2003), chunking
(Daumé and Marcu, 2005), relation extraction (Zelenko et al., 2003), or question
answering (Moschitti and Zanzotto, 2007). A recent general overview on kernel
methods for natural language processing can be found in the ACL tutorial by
Moschitti (2012).
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As explained in Section 2.2.3, the NSPDK kernel employed by kLog is an
instance of a decomposition kernel, which decomposes a discrete structure into
several parts, and computes the similarity between the instances starting from
the similarity between these fragments. As shown by Collins and Duffy (2002),
this type of kernels are effective for natural language processing. The authors
describe kernels for various NLP structures (such as sequences and trees), and
show that this type of kernels offers a computationally feasible representation
in high-dimensional feature spaces. The authors illustrate their effectiveness
on parsing English sentences. Moschitti (2004) used convolution kernels for
semantic role labeling. The weighted decomposition kernel (Menchetti et al.,
2005), a predecessor of the NSPDK kernel, has also proved successful for natural
language processing, as illustrated by Costa et al. (2006) for named entity
recognition and prepositional phrase attachment ambiguity resolution, i.e.,
determining if a prepositional phrase is part of a noun phrase or an argument
of a verb. To the best of our knowledge, kLog is however the only framework
that tailors graph kernels for statistical relational learning.

3.4 Conclusions
In this chapter, we gave an overview of related work at the intersection of
inductive logic programming and statistical relational learning on the one side,
and natural language processing on the other, throughout the history of the
former research fields. It showed that the logical and relational representation
of ILP, and its combination with statistical learning in SRL has already proved
successful in a large number of tasks in NLP. The goal of this thesis is to deepen
these insights and advance the research in this domain by building on these
findings.
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Chapter 4

Sentence Classification with
Sentence Context

In this chapter we will explore the use of graph kernel–based relational learning
for binary sentence classification. The graph-based approach offers a flexible
way to represent relational information that is inherently present in natural
language, and enables the use of sentence context. The task under consideration
is hedge cue detection, where the goal is to distinguish factual from uncertain
information. In addition to results that outperform the state-of-the-art, a
detailed analysis of the influence of the relational representation is provided.
To this end, the relational approach is contrasted with propositional approaches
for both lazy and eager learning. As part of this investigation, a novel lazy
relational learning technique is contributed.

This chapter starts with a discussion of the task, hedge cue detection
(Section 4.1), and an overview of related work (Section 4.2). In Section 4.3, the
method is outlined, after which the results are presented in Section 4.4. An
analysis of the advantages of a relational representation for NLP tasks is the
topic of Section 4.5, in which we also introduce a new relational memory-based
learning approach. Finally, Section 4.6 concludes this chapter.

This chapter is based on

Mathias Verbeke, Paolo Frasconi, Vincent Van Asch, Roser Morante,
Walter Daelemans, and Luc De Raedt. Kernel-based logical and relational
learning with kLog for hedge cue detection. In Stephen H. Muggleton,
Alireza Tamaddoni-Nezhad, and Francesca A. Lisi, editors, Proceedings
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of the 21st International Conference on Inductive Logic Programming,
Inductive Logic Programming, Windsor Great Park, UK, 31 July 2011 - 3
August 2011, pages 347–357. Springer, 2012.

and

Mathias Verbeke, Vincent Van Asch, Walter Daelemans, and Luc
De Raedt. Lazy and eager relational learning using graph-kernels. In
Laurent Besacier, Adrian-Horia Dediu, and Carlos Martín-Vide, editors,
Proceedings of the Second International Conference on Statistical Language
and Speech Processing, International Conference on Statistical Language
and Speech Processing, Grenoble, France, 14-16 October 2014, pages
171–184. Springer, 2014.

4.1 The Task: Hedge Cue Detection

Information Extraction (IE) is a subdomain of Natural Language Processing
concerned with the automatic extraction of structured, factual information
from unstructured or semi-structured machine-readable texts. Since it has been
shown that a number of subfields of IE, such as question answering (Riloff
et al., 2003) and IE from biomedical texts (Medlock and Briscoe, 2007; Szarvas,
2008), benefit from being able to distinguish facts from unreliable or uncertain
information, research about hedge cue detection has increased in recent years.

Hedge cues are linguistic devices that indicate whether information is being
presented as uncertain or unreliable within a text (Lakoff, 1973; Hyland, 1998).
They are lexical resources used by the author to indicate caution or uncertainty
towards the content of the text, and in this sense they can be taken as signals of
the presence of an author’s opinion or attitude. Hedge cues can be expressed by
several word classes: modal verbs (e.g., can, may), verbs (e.g., seem, appear),
adjectives (e.g., possibly, likely), etc. Furthermore hedge cues can be expressed
by multiword expressions, i.e., expressions that contain more than a word,
with a non-compositional meaning. The latter means that the meaning of the
expression cannot be derived from the individual meanings of the words that
form the expression. This can be seen from Example 4.11, where call into
question is a multiword hedge cue.

Example 4.1. The low results {call into question the applicability of this
method}.

1All example sentences in this chapter were taken from the CoNLL 2010-Shared Task
dataset (Farkas et al., 2010), which will also be used for the evaluation of our approach and
is discussed in Section 4.4.1.
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Neither the verb call nor the noun question are hedge cues on their own, but the
whole phrase conveys a speculative meaning, which explains why the sentence
would be marked as a hedged sentence.

Recently, the NLP community has shown interest in problems that involve
analysing language beyond the propositional meaning of sentences, i.e., whether
the sentence is true or false. Apart from performing well-established NLP tasks
such as parsing or semantic role labeling, there is a growing interest in tasks that
involve processing non-propositional aspects of meaning, i.e., opinions, attitudes,
emotions, or figurative meaning. To perform these tasks, the local token-based
approaches based on the lexico-syntactic features of individual words no longer
suffice. The broader context of words on the sentence or discourse level has to
be considered in order to account for aspects of meaning that are expressed by
certain combinations of words, like “call into question” in the sentence above.
Performing hedge cue detection involves finding the linguistic expressions that
express hedging. In many cases it is not possible to know whether a word
belongs to a hedge cue without taking into account its context, i.e., one needs
to consider the part of the text that surrounds this word and determines its
meaning.

This formed our motivation to explore the use of graph kernel–based relational
learning with kLog. In this chapter we will study its use for sentence classification
using sentence context. The question we would like to answer in this chapter is
whether a logical and relational learning approach is able to process contextual
aspects of language at the sentence level. As we will see, the results indicate
that kLog is suitable for this task.

4.2 Related Work

Although the term hedging was already introduced by Lakoff in 1973 (Lakoff,
1973), and has been studied in theoretical linguistics for two decades (Hyland,
1998), the interest from the computational linguistics community has only
arisen in recent years. Light et al. (2004) introduced the problem of identifying
speculative language in bioscience literature. The authors used a hand-crafted
list of hedge cues to identify speculative sentences in MEDLINE abstracts.
They also presented two systems for the automatic classification of sentences
in abstracts; one based on SVMs, the other one based on substring matching.
Medlock and Briscoe (2007) extended this work and discussed the specificities of
hedge classification as a weakly supervised machine learning task for which they
presented a probabilistic learning model. In addition, they offered an improved
and expanded set of annotation guidelines and provided a publicly available
dataset. Based on this work, Medlock (2008) carried out experiments using
an expanded feature space and novel representations. Szarvas (2008) followed
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Medlock and Briscoe (2007) in classifying sentences as being speculative or
non-speculative. He developed a Maximum Entropy classifier that incorporates
bigrams and trigrams in the feature representation and performs a reranking-
based feature selection procedure. Kilicoglu and Bergler (2008) applied a
linguistically motivated approach to the same classification task by using
knowledge from existing lexical resources and incorporating syntactic patterns.
Additionally, hedge cues were weighted by automatically assigning them an
information gain measure and semi–automatically determined weights based on
their types and centrality to hedging.

Ganter and Strube (2009) were the first ones to develop a system for automatic
detection of sentences containing weasels in Wikipedia. As Ganter and Strube
indicated, weasels are closely related to hedges and private states, i.e., states
that are not open to objective observation or verification. They experimented
with two classifiers, one based on words preceding the weasel and another one
based on syntactic patterns. The similarity of the results of the two classifiers on
sentences extracted from Wikipedia showed that word frequency and distance
to the weasel tag provide sufficient information. However, the classifier that
used syntactic patterns outperformed the classifier based on words on data
manually re-annotated by the authors, suggesting that the syntactic patterns
detected weasels that had not yet been tagged.

The increased attention to hedge detection is reflected by the fact that it became
a subtask of the BioNLP-Shared Task in 2009 (Kim et al., 2009) and the topic of
the Shared Task at CoNLL 2010 (Farkas et al., 2010). The latter comprised two
levels of analysis: the goal of task 1 is to learn to detect sentences containing
uncertainty, whereas the objective of task 2 is to resolve the in-sentence scope
of hedge cues. We will focus on task 1. As noted by Farkas et al. (2010), the
approaches to this task can be classified into two major categories. Several
systems approached the problem as a sentence classification problem and used a
bag-of-words (BoW) feature representation. Alternatively, the individual tokens
of the sentence can be classified one by one, instead of classifying the sentence
as a whole. In a postprocessing step, the sentences that contain hedge cues are
then classified as uncertain.

During the shared task, i.e., an evaluation of several systems on a particular
topic that allows participating systems to be compared in a systematic way,
Georgescul (2010) obtained the best score for the closed task2 of in-domain
Wikipedia hedge cue detection with a macro-averaged F1-score of 75.13%.3

2A shared task often comprises two different tracks; a closed and a open one. In the former,
only the data provided by the organizers of the task can be used, while in the latter, systems
can make use of additional resources.

3This equals an F1-score on the uncertain class of 60.17%, but we prefer reporting the
macro-averaged F1-score because it takes the performance on both class labels into account.
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Interestingly, Georgescul (2010) also reports the scores for a simple but effective
baseline algorithm: if a test sentence contains any of the hedge cues occurring
in the training corpus, the sentence is labeled as uncertain. For the Wikipedia
test data this baseline system obtains a macro-averaged F1-score of 69%. During
the shared task and for the Wikipedia data, only the top 3 is able to do better
than the baseline on the uncertain class.

The system of Georgescul (2010) obtained the best score in the shared task
although it does not use any intricate features. Each hedge cue of the training
set is taken as a feature, and prediction occurs directly at the sentence level.
For generalization, the set of hedge cues is extended with n-gram subsets of the
cues. In a sense, this system resembles a bag-of-words approach.

Chen and Di Eugenio (2010) propose a two-staged model, enabling them to
incorporate token/sentence context and metadata information. Their system,
reaching the second position with a macro-averaged F1-score of 73.36%, detects
the hedge cues in a separate first step. The second step is an aggregation step
in which the predicted cues are used to predict whether a sentence is certain
or uncertain.

The definition of the hedge cue detection task resembles a multiple-instance
learning problem (Dietterich et al., 1997). In (binary) multiple-instance learning,
objects consist of multiple instances or features vectors. An object is labeled
positive if at least one instance of the object is labeled positive, otherwise the
object is labeled negative. However, the multiple-instance problem relies on
the notion that there is a region in the multidimensional space that contains at
least one instance of each positive object and no instance of any negative object.
In our research, many tokens can be a cue making a sentence uncertain, but
an a priori motivation for the assumption that the different cues share a single,
confined region of the vector space cannot be given.

4.3 Method
As outlined in the introduction, the increasing importance of relational
information for current natural language processing tasks requires an appropriate
representation for encoding this type of features. This motivated the use of
the graph-based relational representation and feature construction technique of
kLog for modeling the hedge cue detection problem. It offers a way of taking into
account the necessary context at sentence-level and is able to represent both the
lexico-syntactic information as well as the sequence information and dependency
relationships. Furthermore, its declarative approach, which is characteristic of
SRL systems, offers a flexible experimentation approach and an interpretable
representation, which is especially useful from a computational linguistics point
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Figure 4.1: E/R diagram modeling the hedge cue detection task4.

of view.

4.3.1 Data Modeling

As introduced in Section 2.2.3, kLog is built upon a logical and relational
data representation rooted in the entity-relationship model. For the problem
under consideration, the E/R-model is shown in Figure 4.1. It gives an abstract
representation of the interpretations, which are sentences in the current problem.
A sentence consists of a number of consecutive words w, for which the order is
represented by the next relation. There are also dependency relations between
certain words, which represent the structure of syntactic relations between the
words of a sentence. This is modeled by the dh relation, where its property
depRel specifies the type of the dependency. To illustrate this, consider the
following example of a hedged (i.e., uncertain) sentence:

Example 4.2. Often the response variable may not be continuous but rather
discrete.

In this sentence, a dependency relation exists between the determiner the and
the noun variable, where the first is a noun modifier of the latter.

Other properties of the word that are taken into account as features are the
word string itself, its lemma, the part-of-speech tag (i.e., the linguistic type of
the word in the sentence), the chunk tag (which indicates that a word is part of
a subsequence of constituents) and a binary feature that represents whether the
word is part of a predefined list of speculative strings. wwc is a property of the
sentence as a whole, and represents the number of weasel words in the sentence.
weaselSentence represents the target relation that we want to predict.

4Note that both wwc and weaselSentence are relations of zero relational arity, which are
used to represent global properties of an interpretation.
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1 wwc (2). next(w2 ,w3).
2 w(w1 ,often ,rb ,i-advp ,1, often ). next(w3 ,w4).
3 w(w2 ,the ,dt ,i-np ,0, the). next(w4 ,w5).
4 w(w3 ,response ,nn ,i-np ,0, response ). dh(w1 ,w5 ,adv).
5 w(w4 ,variable ,nn ,i-np ,0, variable ). dh(w2 ,w4 ,nmod).
6 w(w5 ,may ,md ,i-vp ,1, may). dh(w3 ,w4 ,nmod).
7 next(w1 ,w2). dh(w4 ,w5 ,sbj).
8 ...

Listing 4.1: Example of a partial interpretation z.

w(often,rb,i-advp,1,often)
w1

w(the,dt,i-np,0,the)
w2

w(response,nn,i-np,0,response)
w3

w(variable,nn,i-np,0,variable)
w4

w(may,md,i-vp,1,may)
w5

next

dh(adv)

next

dh(nmod)

next

dh(nmod)

next

dh(sbj)

weasel

wwc(2)

Figure 4.2: Graphicalization Gz of (partial) interpretation z (Listing 4.1)

This E/R model representation can be transformed into a kLog script that
describes (the structure of) the data. Listing 4.1 shows a (partial5) example
interpretation z, that is a grounded version of the E/R-model as shown
in Figure 4.1 for a part of the sentence in Example 4.2. For example,
w(w1,‘often’,rb,i-dvp,1,‘often’) specifies the entity for the word often
with identifier w1, POS-tag rb (denoting an adverb), chunk tag i-dvp (indicating
an adverbial phrase), which is in the predefined list of speculative strings
and has an identical lemma. The atom next(w1,w2) represents the sequence
relation between words w1 and w2. The atom dh(w2,w4,nmod) represents the
dependency relation from the example above, namely that word w2 (the) is a
noun modifier (nmod) of word w4 (variable).

These interpretations are then graphicalized, i.e., transformed into graphs. This
can be interpreted as unfolding the E/R diagram over the data, for which an
example is given in Figure 4.2. It represents the graphicalization of the partial
interpretation in Listing 4.1.

This forms the input to the next level, where the NSPDK graph kernel is applied
to convert these graphicalized interpretations into extended, high-dimensional
feature vectors. This is illustrated in Figure 4.3, showing a graphicalization

5Note that we refer to the example interpretation as partial, since – for the ease of
representation – it does not contain the full sentence.
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w(often,rb,i-advp,1,often)
w1

w(variable,nn,i-np,0,variable)
w4

w(may,md,i-vp,1,may)
w5

next

dh(nmod)

nextdh(nmod)

nextdh(sbj)

next

w(the,dt,i-np,0,the)
w2

w(response,nn,i-np,0,response)
w3

dh(adv)

Figure 4.3: Illustration of the NSPDK subgraph concept on graphicalization
Gz with hyperparameters distance 1 and radius 1, and word entity w1 and
dependency relation dh(adv) as current kernel points.

Gz of (partial) interpretation z in which the entities of the word often and the
dependency relation dh(adv) are the current kernel points of the neighborhood
subgraphs indicated in orange. The distance indicates the number of hops
between the two subgraphs that are to be compared for feature generation.
Distance 1 implies that two subgraph are only compared to one another if
their respective centers are one hop or less away from each other. The radius
determines the size of the subgraph. The edges in bold indicate the span.

Modeling also plays an important role, which is demonstrated by means of
the dependency relation dh. More pairs of words are taken into account than
just the regular bigrams, for which the words need to be adjacent. As can be
seen, also the (non-adjacent) words w1 and w5, respectively often and may,
are considered through the dh relation. This takes more context into account,
which demonstrates the power of the graph-based approach of kLog. Also the
background knowledge can have an impact on the results, as we will discuss
next.

The result is a propositional learning setting, for which any statistical learner
can be used. In this case, we used an SVM for parameter learning.
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1 cw(CW ,L,P) ← w(W,_,P,_,1,L), atomic_concat (c,W,CW).
2 leftof (CW ,L,P) ← cw(W,_,_), atomic_concat (c,W,CW), next(W1 ,W),
3 w(W1 ,_,P,_,_,L).
4 rightof (CW ,L,P) ← cw(W,_,_), atomic_concat (c,W,CW), next(W,W1),
5 w(W1 ,_,P,_,_,L).

Listing 4.2: Additional background knowledge for the hedge cue detection task.

4.3.2 Background Knowledge

kLog is built on deductive databases. This means that besides listing the tuples
and atoms of an interpretation explicitly, they can also be deduced using rules.
In kLog this is achieved by using intensional signatures, whereby tuples can be
defined through definite clauses as in Prolog. This is very useful for introducing
additional background knowledge into the learning process. Since the newly
constructed ground facts in the database are used to construct graphs from
which features are derived during graphicalization, this amounts to the ability
of constructing features in a declarative fashion. We introduced the piece of
background knowledge shown in Listing 4.2. The first predicate retains each
word that appear in a predefined list of weasel words compiled from the training
data (i.e., all words for which the inList property is equal to 1), together with
its lemma and POS-tag. Furthermore, also the two surrounding words in the
sentence and their respective lemmas and POS-tags are retained.

4.4 Evaluation
Before turning to the obtained results, we will introduce the CoNLL 2010-
Shared Task dataset which was used for the experiments, briefly outline the
preprocessing steps and discuss the influence of the kLog hyperparameters.

4.4.1 Dataset

For our experiments, we used the CoNLL 2010-Shared Task dataset (Farkas
et al., 2010) on Wikipedia, one of the current benchmark datasets for hedge
cue resolution. The Wikipedia paragraphs were selected based on the weasel
tags that were added by the Wikipedia editors, and were subsequently manually
annotated. The proportion of training and test data, and their respective class
ratios can be found in Table 4.1.
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Train TrainDS Test
certain 8,627 2,484 7,400
uncertain 2,484 2,484 2,234
total 11,111 4,968 9,634

Table 4.1: Number of sentences per class in the training, downsampled training
(Section 4.5) and test partitions (CoNLL 2010-Shared Task, Wikipedia dataset).

Preprocessing

To preprocess the dataset, the approach of Morante et al. (2010) was followed,
in which the input files where converted into a token-per-token representation,
following the standard CoNLL format (Buchholz and Marsi, 2006). In this
format a sentence consists of a sequence of tokens, each one starting on a new
line. Consequently the data was processed with the Memory-based Shallow
Parser (MBSP) (Daelemans and van den Bosch, 2009) in order to obtain lemmas,
part-of-speech tags, and syntactic chunks, and with the MaltParser (Nivre, 2006)
to obtain dependency trees.

4.4.2 Parametrization

From the kernel definition it follows that the distance and radius parameters
strongly influence the results. Consequently, it is important to make a deliberate
choice during parametrization. For the task at hand, expert knowledge and the
literature suggest using bigrams (one word before or one word after the word in
focus) or trigrams (one word before and one word after the word in focus), since
unigrams include too little context, and 5-grams introduce too much noise. To
this end, we performed a 10-fold cross-validation on the training set, using all
combinations of distances 0, 1, 2 and radii 0, 1, 2 for the kLog hyperparameters.
The setting with both distance and radius set to 1 gave the best cross-validation
results (an F-measure of 60.59, where we took 60.2, the F-measure of the top
performing system in the CoNLL 2010-Shared Task, as decision threshold). As
kernel points, the center word relation cw, the dependency relation dh, and the
count of the number of weasel words at sentence level wwc were taken.

As indicated before, the result is a propositional learning setting for which any
statistical learner can be used. In this case, we used the linear kernel of LibSVM
(Chang and Lin, 2011), for which we optimized the regularization parameter
and the class weighting parameters as part of the cross-validation process.
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Official Rank System Precision Recall F1
- kLog 67.04 56.77 61.48
1 Georgescul 72.0 51.7 60.2
2 Ji7 62.7 55.3 58.7
3 Chen 68.0 49.7 57.4
4 Morante 80.6 44.5 57.3
5 Zhang 76.6 44.4 56.2

Table 4.2: Evaluation performance on the test set in terms of precision, recall
and F1 of the top 5 CoNLL 2010-Shared Task systems and the kLog approach
for the Wikipedia dataset.

4.4.3 Results

The results of our approach are listed in Table 4.2, together with the results of
the five best listed participants in the CoNLL 2010-Shared Task.6 As can be
noted, kLog outperforms the systems in terms of F-measure.

We also calculated the scores of our system without the additional background
knowledge as discussed in the previous section. This resulted in a decrease
of 2.66 in F-measure, from 61.48 to 58.82, which shows the advantage of the
declarative feature construction. This is - combined with the powerful graph
kernel - one of the main strengths of kLog. We will now turn to a detailed
analysis of the influence of using a relational representation.

4.5 Advantage of a Relational Representation
Thanks to its focus on relations between abstract objects, graph kernel–based
relational learning offers the possibility to model a problem on different levels
simultaneously, and provides the user with the possibility to represent the
problem at the right level of abstraction. For example, sentence classification
can be carried out using instances on the token level, without having to resort
to a two-step system in which the first step consists of labeling the tokens and
the second step is an aggregation step to reach a prediction on the sentence
level. Attributes on a higher level, e.g., sentences, can be predicted on the

6Note that our system does not have an official rank, as it was developed after the shared
task and thus was not part of the official evaluation during the task. However, the results
were calculated using the task’s official scorer.

7Note that this system used a cross-dataset approach, in which also the CoNLL 2010-Shared
Task biological dataset was used to train the system.
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basis of lower level subgraphs, e.g., sequences of tokens, taking into account the
relations in the latter, e.g., the dependency tree.

The goal of this section is to offer new insights into the advantages of using a
declarative, relational representation for natural language processing problems.
To this end, we will compare several machine learning techniques along two
dimensions on the hedge cue detection task.

The first is concerned with whether they deal with a propositional or a relational
representation. Learning techniques can also be distinguished along another
dimension that indicates whether they are eager or lazy. As introduced in
Section 2.1.2, eager techniques (such as SVMs) compute a concise model from
the data, while lazy (or memory-based) learning (MBL) techniques simply
store the data and use (a variant) of the famous kNN algorithm to classify
unseen data. Today, eager methods are much more popular than memory-
based ones. Nevertheless, it has been argued (Daelemans and van den Bosch,
2009) that MBL is particularly suited for NLP, since language data contains in
addition to regularities, many subregularities and productive exceptions. That
is, low-frequency or atypical examples are often not noise to be abstracted from
in the model, but an essential part of it. Lazy learning may identify these
subregularities and exceptions, while eager learning often discards them as noise.
MBL has proven to be successful in a wide range of tasks in computational
linguistics (e.g., for learning of syntactic and semantic dependencies (Morante
et al., 2009b) and event extraction (Morante et al., 2009a)).

As part of this comparison of propositional versus eager learners, we will first
introduce a novel relational memory-based learning technique, together with a
brief overview of related work in this area.

