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Abstract 

 

Stainless steel has been gaining increasing use in a variety of engineering applications due to 

its unique combination of mechanical properties, durability and aesthetics. Significant 

progress in the development of structural design guidance has been made in recent years, 

underpinned by sound research. However, an area that has remained relatively unexplored is 

that of combined loading. Testing and analysis of stainless steel cross-sections under 

combined axial load and bending is therefore the subject of the present paper and the 

companion paper [1]. The experimental programme covers both austenitic and lean duplex 

stainless steels, and five cross-section sizes including three Square Hollow Sections (SHS) 

and two Rectangular Hollow Sections (RHS). In total, five stub column tests, five four-point 

bending tests, 20 uniaxial bending plus compression tests and four biaxial bending plus 

compression tests were carried out to investigate the cross-sectional behaviour of tubular 

stainless steel sections under combined bending and compression. The initial loading 

eccentricities for the combined loading tests were varied to provide a wide range of 

proportions of bending moment to axial load. For each type of test, the test setup, 

experimental procedures, full experimental load–deformation histories and key test results are 
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reported in detail. All the experimental results are then employed in the companion paper [1] 

for the validation of finite element (FE) models, by means of which a series of parametric 

results is generated, and for the assessment of the design provisions given in EN 1993-1-4 [2] 

and SEI/ASCE-8 [3]. Improved design rules for stainless steel cross-sections under combined 

loading are also sought through extension of the deformation-based Continuous Strength 

Method (CSM). 

 

1. Introduction 

 

Cold-formed stainless steel hollow sections are becoming an attractive choice in a range of 

structural applications since they combine the durability advantages of stainless steel with the 

aesthetic appeal, structural efficiency and potential for concrete-infilling [4–8] of closed 

tubular profiles. The tested cross-sections were formed from austenitic and lean duplex 

stainless steels. Extensive experimental and numerical studies have been previously 

conducted on tubular sections of these grades under compression and bending, acting in 

isolation. Previous researchers [9–15] have carried out stub column tests on different cross-

section classes to study the cross-sectional compressive response and local buckling 

behaviour. Three-point bending tests [16–18] and four-point bending tests [12,19–21] have 

been performed to investigate the flexural response and rotation capacity of stainless steel 

beams under a moment gradient and constant moment, respectively. On the basis of the 

findings, revised slenderness limits for cross-section classification [22] and new effective 

width formulae for slender sections [13] have been proposed. Theofanous et al. [23] 

conducted two-span continuous beam tests to enable the influence of moment redistribution 

within statically indeterminate beams to be examined. As highlighted by previous researchers, 

the general codified approach of limiting the design stress to the 0.2% proof stress, and 
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ignoring the pronounced strain hardening exhibited by stainless steels can lead to greatly 

underestimated cross-sectional resistances. To address this shortcoming, Gardner [24] and 

Ashraf et al. [25] proposed a deformation-based design approach called the Continuous 

Strength Method (CSM) to allow a rational exploitation of strain hardening. The latest 

developments to the CSM for stainless steel were presented by Afshan and Gardner [26], 

where substantially improved predictions of capacity over current design methods were 

demonstrated. However, to date, limited research has been conducted into the cross-sectional 

behaviour of stainless steel tubular sections under combined axial load and bending moment, 

and this is therefore the focus of the present investigation.  