4.5.1 Relational Memory-based Learning

A number of approaches have combined relational and instance-based
learning. RIBL (Emde and Wettschereck, 1996) is a relational instance-
based learning algorithm that combines memory-based learning with inductive
logic programming. It was extended by Horváth et al. (2001) to support
representations of lists and terms. Besides the standard similarity measures for
numerical and discrete attributes, this version also incorporated a similarity
measure based on the concept of edit distance for attributes with lists and terms.
Armengol and Plaza (2001) introduced Laud; a distance measure that can be
used to estimate similarity among relational cases. Since it only considered
the leaves of this structure, Shaud (Armengol and Plaza, 2003) was proposed
as an improvement that was able to take into account the complete structure
provided by the feature terms. Ramon (2002) proposes a set of methods to
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perform instance-based learning using a relational representation language, and
extends distances and prototypes to more complex objects.

kLog can be considered as a logical language for feature generation, starting
from a relational learning problem, after which these features can be used in a
statistical learner. This explicit combination of relational with eager learning is
relatively rare. Traditional SRL systems such as Markov Logic or Bayesian Logic
Programs (Kersting and De Raedt, 2007) are related in that they implicitly
result in a graphical model for each instance representing a class of probability
distributions. Also generalizations of SVMs for relational structures and the
use of SVM-like loss functions in SRL have been explored (e.g., max-margin
Markov networks (Taskar et al., 2003)).

In order to construct a relational memory-based learner, the relational
information constructed with kLog, and MBL are combined, using the NSPDK
graph kernel as a relational distance measure. The similarities between the
instances are readily available from the kernel matrix (also known as the Gram
matrix), which is calculated by the graph kernel, and thus can be exploited
efficiently. A kernel κ can be easily transformed into a distance metric, using
dκ(x, y) =

√
κ(x, x)− 2κ(x, y) + κ(y, y). This will be referred to as kLog-MBL.

We both employed a regular kNN setup (Fix and Hodges, 1951), referred to as
kLog-MBL (NW), as well as a distance-weighted variant (Dudani, 1976), referred
to as kLog-MBL (W). In the latter, a neighbor that is close to an unclassified
observation is weighted more heavily than the evidence of another neighbor,
which is at a greater distance from the unclassified observation.

4.5.2 Dataset

As can be seen from Table 4.1, the data is unbalanced. This can lead to
different issues for machine learning algorithms (Van Hulse et al., 2007). For
memory-based learning, the majority class tends to have more examples in the
k-neighbor set, due to which a test document tends to be assigned the majority
class label at classification time. As a result, the majority class tends to have
high classification accuracy, in contrast to a low classification accuracy for the
minority class, which affects the total performance and partly obfuscates the
influence of the distance measure (Tan, 2005).

Since the goal is to show the influence of the relational representation and
distance measure, we want to reduce the influence of the imbalancedness of the
dataset. Several approaches have been proposed to deal with this (i.e., adjusting
misclassification costs, learning from the minority class, adjusting the weights
of the examples, etc.). One of the two most commonly used techniques to
deal with this problem is sampling (Chawla, 2005), where the training dataset
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is resized to compensate for the imbalancedness. We created a downsampled
version of the training set. This was done in terms of the negative examples
(the certain sentences), i.e., we sampled as many negative examples as there
are positive examples. We will refer to this dataset as TrainDS. The number of
sentences per class in this dataset is listed in Table 4.1.

4.5.3 Baseline and Benchmarks

The goal is to examine the behavior of a system that uses a relational,
graph-based representation to classify the sentence as a whole (i.e., using
the graphicalization process) and contrast it with lazy and eager learning
systems that do not use this extra step. For this reason, several baselines and
benchmarks are included in the result table (Table 4.3).

The first, simple baseline is a system that labels all sentences with the uncertain
class. This enables us to compare against a baseline where no information about
the observations is used.

The first group of benchmarks consists of systems that operate without relational
information. These systems typically use a two-step approach; first the
individual words in the sentence are classified, and then the target label for the
sentence is determined based on the number of tokens that are labeled as hedge
cues. This requires an extra parameter to threshold this number of individual
tokens from which the sentence label is derived (i.e., if more than X% of the
token-level instances are marked as being a hedge cue, the sentence is marked
as uncertain). To optimize this parameter, the training set was split in a
reduced training set and a validation set (70/30% split). The influence of this
parameter is discussed in more detail in Section 4.5.5.

The first of these systems is the Tilburg Memory-based Learner8 (TiMBL),
a software package implementing several memory-based learning algorithms,
among which IB1-IG, an implementation of k-nearest neighbor classification
with feature weighting suitable for symbolic feature spaces, and IGTree, a
decision-tree approximation of IB1-IG. We will use it in the same setup and
with the same feature set as Morante et al. (2010). They used 5% as the
percentage threshold for sentences, however, our optimization procedure yielded
better results with a 30% threshold. In the result table, these variants are
referred to as TiMBL (5%) and TiMBL (30%).

In order to parameterize TiMBL for the word classification, we used
paramsearch9 (van den Bosch, 2004), which is a wrapped progressive sampling
approach for algorithmic parameter optimization for TiMBL. The IB1 algorithm

8http://ilk.uvt.nl/timbl/
9http://ilk.uvt.nl/paramsearch/

http://ilk.uvt.nl/timbl/
http://ilk.uvt.nl/paramsearch/
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was chosen as optimal setting, which is the standard MBL algorithm in TiMBL.
To parameterize the algorithm, there is a choice of metrics that influence the
definition of similarity. The overlap metric was chosen as the best one for this
task, which assigns a weight to each feature, determining its relevance in solving
the task. The relevance weights are computed with gain ratio, and the number
of most similar memory patterns on which the output class is based was set to
5. Furthermore, the neighbors are not weighted as a function of their distance.
Note that since we use a different, balanced training corpus, the results reported
in Table 4.3 are not directly comparable with the results by Morante et al.
(2010).

As support vector machines10 are considered one of the most prominent methods
for NLP tasks today, they will be used here as a representative eager learning
method. In a first step the (non-graphicalized representation of the) data is
converted into binary feature vectors.11 Subsequently, the SVMs are optimized
in terms of the cost parameter C (and gamma in the case of the RBF kernel)
and feature normalization using a grid search with 10-fold cross-validation on
the reduced training set. Hereafter the percentage threshold is optimized on
the validation set. The SVM without relational information is referred to as
SVM in the result tables.

We contrasted these systems with a lazy and eager learning approach that use
the graph-based relational representation from kLog. For kLog-SVM, we used an
SVM as statistical learner at the end of the kLog workflow. kLog-SVM reports
the results when using the parameter settings as described in Section 4.4.2, for
which the cost parameter of the SVM was optimized using cross-validation on
the downsampled training set.

The second pair of relational systems uses memory-based learning. To this end,
the relational information constructed with kLog and memory-based learning
are combined, as discussed in Section 4.5.1. The value of k was optimized using
the reduced training and validation set as discussed above.

4.5.4 Performance

Table 4.3 contains the macro-averaged F1-scores of these seven systems. Looking
at the table, one may conclude that all systems perform better than the
uncertain baseline.

10We used the implementation available in scikit-learn (Pedregosa et al., 2011), which in
turn is based on libsvm (Chang and Lin, 2011).

11The exact implementation is available at http://www.cnts.ua.ac.be/~vincent/scripts/
binarize.py

http://www.cnts.ua.ac.be/~vincent/scripts/binarize.py
http://www.cnts.ua.ac.be/~vincent/scripts/binarize.py
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The systems are best compared in a pairwise manner. A first interesting obser-
vation is that the memory-based learners that use a relational representation
(i.e., kLog-MBL), perform better than those that use a propositional approach,
i.e., the TiMBL systems. The weighted and unweighted variants of kLog-MBL
score equally well.

Baseline TiMBL (5%) TiMBL (30%) SVM
Precision 11.59 65.65 69.45 73.03
Recall 50.00 67.83 76.76 79.00
F1-score 18.82 50.92 69.34 74.59

kLog-MBL (NW) kLog-MBL (W) kLog-SVM
Precision 73.02 73.02 75.37
Recall 75.24 75.24 73.99
F1-score 73.96 73.96 74.63

Table 4.3: General evaluation of the different systems on the CoNLL 2010-
Shared Task Wikipedia corpus with downsampled training set. All scores are
macro-averaged.

For the SVM setups, SVM and kLog-SVM score equally well. At first sight,
the relational representation does not appear to add much to the performance
of the learner. However, when comparing the relational approach on the full
(unbalanced) dataset to an SVM using the propositional representation, kLog-
SVM performs better (Table 4.4). Furthermore, when comparing the results of
the regular SVM on the balanced and full dataset, a decrease in performance
is observed, which is not present for the kLog-SVM setup. This indicates that
the relational representation increases the generalization power of the learner.
We also compared the kLog-SVM setup to the best scores obtained during the
CoNLL 2010-Shared Task, viz. Georgescul (2010), in which kLog-SVM is able
to slightly outperform the state-of-the-art system. This can be attributed to the
relational representation, which offers the possibility to model the sentence as a
whole and perform the classification in a single step (i.e., avoiding the need for
a two-step approach where first token-based classification is performed followed
by a thresholding step to obtain the sentence-level classification). We will
study this effect in more detail in the next section. In addition, the relational
representation is able to model the relations between the words in the sentence
explicitly. The graph kernel thus appears to provide a good way to translate
the context of the words in a sentence.



ADVANTAGE OF A RELATIONAL REPRESENTATION 83

Georgescul (2010) SVM kLog-SVM
Precision 79.29 81.59 77.27
Recall 72.80 68.96 74.16
F1-score 75.13 72.17 75.48

Table 4.4: Comparison of kLog-SVM with the state-of-the-art results and an
SVM using the propositional representation on the full dataset. All scores are
macro-averaged.

4.5.5 Level of Abstraction

The graph-based representation has the advantage that attributes on a higher
level, e.g., sentences, can be predicted on the basis of lower-level subgraphs, e.g.,
tokens. It furthermore enables the learner to take into account the relations
in the latter, e.g., the dependency tree. This leads to a one-step classification,
without the need for an additional thresholding parameter to go from the
lower-level classification (e.g., the classification of the individual tokens) to the
higher level (e.g., the sentences). The goal of this section is to show when
sentence-based systems are more fit for the task than token-based systems.

The baseline system predicts only one type of class label, namely the uncertain
class. The other systems label sentences with both labels and apart from the
observation that one system is more inclined to assign the certain label than
the other, the general scores are not of much help to get more fundamental
insights. For this reason, an extra dimension is introduced, namely sentence
length. It is an intuitive dimension and other dimensions, like the number of
uncertainty cues, are indirectly linked to the sentence length. Figure 4.5 shows
the evolution of the macro-averaged F1-score when the sentences to be labeled
contain more tokens. To create this figure, the sentences are distributed over 9
bins centered on multiples of 10. The last bin contains all larger sentences.

Figure 4.4 shows the fraction of the corpus that is included in each bin (solid
line) and the fraction of sentences in each bin that is labeled as uncertain
(dashed line). There are fewer long sentences, and long sentences tend to be
labeled as uncertain. As a sanity check, we can look at the behavior of the
baseline system in Figure 4.5. The observation of an increasing number of
uncertain sentences with increasing sentence length (Figure 4.4) is consistent
with the increasing F1-score for the baseline system in Figure 4.5.

A more interesting observation is the curve of TiMBL (5%), which quickly joins
the baseline curve in Figure 4.5. Although this system performs better than
the baseline system, it behaves like the baseline system for longer sentences.
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Figure 4.4: The fraction of sentences in the Wikipedia test corpus with a given
sentence length (solid line) and the proportion of uncertain sentences in each
bin (dashed line).

Figure 4.5: Macro-averaged F1-score as a function of sentence length, expressed
in number of tokens.

Because a large fraction of the sentences is short, this undesirable behavior is
not readily noticeable when examining the scores of Table 4.3. Optimizing the
threshold can be a solution to this problem. Changing the threshold influences
the chance of a sentence being labeled as uncertain depending on sentence
length. Increasing the threshold leads to a more unequal distribution of this
chances over sentence length. As a result, the behavior of the optimized TiMBL
system is more stable with varying sentence length (see TiMBL (30%)).

The token-based systems (SVM and TiMBL (30%)) behave very similarly after
optimization of the threshold. Indeed, the SVM and optimized TiMBL curves
follow more or less the same course; a course that is different from the other
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systems. This indicates that by using a two-step approach, the choice of the
classifier is of lesser importance. This behaviour is also noticeable for kLog-MBL
in the case of longer sentences, albeit to a more limited extent. However, when
contrasting the kLog-based systems, the curves of the kLog-SVM and kLog-MBL
systems diverge for longer sentences, indicating the importance of the classifier.

The importance of the threshold parameter for the propositional, two-step
approaches (TiMBL (5%), TiMBL (30%) and SVM ) may be an argument to
opt for relational systems. Indeed, the threshold is an extra parameter that
has to be learned during training, and it may introduce errors because of its
rigidity. It is the same fixed value for all sentences, and it weakens the, possibly
positive, influence of the classifier. The kLog-based systems do not require such
a threshold and are thus able to dynamically look for the best prediction on
sentence level using the dependencies between the separate tokens.

The claim that dynamically looking for the best prediction on sentence level
is better, is based on the observation that, in general, the kLog-based systems
perform better than their non-relational counterparts. For the dataset under
consideration, the SVM system does not perform differently in F1 than the
kLog-SVM system; but if we look at their behavior in Figure 4.5, we see that for
almost all sentence lengths kLog-SVM performs better. Furthermore, as shown
in Section 4.5.4, kLog-SVM generalizes better to the unbalanced version of the
dataset when compared to SVM, and also produces the most stable predictions
across all sentence lengths.

4.6 Conclusions

The increasing importance of relational information for current (semantic)
natural language processing tasks requires an appropriate representation to
encode this type of features. In this chapter, we studied the use of graph
kernel–based relational learning for hedge cue detection, a binary sentence
classification task. The graph-based feature construction approach of kLog
proves to be well-suited to represent contextual, relational information at the
sentence level. Furthermore, its declarative feature representation offers a flexible
and interpretable experimentation approach, which enables the introduction of
additional background knowledge.

Subsequently, we used the task of hedge cue detection to evaluate several types of
machine learning systems along two dimensions; the relational representation was
contrasted with propositional approaches for both lazy and eager learning. The
results show that relational representations are useful, especially for dealing with
sentences in which complex, long-distance dependencies amongst constituents
need to be captured. The relational representation also enables one-step
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classification, without the need for an additional thresholding parameter to go
from word-level to sentence-level predictions. As part of this investigation, a
novel lazy relational learning technique was proposed, which shows that the
relational feature construction approach of kLog can be used in both an eager
type of learner as well as in a memory-based learning setting.



Chapter 5

Sentence Classification with
Document Context

Motivated by the results from the previous chapter, where we showed that
a statistical relational learning approach using kLog is able to process the
contextual aspects of language improving on state-of-the-art results for hedge
cue detection, in this chapter we will expand the context to be taken into
account to the document level.

The task under consideration is the identification of evidence-based medicine
categories. Evidence-based medicine is an approach in which clinical decisions
are supported by the best available findings gained from scientific research.
This requires efficient access to such evidence. To this end, abstracts of
publications in evidence-based medicine can be labeled using a set of predefined
medical categories, the so-called PICO criteria. We will present an approach
to automatically annotate sentences in medical abstracts with these labels. As
indicated by Kim et al. (2011), both the structural information of the words in
the sentence, and that of the sentences in the document are important features
for this task. Furthermore, sequential information can leverage the dependencies
between different sentences in the text. To illustrate this, consider the following
two subsequent sentences:

Example 5.1. Subfoveal choroidal neovascular membranes (CNV) are a cause
of significant visual impairment. Laser treatment of such lesions results in visual
loss.

The sequence of the words in the sentence is important to determine that

87
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both sentences deal with the same subject, namely visual impairment. The
structure of the sentences helps to identify the relations between them, namely
that such lesions probably refers to the injury described in the first sentence,
namely subfoveal choroidal neovascular membranes. Furthermore, from the
used verbs, it may be clear that the first sentence describes a cause, whereas
the second states an effect. The combination of this contextual information
is an indication that both sentences have the same class label. In this case,
both sentences are describing background information on the performed medical
research. Integrating this information requires an adequate representation,
which motivates the use for a graph kernel–based relational learning approach.

In comparison to the hedge cue detection task, the automatic identification
of PICO categories adds two levels of complexity. First, besides the relations
between the words in the sentence, now also the relations between the sentences
in the document become important. In the proposed approach, we first generate
a feature space with kLog that captures the intrasentential properties and
relations. Hereafter, these features serve as input for a structured output
support vector machine that can handle sequence tagging (Tsochantaridis et al.,
2004), in order to take the intersentential features into account. Second, since
there are more than two categories, and each sentence can have multiple labels,
the problem is now a multiclass multilabel classification task.

The main contribution of this chapter is that we show that kLog’s relational
nature and its ability to declaratively specify and use background knowledge
is beneficial for natural language learning problems where document context
is important. This is shown on the NICTA-PIBOSO corpus, for which we
present results that indicate a clear improvement on a memory-based tagger.
Furthermore, to the best of our knowledge, our approach was the first to
outperform the results obtained by the system of Kim et al. (2011), the original
benchmark on this task, by integrating structural background knowledge as
distinguishing features.

This chapter starts with a discussion of the task, evidence-based medicine
category identification in Section 5.1. Subsequently, related work in this area is
discussed in Section 5.2. In Section 5.3, the method is outlined, after which it
is evaluated in Section 5.4. Finally, Section 5.5 concludes this chapter.

This chapter is based on

Mathias Verbeke, Vincent Van Asch, Roser Morante, Paolo Frasconi,
Walter Daelemans, and Luc De Raedt. A statistical relational
learning approach to identifying evidence based medicine categories. In
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning,
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Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP - CoNLL),
Jeju Island, Korea, 13-14 July 2012, pages 579–589. Association for
Computational Linguistics, 2012.

5.1 The Task: Evidence-based Medicine Category
Identification

Evidence-based medicine (EBM) or evidence-based practice (EBP) is an
approach to clinical problem-solving based on “systematically finding, appraising,
and using contemporaneous research findings as the basis for clinical
decisions” (Rosenberg and Donald, 1995). It combines clinical expertise,
the preferences and values of the patient and the best available evidence to
make good patient care decisions. To this end, clinical research findings are
systematically reviewed and appraised. The evidence-based process consists
of four steps: (1) Formulating a question based on a patient’s problem;
(2) Searching the literature for relevant clinical articles; (3) Evaluating the
evidence; and (4) Implementing useful findings in clinical practice.

Given the amounts of medical publications available in databases such as
PubMed, efficient access to such evidence is required. In order to facilitate the
search for scientific evidence in the literature, medical documents are labeled
using a set of predefined medical categories, the PICO criteria (Armstrong,
1999). The PICO concepts are: primary Problem (P) or population, main
Intervention (I), main intervention Comparison (C), and Outcome of intervention
(O). The PICO concepts help the medical practitioner determine what terms
are important in a query, and therefore offer him support in building the query
which is sent to the search repositories. Once the documents are found, they
need to be read by a person who eliminates the irrelevant ones.

The search process thus consists of matching a query, which is composed
according to the PICO criteria, with scientific evidence found in articles labeled
according to the same standard. Consequently, automating the annotation
of these research articles would give access to a larger amount of scientific
evidence, and could help doctors in their practice. This has initiated research
into automatic approaches to annotate sentences in medical documents with
the PICO labels. Efforts in this direction from the NLP community so far have
focused on corpus annotation (Demner-Fushman and Lin, 2007; Kim et al.,
2011), text categorization (Davis-Desmond and Mollá, 2012), and question-
anwering (Niu et al., 2003; Demner-Fushman and Lin, 2007). A corpus to train
EBM summarization systems was annotated by Mollá and Santiago-Martínez
(2011). The corpus contains documents from the “Clinical Inquiries” section
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of the Journal of Family Practice. For each question the corpus provides
information about the evidence-based answer and the answer justifications.

5.2 Related Work
The first attempt to classify sentences labeled with PICO concepts was presented
by Demner-Fushman and Lin (2007). They present a rule-based approach to
identify sentences where PICO concepts occur and a supervised approach to
classify sentences that contain an Outcome. The features used by this classifier
are n-grams, position, and semantic information from the parser used to process
the data. The system is trained on 275 manually annotated abstracts. The
reported accuracies range from 80% for Population, 86% for Problem, 80% for
Intervention, and up to 95% for Outcome. The output of their classification
system is used in a relevance-scoring algorithm for MEDLINE citations.

Kim et al. (2011) perform a similar classification task in two steps. First a
classifier identifies the sentences that contain PICO concepts. Subsequently,
another classifier assigns PICO tags to the sentences found to be relevant by the
previous classifier. The system is based on a Conditional Random Fields (CRF)
algorithm and is trained on the NICTA-PIBOSO corpus. This dataset contains
1,000 medical abstracts that were manually annotated with an extension of the
PICO tagset, for which the definitions are listed in Table 5.1. The annotation is
performed at sentence level and one sentence may have more than one tag. An
example of an annotated abstract from the corpus can be found in Appendix A.
The features used by the algorithm include features derived from the context,
semantic relations, structure and sequencing of the text. The system is evaluated
for 5-way and 6-way classification and results are provided apart for structured
and unstructured abstracts. The F-score for structured abstracts is 89.32% for
5-way classification and 80.88% for 6-way classification, whereas for unstructured
abstracts it is 71.54% for 5-way classification and 64.66% for 6-way classification.

Chung (2009) also uses a CRF to classify sentences labeled with PICO concepts
by combining them with general categories associated with rhetorical roles: Aim,
Method, Results and Conclusion. Her system is tested on corpora of abstracts
of randomized control trials. First, structured abstracts with headings labeled
with PICO concepts are used. A sentence-level classification task is performed,
which assigns only one rhetorical role per sentence. The F-scores obtained
range from 93% to 98%. Subsequently another sentence-level classification
task is performed to automatically assign the labels Intervention, Participant
and Outcome Measures to sentences in unstructured and structured abstracts
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Background Material that informs and may place the current study in
perspective, e.g., work that preceded the current; information
about disease prevalence; etc.

Population The group of individual persons, objects or items comprising
the study’s sample, or from which the sample was taken for
statistical measurement.

Intervention The act of interfering with a condition to modify it or with a
process to change its course (includes prevention).

Outcome The sentence(s) that best summarizes the consequences of an
intervention.

Study
Design

The type of study that is described in the abstract.

Other Any sentence not falling into one of the other categories and
presumed to provide little help with clinical decision making,
i.e., non-key or irrelevant sentences.

Table 5.1: Definitions of the semantic tags used as annotation categories (taken
from Kim et al., 2011).

without headings. F-scores of up to 83% and 84% are obtained for Intervention
and Outcome Measure sentences.

Other work aimed at identifying rhetorical zones in biomedical articles. In this
case, areas of text are classified in terms of the rhetorical categories Introduction,
Methods, Results and Discussion (IMRAD) (Agarwal and Yu, 2009) or richer
categories, such as problem-setting or insight (Mizuta et al., 2006).

Shortly after our approach was published, the evidence-based medicine category
identification problem became the topic of the ALTA 2012-Shared Task (Amini
et al., 2012), illustrating the importance of the research problem. The organizers
propose both a naive baseline and a benchmark system. The baseline relies on
the most frequent label occurring in the training data, given the position of
the sentence. The benchmark is based on the approach of Kim et al. (2011),
but uses a different feature set. The individual words and their part-of-speech
tags are used as lexical features. The structural features are largely similar to
the ones we used for the structural abstracts (see Section 5.3.2). In addition to
the position of the sentences in the document, for structured abstracts, each
sentence is labeled with the rhetorical heading preceding it. Whereas here this
labeling needs to be done as a preprocessing step, our approach allows one to
declaratively specify these features (see Section 5.3.2).

Two of the top-performing systems use a two-layered architecture, in which the
first step is used for feature learning. The system of Lui (2012) uses a stacked
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logistic regression classifier with a variety of feature sets. The algorithm learns
the importance of each feature set by generating a distribution over the class
labels for each training instance. Subsequently, these vectors are concatenated,
after which the full feature vectors serve as input for another logistic regression
classifier. The test data are then projected into this stacked vector space, in
order to be classified. Mollá (2012) presents an approach using cluster-based
features. In a first step, a collection of multiple binary classifiers (one per target
label) is trained to label the sentences with a set of types. Subsequently, these
types are used to cluster the documents based on the distribution of the sentence
types. The resulting clusters and some additional features are used to train the
final classifiers. Sarker et al. (2013) divide the multi-class classification problem
into different binary ones. An SVM using a customized feature set per class
label is learned. As the benchmark system provided by the organizers, Gella
and Long (2012) present a CRF-based system, but improved it with feature
selection and bootstrapping.

Hassanzadeh et al. (2014) propose a combination of different kinds of features
and compare different classification methods on this feature space. They
combine token-level and sentence-level features in a propositional feature vector
that captures both positional as well as sequential information. Furthermore,
statistical features under the form of sentence-wide token statistics and inferred
sequential features derived from the co-occurrence of similar types of sentences
are added. This feature space is tested with four classification methods, namely
CRF, SVM, Naive Bayes and Multinomial Logistic Regression, for which the
CRF obtains the best results.

Both the top-performing systems of the ALTA 2012-Shared Task and the
system of Hassanzadeh et al. (2014) to a certain extent use document-level
information. The main difference is that our relational approach allows one to
represent all features in a single representation, as indicated in the previous
chapter. Furthermore, its declarative nature enables flexible experimentation
and interpretable features.

5.3 Method
In the previous chapter, we studied the use of graph kernel–based relational
learning for sentence classification using sentence context, which was illustrated
using the hedge cue detection task. We showed that the relational representation
of the domain is able to take the contextual aspects of language into account.
Whereas there we only used the relations at the sentence level, the identification
of PICO categories in abstracts also requires one to take into account various
relations between the sentences of an abstract. Furthermore, the sentences
may have multiple labels, which turns this into a structured output task where
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Figure 5.1: E/R diagram of the sentence identification task.

the output is a sequence of sets of labels attached to the sentences in a given
document.

5.3.1 Data Modeling

The E/R model for the problem under consideration is shown in Figure 5.1; it
provides an abstract representation of the examples, i.e., medical abstracts. As
for the hedge cue detection task, this abstract representation can be unrolled
for each example, resulting in a graph; cf. Figure 5.2 for an example document.
This relational database representation will serve as the input for kLog.

In this case, the entities are the words and sentences in the abstract. Each
entity again has a number of properties attached to it, depicted by the ovals,
and a primary key which serves as a unique identifier (underlined properties).
As in database theory, each entity corresponds to a tuple in the database.
Listing 5.1 shows an example of a partial interpretation z. For example,
w(w4_1,‘Surgical’,‘Surgical’,b-np,jj,‘O’,‘O’) specifies a word entity,
with w4_1 as identifier and the other arguments as properties. We take the
token string itself, its lemma, the part-of-speech tag and the chunk tag into
account as lexical information. We also include some semantic information,
namely two binary values indicating whether the word is a (biological) named
entity (NEGenia and NEUMLS). The atom sentence(s4,4) represents a sentence
entity, with its index in the abstract as a property.

Furthermore, the E/R diagram also contains a number of relations represented
by the diamonds. An example relation is nextW(w4_2,w4_1), which (as was
the case for the hedge cue detection task) indicates the sequence of the words
in the sentence. The atom dh(w4_1,w4_2,nmod) specifies that word w4_1 is a
noun modifier of word w4_2, and thus serves to incorporate the dependency
relationships between the words. The atom hasCategory(s4,‘background’)
signifies that sentence s4 is a sentence describing background information. This
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1 sentence (s4 ,4).
2 hasCategory (s4 ,‘ background ’).
3 w(w4_1 ,‘Surgical ’,‘Surgical ’,b-np ,jj ,‘O’,‘O ’).
4 hasWord (s4 ,w4_1).
5 dh(w4_1 ,w4_2 ,nmod).
6 nextW (w4_2 ,w4_1).
7 w(w4_2 ,‘excision ’,‘excision ’,i-np ,nn ,‘O’,‘O ’).
8 hasWord (s4 ,w4_2).
9 dh(w4_2 ,w4_5 ,sub).

10 nextW (w4_3 ,w4_2).
11 w(w4_3 ,‘of ’,‘of ’,b-pp ,in ,‘O’,‘O ’).
12 hasWord (s4 ,w4_3).
13 dh(w4_3 ,w4_2 ,nmod).
14 nextW (w4_4 ,w4_3).
15 w(w4_4 ,‘CNV ’,‘CNV ’,b-np ,nn ,‘B-protein ’,‘O ’).
16 hasWord (s4 ,w4_4).
17 dh(w4_4 ,w4_3 ,pmod).
18 nextW (w4_5 ,w4_4).
19 ...

Listing 5.1: Part of an example interpretation z, representing the example
sentence in Figure 5.2.

relation is the target relation that we want to predict for this task. It will not
be taken into account as a feature, but is listed in the database and only used
during the training of the model.

In the third step, the interpretations are graphicalized. An example illustrating
this process is given in Figure 5.2.1 The obtained graphs can then be used in
the next step for feature generation, by means of the NSPDK graph kernel. The
result of this graphicalization and feature generation process is an extended,
high-dimensional feature space, which serves as input for a statistical learner in
the next step.

5.3.2 Background Knowledge

As for the hedge cue detection task, we can again introduce additional
background knowledge by means of declarative feature construction using
intensional signatures. This will prove very helpful for the task under
consideration. We make a distinction between the features used for structured
and unstructured abstracts.

1Note that for the ease of representation, we only show the words with their respective
entities. However, their properties (e.g., the lemma, part-of-speech tag, etc.) are also taken
into account during graphicalization.
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Figure 5.2: Graphicalization Gz of interpretation z.

For structured abstracts, two intensional relations were defined. The relation
lemmaRoot(S,L) is specified as:

1 lemmaRoot (S,L) ←
2 hasWord (S,I),
3 w(I,_,L,_,_,_,_),
4 dh(I,_,root).

For each sentence, it selects the lemmas of the root word in the dependency
tree. The following relation tries to capture the document structure imposed
by the section headers present in the structured abstracts. First, the helper
predicate hasHeaderWord(S,X) identifies whether a sentence is a header of a
section. In order to realize this, it selects the words of a sentence that contain
more than four characters (to discard short names of biological entities), which
all need to be uppercase.2

1 hasHeaderWord (S,X) ←
2 w(W,X,_,_,_,_,_),
3 hasWord (S,W),
4 (atom(X) -> name(X,C) ; C = X),
5 length (C,Len),
6 Len > 4,
7 all_upper (C).

2Based on the regular expression for identifying section headers in MEDLINE abstracts
from (Hirohata et al., 2008).
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Subsequently, all sentences below a certain section header are marked
as belonging to this section, which is done by the intensional relation
hasSectionHeader(S,X).

1 hasSectionHeader (S,X) ←
2 nextS (S1 ,S),
3 hasHeaderWord (S1 ,X).
4 hasSectionHeader (S,X) ←
5 nextS (S1 ,S),
6 not isHeaderSentence (S),
7 once( hasSectionHeader (S1 ,X)).

Since the unstructured abstracts lack section headers, other features are needed
to distinguish between the different sections. The lemmaPOSRoot relation is
similar to the lemmaRoot relation which was used for structured abstracts, but,
in addition to the lemma, also takes the part-of-speech tag of the root word
into account.

1 lemmaPOSRoot (S,L,P) ←
2 hasWord (S,I),
3 w(I,_,L,_,P,_,_),
4 dh(I,_,root).
5 prevLemmaRoot (S,L) ←
6 nextS (S1 ,S),
7 lemmaRoot (S1 ,L,_).

To illustrate the importance of the part-of-speech tag of the root word, consider
the following example sentence:

Example 5.2. There were no significant changes in the hormone levels in the
SCI subjects throughout the experiment.

In this sentence, the root word were has VBD as its part-of-speech tag, indicating
a verb in the past tense. Taking this into account as a feature during learning
increases the similarity of this sentence with sentences that also express a past
event. In this case, the use of the past tense can be an indication of a sentence
describing the outcome of a performed medical experiment, which is the class
label of the example sentence. Also the relation prevLemmaRoot proves to be
very informative. It adds the lemma of the root word in the previous sentence
as a property to the current sentence under consideration.

5.3.3 Learning

The constructed feature space contains one feature vector per sentence. This
implies that the sequence information of the sentences at the document level is
not taken into account yet. Since the order of the sentences in the abstract is a
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valuable feature for this prediction problem, a learner that reflects this in the
learning process is needed. Therefore we opted for SVM-HMM3 (Tsochantaridis
et al., 2004), which is an implementation of structural support vector machines
for sequence tagging (as discussed in Section 2.1.2). In contrast to a conventional
Hidden Markov Model, SVM-HMM is able to use these entire feature vectors
as observations, and not just atomic tokens.

In our case, the instances to be tagged are formed by the sentences for which
feature vectors were created in the previous step. The qid is a special feature
that is used in the structured SVM to restrict the generation of constraints.
Since every document needs to be represented as a sequence of sentences, in
SVM-HMM, the qid’s are used to obtain the document structure. The order
of the HMM was set to 2, which means that the two previous sentences were
considered for collective classification.

5.4 Evaluation
We evaluate the performance of kLog against a baseline system and a memory-
based tagger (Daelemans and van den Bosch, 2009). The results are also
compared against those from Kim et al. (2011), which is the original benchmark
system for this task.

5.4.1 Datasets

We perform our experiments on the NICTA-PIBOSO dataset from Kim et al.
(2011) (kindly provided by the authors). It contains 1,000 abstracts of which 500
were retrieved from MEDLINE by querying for diverse aspects in the domains
of traumatic brain injury and spinal cord injury. The dataset consists of two
types of abstracts. If the abstract contains section headings (e.g. Background,
Methodology, Results, etc.), it is considered to be structured. This information
can be used as background knowledge in the model. The other abstracts are
regarded as unstructured. To diversify the corpus, the remaining 500 abstracts
were randomly sampled from a set of queries covering different medical issues.

The definitions of the semantic tags used as annotation categories are a variation
on the PICO tag set, with the addition of two additional categories (see Table
5.1 in Section 5.2). Each sentence can be annotated with multiple classes. This
renders the task a multiclass multilabel classification problem. The statistics
on this dataset can be found in Table 5.2.

In order to apply the same evaluation setting as Kim et al. (2011), we also
tested our method on the external dataset of Demner-Fushman et al. (2006).

3http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html

http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html
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All S U
Nb. Abstracts 1000 376 624
Nb. Sentences 10379 4774 5605
- Background 2557 669 1888
- Intervention 690 313 377
- Outcome 4523 2240 2283
- Population 812 369 443
- Study Design 233 149 84
- Other 1564 1034 530

Table 5.2: Number of abstracts and sentences for structured (S) and unstructured
(U) abstract sets, including the number of sentences per class (taken from Kim
et al., 2011).

It consists of 100 abstracts, of which 51 are structured. Because the semantic
tag set used for annotation slightly differs from the one presented in Table 5.1,
and to make our results comparable, we use the same mapping as used by Kim
et al. (2011).

Preprocessing

The sentences were preprocessed with a named entity tagger and a dependency
parser.

Named entity tagging was performed with the BiogaphTA named entity module,
which matches token sequences with entries in the UMLS database.4 UMLS
integrates over 2 million names for some 900,000 concepts from more than 60
families of biomedical vocabularies (Bodenreider, 2004). The tagger matches
sequences with a length of a maximum of 4 tokens. This covers 66.2% of the
UMLS entries. With UMLS, different token sequences referring to the same
concept can be mapped to the same concept identifier (CID). The BiographTA
named entity tagger was evaluated on the BioInfer corpus (Pyysalo et al., 2007)
obtaining a 72.02% F1 score.

Dependency parsing was performed with the GENIA dependency parser GDep
(Sagae and Tsujii, 2007), which uses a best-first probabilistic shift-reduce
algorithm based on the LR algorithm (Knuth, 1965) extended by the pseudo-
projective parsing technique. This parser is a version of the KSDep dependency
parser trained on the GENIA Treebank for parsing biomedical text. KSDep was
evaluated in the CoNLL 2007-Shared Task5 obtaining a Labeled Attachment

4From UMLS, only the MRCONSO.RRF and MRSTY.RRF files are used.
5More information can be found on the website of the CoNLL 2007-Shared Task http:

//nextens.uvt.nl/depparse-wiki/SharedTaskWebsite.

http://nextens.uvt.nl/depparse-wiki/SharedTaskWebsite
http://nextens.uvt.nl/depparse-wiki/SharedTaskWebsite


EVALUATION 99

Score of 89.01% for the English dataset. GDEP outputs the lemmas, chunks,
Genia named entities and dependency relations of the tokens in a sentence.

5.4.2 Baseline and Benchmarks

We compare the kLog system to three other systems: a baseline system, a
memory-based system, and the scores reported by Kim et al. (2011).

The memory-based system that we use is based on the memory-based tagger
MBT6 (Daelemans and van den Bosch, 2009). This machine learner is originally
designed for part-of-speech tagging. It processes data on a sentence basis by
carrying out sequential tagging, viz. the class label or other features from
previously tagged tokens can be used when classifying a new token. In our
setup, the sentences of an abstract are taken as the processing unit and the
collection of all sentences in an abstract is taken as one sequence.

The features that are used to label a sentence are the class labels of the four
previous sentences, the ambitags7 of the following two sentences, the lemma of
the dependency root of the sentence, the position of the sentence in the abstract,
the lemma of the root of the previous sentence, and section information. For
each root lemma, all possible class labels, as observed in the training data, are
concatenated into one ambitag. These tags are stored in a list. An ambitag for
a sentence is retrieved by looking up the root lemma in this list. The position
of the sentence is expressed by a number. Section information is obtained by
looking for a previous sentence that consists of only one token in uppercase.
Finally, basic lemmatization is carried out by removing the trailing S from the
identified section headers. All other settings of MBT are the default settings,
and to prevent overfitting, no feature optimization nor feature selection was
carried out.

When a class label contains multiple labels, for example population and study
design, these labels are concatenated in an alphabetically sorted manner. This
method reduces the multilabel problem to a problem with many different labels,
i.e., the label powerset method of Tsoumakas et al. (2010).

The baseline system is exactly the same as the memory-based system except
that no machine learner is included. The most frequent class label in the
training data, i.e., Outcome, is assigned to each instance. The memory-based
system enables us to compare kLog against a basic machine learning approach,
using few features. The majority baseline system enables us to compare the

6http://ilk.uvt.nl/mbt [16 March 2012]
7An ambitag is a symbolic label defining for a word which different tags it can have

according to the corpus (Daelemans et al., 2010).

http://ilk.uvt.nl/mbt
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memory-based system and kLog against a baseline in which no information
about the observations is used.

Note that, although the systems participating in the ALTA 2012-Shared Task
were also evaluated on the NICTA-PIBOSO corpus, a direct comparison is not
possible, since in the ALTA evaluation a fixed train-test split was used, whereas
we performed cross-validation on the full dataset. Furthermore, for the shared
task, the abstracts were not separated based on their structure but were left
interspersed in both the training and test set, and AUC was chosen as the main
evaluation metric.

5.4.3 Parametrization

The kLog hyperparameters, namely the distance d and radius r, influence
the amount of sentence context that is taken into account during learning.
This requires a deliberate choice during parametrization. From a linguistic
perspective, the use of unigrams is justifiable, since most phrases that contain
clues on the structure of the abstract (e.g. evaluation, methodolody) can be
expressed with single words. This is reflected by a distance and radius both set
to 1. This also enables us to capture the relational information attached to the
word in focus, i.e., the current kernel point. This is confirmed by cross-validation
for the hyperparameters. Besides the word entities w, also the sentence entities
and the respective intensional relations for both structured and unstructured
abstracts are selected as kernel points. The additional contextual information
at the sentence level is thus taken into account as well, when generating the
extended high-dimensional feature vectors for the interpretations by means of
the graph kernel.

At this point, only the sequence information at word level is taken into account
by kLog. Since we use a sequence labeling approach as statistical learner, i.e.,
SVM-HMM, at the level of the abstract this information is however implicitly
taken into account during learning. For SVM-HMM, the cost parameter C,
which regulates the trade-off between the slack and the magnitude of the weight-
vector, and ε, that specifies the precision to which constraints are required to
be satisfied by the solution, were optimized by means of cross-validation. For
the other parameters, the default values8 were used.

5.4.4 Results

Experiments are run on structured and unstructured abstracts separately. On
the NICTA-PIBOSO corpus, we performed 10-fold cross-validation. Over all
folds, all labels, i.e., the parts of the multilabels, are compared in a binary

8As indicated in Section 5.3.3, we used the implementation of Thorsten Joachims.
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CV/6-way MBT Kim et al. kLog
Label S U S U S U
Background 71.00 61.30 81.84 68.46 86.19 76.90
Intervention 24.30 6.40 20.25 12.68 26.05 16.14
Outcome 87.90 70.40 92.32 72.94 92.99 77.69
Population 50.60 15.90 56.25 39.80 35.62 21.58
Study Design 45.90 13.10 43.95 4.40 45.50 6.67
Other 86.10 20.90 69.98 24.28 87.98 24.42

Table 5.3: F1-scores per class for structured (S) and unstructured (U) abstracts.

Baseline MBT kLog
Method S U S U S U
CV/6-way 43.90 41.87 80.56 57.47 84.29 67.14
CV/5-way 61.79 46.66 86.96 64.37 87.67 72.95
Ext/5-way 66.18 6.76 36.34 11.56 20.50 14.00
Ext/4-way 30.11 27.23 67.29 55.96 50.40 50.50

Table 5.4: Micro-averaged F1-scores obtained for structured (S) and
unstructured (U) abstracts, both for 10-fold cross-validation (CV) and on
the external corpus (Ext).

way between gold standard and prediction. Summing all true positives, false
positives, true negatives, and false negatives over all folds leads to micro-averaged
F-scores. This was done for two different settings. In one setting, CV/6-way,
we combined the labeling of the sentences with the identification of irrelevant
information, by adding the Other label as an extra class in the classification.
The results are listed in Table 5.3.

For this setting, kLog is able to outperform both MBT and the system of Kim
et al. (2011), for both structured and unstructured abstracts on all classes
except Population. From Table 5.4, where the micro-averaged F1-scores over
all classes and for all settings are listed9, it can be observed that kLog performs
up to 3.73% better than MBT over structured abstracts, and 9.67% better over
unstructured ones.

Although to a lesser extent for the structured abstracts, the same pattern can
be observed for the CV/5-way setting, where we tried to classify the relevant

9Note that the results for Kim et al. (2011) are not listed in this table, as we did not have
the individual contingency tables available to calculate the micro-averaged F1-scores for this
setting.
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CV/5-way MBT Kim et al. kLog
Label S U S U S U
Background 87.10 64.90 87.92 70.67 91.45 80.06
Intervention 48.00 6.90 48.08 21.39 45.58 22.65
Outcome 95.80 75.90 96.03 80.51 96.21 83.04
Population 70.90 21.40 63.88 43.15 63.96 23.32
Study Design 50.00 7.40 47.44 8.60 48.08 4.50

Table 5.5: F1-scores per class for 5-way classification over structured (S) and
unstructured (U) abstracts.

MBT Kim et al. kLog
Label S U S U S U

Ext/5-way
Background 58.90 15.70 56.18 15.67 58.30 29.10
Intervention 21.50 13.80 15.38 28.57 40.00 34.30
Outcome 29.30 17.80 81.34 60.45 27.80 24.10
Population 10.70 17.80 35.62 28.07 5.60 28.60
Other 40.70 3.50 46.32 15.77 11.40 8.50

Ext/4-way
Background 90.40 67.50 77.27 37.50 65.00 68.60
Intervention 29.00 23.10 28.17 8.33 28.10 32.30
Outcome 74.10 74.60 90.50 78.77 72.40 72.70
Population 48.70 23.80 42.86 28.57 11.80 15.40

Table 5.6: F1-scores per class for 5-way and 4-way classification over structured
(S) and unstructured (U) abstracts on the external corpus.

sentences only, without considering the irrelevant ones. The per-class results
for this setting are shown in Table 5.5.

For the external corpus, the results are listed in Table 5.6. Although kLog
performs comparably for the individual classes Background and Intervention,
its overall performance is worse on the structured abstracts. In case of the
unstructured abstracts, kLog performs better on the majority of the individual
classes and in overall performance for the 5-way setting, and comparable for
the 4-way setting.

As a general observation, it is important to note that there is a high variability
between the different labels. Due to kLog’s ability to take the structured
input into account, we assume a correlation between the structure of sentences
with a particular label and the prediction quality. An extensive error analysis
could allow one to detect patterns which may give rise to additional declarative
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background knowledge to incorporate into the model.

The follow-up approach by Hassanzadeh et al. (2014) reports improved results
on the NICTA-PIBOSA dataset. However, this requires a two-step approach, in
which an increased feature space is used and the rhetorical structure first needs
to be preprocessed and encoded propositionally, in contrast to our dynamic
declarative approach. To the best of our knowledge, no improvements on the
dataset by Demner-Fushman et al. (2006) have been reported so far.

5.5 Conclusions
In this chapter, we presented a graph kernel–based relational learning approach
for the automatic identification of PICO categories in medical abstracts. To
this end, the sentence-level approach from the previous chapter was extended to
the document level. As there are more than two class labels and each sentence
can be labeled with more than one label, also the learning setting was upgraded
from a binary to a multiclass-multilabel classification task.

Besides the relational representation, also two other properties of kLog
proved particularly helpful. Declarative feature construction via intensional
signatures enabled to exploit additional structural regularities and improve
the generalization power of the learner. Furthermore, in contrast to other
SRL systems, the relational high-dimensional feature space generated by kLog
can be used as input for any statistical learner. Since this task can be cast
as a sequence labeling problem, an SVM-HMM was used which enabled to
take into account the sequence relation between the sentences using their
relational representation as observations. On the majority of the class labels,
kLog is able to perform comparably to or better than a memory-based tagger
and the original benchmark system on this task by Kim et al. (2011). This
can be attributed to the combination of kLog’s aforementioned distinguishing
characteristics, namely the ability to include additional document context via
declarative feature construction, and the use of the relational representation as
input to a specialized statistical learner, which made it possible to exploit the
sequence relation between the sentences.





Chapter 6

kLogNLP

In the previous chapters we have shown that the graph kernel–based relational
learning approach of kLog has already been successful in solving a number
of natural language processing tasks. The success of the approach can be
attributed to kLog’s distinguishing characteristics. First, it is able to transform
relational representations into graph-based ones, which allows one to incorporate
structural features into the learning process. Subsequently, kernel methods are
used to work in an extended high-dimensional feature space, which is much
richer than most of the direct propositionalisation approaches. Second, it uses
the logic programming language Prolog for defining (additional) background
knowledge, which renders the model very interpretable and offers a flexible
experimentation environment. Finally, in contrast to other SRL systems, the
relational high-dimensional feature space generated by kLog can be used as
input for any statistical learner.

These properties prove especially advantageous in the case of NLP. The graphical
approach of kLog is able to exploit the full relational representation that is
often a natural way to express language structures, and in this way enables the
learner to fully exploit contextual features. On top of this relational learning
approach, the declarative feature specification allows one to include additional
background knowledge, which is often essential for solving NLP problems.

In this chapter, we will present kLogNLP, a natural language processing module
for kLog. This module enriches kLog with NLP-specific preprocessors, enabling
the use of existing libraries and toolkits within an elegant and powerful
declarative machine learning framework. Starting from a dataset and a
declaratively specified E/R model of the domain, it transforms the dataset
into a graph-based relational format. We propose a general model that fits most
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Figure 6.1: General kLog workflow extended with the kLogNLP module

NLP tasks, which can be extended by specifying additional relational features
in a declarative way. The resulting relational representation then serves as input
for kLog, and thus results in a full relational learning pipeline for NLP.

kLogNLP is most related to Learning-Based Java (LBJ) (Rizzolo and Roth,
2010) in that it offers a declarative pipeline for modeling and learning NLP tasks.
The aims are similar, namely abstracting away the technical details from the
programmer, and leaving him to reason about the modeling. LBJ focuses on the
learning side, by the specification of constraints on features which are reconciled
at inference time, using the constrained conditional model framework. Due
to its embedding in kLog, kLogNLP focuses more on the relational modeling,
in addition to declarative feature construction and feature generation using
graph kernels. kLog in itself is related to several other frameworks for relational
learning, of which a detailed discussion can be found in (Frasconi et al., 2014).

This chapter is structured according to the kLogNLP workflow depicted in
Figure 6.1, which is an extension of the general kLog workflow as discussed
in Section 2.2.3. We will discuss the two parts that differ from the original
workflow, namely the data modeling in Section 6.1, and the extensional feature
extraction in Section 6.2. Section 6.3 concludes this chapter.

This chapter is based on

Mathias Verbeke, Paolo Frasconi, Kurt De Grave, Fabrizio Costa, and Luc
De Raedt. kLogNLP: Graph kernel-based relational learning of natural
language. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, Annual Meeting of the
Association for Computational Lingusitics (ACL), Baltimore, Maryland,
USA, 22-27 June 2014, pages 85–90. Association for Computational
Linguistics, 2014.
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Figure 6.2: Entity-relationship diagram of the kLogNLP model

6.1 Data Modeling: the kLogNLP Model
As kLogNLP is an extension of kLog, it learns from interpretations. In the
NLP setting, an interpretation most commonly corresponds to a sentence or a
document. The scope of an interpretation is either determined by the task (e.g.,
for document classification, each interpretation will at least need to comprise a
single document), or by the amount of context that is taken into account (e.g.,
in case the task is sentence classification, the interpretation can either be a
single sentence or a full document, depending on the scope of the context).

Since in NLP, most tasks are situated at either the document, sentence, or
token level, we propose the E/R model in Figure 6.2 as a general domain
model suitable for most settings. It is a generalization of the models used for
the hedge cue detection task (Chapter 4) and the evidence-based medicine
identification problem (Chapter 5), and is able to represent interpretations of
documents as a sequence (nextS) of sentence entities, which are composed
of a sequence (nextW) of word entities. Besides the sequence relations, the
dependency relations between words (depRel) are taken into account, where
each relation has its type (depType) as a property. Furthermore, possible
synonymy relations (synonymous) are taken into account. Since both single
words and phrases can be coreferent with one another, the corefPhrase entity
is introduced to model coreference relations. It represents a word or phrase that
participates in a coreference relation (coref) with another word or phrase.

The entities in our model also have a primary key, namely wordID, sentID,
and corefID for words, sentences and phrases participating in a coreference
relation respectively. Additional properties can be attached to words such as
the wordString, its lemma, POS-tag, and namedEntity type.

The E/R model of Figure 6.2 is coded declaratively in kLog as shown in
Listing 6.1. As discussed in Section 2.2.3, each signature is of a certain type;
either extensional or intensional. kLogNLP only acts at the extensional
level.
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1 begin_domain .
2

3 signature sentence ( sent_id :: self):: extensional .
4

5 signature nextS ( sent_1 :: sentence , sent_2 :: sentence ):: extensional .
6

7 signature word( word_id :: self ,
8 word_string :: property ,
9 lemma :: property ,

10 postag :: property ,
11 namedEntity :: property
12 ):: extensional .
13

14 signature nextW ( word_1 :: word , word_2 :: word):: extensional .
15

16 signature corefPhrase ( coref_id :: self):: extensional .
17

18 signature isPartOfCorefPhrase ( coref_phrase :: corefPhrase , word ::
word):: extensional .

19

20 signature coref ( coref_phrase_1 :: corefPhrase , coref_phrase_2 ::
corefPhrase ):: extensional .

21

22 signature synonymous ( word_1 :: word , word_2 :: word):: extensional .
23

24 signature dependency ( word_1 :: word ,
25 word_2 :: word ,
26 dep_rel :: property
27 ):: extensional .
28

29 kernel_points ([ word ]).
30

31 end_domain .

Listing 6.1: Declarative representation of the kLogNLP model

6.2 Extensional Feature Extraction
As discussed before, kLog assumes a closed world, which means that atoms that
are not known to be true, are assumed to be false. For extensional signatures,
this entails that all ground atoms need to be listed explicitly in the relational
database of interpretations. These atoms are generated automatically by the
kLogNLP module based on the kLog script and the input dataset. Considering
the defined attributes and relations in the model presented in Listing 6.1, the
module interfaces with NLP toolkits to preprocess the data to the relational
format of kLog. The user can remove unnecessary extensional signatures or
modify the number of attributes given in the standard kLogNLP script as given
in Listing 6.1 according to the needs of the task under consideration.
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An important choice is the inclusion of the sentence signature. By inclusion,
the granularity of the interpretation is set to the document level, which implies
that more context can be taken into account. By excluding this signature, the
granularity of the interpretation is set to the sentence level. Also note that the
model follows the basic principles of entity-relationship modeling; the removal
of an entity that appears as an argument type in other relations, also causes
these relations to be removed (e.g., removal of the sentence signature also
invalidates the nextS signature, as it has arguments of type sentence).

Currently, kLogNLP interfaces with the following NLP toolkits:

NLTK The Python Natural Language Toolkit (NLTK)1 (Bird et al., 2009)
offers a suite of text processing libraries for tokenization, stemming,
tagging and parsing, and offers an interface to WordNet.

Stanford CoreNLP Stanford CoreNLP2 provides part-of-speech tagging,
named entity recognition, parsing and coreference resolution functionality.

Listing 6.2 illustrates the declarative specification of a learning task in kLogNLP,
in this case a classification task with 5-fold cross-validation. The preprocessing
toolkit to be used can be set using the kLogNLP flags mechanism, as illustrated
by line 3. Subsequently, the dataset predicate (illustrated in line 4) calls
kLogNLP to preprocess a given dataset.3 This is done according to the specified
kLogNLP model, i.e., the necessary preprocessing modules to be called in the
preprocessing toolkit are determined based on the presence of the entities,
relationships, and their attributes in the kLogNLP script. For example, the
presence of namedEntity as a property of word results in the addition of a named
entity recognizer during preprocessing. The resulting set of interpretations is
output to a given file. In case several instantiations of a preprocessing module
are available in the toolkit, the preferred one can be chosen by setting the
name of the property accordingly. The names as given in Listing 6.1 outline the
standard settings for each module. For instance, in case the Snowball stemmer is
preferred above the standard (Wordnet) lemmatizer in NLTK, it can be selected
by changing lemma into snowball as name for the word lemma property (line 9
of Listing 6.1).

Optionally, additional extensional signatures can easily be added to the
knowledge base by the user, as deemed suitable for the task under consideration.
At each level of granularity (document, sentence, or word level), the user is
given the corresponding interpretation and entity IDs, with which additional

1http://www.nltk.org/
2http://nlp.stanford.edu/software/corenlp.shtml
3Currently supported dataset formats are directories consisting of (one or more) plain text

files or XML files consisting of sentence and/or document elements.

http://www.nltk.org/
http://nlp.stanford.edu/software/corenlp.shtml
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1 experiment :-
2 % kLogNLP
3 klognlp_flag ( preprocessor , stanfordnlp ),
4 dataset (’/ home/ dataset / train /’,’ trainingset .pl ’) ,
5 attach (’ trainingset .pl ’) ,
6 % Kernel parametrization
7 new_feature_generator (my_fg , nspdk ),
8 klog_flag (my_fg ,radius ,1) ,
9 klog_flag (my_fg ,distance ,1) ,

10 klog_flag (my_fg , match_type ,hard),
11 % Learner parametrization
12 new_model (my_model , libsvm_c_svc ),
13 klog_flag (my_model ,c ,0.1) ,
14 kfold (target ,5, my_model , my_fg ).

Listing 6.2: Predicate for classification with 5-fold cross-validation.

extensional facts can be added using the dedicated Python classes. As may
be clear, the kLog script presented in Listing 6.1 can also be extended using
declarative feature construction with intensional signatures.

For declaratively specified features, there is no need to reprocess the dataset each
time a new feature is introduced, which renders experimentation very flexible.
Note that changes in the extensional signatures do require reprocessing the
dataset. However, for different runs of an experiment with varying parameters
for the feature generator or the learner, kLogNLP uses a caching mechanism
to check if the extensional signatures have changed, when calling the dataset
predicate.

The feature generator is initialized using the new_feature_generator predicate.
Its hyperparameters (e.g., maximum distance and radius, and match type) can
be set using the kLog flags mechanism (Listing 6.2, lines 6-10). In the last step,
different learning tasks can be performed on the resulting extended feature space.
As indicated before, to this end, kLog interfaces with several solvers, including
LibSVM and SVM SGD. Lines 11-14 (Listing 6.2) illustrate the initialization of
LibSVM and its use for 10-fold cross-validation.

6.3 Conclusions
In this chapter, we presented kLogNLP, a natural language processing module
for kLog. It enriches kLog with NLP-specific preprocessors, resulting in a
full relational learning pipeline for NLP tasks, embedded in an elegant and
powerful declarative machine learning framework. The presented model is a
generalization of the models from the previous chapters and is fit to be used
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as a basis for most NLP tasks. The model can be tailored to meet the needs
of the task at hand, and is subsequently used to dynamically transform the
dataset into the graph-based relational format of kLog by interfacing with
different existing libraries and toolkits. The resulting relational representation
serves as input for the rest of the kLog workflow and enables one to exploit
the advantages of its distinguishing characteristics as outlined in the previous
chapters. The kLogNLP module is available under an open-source license at
http://dtai.cs.kuleuven.be/klognlp.

http://dtai.cs.kuleuven.be/klognlp




Chapter 7

Relational Regularization and
Feature Ranking

In the preceding chapters we have investigated and illustrated graph kernel–based
relational learning on different natural language processing tasks. The main
focus was on the modeling of the domain and the inclusion of the appropriate
background knowledge using logic programming to solve the learning task.
The goal of this chapter is to gain deeper insights in the contribution of the
individual features (i.e., kLog’s extensional and intensional signatures). To
this end, we will lift regularization to a relational level, in order to achieve a
higher interpretability and increase performance. Furthermore, we will present
two relational feature selection approaches. Although motivated from an NLP
perspective, note that the presented methods can also be used for other domains;
this will be illustrated by a problem in chemoinformatics.

As introduced in Section 2.1.1, a regularization procedure is a way to introduce
information, independently from the evidence present in the data, in order
to solve an ill-posed problem or to prevent overfitting. Typically one tries to
enforce simplicity constraints, for example reducing the effective degrees of
freedom in a model by tying together the model parameters in some prescribed
way. We introduce a novel type of regularization, called relational regularization,
that takes into account the relational structure of the domain as specified in
an E/R model. These relations are used to tie the parameters of a predictive
linear model.

Based on this concept, we present an embedded and a wrapper approach for
relational feature selection and ranking. This will allow us to get deeper insights

113
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into the relative importance of the elements in the E/R model. The proposed
methods are able to identify the most relevant sets of predicates, which yields
more readily interpretable results than selecting low-level propositionalized
features.

The proposed techniques are implemented in kLog. However, the techniques
presented can also be adapted to other relational learning frameworks.

This chapter is organized as follows. First, we will discuss related work in
Section 7.1, before illustrating the problem setting by means of an artificial
example in Section 7.2. Section 7.3 discusses relational regularization, before
turning to relational feature selection and ranking in Section 7.4. In Section 7.5,
the approach is evaluated on two classification tasks in natural language
processing and bioinformatics, before concluding in Section 7.6.

This chapter is based on

Fabrizio Costa, Mathias Verbeke, and Luc De Raedt. Relational
regularization and feature ranking. In Proceedings of the 14th SIAM
International Conference on Data Mining, SIAM International Conference
on Data Mining, Philadephia, Pennsylvania, USA, 24-26 April 2014, pages
650–658. SIAM, 2014.

7.1 Related Work
Feature selection has a long tradition in machine learning and has also
been studied for logical and relational learning. For instance, Alphonse and
Matwin (2002) upgrade propositional methods for feature selection in relational
learning using a transformation to multi-instance learning rather than to graphs.
However, they neither employ a notion of locality, to link the importance of
features that are close in a relational representation of the domain, nor a notion
of regularization, to use this information to enforce simplicity constraints on the
model. Jensen and Neville (2002) analyze the feature selection bias caused by
linkage and autocorrelation, two notions capturing important properties about
the topology of relational data. They also use this to leverage the performance of
relational learners (Neville and Jensen, 2005), but do not provide a regularization
approach.

Regularization has been used for learning the structure of Markov Logic networks,
e.g., Huynh and Mooney (2008) first derive a large set of clauses and then
determine their weights using L1 regularization. This set of clauses is fixed
in the second step, and they apply regularization techniques which do not
take into account the relational topology. Quanz and Huan (2009) extend
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the L2 regularized logistic regression to aligned graph classification, however a
propositional (vector) representation is used. Furthermore, all instances have
the same graph structure, where the relations are assumed known and fixed.
In our case, the graphs associated to examples are all different, and generated
declaratively. Zhou and Schölkopf (2004) propose a general regularization
framework for graphs. However, they do not work within a logical setting and
they deal with single graph domains. In this work, rather than considering
graphs representing relations between instances, we use a graph representation to
encode the instances themselves, consisting of entities and relations, defined in
a logical framework. Finally, the proposed method for relational regularization
is also related to structured regularization. Usual sparsity methods, such as
lasso (Tibshirani, 1996), constrain the cardinality of the support of the model
that is learned by selecting a number of variables. Structured sparsity not only
constrains the cardinality of the support, but also constrains the structure of the
sparsity pattern. Group lasso (Yuan and Lin, 2006) considers a partition of the
variables in a certain number of disjoint groups and regularizes the parameters
according to these groups. Several variants of group lasso were presented, e.g.,
for dealing with overlapping groups (Jenatton et al., 2011). Graph lasso (Jacob
et al., 2009) deals with variables that lie on a graph. As connected variables are
more likely to be simultaneously relevant, graph lasso selects variables according
to this graph structure. Whereas these methods require the groups to be fixed
in advance, our approach determines these groups based on the E/R-model
of the domain. Furthermore, as we work in a logical setting, our method also
enables one to take declarative features features into account.

7.2 Overview
We will first illustrate the concepts and techniques used in this chapter by means
of the artificial game introduced in Section 2.2.3. To recapitulate, the game
consists of drawing a random sequence of 5 objects from a bag filled with cubes
and spheres. Each object has a certain color and weight. The game can only be
won if two spheres with the same color are drawn without drawing two cubes
with the same color. In any other case the game is lost. Recall that besides
sphere and cube entities, also some relations were defined. The extensional
relations next_s, next_c and next_sc indicate the sequence relations in which
objects are drawn from the bag. The relation sph_eq_col indicates that two
spheres have the same color, whereas diff_shape_eq_weight indicates the
relation between a sphere and a cube with equal weight. We also defined one
intentional relation, namely cub_eq_col, between two cubes with the same
color.
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Relational Regularization and Feature Selection

Our proposal is based on two core ideas. The first is to define features on
the E/R diagram, called high-level (relational) features, and features on the
grounded version of the E/R model of each example, called low-level (graph)
features. The second idea is to tie together sets of low-level features into
high-level features.

From a logical and relational perspective, the features correspond to queries. The
low-level features are derived from the unrolled E/R diagram and correspond
to (particular) subgraphs of a graphicalized instance.1 Some possible low-
level features were already illustrated in Figure 2.7, e.g., one possible feature
corresponds to the (ground) query sphere(s1,r,2) ∧ cube(c1,g,1) (with
s1 and c1 the identifiers of the entities).

The high-level features that we employ are derived from the E/R diagram.
These can be obtained by replacing the values for the attributes in the low-level
features by variables in the query (represented by a capital letter or a capitalized
string, e.g., Col). At present we consider single vertices or paths of length l
starting from nodes representing entities. For instance, selecting the vertex
for sphere would result in the (non-ground) query sphere(S,Col,W). This
corresponds to all sphere entities in the unrolled E/R diagrams of the example
instances. The path of length 3 sphere - next_sc - cube corresponds to
the query sphere(S,Col1,W1) ∧ next_sc(S,C) ∧ cube(C,Col2,W2). This
selects all sphere and cube entities that are linked by a next_sc relation in
the unrolled E/R diagrams of the instances. The difference between the low
and high-level features is thus that the high-level features do not contain any
constants and are represented by a subgraph of the E/R diagram, whereas the
low-level ones contain values for all the involved attributes, and are represented
by subgraphs of the unrolled E/R diagram. This type of query thus makes
abstraction of the specific constants in the database and acts as a kind of
template. It can have multiple occurrences in a database (that correspond to
different possible answers to the query).

The definition of the high-level features (through the E/R diagram) is again
reminiscent of inductive logic programming systems and constitutes the
declarative bias of the system. In kLog terminology, the high-level features
correspond to sets of intensional or extensional signatures that are connected
in the E/R diagram of the domain. The reader should keep in mind that
alternative biases can in principle be incorporated as well.

Notice that one can look for occurrences of a high-level feature in the database.
1More specifically, as our approach is embedded in kLog, which is based on the NSPDK

kernel, we shall consider all pairs of near neighborhood subgraphs.
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This can be realized either at the relational level (using, e.g., Prolog’s query
answering mechanism) or by graph matching (subgraph isomorphism testing
between the feature and the graphicalized database).

In order to tie low-level features to high-level ones, we consider where the
high-level feature occurs in the graphicalized examples. All the low-level graph
features that are in the neighborhood of such an occurrence are collected in what
we call the coverage of the high-level feature (see Figure 7.1). The underlying
assumption is that predicates that are near in the graphicalized representation
(in terms of shortest path distance), are likely to be more related in some
meaningful way. Both the relational regularization and the relational feature
selection techniques are based on this notion: the regularization is achieved
tying the importance score of all low-level features that belong to the same
coverage; while feature selection is obtained by ranking the high-level features
according to the aggregated score of all low-level features that belong to the
respective coverage. These notions are formally elaborated in Section 7.3 and
7.4.

Experimental Results

To illustrate the regularization setting in advance, we already provide the
results on the artificial example. As candidate high-level relational features
we consider the single vertices in the E/R diagram together with paths of the
type entity-relation-entity. The resulting relational feature ranking is listed
in Table 7.1. As expected, the sph_eq_col relation between two spheres is
ranked highest, followed by spheres and cubes. The relations between two
cubes are ranked lowest (i.e., they are highly discriminative for the negative
examples). diff_shape_eq_weight relations between two distinct objects can
be seen as neutral high-level features.

# Relational features Score
1 sphere - sph_eq_col - sphere 22.90
2 sphere 2.11
3 cube -1.48
4 sphere - diff_shape_eq_weight - cube -3.62
4 cube - diff_shape_eq_weight - sphere -3.62
5 cube - cub_eq_col - cube -11.78

Table 7.1: High-level feature ranking (Artificial example)

We also compared the performance of relational regularization to a standard
regularization technique on a propositionalized representation. The latter is
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obtained by considering a bag-of-words representation of the entity and relation
nodes. The results are listed in Table 7.2. Both in terms of F-measure and
area under the ROC curve (AUC), relational regularization shows a significant
improvement over the non-relational case.

Non-relational Relational
Precision 79.63 80.65
Recall 84.31 98.04
F1 81.91 88.50
AUC 84.72 90.91

Table 7.2: Relational vs. non-relational regularization (Artificial example)

Explicit Features

In order to obtain the low-level features for the relational representation, kLog’s
graph kernel decomposition as performed by NSPDK will be used. However,
in contrast to the standard kLog setup as presented in Section 2.2.3, where
a kernelized learning machine based on NSPDK would only need the efficient
computation of κr,d, here we want to explicitly extract the (low-level) feature
encoding induced by the graph kernel. This gives us the flexibility to manipulate
and combine the importance score associated with each feature, which is not
achievable when working in the implicit form.

The technique, based on ideas presented by Costa and De Grave (2010), works in
two steps: 1) a graph invariant encoding Lg(A) is constructed as a sorted list of
annotated edges for a neighborhood graph, where the annotation uses an efficient
quasi-canonical vertex relabeling; 2) the list is then hashed H(Lg(A))→ N to
obtain an integer that is used to compose the final feature identifier. Whereas
Costa and De Grave (2010) only used this technique to speed up the kernel
computation, here we propose to expose the pseudo-identifiers and use them as
feature indicators.

7.3 Relational Regularization
We will first introduce the technique used to link the explicit low-level feature
representation in the graph to the high-level relational feature representation
in the E/R diagram. After that we will introduce the relational regularization
scheme used to enforce the dependency of the importance scores between all
low-level graph features related to the same high-level relational feature.
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Figure 7.1: Feature co-occurrence. Top: neighborhood with dmax = 3 for root
node of type NEXT_SC. Bottom: co-occurring features with rmax = 0: (r=0,
d=1), (r=0, d=2) and (r=0, d=3).

Definitions: Topological Co-occurence, Co-occurrence Matrix, Coverage,
and High-level Relational Features

We say that two low-level graph features are topologically co-occurring when
they are both occurring in the same neighborhood subgraph and share at least
one root vertex (see Figure 7.1). Formally, for a given example instance R and
its graphicalization G, two features (A,B), (A′, B′) ∈ R−1(G) co-occur in a
local neighborhood if they are of the form

(A,B) = (Nv
r (G), Nu

r (G) : d(v, u) = d) (7.1)

and
(A′, B′) = (Nv

r′(G), Nu′

r′ (G) : d(v, u′) = d′) (7.2)
where N represents a neighborhood subgraph as introduced in Section 2.2.3.
Note that the features need not have the same radius r or the same distance
d between roots. Recall from Section 2.2.3 that to increase the efficiency and
generalization power, the zero-extension of the NSPDK kernel is considered,
which is obtained by imposing upper bounds on the radius and distance
parameter. Intuitively, the maximum distance dmax controls the degree of
locality, while the maximum radius rmax controls the complexity of the low-
level graph features.

Given a dataset of instances R̂ and its correspondent set of graphicalized
instances Ĝ , we define the co-occurence matrix as the matrix W which stores in
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Wij the aggregate number of times that feature i was topologically co-occurring
with feature j in all the graphs in Ĝ. We indicate with Φv

rmax,dmax
(G) the

multiset of all graph features (with radius bounded by rmax and distance
bounded by dmax) that are topologically co-occurring in the neighborhood of a
root vertex v with radius dmax and have v as common root vertex.

Let H ∈ H be the (graph) representation of an E/R model; a high-level
relational feature then corresponds to a (homomorphic) subgraph h of H. In
the simplest case h can be a single vertex in H. We now define a mapping
Π : H ×R 7→ G which, for a given example instance R ∈ R (for which there
exist a graphicalization g(R) = G ∈ G) maps a subgraph h of the E/R diagram
H to the corresponding subgraphs2 of G in the graphicalized domain, that
is, we map high-level features to low-level subgraphs. Let us now consider
the set of all vertices in all graphs that are the result of the mapping of a
given high-level feature. We are interested in the low-level features that can be
generated starting from these vertices: we call this multiset the coverage of the
high-level feature. Formally, given a subgraph h ∈ H of an E/R diagram, we
define the coverage of h as the multiset:

C(h) =
⋃
R∈R̂

⋃
v∈V (Π(h,R))

Φvrmax,dmax
(g(R)) (7.3)

whereR is taken over all instances in a dataset R̂ and v is taken in all vertices that
map to h according to the unfolding of the E/R element in each graphicalized
instance g(R) = G. Using the coverage notion we can now link the importance
of high-level relational features with the importance of low-level graph features.
Given an importance score vector w associated to the low-level graph features,
we define the importance score S of a subgraph h of the E/R diagram as the
sum of the scores for the features in its coverage:

S(h) =
∑

φi∈C(I)

wφi (7.4)

In the present implementation we do not consider sophisticated ways to construct
the high-level feature domain, but instead consider only single vertices or paths
of length 3, that is, triplets of the form entity-relation-entity. However, using a
combinatorial decomposition approach, this can be extended to produce more
complex high-level feature domains.

2Note that these subgraphs do not need to be connected.
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Relational Regularization with Co-occurence Constraints

In the following we introduce the relational regularization scheme used to enforce
dependency between all low-level graph features related to the same high-level
relational feature.

The regularization technique is best introduced together with an associated
learning algorithm. Here we employ models of the linear type, i.e.,

f(x) = w>x (7.5)

where x ∈ Rp is a vector input in the high-dimensional space induced by the
graph decomposition approach detailed in Section 2.2.3 and w ∈ Rp is the
associated parameter vector. Given a dataset of input-output pairs {(xi, yi)}ni=1
describing a learning problem, and a choice for a loss function `, we look for a
parameter assignment that minimizes the empirical risk

En(f) = 1
n

n∑
i=1

`(f(xi), yi) (7.6)

We solve the minimization problem with a stochastic gradient descent technique,
which simplifies the ordinary gradient descent algorithm and estimates the
gradient direction on a per instance basis with the following iterative update3:

wt+1 = wt − γ∇w`(f(xi), yi) (7.7)

As loss function we consider the regularized SVM loss:

`(f(xi), yi) = max{0, 1− yiw>xi}+ λw>w (7.8)

We now introduce the relational regularizer. Given the co-occurence matrix W
we build the Laplacian matrix

L = D −W (7.9)

with diagonal matrix D having entries Dii =
∑
jWij , and its normalized version

L̂ = D−1/2LD−1/2 (7.10)

Imposing a penalty on the size of w>L̂w is equivalent to penalizing the difference
between parameter wi and parameter wj when Wij is large. This can be seen
considering that

w>Lw = 1
2
∑
i,j

(wi − wj)2Wij (7.11)

3We employ a decreasing gain γ ≈ 1
t
to ensure fast convergence as suggested by Bottou

(2010).
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hence for a given large Wij , minimizing w>Lw implies enforcing wi − wj → 0.
To see why, we rewrite∑
i,j

(wi−wj)2Wij =
∑
i

w2
iDii+

∑
j

w2
jDjj−2

∑
i,j

wiwjWij = 2w>Lw (7.12)

Similar considerations hold for L̂. In practice this implies that the regularization
term w>L̂w enforces the binding of parameters associated to features that are
topologically co-occurring.

Adding this novel regularization term to the loss function we obtain:

`(f(xi), yi) = max{0, 1− yiw>xi}+ λw>w + ρw>L̂w (7.13)

Taking the derivatives gives us the corresponding new update rule for the
stochastic gradient descent algorithm:

wt+1 = wt − γt(λw + ρL̂w) if ytw>xt > 1 and
wt+1 = wt − γt(−ytxt + λw + ρL̂w) otherwise (7.14)

We keep the regularization term w>w in place since, at times, the relational
manifold assumption can hold to a lesser degree. In this case it is important to
be able to tradeoff between the two regularizers via λ and ρ.

Note that in principle, our notion of locality and regularization could be applied
to any dataset that can be interpreted as an E/R diagram with corresponding
features. For example, in the context of Markov Logic our notion of locality
might be applied to the grounded Markov Logic network where the (ground)
clauses would act as the features and the entities would be the ground atoms.

7.4 Relational Feature Selection
We have introduced a technique to tie low-level propositional features to the
high-level relational feature representation in the E/R diagram. In addition
we have introduced a relational regularization scheme to enforce dependency
between all low-level graph features related to the same high-level relational
feature. We now turn our attention to the relational feature selection step.

Given a set of explicitly available low-level features, a standard feature selection
approach selects a subset of these to maintain or enhance the performance of
an associated predictive model. In the proposed approach, instead we lift the
feature selection process one step higher, to a relational level. This implies that
our goal is not to select important propositional features, but rather high-level
relational features that are discriminative for the learning task.
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There are three main strategies for performing feature subset selection, namely
filter, embedded, and wrapper techniques (Guyon and Elisseeff, 2003). Wrappers
consider the learner as a black box, and use it to score subsets of features
according to their predictive power. Filters select subsets of variables as a
preprocessing step. In contrast to the wrapper methods, filters use a performance
measure other than the error rate to score a particular subset of features. This
thus happens independently of the downstream learner. Embedded methods
perform variable selection as part of the model construction process during
training. In these methods, learning is interleaved with the feature selection
procedure, and they are usually specific to a given learning machine.

Here we present an embedded and a wrapper strategy, both employing a
linear model equipped with the relational smoother introduced in Section 7.3.
The intuitive difference between the two approaches is that while the (more
computationally efficient) embedded method is forced to consider the full E/R
model all at once, the wrapper method analyzes the importance of isolated
subsets of interacting entities and relations, modifying the E/R model under
examination.

7.4.1 Embedded Strategy

Embedded methods incorporate variable selection as part of the training phase
and are tightly linked to the learning algorithm.

Our approach is rooted in the AROM (Approximation of the zeRO norm
Minimization) method (Weston et al., 2003). It is an approximation for the
following optimization problem: minw ||w||00 subject to:

yi(w>xi) ≥ 1 (7.15)

Here the solution is a separating hyperplane with the minimal number of nonzero
elements in the parameter vector w. Since this is a combinatorially hard problem
(Amaldi and Kann, 1998), Weston et al. (2003) suggest to minimize

min
w

p∑
j=1

ln(ε+ |wj |) (7.16)

instead, subject to:
yi(w>xi) ≥ 1 (7.17)

for which they can prove the bound:

||wl||00 ≤ ||w0||00 +O

(
1

ln ε

)
(7.18)
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Algorithm 1 Embedded Relational Feature Selection
Input: predicate set S, radius r, distance d
Output: importance for each element in set S
Note: “·” is a component-wise multiplication
G = RelationalDBGraphicalization(S)
X = ExplicitFeatureExtraction(G, r, d) . X is the set of all vector representations
z ← (1, . . . , 1) . z is a vector of scaling factors
repeat

for xi ∈ X do
x̄i ← xi · z . rescale all instances

end for
let w∗ be the solution of the SVM problem on X̄ with relational regularization
z ← z · w∗ . update scaling factors

until convergence
ẑ ← binarize(z) . set to 1 nonzero features
for xi ∈ X do

x̂i ← xi · ẑ . consider only nonzero features for each xi

end for
let ŵ∗ be the solution of the SVM problem on X̂ with relational regularization
return ComputePredicateImportance(ŵ∗)

where wl is the minimizer of the proposed approximation and w0 is the minimizer
of the original problem. The idea is that, because of the form of the logarithm
(i.e., it decreases quickly to zero compared to how fast it increases for large
values), significantly increasing a specific wj can be compensated by setting
to zero another wi rather than attempting some compromise between them,
thus encouraging sparse solutions. A similar reasoning holds in the case of non
(linearly) separable data.

Interestingly, Weston et al. (2003) propose to solve the optimization problem
with a very simple algorithm (see Algorithm 1), where input vectors are
iteratively scaled by the optimization solution w. Here, differently from
Weston et al. (2003), we solve an SVM optimization problem with relational
regularization, which imposes the additional co-occurence constraints (as
explained in the previous section) on this optimization problem. Therefore
the low-level features are regularized according to the patterns defined by the
high-level relational features. Put differently, the rescaling of the input vectors
is done based on the relational features, upgrading the approach of Weston
et al. (2003). As suggested in the original algorithm, in the last step we binarize
the scaling vector z to have entries in {0, 1}. Only at this point we solve the
SVM problem on the selected subset of nonzero features. This is an important
step, given that the iterative algorithm scales w as a function of the iteratively
rescaled input xi and, in order to be used on the original input, it would require
a compensatory rescaling.
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Algorithm 2 Wrapper Relational Feature Selection
Input: predicate set S, radius r, distance d, number of predicate sets ns, number of ranked
predicate sets to retain k, ranking measure m
Output: importance for each element in set S
predicateSets = GeneratePossiblePredicateSets(S)
sampledPredicateSets = SamplePredicateSets(predicateSets, ns)
for each predicateSeti in sampledPredicateSets do

Gi = RelationalDBGraphicalization(predicateSeti)
Xi = ExplicitFeatureExtraction(Gi, r, d)
store the solution of the SVM problem on Xki with relational
regularization using ranking measure m in results[predicateSeti]

end for
topkPredicateSets = CalculateTopKPredicateSets(results, k)
for each topkPredicateSeti in topkPredicateSets do

Xki = ExplicitFeatureExtraction(Gki, r, d) . Gki is the graphicalization of
topkPredicateSeti computed before

let w∗ be the solution of the SVM problem on Xki with relational regularization
predicateImportance[topkPredicateSeti] =ComputePredicateImportance(w∗)

end for
return ComputeOverallPredicateImportance(predicateImportance)

7.4.2 Wrapper Strategy

Our wrapper method (see Algorithm 2) is a derivation of the Random Sets
approach (Nikulin, 2008). The method receives as input the set of predicates to
be ranked and the number of random subsets of predicates to try out. The idea
is to induce a predictive model on each random set of predicates, retain only
the top performing models, and select the high-level relational features that are
ranked highest among these models.

When working in a propositional setting, there are generally no constraints
among the features and one can sample sets of features uniformly at random. In
a relational setting, however, given the logical dependencies between predicates,
there are consistency issues. As an example, in the definition of our domain
knowledge, we could have predicate A defined in terms of predicate B; in
this case removing B would necessarily imply the removal of A. To deal with
this issue we make use of a dependency graph, built automatically from the
background knowledge, to guarantee the generation of consistent E/R models.

A predictive model equipped with the relational regularizer is learned on the
graphs resulting from applying the graphicalization procedure on each reduced
E/R model. A user-specified number of the best predictive linear models
(according to a specified measure, e.g., F1-score) are selected. Subsequently, the
importance score of the high-level features is computed for each of the selected
models. These scores serve as input to calculate the overall importance scores
for the high-level features.
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7.5 Evaluation
We validated our techniques on two tasks with structural input, i.e., tasks where
the instances are represented using relational information, for which relational
learning, and kLog in particular, has proven to be a promising approach. The
first task is hedge cue detection, as discussed in Chapter 4. The second, molecular
toxicity prediction, is a classification task in bioinformatics.

7.5.1 Natural Language Processing: Hedge Cue Detection

As explained in Chapter 4, the instances for this task are sentences and consist
of a number of words w, for which the order is represented by the next relation.
The dependency relations represent the structure of syntactic relations between
the words. This is modeled by the depHead relations, where the depRel property
specifies the type of the dependency (e.g., subject, object, etc.). Other properties
of the word that are taken into account as features are the word string itself,
its lemma, the part-of-speech tag, the chunk tag and a binary feature that
represents whether the word is part of a predefined list of speculative strings.
weaselSentence represents the target relation.

As outlined in Section 4.3.2, we also used three additional predicates to encode
additional background knowledge; CW retains only the words that appear in a
predefined list of weasel words compiled from the training data, accompanied by
their lemma and POS-tag. LeftOf and RightOf represent the two surrounding
words of each CW word, again with their respective lemmas and POS-tags. Since
these additional predicates have shown to improve performance on previous
results for this task, it is to be expected that these are the main discriminative
predicates, while the propositional lexico-syntactic features should be less
informative.

In a first step, the high-level feature importance was calculated by both the
embedded and the wrapper approach, for which the results are listed in Table
7.3. As can be seen, both approaches give a similar ranking, except for RightOf
and CW, which are switched, and the basic lexico-syntactic features, which get
an equal weight in the embedded method, and slightly different scores in the
wrapper method.

Table 7.4 contains the ranking of the possible triplets of predicates of type entity
- relation - entity. It can be observed that pairs of consecutive hedged words or
hedged words that are linked in the dependency tree are very informative for
the task at hand.

As for the artificial example, we also compared the performance of relational
regularization to standard regularization on a propositionalized representation,
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Embedded approach Wrapper approach
# Feature Score # Feature Score
1 CW 27.20 1 RightOf 15.99
2 RightOf 6.69 2 CW 13.72
3 LeftOf 4.30 3 LeftOf 9.68
4 Next 4.02 4 Next 5.81
5 DH 3.42 4 DH 2.97
5 WordString -2.35 5 WordString -2.06
5 InList -2.35 6 InList -2.56
5 Chunk -2.35 7 Chunk -2.71
5 Lemma -2.35 8 Lemma -2.72
5 PoS -2.35 9 PoS -2.90

Table 7.3: High-level feature ranking (Hedge cue detection)

Triplet Score
cw - next - cw 49.79
cw - dh - cw 49.73
cw - dh - word 37.29
cw - next - word 31.79
word - dh - word 12.62
word - next - word -5.76

Table 7.4: Triplet ranking (Hedge cue detection)

obtained by considering a bag-of-words representation of the entity and relation
nodes (referred to as non-relational regularization in Table 7.5). As a baseline,
we compared to the performance of classification without regularization, again
both in the relational and the propositional case (referred to as relational and
non-relational baseline respectively). The results can be found in Table 7.5. In
the case of hedge cue detection, it can be observed that relational regularization
improves over the non-relational case. When comparing to the respective results
when no regularization is used, we observe similar results4. This indicates that
the right features are selected during the regularization process, as learning

4The difference in results for the relational baseline as compared to the numbers outlined
in Chapter 4 is due to a smaller grid search parameter range during optimization of the SVM,
which was used as a statistical learner at the end of the kLog workflow. This was done in
order to have a fair comparison with the other methods, which required a smaller parameter
grid due to greater runtimes. However, the same optimal kernel hyperparameters as obtained
in Chapter 4 were used.
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Relational Non-relational Relational Non-relational
regularization regularization baseline baseline

Hedge Cue Detection
Precision 59.98 33.19 60.61 33.19
Recall 50.76 96.42 49.28 96.42
F1 54.99 49.38 54.36 49.38
Molecular Toxicity
Precision 79.69 55.81 82.37 57.14
Recall 74.13 54.21 70.02 44.35
F1 76.81 55.00 75.69 49.94

Table 7.5: Relational vs. non-relational regularization

with a reduced number of features does not come at the cost of a reduced
performance.

Cumulative and Individual Feature Removal

In order to show the quality of the ranking, we also examined the ROC curves,
where we cumulatively and individually remove the predicates (Figures 7.2
and 7.3). For the former, we removed the predicates cumulatively from the
background knowledge in their ranked order according to the respective methods.
As can be seen, the removal of the first 4 high-level relation features has the
biggest influence on the performance. The results after the removal of all
10 high-level relation features while there are only 10 features ranked can be
explained by the fact that the predicate to indicate the word ID needs to remain
present since it forms the primary key in the relational database representation
of the domain.

To show that the effect on the performance is not only due to a reduced number
of features, we also removed the features individually (Figure 7.3). The ROC
curves and their corresponding scores indicate that the first 4 ranked predicates
(CW, RightOf, LeftOf, and Next) reduce the performance, resulting in a lower
score then when all predicates are used. Removal of the other predicates results
in ROC curves (and scores) that are above the all-feature setting, which indicates
that their presence has a negative influence on the performance. This ultimately
is the case for DH, which generates a large number of low-level graph features,
since every word in the sentence has a dependency head.
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Figure 7.2: Cumulative feature removal (hedge cue detection)
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Figure 7.3: Individual feature removal (hedge cue detection)
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Figure 7.4: Performance with decreasing number of features.

7.5.2 Chemoinformatics: Molecular Toxicity

In Kazius et al. (2005) a dataset of 4337 molecular structures is constructed. The
dataset is available with corresponding Ames target data, i.e., each molecule
has been tested in a short-term in vitro assay designed to detect genetic
damage caused by chemicals and has become the standard test to determine
mutagenicity. The class distribution is rather balanced with 2401 mutagens
and 1936 nonmutagens. The natural relational representation in terms of
atoms and bonds is enriched with a chemistry knowledge base offered by DMax
Chemistry Assistant, which allows one to determine the aromaticity perception,
the annotation of functional groups, and the relations between them.

The dataset was split in a train and test partition of 3337 versus 1000 molecular
structures respectively. In Figure 7.4, the performance in terms of ROC,
F1 and accuracy is plotted against the number of iterations, along with the
number of retained features (right y axis, in logarithmic scale). We report a
substantial stability of the predictive performance w.r.t. the number of features,
an indication that relational regularization is effective in selecting the important
high-level features.

The analysis of the high-level relational feature ranking (Table 7.6) reveals
that the toxicity concept is related to the way functional groups and atoms are
connected (fg_connected and bond), rather than to the actual type of atoms
and type of functional group (fg_member and atom). It is in fact known that
one component in the mutagenicity capacity of a substance depends on the
presence of aromatic rings (bond type) forming rigid planes (connected and
fused) that can “cut” into DNA/RNA filaments and break them. The results of
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High-level feat. Score
fg_connected 33.29

bond 22.42
fgroup 21.96

fg_fused 6.98
atom -4.44

fg_member -21.69
fg_linked -22.78

Table 7.6: High-level feature
ranking (Molecular toxicity)

Triplet Score
fgroup - fg_connected - fgroup 63.86

fgroup - fg_fused - fgroup 38.72
fgroup - fg_linked - fgroup 28.32

atm - bnd - atm 17.31
fg_member - atm - fgroup -4.84

Table 7.7: Triplet ranking (Molecu-
lar toxicity)

the performance comparison of relational versus non-relational regularization
can again be found in Table 7.5. Similar observations as in the case of hedge
cue detection can be made.

7.6 Conclusions
In this chapter we have lifted regularization and feature selection to a relational
level in order to achieve higher interpretability. These techniques take into
account the relational structure and topology of a domain and are based
on a notion of locality that ties together relevant features in the E/R model.
Finally, we have presented two relational feature selection approaches; a wrapper
technique, which manipulates the declarations in the language bias used by the
learner; and an embedded method that incorporates the feature selection as
part of the training phase.

In Chapters 4 and 5 we illustrated the advantages of the declarative domain
specification and the inclusion of additional background knowledge via
declarative feature construction for natural language processing tasks. The
techniques developed in this chapter offer a way to assess the importance of these
declarative, relational features. This functionality is valuable in the context
of natural language processing, to offer new insights into which structural and
relational features contribute to a better performance, as illustrated on the
hedge cue detection task.
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Chapter 8

Probabilistic Rule Learning for
Knowledge Base Expansion

In many applications the observations are uncertain, and hence, cannot be
modelled in a purely logical or deterministic manner. Indeed, consider any
context involving the interpretation of sensory information. This situation
occurs naturally when performing medical tests, when analyzing images, and
when interpreting actions and activities. This also occurs when analyzing text,
e.g., during information extraction from structured and unstructured documents.
Recently, this task has attracted a lot of attention in the context of Machine
Reading, i.e., the automatic extraction of knowledge from text. In this respect,
several systems have been developed for extracting relations from words or
phrases from text. These relations often have a probability attached that
represents the confidence of the method in the extracted relation.

It is then convenient to work with probabilistic examples, that is, examples whose
properties and relations can be expressed using probabilistic facts. Furthermore,
not only the descriptions of the examples but also their classification can be
uncertain. For instance, in a medical context, the diagnosis of a patient on the
basis of the existing tests can be uncertain, in image recognition, the identity of
a person, or in machine reading, the truth of a sentence. Still in such settings, it
is interesting to induce general principles in the form of rules from the available
data. This is precisely the topic of this chapter.

We contribute an integrated approach to learning probabilistic relational rules
from probabilistic examples and background knowledge that directly upgrades
the standard rule learning setting of learning from entailment. It builds on

135
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ProbLog (De Raedt et al., 2007), a simple probabilistic extension of Prolog, and
FOIL (Quinlan, 1990). In addition, we generalize the well-known principles and
heuristics of rule learning (Fürnkranz and Flach, 2005; Lavrac et al., 2012) to
the probabilistic setting. This is a significant extension of the preliminary work
by De Raedt and Thon (2010), who introduced the ProbFOIL algorithm for
probabilistic rule learning, in that it includes a novel method to probabilistically
weigh the induced rules; and we also report on a different and more extensive
set of experiments.

The remainder of this chapter is organized as follows. In Section 8.1, some
background on probabilistic rule learning is given, as well as a specification of
the problem setting. An overview of related work can be found in Section 8.2.
Section 8.3 describes ProbFOIL+, our algorithm for learning probabilistic rules
from probabilistic data. In Section 8.4 our approach is first evaluated for the
propositional case, before turning to the evaluation for the relational case with
a case study on NELL, the Never-Ending Language Learner. Finally, Section
8.5 concludes.

This chapter is based on

Luc De Raedt, Anton Dries, Ingo Thon, Guy Van den Broeck, and
Mathias Verbeke. Inducing probabilistic relational rules from probabilistic
examples. Submitted.

8.1 Problem Specification: Probabilistic Rule Learn-
ing

The field of inductive logic programming has focussed on the learning of rules
from examples and background knowledge in a deterministic setting. Today,
it is realized that purely logical theories do not suffice in many applications
and that uncertainty needs to be taken into account and modeled. This is
the prime motivation underlying probabilistic logic learning (De Raedt et al.,
2008), probabilistic programming (De Raedt and Kimmig, 2013), and statistical
relational learning (Getoor and Taskar, 2007). Numerous formalisms, inference
mechanisms and results on probabilistic logic learning and statistical relational
learning have been reported over the past decade. Nevertheless, we are still
lacking a simple upgrade of the basic rule learning setting (as pursued in
inductive logic programming), in which the rules, the background knowledge
and the examples are all probabilistic rather than deterministic. Such an
upgraded setting should have the property that, when all probabilities are set
to 0 and 1, one obtains the standard rule learning setting pursued in inductive
logic programming (learning from entailment (De Raedt, 2008)), and traditional
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inductive logic programming principles and systems, such as FOIL (Quinlan,
1990) and Progol (Muggleton, 1995), can be readily applied.

Existing approaches to statistical relational learning do not really satisfy this
requirement as they often do not employ Prolog as the underlying representation
but rather a representation derived from graphical models (such as Markov
Logic, e.g., (Schoenmackers et al., 2010), or Bayesian Logic Programs, e.g.,
(Raghavan et al., 2012)). Some approaches do learn both the global structure
and the parameters of the statistical relational model and do search the space of
hypotheses ordering the search space using a form of θ-subsumption. However,
their scoring mechanisms differ significantly from those employed by classical
rule-learning systems and are typically based on expectation maximisation (EM),
e.g., (Kok and Domingos, 2005; Huynh and Mooney, 2008; Bellodi and Riguzzi,
2012). Finally, approaches that target the learning of probabilistic logical rules
from examples (Schoenmackers et al., 2010; Raghavan et al., 2012; Doppa et al.,
2010) usually take a two-step approach. In the first step, a traditional inductive
logic programming system such as FOIL (Quinlan, 1990), Progol (Muggleton,
1995), or Farmer (Nijssen and Kok, 2001) is used to induce the rules and in
the second step the probabilities or weights are determined, which leads to a
decoupling of the probabilistic and the logical issues rather than an integrated
approach.

Based on the logic programming concepts and the specification of ProbLog as
introduced in Section 2.2, we are now able to formalize the problem of inductive
probabilistic logic programming or probabilistic rule learning as follows:

Given:

1. E = {(xi, pi)|xi a ground fact for the unknown target predicate t;
pi ∈ [0, 1] the target probability of xi}, the set of examples;

2. a background theory B containing information about the examples in the
form of a probabilistic ProbLog program;

3. a loss function loss(H,B,E), measuring the loss of a hypothesis H (that
is, a set of clauses) w.r.t. B and E;

4. a space of possible clauses Lh specified using a declarative bias;

5. the success probability Ps of a query (as defined in Section 2.2.4);

Find: The hypothesis H ⊆ Lh for which:

arg min
H

loss(H,B,E) = arg min
H

∑
ei∈E

|Ps(B ∪H |= ei)− pi|
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This loss function aims at minimizing the standard error of the predictions.
The reason for this choice is, on the one hand, that it is the simplest possible
choice and, on the other hand, that well-known concepts and notions from
rule learning and classification carry over to the probabilistic case when this
loss function is used as we shall show. Furthermore, this loss function is also
used in Kearns and Schapire’s probabilistic concept-learning framework (Kearns
and Schapire, 1994), a generalization of Valiant’s probably approximate correct
learning framework to predicting the probability of examples rather than their
class. The above definition generalizes that framework further by assuming that
also the descriptions of the examples themselves are probabilistic, not just their
classes.

There are several interesting observations about this problem setting. First, it
generalizes both traditional rule learning and inductive logic programming to a
probabilistic setting. The propositional case illustrated in the windsurfing
problem from Section 2.2.4 is an instance of probabilistic rule learning.
Furthermore, when the background theory also contains relations and possibly
clauses defining further predicates, we obtain an inductive probabilistic logic
programming setting. In both cases, the original setting is obtained by assuming
that the background theory is purely logical and having as only values for the
examples 1 and 0; 1 corresponding to the positive examples and 0 to the negative
ones. This is in line with the theory of probabilistic logic learning (De Raedt,
2008) and the inductive logic programming setting obtained would be that of
learning from entailment because examples are facts that are probabilistically
entailed by the theory.

Second, it is also interesting to position this problem in the context of the
literature on uncertainty in artificial intelligence. There, one typically makes a
distinction between parameter learning and structure learning, the latter being
an extension of the former in that in structure learning also the parameters have
to be estimated. The probabilistic rule learning problem introduced above is in
a sense dual to the parameter estimation problem. Indeed, when estimating
parameters, the structure of the model is assumed to be given and fixed, while in
parameter learning, the structure is fixed and the parameters are to be learned.
Here, only part of the parameters (the probability values) are fixed, namely
the probabilities of the examples, whereas the structure, that is, the rules, and
their parameters are to be learned.

8.2 Related Work
We start with discussing the relation to traditional propositional rule learners
and then continue with related work in machine reading and statistical relational
learning.
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Early approaches focussed on learning propositional rules from data that was
automatically extracted from text by information extraction. For example,
Nahm and Mooney (2000) presented a technique to learn propositional rules
that combines methods from data mining and information extraction. However,
it neither involved logic nor probabilistic data.

Many of the more recent rule learning algorithms also attach weights to the
learned rules. These weights are sometimes estimated as Pr(H|B), i.e., the
probability that the head H of the rule is true given its body B. The resulting
rules are often referred to as probabilistic rules but, unlike in ProbFOIL+, the
example descriptions are deterministic.

In the propositional setting, ProbFOIL+ is also related to the work of
Černoch and Železný (2011), who propose a bottom-up approach for tackling
ProbFOIL+’s setting in the propositional case. The authors study the task
of estimating the probability of a logical rule and solve this problem using a
regression-based formulation, expressed as a mixed linear programming problem.
The propositional ProbFOIL+ setting is also related to the work on mining
frequent itemsets from uncertain data in that the items also hold with a
particular probability; cf. Chui et al. (2007). The work on mining uncertain
frequent itemsets has been upgraded towards the relational case. For example,
Kimmig and De Raedt (2009) study local pattern mining in the context of
ProbLog. To this end, a correlated query mining algorithm is introduced.
However, instead of learning rules, they mine for patterns whose expected
frequency is high.

A large body of related research originates from the machine reading domain,
where the goal is to learn inference rules from automatically extracted data and
to use the learned rules to expand the knowledge base. With the introduction of
NELL (Carlson et al., 2010), a first-order relational learning algorithm similar
to FOIL, N-FOIL, was used to learn probabilistic Horn clauses. However, the
conditional probability attached to the rules P̂ r is only an estimation, calculated
using a Dirichlet prior similar to the m-estimate as P̂ r = (P +m× prior)/(P +
N +m), in which m and prior are fixed constants (Lao et al., 2011). In order
to make this approach more scalable and efficient, and to obtain confidence
values that take into account the knowledge base, an inference and learning
scheme based on random walks in graphs was proposed (Lao et al., 2011). It
is based on the path ranking algorithm (PRA) (Lao and Cohen, 2010; Lao
et al., 2012). In contrast to N-FOIL, the evidence is based on many existing
paths in the knowledge base, and the inference method yields more moderately-
confident inferences. ProPPR (Wang et al., 2014c,b) extends PRA to allow
learning recursive programs and programs with predicates of arity larger than
two and provide an interesting parameter estimation algorithm. Furthermore,
also Wang et al. (2014a) sketch an approach to learn rules (using an abductive
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template-based approach inspired by the work of Muggleton and Lin (2013)).
However, the key difference between these approaches and ours lies in the
underlying probabilistic framework. While ProbLog uses a standard possible
world semantics that associates degrees of beliefs to individual facts and queries,
PRA and ProPPR are based on random walks, which are more like stochastic
logic programs (Muggleton, 1996), and which induce a probability distribution
over all ground atoms for a particular predicate. While such a distribution
is very well suited for sampling ground atoms (or sentences in a grammar),
it is well-known that this type of distribution represents a different type of
knowledge than the possible worlds one in ProbLog, cf. Cussens (1999), which
is arguably more natural in our probabilistic rule learing setting.

A number of other extensions of FOIL exists. The nFOIL extension (Landwehr
et al., 2007) integrates FOIL with the Naïve Bayes learning scheme, such that
Naïve Bayes is used to guide the search. The kFOIL extension (Landwehr et al.,
2006) is a propositionalization technique that uses a combination of FOIL’s
rule-learning algorithm and kernel methods to derive a set of features from
a relational representation. To this end, FOIL searches relevant clauses that
can be used as features in kernel methods. As discussed in Section 2.2.3, kLog
upgrades this propositionalization technique to graphicalization.

The work of Raghavan et al. (2012) is most related to ProbFOIL+. The authors
propose a method to learn probabilistic first-order rules from a large knowledge
base of automatically extracted facts. The technique is based on Bayesian
Logic Programs (BLPs). Both the structure and the parameters of the BLP
are automatically learned, only using the extracted facts. The learned rules in
turn are used to derive additional knowledge using BLP inference. Raghavan
and Mooney (2013) present a more efficient extension of this work, that allows
online rule learning, and takes lexical information from WordNet into account
to do the weighting of the rules. In contrast to ProbFOIL+, the knowledge base
from which the rules are learnt consists of deterministic facts. Furthermore,
the probabilities of the inferred rules are estimated using sample search, an
approximate sampling algorithm for Bayesian networks.

Both Doppa et al. (2011) and Sorower et al. (2011) study the problem of
learning domain knowledge from texts in the presence of missing data. To
this end, the Gricean conversational maxims, a set of principles that enable
effective communication, are compiled into Markov Logic. Subsequently, these
are inverted via probabilistic reasoning and tailored to learn a set of probabilistic
Horn clause rules from facts that are extracted from texts. EM is used to learn
the weights of the resulting rules. This work differs from our approach in the
same way as explained above for Raghavan et al. (2012).

Jiang et al. (2012) use Markov Logic to clean NELL’s knowledge base using the
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confidence values of the facts and the ontological constraints already present
in the system. However, they do not explicitly learn rules. To overcome some
of the limitations of MLNs (e.g., the difficulty to incorporate the confidence
values, as all logical predicates must take Boolean truth values), the authors use
a number of approximations. To overcome these representational and scalability
limitations, Pujara et al. (2013), use Probabilistic Soft Logic (PSL) to extend the
approach of Jiang et al. (2012) by including multiple extractors and reasoning
about coreferent entities.

(Statistical) Predicate Invention is the discovery of new concepts, properties
and relations from data, expressed in terms of the observable ones (Kok and
Domingos, 2007). It is related to rule learning in the sense that the learned
clauses also represent logic programs that are learned by examples. However,
whereas the rules in rule learning are based on the predicates already present in
the database, predicate invention adds new ones. Recent work by Muggleton et al.
(2014) focussed on Meta-Interpretive Learning, using abduction with respect
to a meta-interpreter, and was applied to inductive inference of grammars.
Muggleton and Lin (2013) extended this approach for learning higher-order
dyadic Datalog fragments. It was tested in the context of NELL, to inductively
infer a clause and abduce new facts, and learning higher-order concepts, such
as the symmetry of a predicate. Remark though that both approaches are
concerned with predicate invention from logic programs.

As for the propositional case, some related work can also be found in the
data mining community. Dylla et al. (2013) propose a temporal probabilistic
database model for cleaning uncertain temporal facts obtained from information
extraction methods. Temporal-probabilistic databases contain data that is valid
during a specific time with a given probability. The presented method is based
on a combination of temporal deduction rules, temporal consistency constraints
an probabilistic inference. Although the method learns from probabilistic facts,
the rules and constraints are deterministic. The AMIE system by Galárraga
et al. (2013) is related in that it uses inductive logic programming for association
rule mining supporting the open word assumption, i.e., statements that are not
contained in the knowledge base are not necessarily false. Although the system
does not deal with probabilistic data, it thus offers an approach to deal with
incomplete evidence for deterministic knowledge bases.

8.3 ProbFOIL+

We now present our algorithm for learning probabilistic clauses, which is
a generalization of the mFOIL rule learning algorithm. The outline of the
algorithm is shown as Algorithm 3. It follows the typical separate-and-
conquer approach (Fürnkranz, 1999) (also known as sequential covering) that is
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Algorithm 3 The ProbFOIL+ learning algorithm.
1: function ProbFOIL+(target) . target is the target predicate
2: H := ∅
3: while true do
4: clause := LearnRule(H, target)
5: if GlobalScore(H) < GlobalScore(H ∪ {clause}) then
6: H := H ∪ {clause}
7: else
8: return H
9: end if
10: end while
11: end function
12: function LearnRule(H, target)
13: candidates := {x :: target← true} . Start with an empty (probabilistic) body
14: bestrule := (x :: target← true)
15: while candidates 6= ∅ do . Grow rule
16: nextcandidates := ∅
17: for each x :: target← body ∈ candidates do
18: for each literal ∈ ρ(target← body) do . Generate all refinements
19: if not RejectRefinement(H, bestrule, x :: target← body) then . Reject

unsuited refinements
20: nextcandidates := nextcandidates ∪ {x :: target← body ∧ l}
21: if LocalScore (H, x :: target← body ∧ literal) > LocalScore(H, bestrule)

then
22: bestrule := (x :: target← body ∧ literal) . Update best rule
23: end if
24: end if
25: end for
26: end for
27: candidates := nextcandidates
28: end while
29: return bestrule
30: end function

commonly used in rule learning algorithms. The outer loop of the algorithm,
labeled ProbFOIL+, starts from an empty set of clauses and repeatedly adds
clauses to the hypothesis until no more improvement is observed with respect
to a global scoring function. The clause to be added is obtained by the function
LearnRule, which greedily searches for the clause that maximizes a local
scoring function. The resulting algorithm is very much like the standard rule-
learning algorithm known from the literature (cf., Fürnkranz and Flach (2005);
Mitchell (1997)).

A key difference with the original ProbFOIL algorithm by De Raedt and Thon
(2010) is that the hypothesis space Lh now consists of probabilistic rules. While
ProbLog and Prolog assume that the rules are definite clauses, in ProbFOIL+

we use probabilistic rules of the form x :: target← body. Such a rule is actually
a short hand notation for the deterministic rule target← body ∧ prob(id) and
the probabilistic fact x :: prob(id), where id is an identifier that refers to this
particular rule. Notice that all facts for such rules are independent of one
another, and also that the probability x will have to be determined by the rule
learning algorithm. Each call to LocalScore returns the best score that can
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be achieved for any value of x. Finally, when returning the best found rule in
line 29, the value of x is fixed to the probability that yields the highest local
score.

As the global scoring function, which determines the stopping criterion of the
outer loop, we use accuracy which is defined as

accuracyH = TPH + TNH

M
, (8.1)

where M is the size of the dataset.

The local scoring function is based on the m-estimate. This is a variant of
precision that is more robust against noise in the training data. It is defined as

m-estimateH =
TPH +m P

N+P
TPH + FPH +m

, (8.2)

where m is a parameter of the algorithm, and P and N indicate the number
of positive and negative examples in the dataset, respectively. Increasing the
parameter m causes ProbFOIL+ to learn rules that cover more examples. The
final hypotheses are more concise.

Both these metrics are based on the number of examples correctly classified as
positive (true positives, TP) and the number of examples incorrectly classified
as positive (false positives, FP).

These values are part of the contingency table of the hypothesis H

prediction ↓ + − ← target
+ TPH FPH

− FNH TNH

total P N

However, the common definitions for the values in this table only apply to
a deterministic case. We now show how we can generalize these concepts
to a probabilistic setting where both the examples and the predictions are
probabilistic.

8.3.1 Probabilistic contingency table

A key difference between the probabilistic and the deterministic settings is
that in the probabilistic setting, each example ei has a target probability pi
as opposed to a 1/0 value. This means that every example contributes pi to
the positive part of the dataset and 1− pi to the negative part of the dataset.
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This is a generalization of the deterministic setting where pi = 1 for positive
examples, and pi = 0 for negative examples. In general, we can define the
positive and negative parts of the dataset as

P =
M∑
i=0

pi, N =
M∑
i=0

(1− pi) = M − P

where M is the number of examples in the dataset.

We can use the same approach to generalize the predictions of a model to a
probabilistic setting where a hypothesis H will predict a value pH,i ∈ [0, 1] for
example ei instead of 0 or 1. In this way we can define a probabilistic version
of the true positive and false positive rates of the predictive model as

TPH =
M∑
i=0

tpH,i, where tpH,i = min(pi, pH,i),

FPH =
M∑
i=0

fpH,i, where fpH,i = max(0, pH,i − pi).

For completeness we note that TNH = N − FPH and FNH = P − TPH , as
was the case in the deterministic setting.

Figure 8.1 illustrates these concepts. If a hypothesis H overestimates the target
value of ei, that is, pH,i > pi then the true positive part tpi will be maximal,
that is, equal to pi. The remaining part, pH,i − pi, is part of the false positives.
If H underestimates the target value of ei then the true positive part is only
pH,i and the remaining part, pi − pH,i contributes to the false negative part of
the prediction.

The different notions are graphically displayed in Figure 8.2, in which the x-axis
contains the examples and the y-axis their probability and all the examples are
ordered according to increasing target probability.1 The areas then denote the
respective rates. The deterministic case is illustrated in the Figure 8.2 (right),
which shows that in this case the examples take on 1/0 values. Figure 8.2 (left)
illustrates this for the probabilistic case. From this picture, it may be clear
that the notions of TP,TN ,FP and FN correspond to the usual notions of
true/false positive/negative rates from the literature in classification, yielding a
probabilistic contingency table as shown in Figure 8.1 (right).

1The predicted probability is not necessarily monotone.
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Figure 8.1: The true and false positive and negative part of a single example
(left) and the probabilistic contingency table (right).

Figure 8.2: The true and false positive and negative part of an entire dataset
for the probabilistic case (left), and for the deterministic case (right).

8.3.2 Calculating x

Algorithm 3 builds a set of clauses incrementally, that is, given a set of clauses
H, it will search for the clause c(x) = (x :: c) that maximizes the local scoring
function, where x ∈ [0, 1] is a multiplier indicating the clause probability of
clause c. The local score of the clause c is obtained by selecting the best possible
value for x, that is, we want to find

probc = arg max
x

TPH∪c(x) +m P
N+P

TPH∪c(x) + FPH∪c(x) +m
(8.3)

In order to find this optimal value, we need to be able to express the contingency
table of H ∪ c(x) as a function of x. As before, we use pi to indicate the target



146 PROBABILISTIC RULE LEARNING FOR KNOWLEDGE BASE EXPANSION

value of example ei. We see that pH∪c(x),i is a monotone function in x, that is,
for each example ei and each value of x, pH∪c(x),i ≥ pH,i and for each x1 and
x2, such that x1 ≤ x2, it holds that pH∪c(x1),i ≤ pH∪c(x2),i. We can thus define
the minimal and maximal prediction of H ∪ c(x) for the example ei as

li = pH,i ui = pH∪c(1),i.

Note that ui is the prediction that would be made by the original ProbFOIL
algorithm.

For each example ei, we can decompose tpH∪c(x),i and fpH∪c(x),i in

tpH∪c(x) = tpH,i + tpc(x),i fpH∪c(x),i = fpH + fpc(x),i,

where tpc(x),i and fpc(x),i indicate the additional contribution of clause c(x) to
the true and false positive rates.

As illustrated in Figure 8.3, we can divide the examples in three categories:

E1 : pi ≤ li, i.e., the clause overestimates the target value for this example,
irrespective of the value of x. For such an example tpc(x),i = 0 and
fpc(x),i = x(ui − li).

E2 : p ≥ u, i.e., the clause underestimates the target value for this example,
irrespective of the value of x. For such an example tpc(x),i = x(ui − li)
and fpc(x),i = 0.

E3 : li < pi < ui, i.e., there exists a value of x for which the clause predicts
the target value for this example perfectly. We call this value xi and it
can be computed as

xi = pi − li
ui − li

.

Figure 8.4 shows the values of tpc(x),i and fpc(x),i in function of x. The
formulae for these functions are

tpc(x),i =
{
x(ui − li) if x ≤ xi,
pi − li if x > xi

and fpc(x),i =
{

0 if x ≤ xi,
x(ui − li)− (pi − li) if x > xi

.

We can now determine the contribution to TPc(x) and FPc(x) of the examples
in each of these categories. For the examples in E1, the contributions to TPc(x)
and FPc(x) are

TP1(x) = 0 and FP1(x) = x

E1∑
i

(ui − li) = xU1.
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Figure 8.3: Values for li, ui and pi where (a) it is still possible to perfectly
predict pi with the right value of x, or where pi will always be (b) overestimated
or (c) underestimated.
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Figure 8.4: True and false positive rate for a single example ei ∈ E3 where
li < pi < ui.

For the examples in E2, the contribution to TPc(x) and FPc(x) are

TP2(x) = x

E2∑
i

(ui − li) = xU2 and FP2(x) = 0.

For the examples in E3, the contributions to TPc(x) and FPc(x) are

TP3(x) = x

E3∑
i:x≤xi

(ui − li) +
E3∑

i:x>xi

(pi − li) = xU≤xi

3 + P>xi
3 ,

FP3(x) = x

E3∑
i:x>xi

(ui − li)−
E3∑

i:x>xi

(pi − li) = xU>xi
3 − P>xi

3 .

By using the fact that TPH∪c(x) = TPH + TP1(x) + TP2(x) + TP3(x) and
FPH∪c(x) = FPH + FP1(x) + FP2(x) + FP3(x) and by reordering terms we
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can reformulate the definition of the m-estimate (Equation 8.2) as

M(x) =
TPH∪c(x) +m P

N+P
TPH∪c(x) + FPH∪c(x) +m

=
(U2 + U≤xi

3 )x+ TPH + P>xi
3 +m P

N+P
(U1 + U2 + U3)x+ TPH + FPH +m

.

(8.4)
In the last step we replaced FP3(x) + TP3(x) = x

∑E3
i (ui − li) = xU3.

By observing that U≤xi

3 and P>xi
3 are constant on the interval between two

consecutive values of xi, we see that this function is a piecewise non-linear
function where each segment is of the form

Ax+B

Cx+D

where A,B,C and D are constants. The derivative of such a function is

dM(x)
dx

= AD −BC
(CX +D)2 ,

which is non-zero everywhere or zero everywhere. This means that the maximum
of M(x) will occur at one of the endpoints of the segments, that is, in one of the
points xi. By incrementally computing the values of U≤xi

3 =
∑E3
i:x≤xi

(pi − li)
and P>xi

3 =
∑E3
i:x>xi

(pi − li) in Equation 8.4 for the xi in increasing order, we
can efficiently find the value of x that maximizes the local scoring function.

8.3.3 Significance

In order to avoid learning large hypotheses with many clauses that only have
limited contributions, we use a significance test. This test was also used in
the mFOIL algorithm (Džeroski, 1993). It is a variant of the likelihood ratio
statistic and is defined as

LhR(H, c) = 2(TPH,c+FPH,c)
(

precH,c log
precH,c
prectrue

+ (1− precH,c) log
1− precH,c
1− prectrue

)
,

(8.5)
where

TPH ,c = TPH∪c − TPH , FPH ,c = FPH∪c − FPH

and

precH ,c = TPH,c

TPH,c + FPH,c
, prectrue = P

P +N
.
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This statistic is distributed according to χ2 with one degree of freedom. Note
that we use a relative likelihood, which is based on the additional prediction
made by adding clause c to hypothesis H. As a result, later clauses will
automatically achieve a lower likelihood.

8.3.4 Local stopping criteria

When we analyze the algorithm above, we notice that in the outer loop, the
number of positive predictions increases. This means that the values in the first
row of the contingency table can only increase (and the values in the second
row will decrease). We can formalize this as follows.

Property 1. For all hypotheses H1, H2: H1 ⊂ H2 → TPH1 ≤ TPH2 and
FPH1 ≤ FPH2 .

Additionally, in the inner loop, we start from the most general clause (i.e.,
the one that always predicts 1), and we add literals to reduce the coverage of
negative examples. As a result, the positive predictions will decrease.

Property 2. For all hypotheses H and clauses h ← l1, ..., ln and lit-
erals l: TPH∪{h←l1,...,ln} ≤ TPH∪{h←l1,...,ln,l} and FPH∪{h←l1,...,ln} ≤
FPH∪{h←l1,...,ln,l}

We can use these properties to determine when a refinement can be rejected
(line 19 of Algorithm 3). In order for a clause to be a viable candidate it has to
have a refinement that

• has a higher local score than the current best rule,

• has a significance that is high enough (according to a preset threshold),

• has a better global score than the current rule set without the additional
clause.

In order to determine whether such a refinement exists, we need to be able
to calculate these scores for the best possible refinement of a clause. In the
best case, such a refinement would eliminate all false positive predictions while
maintaining the true positive predictions. This means that TPbest

H∪c = TPH∪c
and FPbest

H∪c = FPH . From this we can define the best achievable local score for
a clause c given theory H as

LocalScoreMax(H ∪ c) =
TPH∪c +m P

N+P
TPH∪c + FPH +m
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and the maximally achievable significance as

LikelihoodRatioMax(c) = −2TPH∪c log P

P+N

Using the same principles we can derive that the third condition above can be
reduced to TPH∪c > TPH .

8.3.5 Additional characteristics

Refinement operator and syntactic restrictions In ProbFOIL, the available
variables have different types. These argument types are specified in advance
by base declarations. This ensures that arguments are only instantiated with
variables of the appropriate type, and in this sense forms a syntactic restriction
on the possible groundings. Furthermore, a refinement operator based on modes
(Shapiro, 1981) is used. A mode specifies, for each literal argument, whether it
can introduce a new variable in the clause or whether it can only use already
existing variables.

Beam search The LearnRule function of the ProbFOIL algorithm is based
on FOIL and uses hill-climbing search. We replaced this with the rule learning
function from mFOIL (Džeroski, 1993), which uses a beam search strategy.
This enables to escape from local maxima, which is a typical pitfall of greedy
hill-climbing search. Furthermore it uses search heuristics and stopping criteria
that improve noise-handling. Also some additional information, such as the
symmetry and different variable constraints are used to reduce the search space.

The algorithm is shown in Algorithm 3 (page 142). At the start of the
LearnRule function, the clause is initialized with an empty body (lines
13 and 14). Hereafter, the search is started, in which a beam of promising
clauses is maintained, as well as the best significant clause found so far (best
rule).

Relational path finding Relational path finding (Richards and Mooney, 1992)
generates clauses by considering the connections between the variables in the
example literals, and it is a useful technique to direct the search in first-order
rule learning. ProbFOIL uses the approach by Ong et al. (2005) that extends the
original relational path finding algorithm such that it uses the base declarations
during pathfinding. The use of relational path finding during the rule learning
process in ProbFOIL is provided as an option.
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8.3.6 Implementation

ProbFOIL+’s evaluation is based on the ProbLog2 implementation2. The
ProbLog2 inference engine computes the probability of queries in four phases:
it grounds out the relevant part of the probabilistic program, converts this to
a CNF form, performs knowledge compilation into d-DNNF form and, finally,
computes the probability from the obtained d-DNNF structure. This process is
described in detail by Fierens et al. (2014).

Due to the specific combinations and structure of ProbFOIL+’s queries, we can
apply multiple optimizations3:

Incremental grounding While the standard ProbLog2 would perform ground-
ing for each query, ProbFOIL+ uses incremental grounding techniques and
builds on the grounding from the previous iteration instead of starting
from scratch. This is possible as the rules are constructed and evaluated
one literal at-a-time.

Simplified CNF conversion ProbFOIL+’s rulesets require only a subset
of the functionality that ProbLog supports. We can therefore use a
simplified CNF conversion technique that can exploit the specific structure
of ProbFOIL+ evaluations (that is, without support for probabilistic
evidence, and only limited support for cycles).

Direct calculation of probabilities Because of the incremental nature of
ProbFOIL+’s evaluation, we can often directly compute probabilities
without having to resort to (costly) knowledge compilation, for example
when we add a literal whose grounding does not share facts with the
grounding of the rest of the theory (for which we computed the probability
in a previous iteration). This can also significantly reduce the size of the
theories that need to be compiled.

Propositional data When propositional data is used, all examples have the
same structural component. This means we can construct a d-DNNF for
a single example and reuse it to evaluate all other examples.

Range-restricted rules Since in a number of cases, it is desired that the
result in rules are range-restricted, i.e., that all variables appearing in the
head of a clause also appear in its body, ProbFOIL+ offers an option to
output only range-restricted rules.

2http://dtai.cs.kuleuven.be/problog/
3The remainder of the section can be skipped by the reader less familiar with probabilistic

programming

http://dtai.cs.kuleuven.be/problog/
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8.4 Experiments
In a first set of experiments, we have studied the performance for propositional
probabilistic rule learning. To this end, we compared ProbFOIL and ProbFOIL+

against a set of regression learners on Bayesian networks, both for dependent
and independent attributes, and partial and full observability. In order to
test relational probabilistic rule learning, we considered rule learning in the
knowledge base of NELL (Carlson et al., 2010), the never-ending language
learner, as a case study.

8.4.1 Propositional probabilistic rule learning: Bayesian Net-
works

These experiments are motivated by the observation that – in the propositional
case – the task can be viewed as that of predicting the probability of the target
example from a set of probabilistic attributes. This propositional task can
be solved by applying standard regression tasks. Of course, one then obtains
regression models, which do not take the form of a set of logical rules that
are easy to interpret. While regression can in principle be applied to the
propositional case, it is hard to see which regression systems would apply to the
relational case. The reason is that essentially all predicates are probabilistic
(and hence, numeric), a situation that is – to the best of our knowledge –
unprecedented in relational learning. Standard relational regression algorithms
are able to predict numeric values starting from a relational description, a set
of true and false ground facts.

So, in this first experiment, we want to answer the following question:

Q1: How do ProbFOIL and ProbFOIL+ compare to standard
regression learners in the propositional case?

Dataset

Bayesian networks naturally lend themselves to test this learning setting. A
Bayesian network (BN) is a probabilistic graphical model representing a set of
random variables and the conditional dependency relations between them via
a directed acyclic graph, i.e., the edges between nodes are directed and there
are no loops in the graph. A BN represents a joint probability distribution
over the variables in the network, i.e., each variable takes on a particular value,
given the value of the other variables. Variables can either be dependent or
independent. Two variables are called dependent if knowledge of one of the
variables can affect the value of the other. Variable independence refers to the
opposite, i.e., the value of one variable does not affect the value of the other. A
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target variable is a variable that one wants to predict, based on evidence, i.e.,
the values of other variables in the network.

For the experiments, we used BNGenerator4 to randomly generate Bayesian
network structures. The conditional probability tables (CPT) and marginal
distributions were left unspecified. Network A has 30 nodes, 40 edges, a maximal
degree of 4 and an induced width of 3. Network B has 45 nodes, 70 edges, a
maximal degree of 6 and an induced width of 5.

Subsequently, for each of the networks, different instances of the Bayesian
network were generated by sampling its CPTs from a beta distribution
Beta(α, β). Lower values for α and β make the network more “deterministic”
and less “probabilistic”. To generate training and test examples for a single
network instance, we sampled marginal probabilities for the root nodes from a
uniform distribution. These values, together with the inferred probability of
the target, make up a single example. Each combination of target attribute
and beta distribution is a different learning problem. For each of these, we
trained ProbFOIL, ProbFOIL+ and standard regression learners from the Weka
suite5 on 500 training examples. The learned models were evaluated on 500 test
examples using the mean absolute error6, which is 1 minus the accuracy in the
rule learning setting.

Learning from Independent Attributes

In the simplest setting – learning from independent attributes – the observed
attributes are all root nodes of the Bayesian network, i.e., a node with no parent
nodes in the graph.

Table 8.1 and Table 8.2 show the mean absolute error averaged over all target
attributes for different combinations of learners and beta functions for network
A and network B respectively. In almost all cases, ProbFOIL and ProbFOIL+

are able to outperform the regression learners7. When inspecting the results
per learner, note that the regression learners have a better performance on the
probabilistic networks, whereas ProbFOIL performs well on the deterministic
networks. ProbFOIL+ performs well on both.

4http://www.pmr.poli.usp.br/ltd/Software/BNGenerator/
5For all regression learners, the default parameter settings were used.
6As the output of the regression learners can strictly speaking not be seen as probabilities,

we used mean absolute error to evaluate the methods instead of the measures based on the
probabilistic contingency table.

7Note that in all tables, the arguments of ProbFOIL and ProbFOIL+ indicate the values
used for m in the m-estimate, the beam width b and the rule significance p respectively.

http://www.pmr.poli.usp.br/ltd/Software/BNGenerator/
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Table 8.1: Mean absolute error on network A with CPTs ∼ Beta(α, β), averaged
over all target attributes. Observed nodes are independent.

α, β 1.0000 0.1000 0.0100 0.0010 0.0001 0.00001
ZeroR 0.054 0.11 0.11 0.13 0.12 0.12

LinearRegression 7.7× 10−3 0.027 0.024 0.025 0.024 0.024
MultilayerPerceptron 1.8× 10−3 8.5× 10−3 6.3× 10−3 5.8× 10−3 5.7× 10−3 5.7× 10−3

M5P 1.7× 10−3 6.7× 10−3 4.2× 10−3 4.2× 10−3 4.0× 10−3 4.0× 10−3

M5P -R -M 4.0 0.013 0.031 0.026 0.029 0.028 0.028
SMOreg 7.7× 10−3 0.027 0.024 0.026 0.025 0.025

ProbFOIL(1,15,0.0) 0.069 0.051 5.9× 10−4 1.6× 10−7 1.6× 10−7 1.6× 10−7

ProbFOIL+(1,1,0.0) 1.8× 10−3 3.0× 10−3 10.0× 10−5 1.6× 10−7 1.6× 10−7 1.6× 10−7

Table 8.2: Mean absolute error on network B with CPTs ∼ Beta(α, β), averaged
over all target attributes. Observed nodes are independent.

α, β 1.0000 0.1000 0.0100 0.0010 0.0001 0.00001
ZeroR 0.023 0.077 0.085 0.093 0.096 0.096

LinearRegression 4.4× 10−3 0.021 0.022 0.023 0.020 0.020
MultilayerPerceptron 9× 10−4 5.4× 10−3 7.2× 10−3 6.7× 10−3 5.9× 10−3 5.9× 10−3

M5P 1.5× 10−3 6.7× 10−3 8.8× 10−3 8.7× 10−3 7.3× 10−3 7.3× 10−3

M5P -R -M 4.0 5.8× 10−3 0.024 0.025 0.028 0.027 0.027
SMOreg 4.4× 10−3 0.021 0.022 0.023 0.020 0.020

ProbFOIL(1,15,0.0) 0.077 0.029 5.2× 10−3 9.4× 10−8 4.1× 10−8 4.1× 10−8

ProbFOIL+(1,5,0.0) 2.3× 10−3 3.0× 10−3 2.9× 10−4 9.4× 10−8 4.1× 10−8 4.1× 10−8

Learning from Dependent Attributes, Full Observability

When learning from dependent attributes with full observability, the observed
nodes are no longer the root nodes. Consequently, their probabilities are not
independent anymore. There is, however, an observed node on every path from
a root node to a target node, allowing for full observability and the possibility
of rediscovering the model the data was drawn from. The results for network B
are listed in Table 8.3. For the more probabilistic networks (higher α and β),
the regression learners outperform ProbFOIL, whereas ProbFOIL+ performs
on par. Both ProbFOIL and ProbFOIL+ outperform the regression learners on
the deterministic networks.

Learning from Dependent Attributes, Partial Observability

By dropping the full observability, we can no longer learn the perfect model.
As can be seen from Table 8.4 both ProbFOIL and ProbFOIL+ still outperform
the regression learners for most cases, but the advantage is far less clear than
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Table 8.3: Mean absolute error on network B with CPTs ∼ Beta(α, β), averaged
over all target attributes. Observed nodes are dependent. There is full
observability.

α, β 1.0000 0.1000 0.0100 0.0010 0.0001 0.00001
ZeroR 0.023 0.077 0.085 0.093 0.096 0.096

LinearRegression 2.6× 10−3 0.018 0.021 0.020 0.018 0.018
MultilayerPerceptron 4× 10−4 3.1× 10−3 5.7× 10−3 3.9× 10−3 3.3× 10−3 3.3× 10−3

M5P 7× 10−4 4.9× 10−3 6.5× 10−3 5.4× 10−3 4.4× 10−3 4.4× 10−3

M5P -R -M 4.0 5.2× 10−3 0.021 0.023 0.025 0.024 0.024
SMOreg 2.6× 10−3 0.017 0.021 0.020 0.017 0.017

ProbFOIL(1,10,0.0) 0.015 0.012 1.9× 10−3 9.4× 10−8 4.2× 10−8 4.2× 10−8

ProbFOIL+(1,5,0.0) 3.9× 10−3 3.9× 10−3 5.3× 10−4 2.8× 10−7 4.2× 10−8 4.2× 10−8

in the previous cases, as is to be expected given the partial observability.

Table 8.4: Mean absolute error on network B with CPTs ∼ Beta(α, β), averaged
over all target attributes. Observed nodes are dependent. There is partial
observability.

α, β 1.0000 0.1000 0.0100 0.0010 0.0001 0.00001
ZeroR 0.023 0.077 0.085 0.093 0.096 0.096

LinearRegression 4.8× 10−3 0.019 0.026 0.032 0.034 0.034
MultilayerPerceptron 1.2× 10−3 2.9× 10−3 9.7× 10−3 0.020 0.031 0.032

M5P 1.6× 10−3 6.1× 10−3 0.022 0.027 0.027 0.027
M5P -R -M 4.0 6.2× 10−3 0.022 0.033 0.040 0.040 0.040

SMOreg 4.5× 10−3 0.018 0.022 0.029 0.034 0.034
ProbFOIL(1,15,0.0) 0.020 0.023 0.012 0.015 0.015 0.015
ProbFOIL+(1,10,0.0) 9.5× 10−3 0.011 0.011 0.013 0.013 0.013

A1: In almost all cases both ProbFOIL and ProbFOIL+ perform
on par or outperform the standard regression learners, which
demonstrates their advantage for propositional probabilistic rule
learning. Furthermore, in all cases, similar or better results are
obtained by ProbFOIL+ when compared to ProbFOIL, illustrating
the added value of learning probabilistic rules.

8.4.2 Relational probabilistic rule learning: NELL

The task to extract information from unstructured or semi-structured documents
has recently attracted an increased amount of attention in the context of Machine
Reading. Due to the huge body of information, this is especially interesting
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concerning Web data. Several systems, such as OLLIE (Open Language Learning
for Information Extraction) (Mausam et al., 2012) have recently been developed.
Here we focused on NELL8, the Never-Ending Language Learner (Carlson et al.,
2010).

NELL’s goal is to extract structured information from unstructured web pages,
which is referred to as the reading task. As a machine learning system, NELL
also wants to learn to perform this task better day after day (i.e., the learning
task). Started in January 2010, and running 24 hours a day 7 days a week, the
goal is to build a knowledge base of structured information that reflects the
contents of the Web. So far, NELL has accumulated over 50 million candidate
beliefs with different levels of confidence, and it has high confidence in about 2
million of these.

Some of the facts that are stated in the text do not need information extraction,
as they can be inferred from the already extracted facts. For other facts,
plain text-based information extraction techniques are insufficient, since they
are implicit and thus can only be inferred by means of reasoning. Although
extracting these implicit facts and reasoning about them is obvious for the
human reader, it is not for a computer system. Since hand-crafting such
inference rules would be a tedious task, several rule learning approaches have
been used for knowledge base expansion, as discussed in Section 8.2.

Furthermore, reasoning about the facts in the knowledge base is impeded by the
fact that the extracted relations are often noisy. A plain logical rule learning
approach in this setting can even increase the noise. Suppose that the knowledge
base contains a number of facts that were extracted with a low confidence by
the information extraction system. These examples can cause the addition of a
new rule to the reasoning engine, that adds inconsistent facts to the knowledge
base.

In order to remedy this, with ProbFOIL+, the confidence scores that are
attached to the extracted facts and relationships can be used in the rule learning
process, and utilized to obtain a probability for the learned rules.

In this case study, we answered the following question:

Q2: How does ProbFOIL+ perform for relational probabilistic rule
learning in the context of a probabilistic knowledge base?

8http://rtw.ml.cmu.edu
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8.4.3 Dataset

In order to test probabilistic rule learning for facts extracted by NELL, we
extracted the facts for all predicates related to the sports domain from iteration
850 of the NELL knowledge base.9 A similar dataset has already been used
in the context of meta-interpretive learning of higher-order dyadic Datalog
(Muggleton and Lin, 2013). Our dataset contains 10567 facts. The number of
facts per predicate is listed in Table 8.5. Each predicate has a probability value
attached.

Table 8.5: Number of facts per predicate (NELL sports dataset).

athletealsoknownas(athlete,athlete) 7 coachalsoknownas(coach,coach) 5
athletebeatathlete(athlete,athlete) 130 coachesinleague(coach,league) 69

athletecoach(athlete,coach) 20 coachesteam(coach,team) 150
athletehomestadium(athlete,stadium) 21 coachwontrophy(coach,tournament) 28

athleteinjuredhisbodypart(athlete,bodypart) 157 teamalsoknownas(team,team) 273
athleteledsportsteam(athlete,team) 246 teamhomestadium(team,stadium) 135
athleteplaysforteam(athlete,team) 808 teammate(athlete,athlete) 36
athleteplaysinleague(athlete,league) 1197 teamplaysagainstteam(team,team) 2848
athleteplayssport(athlete,sport) 1899 teamplaysincity(team,city) 384

athleteplayssportsteamposition(athlete,sportsteamposition) 196 teamplayssport(team,sport) 340
athletessuchasathletes(athlete,athlete) 46 teamplaysinleague(team,league) 1229

athletewinsawardtrophytournament(athlete,tournament) 126 teamwontrophy(team,trophy) 217

Table 8.5 also shows the types that were used for the variables in the base
declarations for the predicates. As indicated in Section 8.3.5, this typing of the
variables forms a syntactic restriction on the possible groundings and ensures
that arguments are only instantiated with variables of the appropriate type.
Furthermore, the LearnRule function of the ProbFOIL algorithm is based on
mFOIL and allows one to incorporate a number of variable constraints using
the refinement operator based on modes. As outlined in Section 8.3.5, a mode
specifies whether a literal argument can introduce a new variable in the clause
or whether it can only use already existing variables. To reduce the search
space, we imposed the constraint that each clause can introduce at most one
new variable.

8.4.4 Evaluation

In order to illustrate relational probabilistic rule learning with ProbFOIL+ in the
context of NELL, we learned rules for each binary predicate with more than five
hundred facts using 3-fold cross-validation. In order to create the folds, for each
target predicate, the facts were randomly split into 3 parts. Each fold consists of

9Obtained from http://rtw.ml.cmu.edu/rtw/resources.

http://rtw.ml.cmu.edu/rtw/resources
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Figure 8.5: Histogram of probabilities for each of the binary predicates
with more than 500 facts: (a) athleteplaysforteam; (b) athleteplayssport; (c)
teamplaysinleague; (d) athleteplaysinleague; and, (e) teamplaysagainstteam.
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all non-target predicates and a part of the target predicates. We only reported
the rules that are learned on the first fold. Similar rules were obtained on the
other folds. For each predicate, we also reported the probabilistic contingency
table. We compared ProbFOIL+ (referred to as setting 4) against three other
settings:

Setting 1 All predicates in the training set and all non-target predicates in
the test set are deterministic. To this end, as usual in NELL, we interpret
each respective example with a probability higher than 0.75 as a positive
one, and each example with a lower probability as a negative one.

Setting 2 Similar to setting 1, but probabilistic predicates in the test set are
used.

Setting 3 Probabilistic predicates in both train and test set are used, and
rules are learned using ProbFOIL, the deterministic rule learning version
of ProbFOIL+.

Similar to previous related work (Carlson et al., 2010; Schoenmackers et al.,
2010; Raghavan et al., 2012; Raghavan and Mooney, 2013), we used precision
as our primary evaluation measure. It measures the fraction of the probabilistic
inferences that are deemed correct. Measuring the true recall is impossible in
this context, since it would require all correct facts for a given target predicate.
For example, it is possible that correct facts are inferred using the obtained
rules, which are not (yet) present in the knowledge base, and consequently are
not reflected in the recall score. We also plotted the predicted against the target
probabilities in Figure 8.6.

For all predicates, the m-estimate’s m value was set to 1 and the beam width
to 5. The value of p for rule significance was set to 0.99.10 The option to only
retain range-restricted rules was used. Furthermore, to avoid a bias towards the
majority class, both the train and test examples were balanced, i.e., a part of the
negative examples was removed to balance the number of positives. Figure 8.5
shows histograms of the distribution of the probabilities after class balancing
for each of the tested predicates. For all settings, we also used relational path
finding.

10As discussed before, remind that increasing the parameter m causes ProbFOIL+ to learn
rules that cover more examples, resulting in more concise hypotheses. The rule significance
parameter p controls the contribution of additional clauses when they are added to the learned
hypothesis, in order to avoid learning large hypotheses with many clauses that only have
limited contributions.
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athleteplaysforteam(person,team)

1 0.9375:: athleteplaysforteam (A,B) ← athleteledsportsteam (A,B).
2 0.9675:: athleteplaysforteam (A,B) ← athleteledsportsteam (A,V_1),
3 teamplaysagainstteam (B,V_1).
4 0.9375:: athleteplaysforteam (A,B) ← athleteplayssport (A,V_1),
5 teamplayssport (B,V_1).
6 0.5109:: athleteplaysforteam (A,B) ← athleteplaysinleague (A,V_1),
7 teamplaysinleague (B,V_1).

Listing 8.1: Learned rules for the athleteplaysforteam predicate (fold 1).

Table 8.6: Probabilistic contingency
table (athleteplaysforteam).

prediction↓ + − ← target
+ 344.20 94.04
− 446.15 712.61

Table 8.7: Scores per setting
for m = 1 and p = 0.99
(athleteplaysforteam).

Setting Precision
1 76.01
2 72.92
3 77.77
4 78.54

Table 8.8: Scores per setting
for m = 1000 and p = 0.9
(athleteplaysforteam).

Setting Precision
1 70.36
2 70.75
3 73.46
4 73.77

athleteplayssport(person,sport)

1 0.9070:: athleteplayssport (A,B) ← athleteledsportsteam (A,V_2),
2 teamalsoknownas (V_2 ,V_1), teamplayssport (V_1 ,B),
3 teamplayssport (V_2 ,B).
4 0.9070:: athleteplayssport (A,B) ← athleteplaysforteam (A,V_2),
5 teamalsoknownas (V_2 ,V_1),teamplayssport (V_1 ,B),
6 teamplayssport (V_2 ,B),teamalsoknownas (V_1 ,V_2).
7 0.9070:: athleteplayssport (A,B) ← athleteplaysforteam (A,V_1),
8 teamplayssport (V_1 ,B).

Listing 8.2: Learned rules for the athleteplayssport predicate (fold 1).
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Table 8.9: Probabilistic contingency
table (athleteplayssport).

prediction↓ + − ← target
+ 191.34 9.69
− 1655.00 1887.96

Table 8.10: Scores per setting
(athleteplayssport).

Setting Precision
1 93.99
2 94.77
3 92.76
4 95.18

Table 8.11: Scores per setting
for m = 1000 and p = 0.9
(athleteplayssport).

Setting Precision
1 93.46
2 94.96
3 93.12
4 95.15

teamplaysinleague(team,league)

1 0.9585:: teamplaysinleague (A,B) ← athleteplaysforteam (V_1 ,V_2),
2 coachesinleague (V_1 ,B),teamplaysagainstteam (A,V_2).
3 0.9294:: teamplaysinleague (A,B) ← athleteplaysinleague (V_1 ,B),
4 coachesteam (V_1 ,V_2),teamplaysagainstteam (V_2 ,A),
5 athleteplaysforteam (V_1 ,V_2),athleteledsportsteam (V_1 ,V_2).
6 0.96878:: teamplaysinleague (A,B) ← coachesinleague (V_1 ,B),
7 coachesteam (V_1 ,V_2),teamplaysagainstteam (V_2 ,A).

Listing 8.3: Learned rules for the teamplaysinleague predicate (fold 1).

Note that the scores for the teamplaysinleague predicate are not available for
setting 2, as the learned rules resulted in too many groundings, due to which
the evaluation did not halt in a reasonable time. This can be explained by
the fact that in this setting a (large) number of very specific rules are learned
during training, to approximate the probabilities of the target predicate facts.
Consequently, these rules are applicable to a large number of combinations of
variables, which results in a large amount of groundings. Note however that for
the other setting of m and p, the evaluation succeeded.
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Table 8.12: Probabilistic contin-
gency table (teamplaysinleague).

prediction↓ + − ← target
+ 96.14 3.84
− 1121.58 1223.43

Table 8.13: Scores per setting
(teamplaysinleague).

Setting Precision
1 94.36
2 94.55
3 93.82
4 96.16

Table 8.14: Scores per setting
for m = 1000 and p = 0.9
(teamplaysinleague).

Setting Precision
1 78.46
2 N/A
3 88.82
4 89.43

athleteplaysinleague(person,league)

1 0.9286:: athleteplaysinleague (A,B) ← athleteledsportsteam (A,V_1),
2 teamplaysinleague (V_1 ,B).
3 0.7868:: athleteplaysinleague (A,B) ← athleteplaysforteam (A,V_2),
4 teamalsoknownas (V_2 ,V_1),teamplaysinleague (V_1 ,B).
5 0.9384:: athleteplaysinleague (A,B) ← athleteplayssport (A,V_2),
6 athleteplayssport (V_1 ,V_2), teamplaysinleague (V_1 ,B).
7 0.9024:: athleteplaysinleague (A,B) ← athleteplaysforteam (A,V_1),
8 teamplaysinleague (V_1 ,B).

Listing 8.4: Learned rules for the athleteplaysinleague predicate (fold 1).

teamplaysagainstteam(team,team)

1 0.9375:: teamplaysagainstteam (A,B) ← teamalsoknownas (A,V_1),
2 teamplaysinleague (B,V_2),teamplaysinleague (V_1 ,V_2),
3 teamplaysinleague (A,V_2).
4 0.5009:: teamplaysagainstteam (A,B) ← athleteplaysforteam (V_2 ,A),
5 athleteplaysinleague (V_2 ,V_1),teamplaysinleague (B,V_1).

Listing 8.5: Learned rules for the teamplaysagainstteam predicate (fold 1).

Note that the scores for the teamplaysagainstteam predicate are only available
for settings 3 and 4, as the rules learned in setting 1 and 2 resulted in too many
groundings, due to which the evaluation did not halt in a reasonable time.
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Figure 8.6: Predicted versus target probabilities for 3-fold cross-validation for
each of the binary predicates with more than 500 facts: (a) athleteplaysforteam;
(b) athleteplayssport; (c) teamplaysinleague; (d) athleteplaysinleague; and, (e)
teamplaysagainstteam.
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Table 8.15: Probabilistic
contingency table
(athleteplaysinleague).

prediction↓ + − ← target
+ 734.51 24.20
− 433.56 1171.73

Table 8.16: Scores per setting
(athleteplaysinleague).

Setting Precision
1 78.48
2 89.53
3 79.41
4 96.81

Table 8.17: Scores per setting
for m = 1000 and p = 0.9
(athleteplaysinleague).

Setting Precision
1 73.82
2 74.75
3 79.41
4 79.60

Table 8.18: Probabilistic
contingency table
(teamplaysagainstteam).

prediction↓ + − ← target
+ 1633.31 252.30
− 1161.59 2594.80

Table 8.19: Scores per setting
(teamplaysagainstteam).

Setting Precision
1 N/A
2 N/A
3 80.80
4 86.62

Table 8.20: Scores per setting
for m = 1000 and p = 0.9
(teamplaysagainstteam).

Setting Precision
1 73.88
2 73.38
3 80.48
4 81.87

8.4.5 Discussion

As can be observed, for all predicates, interpretable and meaningful rules are
obtained. ProbFOIL+ is able to outperform both the two baseline settings that
used deterministic training data, and ProbFOIL. In order to avoid overfitting due
to too specific rules, we also tested all settings with a high m-value (1000), and
a rule significance p of 0.9. Also in this case, one can observe that ProbFOIL+



CONCLUSIONS 165

is able to outperform the other settings. With these settings, ProbFOIL+ learns
more deterministic rules. This can also be seen from results obtained with
ProbFOIL (Setting 3), which are now more similar to the ones obtained with
ProbFOIL+. Furthermore, when testing the obtained rule sets on their respective
training sets, similar results as on the test sets were obtained, indicating the
generalizability of the learned rules.

The evaluation setting for the machine reading setting is also limited by the
available data, which should be taken into account when interpreting these
results. First of all, as illustrated by the histograms in Figure 8.5, the distribution
of the probabilities in the NELL dataset is very skewed. Furthermore, the dataset
also contains a number of predicates for which only a small amount of facts
are available in the knowledge base. Finally, the confidence scores that are
currently attached to the facts in NELL are a combination of the probability
output by the learning algorithm and a manual evaluation. Recent work on
improving the quality of the estimated accuracy in NELL was performed by
Platanios et al. (2014), but, to the best of our knowledge, is not yet integrated
in NELL. Even under these circumstances, ProbFOIL+ performs better than a
pure deterministic approach.

A2: ProbFOIL+ obtains promising results for relational probabilistic
rule learning. Its use can be valuable for expanding a probabilistic
knowledge base, as illustrated in the context of NELL.

8.5 Conclusions
We have introduced a novel setting for probabilistic rule learning, in which
probabilistic rules are learned from probabilistic examples. The developed
ProbFOIL+ algorithm for solving it combines the principles of the rule
learner FOIL with the probabilistic Prolog, ProbLog. The result is a natural
probabilistic extension of inductive logic programming and rule learning. We
evaluated the approach against regression learners, and showed results on
both propositional and relational probabilistic rule learning. Furthermore, we
explored its use for knowledge base expansion in the context of NELL, the
Never-Ending Language Learner.

8.6 Software and Datasets

ProbFOIL+ and the datasets used in this chapter in ProbFOIL+ format can be
downloaded from dtai.cs.kuleuven.be/probfoil.

dtai.cs.kuleuven.be/probfoil
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Chapter 9

Conclusions and Future Work

9.1 Summary and Conclusions
While understanding natural language is easy for humans, it is complex for
computers. The main reasons for this can be found in the structural nature and
the inherent ambiguity of natural language. Correctly interpreting language
therefore requires one to take into account the necessary context. In order to
perform language understanding by means of machine learning techniques, an
appropriate representation is required that takes into account this relational
information and integrates the necessary background knowledge into the learning
process.

Statistical relational learning is well-suited to represent this relational
information, and to incorporate the necessary context and background knowledge
for natural language understanding. Furthermore, because of the probabilistic
nature of statistical relational learning, it becomes possible to deal with linguistic
ambiguity. The goal of this thesis was to investigate the promise of statistical
relational learning for natural language processing and to provide evidence for
the utility of this approach.

To this end, we focused on four research questions, which were presented in the
introduction. We will now review these questions and their respective answers
provided in the thesis.
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Q1 What are the advantages of the relational representation and the declarative
approach, as offered by SRL, for natural language learning?

Statistical relational learning has a number of properties that are especially
advantageous for natural language learning. First of all, its relational
representation proves to be well-suited to represent the structural and relational
features that are important for current (semantic) natural language processing
tasks. It allows one to represent both the lower-level features (e.g., the lexico-
syntactic features at word level) and higher-level (syntactical) structure and
(semantic) relations. When looking back at the introductory example at the
start of this thesis, we have shown that the relational representation offered
by statistical relational learning, and in particular by the graph kernel–based
learning approach of kLog, is able to integrate all the necessary contextual
information in a flexible way. We have illustrated this for binary sentence
classification on the hedge cue detection task (Chapter 4).

Second, the high-level declarative specification of the domain offers an increased
expressivity of the domain model and interpretability of the results, especially
when contrasted with traditional propositional approaches. We have used
the hedge cue detection task to evaluate several types of machine learning
systems along two dimensions; the relational representation was contrasted with
propositional approaches for both lazy and eager learning. The results show
that relational representations are useful, especially for dealing with sentences
in which complex, long-distance dependencies amongst constituents need to
be captured. The relational representation also enables one-step classification,
without the need for an additional thresholding parameter to go from word-
level to sentence-level predictions. As part of this investigation, a novel lazy
relational learning technique was proposed, which shows that the relational
feature construction approach of kLog can be used in an eager type of learner
as well as in a memory-based learning setting.

Third, the declarative approach also offers the opportunity to encode additional
background knowledge using logical predicates. This allows the learner to
exploit additional structural regularities and improve its generalization power.
We have illustrated this on the automatic identification of PICO categories
in medical abstracts, a multiclass, multilabel sentence classification task, in
which we used declarative feature construction to incorporate document context
(Chapter 5). A distinguishing property of kLog is that it allows one to use the
relational high-dimensional feature space generated by the graph kernel as input
for any statistical learner.
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Q2 Can an SRL system be tailored for use in natural language learning, in
order to achieve a full relational learning framework for NLP?

In order to come to a routine application of SRL for natural language learning, a
first step is to develop SRL frameworks that abstract away from the underlying
details and offer a fully declarative specification of the learning problem. In
natural language learning, a lot of attention needs to be given to the modeling of
the task. The process of modeling a task in a relational representation that can
be used as input to an SRL framework is often seen as an obstacle to applying
SRL methods, with the consequence that one often resorts to the traditional
propositional methods. To this end, we presented kLogNLP, a natural language
processing module for kLog (Chapter 6). It enriches kLog with NLP-specific
preprocessors, resulting in a full relational learning pipeline for NLP tasks,
embedded in an elegant and powerful declarative machine learning framework.
The presented model is a generalization of the models that were used for the
tasks discussed in the context of research question Q1 and is fit to be used as a
basis for most NLP tasks. The model can be tailored to meet the needs of the
task at hand, and is subsequently used to dynamically transform the dataset
into the graph-based relational format of kLog by interfacing with different
existing libraries and toolkits. For example, the features used in Figure 1.1
for the introductory example can easily be generated and represented using
kLogNLP. The resulting relational representation serves as input for the rest of
the kLog workflow and enables one to exploit the advantages of its distinguishing
characteristics.

Q3 How can the importance of declarative, relational features be assessed in
the case of statistical relational learning?

From a linguistic perspective, getting new insights into which structural and
relational features contribute to a better performance is valuable for natural
language processing. This formed our motivation for the techniques developed in
Chapter 7, which offer a way to assess the importance of declarative, relational
features. To this end, we have lifted regularization and feature selection to a
relational level. These techniques take into account the relational structure and
topology of a domain and are based on a notion of locality that ties together
relevant features in the E/R model. Furthermore, we have presented two
relational feature selection approaches; a wrapper technique, which manipulates
the declarations in the language bias used by the learner; and an embedded
method that incorporates feature selection as part of the training phase. The
functionality of these techniques for natural language processing was illustrated
on the hedge cue detection task.
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Q4 How can statistical relational learning be leveraged to reason about and
extend probabilistic relational information in the context of Machine
Reading?

In the context of Machine Reading, several systems have been developed to
extract relations from text. These relations often have a probability attached
that represents the confidence of the method in an extracted relation. These
relations and their attached probabilities can be used to extract useful knowledge.
In Chapter 8, we have introduced a novel setting for probabilistic rule learning,
in which probabilistic rules are learned from probabilistic examples. The
resulting algorithm, ProbFOIL+, combines the principles of the rule learner
FOIL with ProbLog, a probabilistic Prolog. The result is a natural probabilistic
extension of inductive logic programming and rule learning. We evaluated the
approach against regression learners, and showed results on both propositional
and relational probabilistic rule learning. Furthermore, we explored its use for
knowledge base expansion in the context of NELL, the Never-Ending Language
Learner. The obtained rules can be used to expand the knowledge base, taking
into account the probabilistic nature of the relations from which they were
induced.

In general, we can conclude that the distinguishing characteristics of statistical
relational learning, namely its relational representation, the declarative approach,
and its probabilistic nature, offer several advantages that prove particularly
useful for natural language learning. The main goal of this thesis was to
strengthen this observation and offer additional insights in these advantages.
However, many opportunities for future research remain.

9.2 Discussion and Future Work
We end this thesis with a discussion of four promising directions for future
work, namely 1) structured output learning, 2) declarative kernel design, 3)
domain-specific and continuous features, and 4) machine reading.

Structured output learning In the hedge cue detection task presented in
Chapter 4, the goal was to predict a single output, i.e., the sentence was
either hedged or not hedged. The structure was thus only present in the input
domain to represent the relations in the sentences to classify. However, for a
number of natural language learning tasks, one also wants to predict structure
in the output domain. This is referred to as structured output learning (as
defined in Section 2.1.2). It requires the learner to classify several properties
simultaneously. In its simplest form, this task consists of predicting a set of
classes per example, as we illustrated for the identification of evidence-based
medicine categories (Chapter 5). However, for some tasks, the output is more
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complex, for example in the case of parse trees or coreference chains. Although a
number of approaches using statistical relational learning for structured output
exist (e.g., max-margin Markov Logic Networks, which combine MLNs with
structural SVMs (Huynh and Mooney, 2009)), these still lack an intuitive
representation of the structural constraints between the input and output
space and inside the output space. Statistical relational learning can offer new
opportunities in this respect. Although this could be of great benefit to natural
language learning tasks, this also brings a number of challenges which come
with the complexity caused by the large number of dependencies between the
input and output domains.

Declarative kernel design To represent linguistic information, one needs to
be able to deal with several types of structures, e.g., sequences to represent
the order of words in a sentence or sentences in a document, trees to represent
the parse structure, or graphs to represent coreferent entities or ontological
information. This also requires methods to calculate the similarity between
these structures. To this end, kLog, the graph–kernel based relational learning
framework used in this thesis, used the NSPDK graph kernel. This kernel
uses pairs of subgraphs which are characterized by an entity or relation which
is the kernel point, and a radius and distance to limit the context around
this point that is taken into account. While this kernel proved very effective
for natural language learning tasks, one could also consider (combinations of)
kernels that explicitly take into account these specific structures during the
similarity calculation. To this end, an extension of the logical language could be
considered that allows the user to construct the overall kernel in a declarative
way. This could result in decomposition kernels that are tailored to the natural
language learning task under consideration. Initial work on declarative kernels
(Cumby and Roth, 2003; Frasconi et al., 2005) has proven particularly useful in
the context of natural language processing (Costa et al., 2006), and formed the
inspiration for kLog.

In Chapter 7, we presented methods for relational regularization and feature
ranking. We limited the high-level relational features to be ranked to single
entities or paths of the type entity-relation-entity. To increase the flexibility of
the approach, the methods should offer the possibility to consider more complex
patterns. In addition to the specification of the kernel, the declaration of these
patterns could also form a part of the language bias.

Domain-specific and continuous features For the natural language learning
tasks presented in Chapters 4 and 5, we focused on the integration of a diverse
set of linguistic features. These features also formed the basis for the kLogNLP
model presented in Chapter 6. For a number of these features, domain-specific
preprocessing tools were used (e.g., the use of biomedical databases to tag
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named entities and the use of a tailored dependency tagger trained to parse
biomedical text). These domain-specific preprocessors can also be included
in kLogNLP (e.g., the BLLIP parser with the self-trained biomedical parsing
model (McClosky, 2010)).

Besides using domain-dependent preprocessing tools, the relational represen-
tation makes it possible to include additional domain-specific information.
For example, connecting each biomedical named entity to a relevant part of
the SNOMED biomedical ontology1 or linking person names to the DBPedia
ontology2 that contains the relations between named entities in Wikipedia,
could improve the learning performance. As the relational representation is
not limited to linguistic structure, one could even go one step further, e.g., by
linking named entities of chemical compounds in a sentence to their molecular
structure.

Furthermore, with the introduction of continuous bag-of-words and skip-gram
architectures for computing vector representations of words (Mikolov et al.,
2013), the inclusion of continuous features is a promising direction for future
work. This word vector representation can capture many linguistic regularities
at once, due to which it forms the basis for an improved similarity metric
between individual words. Integrating this continuous vector representation
into the relational model and the kernel calculation could lead to an improved
performance of the relational learner.

Machine reading The probabilistic rule learning as presented in Chapter 8
offers a number of new opportunities in the context of machine reading. In order
for a probabilistic rule learner to learn qualitative rules, it needs ground truth
facts with a well-calibrated probability attached. Currently, the confidence
scores attached to the facts in NELL are a combination of the probability output
by the learning algorithm and a manual evaluation. Recent work on improving
the quality of the estimated accuracy in NELL was performed by Platanios et al.
(2014), who consider combining multiple approximations in order to estimate
the true accuracy. To improve upon this, additional research into the field of
information extraction is required.

We validated our approach on a subset of the NELL knowledge base. Integrating
this approach into the pipeline of an online machine reading algorithm poses
new challenges concerning scalability, and a tradeoff between the accuracy of the
predictions versus the performance of the inference algorithm. On a related note,
probabilistic rule learning also offers new opportunities for learning probabilistic
ontologies.

1http://www.ihtsdo.org/snomed-ct/
2http://wiki.dbpedia.org/Ontology

http://www.ihtsdo.org/snomed-ct/
http://wiki.dbpedia.org/Ontology
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Abstract
ID

Sent.
nb.

Label Sentence

10070506 1 other BACKGROUND
10070506 2 backgroundSubfoveal choroidal neovascular membranes (CNV) are a cause

of significant visual impairment.
10070506 3 backgroundLaser treatment of such lesions results in visual loss.
10070506 4 backgroundSurgical excision of CNV may allow stabilisation or improvement

of vision.
10070506 5 backgroundA series of results of surgical excision are presented.
10070506 6 other METHODS
10070506 7 interventionThe records for 43 eyes of 40 consecutive patients undergoing

surgical excision of CNV not associated with age-related macular
degeneration (AMD) were reviewed retrospectively.

10070506 7 population The records for 43 eyes of 40 consecutive patients undergoing
surgical excision of CNV not associated with age-related macular
degeneration (AMD) were reviewed retrospectively.

10070506 8 other Statistical analyses of the relationship between pre-operative
factors and post-operative visual results were made.

10070506 9 other Improvement or worsening of visual acuity was defined as a
change of more than 2 lines of Snellen acuity.

10070506 10 other RESULTS
10070506 11 outcome In 79.1% of patients visual acuity was improved or unchanged

following surgery, and in 20.9% there was a reduction of Snellen
acuity.

10070506 12 outcome There was no statistically significant association between visual
outcome and age, gender, duration of visual symptoms, cause
of CNV, presence of subretinal haemorrhage, elevation of retina
by subretinal fluid, prior laser surgery, or the presence of pre-
operative or intraoperative subretinal haemorrhage.

10070506 13 outcome There was a possible association between the non-use of gas
tamponade and an increased chance of reduced vision.

10070506 14 outcome Visual loss was more likely in those eyes with good pre-operative
visual acuity.

10070506 15 outcome Recurrence of CNV was noted in 10 (23%) eyes; repeat surgery
was not associated with a worse visual outcome.

10070506 16 other CONCLUSIONS
10070506 17 outcome Surgical excision of CNV not related to AMD is a promising

technique.
10070506 18 outcome More meaningful assessment of visual function in these patients

will allow refinement of case selection.

Table A.1: Example of an annotated (structured) abstract from the NICTA-
PIBOSO corpus



Appendix B

Other Work

Some of the work done during the course of the Ph.D. was left out of the thesis
text in order to make the story as coherent as possible. In this appendix, a brief
overview of this work will be given. All methods and applications presented here
also concern text analysis. However, whereas the previous chapters primarily
focus on machine learning methods for natural language processing, the following
techniques are rooted in data mining, more specifically text mining, i.e., the
computational process of discovering patterns in large amounts of data and text
respectively.

B.1 Structure Recommendation
Search is one of the main applications on today’s Web and other repositories,
and it is supported by more and more advanced techniques. However, these
techniques largely ignore an important component of search: the further
processing of search-result sets that humans invariably undertake when dealing
seriously with a list of documents provided by a search engine – and the diversity
in which this is done by different people. An important form of such further
processing is the grouping of result sets into subsets, which can be seen as
investing an undifferentiated list of results with “semantics”: a structuring
into sets of documents each instantiating a concept (which is a subconcept of
the overall query). On the Web, several search engines provide an automatic
clustering of search results. However, regardless of how good the employed
clustering algorithm is, a “globally optimal” clustering solution is generally
impossible: There is no single best way of structuring a list of items; instead,
the “optimal” grouping will depend on the context, tasks, previous knowledge,
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etc. of the searcher(s).

On a truly Social Web, users should be empowered to see and work with a
diversity of possible groupings and their associated sense-makings. A prerequisite
for such diversity-aware tools is that users are able to perform individual sense-
making, structuring search result sets according to their needs and knowledge.
In (Verbeke et al., 2009), we studied how to make users aware of alternative
ways to group a set of documents. To this end, we developed a tool to cluster
documents resulting from a query. In this tool, Damilicious (DAta MIning
in LIterature Search engines), the user can, starting from an automatically
generated clustering, group a search result document set into meaningful groups,
and she can learn about alternative groupings determined by other users. To
transfer a clustering of one set of documents to another set of documents, the tool
learns a model for this clustering, which can be applied to cluster alternative sets
of documents. We refer to this model as the clustering’s intension, as opposed to
its extension, which is the original, unannotated grouping of the documents. This
approach supports various measures of diversity, which measure to what extent
two groupings differ. Such measures can be used to make recommendations and
present new, possibly interesting viewpoints of structuring the result set. The
domain of literature search was chosen to ensure a high level of user interest in
reflection and meaningful results, although the methods can easily be transferred
to other domains.

A good understanding of the dynamics of these structuring activities is a key
prerequisite for theories of individual behaviour in collaborative settings, and
it is necessary to improve the design of current and next generation (social)
recommender systems. Furthermore, it can leverage the design of mechanisms
that rely on implicit user interactions such as social search. To this end,
we developed a dynamic conceptual clustering technique that simulates this
intellectual structuring process, and which is able to identify these structuring
dynamics (Verbeke et al., 2012, 2014b). The evolution of the grouping of an
individual user is influenced by dynamically changing and collectively determined
“guiding grouping(s)”, which we will refer to as guides. We investigated two
types of guides. The first one is motivated by a “narrow” view of the structurer’s
prior grouping behaviour and experience, while the second one starts from a
“wider” perspective that also takes peer experience into account in grouping
decisions.

The process in which we want to transfer the grouping of one set of items to
another set of items during the guided grouping process is a combination of
two data mining tasks. The first task starts with an extension of a structuring,
and learns its intension as a classification model. The second task is to use the
intensions of the peer groupings and apply their classifiers for prediction, to
structure a new item. It starts from defining the k nearest peer groupings for a
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user. To decide on the k nearest peer groupings in a situation where peers group
different items, we defined a novel measure of divergence between groupings
that may have a different number and identities of items. Once we obtain the k
nearest peers, the task is to decide on item-to-group assignment using the peers’
groupings. Based on the presence of an item in peer groupings, this decision
is based either on the extension of the peer grouping (when a peer already
grouped the item) or on its intension (when a peer has not grouped the item
yet). By comparing the possible end groupings with the actual end grouping, we
see which guide selection is more likely to have determined the actual process.
The method can be used to identify structuring dynamics, which simulates an
intellectual structuring process operating over an extended period of time.

Besides structuring, involving the user into the sense-making process can
also be useful in the context of summarization. In (Berendt et al., 2013),
we provided an overview of interactive methods and interfaces for multi-
document summarization of news articles. We combined a number of these
summarization formats into a ubiquitous learning setting, in which the user
interacts with textual content, visualizations and summarization tools in different
and complementing ways (Chongtay et al., 2013).

B.2 Question Answering for Machine Reading Eval-
uation

Question answering for machine reading evaluation (QA4MRE) aims at
evaluating the performance of machine reading systems through question
answering tests. This formed the topic of a series of shared tasks (Peñas
et al., 2013). Given a single document on a particular topic, the goal of these
tasks is to identify the answers to a set of multiple-choice questions about
information that appears explicitly or implicitly in the text. The systems can
also make use of a collection of documents that contain background information
on the topic and could be useful in acquiring additional knowledge to bridge
the gap between the text, the questions and the answers.

For the 2012 edition of the task (Peñas et al., 2012), we developed a text mining
approach (Verbeke and Davis, 2012) for answering questions on biomedical
texts about the Alzheimer disease (Morante et al., 2012). Question answering in
the scientific domain poses additional challenges for machine reading, because
domain knowledge is essential to achieve a deep understanding in this context.
Consider the following example, taken from the corpus:

Example B.1. Text: [...] Additionally, no estrogen could be detected in the
APP23/Ar / mice (data not shown), suggesting that aromatase gene knock-
out prevented the conversion of endogenous testosterone into estrogen. [...]
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Question: What experimental approach is useful to create an in vivo system
where conversion of testosterone into estrogen is blocked?

Candidate Answers:

1. ELISA analysis
2. hole-board memory task
3. NEP activity assay
4. Western blot
5. knock-out of the aromatase gene

In order to identify the correct answer, namely knock-out of the aromatase
gene, the fact that an experiment with mice is an in vivo system is essential
information for a machine reading system. The main purpose of our research
was to investigate how far-reaching the influence of this background knowledge
is. To this end, we developed a system using basic text mining techniques,
without considering any external resources.

We proposed two approaches, one based on question similarity and another based
on answer containment. The former approach computes the similarity between
each question in the reading test and every sentence in the input document
and selects the top k most similar sentences. Subsequently, for each of these
sentences, the system checks if the sentence contains (part of) an answer. If it
does, the respective answer’s vote is incremented by either 1 or the normalized
similarity value. The answer with the highest number of votes, i.e., the highest
weight, is selected. The latter approach reverses the procedure of the question
similarity approach, and first checks if the answer appears in the sentence. If it
does, the similarity between the sentence and the question is calculated. These
similarities are summed and normalized for each of the sentences’ respective
answers. The answer with the highest similarity is selected.

The system can be seen as a baseline for the task. Based on its outcome, we
investigated which types of questions can be answered based solely on the input
text and the question string, and for which ones more advanced techniques are
needed that also consider the previously acquired background knowledge from
the reference document collection. As the fraction of questions of the former
type was relatively large, the best submitted run of our system was ranked
third out of seven systems participating in the competition. Despite this rank,
the results still leave a large margin for improvement, for which considering
the background knowledge from the reference document collection is the way
forward.

For QA4MRE 2013 (Sutcliffe et al., 2013), we extended this system with
additional preprocessing steps and coreference resolution, and explored its
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use for question answering on more general (non-scientific) topics (de Oliveira
Costa Marques and Verbeke, 2013). The best run of the extended system
was ranked second out of 77 runs from 19 participants, and all submitted
runs performed above average. When compared to the previous results for
question answering on biomedical texts, a slight improvement could be observed.
This can be explained by the integration of the additional preprocessing steps
and coreference resolution. Due to the generality of the topics, also the lack
of background knowledge from the reference document collection exercised a
smaller influence on the performance.

B.3 Data Mining for Communication Science
The big-data practices of social media are transforming the way many people
interact with one another, show public engagement, and receive and produce
information. The endless media options and processes that help form public
opinion are reshaped. News media that have traditionally played a key role
in the formation of public opinion now share this role with other sources of
information. In the fragmentized news media climate, many news media are
now themselves actors in social media, establishing their own practices as well
as developing practices of interaction and engagement with non-traditional
sources such as citizens who can opt to become creators or distributors of news
as “citizen journalists”.

In (Verbeke et al., 2014a), we investigated how the traditional activities of news
production, publication and dissemination unfold in this new ecosystem, and
how the different practices interact to shape public opinion. We focused on
the microblogging system Twitter and on Twitter messages (tweets) relating to
mainstream media. We did not investigate the contents of messages or of public
opinion, but focused on the communication structure as such, in particular on
who is active in distributing content and/or enriching content. We regard this
as a proxy measure of how people read and process news, to what extent they
engage in critical news reading, and thus ultimately of how they form and shape
opinions.

Methodologically, we investigated how the big-data data that are generated
by the big-data practices on social media, can give us insights about those
practices, when analyzed through the lens of data mining, as a big-data research
method. Furthermore, we used this analysis to demonstrate how questions
that arise in this process of interdisciplinary collaboration challenge and enrich
the assumptions, questions and interpretations of both disciplines that were
involved in this study: computer science and communication science.

To this end, we presented a model of news reading on Twitter, and
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Figure B.1: Screenshot of TwiNeR, illustrating the distribution of tweet types
for The Guardian (center left) and analysed tweets (bottom left).

TwiNeR (Twitter News Reading), an interactive tool which allows analysts to
automatically gather and analyse tweets in relation to the model of news reading,
as well as to read these tweets in detail (see Figure B.1). We demonstrated the
usefulness of this tool for answering our research questions by reporting on a
study of 18 news media from across all continents.

The results of our study suggest that social-media practices have evolved towards
both mainstream news media and “other” users engaging in the distribution,
reading and discussion of content originally produced by the media’s journalists.
In this sense, we observe both a democratization and a still-important role of
mainstream media in shaping public opinion. However, when looking more
closely, we also observed that discussion often stops after the first comment has
been made - after that, tweets tend to be simply spread to further audiences.
This indicates that Twitter is seldom used as a forum for critically discussing
mainstream news content, and it hints at the possibility that some Twitter users
may become the new gatekeepers of the news universe.
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