 

An experimental programme was undertaken at the University of Liege and Imperial College 

London, aiming at investigating the cross-sectional interaction response of stainless steel 

elements under combined loading. Five stub column tests and five four-point bending tests 

were performed firstly to obtain the basic cross-sectional response characteristics under 

isolated loading cases. 20 uniaxial bending plus compression tests were then conducted to 

study the cross-sectional behaviour under uniaxial combined loading conditions. Finally, the 

influence of biaxial bending on the cross-sectional compression capacity was investigated by 

conducting four biaxial bending plus compression tests. The test setup, experimental 

procedures and key test results for each type of test are reported in detail herein. In the 

companion paper [1], a numerical modelling programme is described, in which the 

experimental response is initially replicated to validate the FE models and then parametric 

studies are carried out to generate further structural performance data. These data are 

analysed and discussed in combination with the test results, and used to evaluate the accuracy 

of existing design rules in EN 1993-1-6 [2] and SEI/ASCE-8 [3] and to develop more 

efficient design rules for stainless steel cross-sections under combined loading conditions. 
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2. Experimental investigation 

 

2.1 Introduction 

 

An experimental study covering austenitic and lean duplex stainless steels and a range of 

hollow section sizes including both SHS and RHS was conducted at the University of Liege 

and Imperial College London, with the aim of investigating the cross-sectional behaviour of 

tubular sections under combined loading conditions. Overall, the laboratory testing 

programme comprised material testing, geometric imperfection measurements, five stub 

column tests, five four-point bending tests, 20 uniaxial bending plus compression tests and 

four biaxial bending plus compression tests. Five cross-section sizes were employed, which 

were SHS 100×100×5, SHS 120×120×5, RHS 150×100×6, and RHS 150×100×8 of 

austenitic grade (EN 1.4301, 1.4571, 1.4307 and 1.4404, respectively) and SHS 150×150×8 

of lean duplex grade (EN 1.4162). The chemical compositions for each section, as provided 

by the mill certificates, are presented in the Table 1. The testing apparatus, experimental 

procedures and test results for each type of test are reported in detail in the following sections. 

 

2.2 Material testing 

 

A comprehensive description of the material testing carried out on the sections studied herein 

was given by Afshan et al. [27], while only a brief summary is provided in the present paper. 

All tensile coupon tests were conducted using a Zwick/Roell Z100 kN electromechanical 

testing machine, in which a set of end-clamps were utilized to allow appropriate gripping of 

the coupons in the machine jaws with flat surface clamps used for the flat coupons and V-

shaped clamps employed for the corner coupons. For each section size, two flat coupons and 
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two corner coupons were tested. Two flat coupons were cut from the centrelines of the faces 

adjacent to the welded face whilst two corner coupons were taken from the curved corner 

regions opposite to the weld, as shown in Fig. 1. All the coupon tests were performed under 

strain-control according to the requirements of EN ISO 6892-1 [28]. For each cross-section, 

the average measured flat and corner material properties, obtained from coupons cut from the 

complete profiles, are reported in Table 2 and Table 3, respectively, while the tensile 

properties of the coil material from the mill certificates are listed in Table 4, where 0.2  is the 

0.2% proof stress, 1.0  is the 1.0% proof stress, u  is the ultimate tensile stress, u  is the 

strain at the ultimate tensile stress, 
f  is the plastic strain at fracture measured over the 

standard gauge length, and n and 0.2,1.0'n  are the strain hardening exponents used in the 

compound Ramberg-Osgood (R-O) material model [29–32]. 

 

2.3 Geometric imperfection measurements 

 

Geometric imperfections are an inevitable and important characteristic of thin-walled 

structures, which influence structural performance. Owing to the absence of global buckling 

phenomena in the present study, only local imperfections were measured. The procedures and 

test setup for imperfection measurements were similar to those suggested by Schafer and 

Peköz [33] in which a Linear Variable Displacement Transducer (LVDT) was affixed to the 

head of the milling machine with specimens lying on the moving machine base, as shown in 

Fig. 2. For each specimen, imperfection measurements were conducted along the centrelines 

of all the four faces. To eliminate the effect of end flaring [34] due to the release of residual 

stress and the influence of the welds, all the imperfection measurements were taken over the 

central 50% of the member length, at 2 mm intervals. The maximum imperfection amplitude 

for each face was defined as the maximum deviation from a linear trend line fitted to the data 
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set. The largest value of the measured maximum deviations from four faces was taken as the 

initial local imperfection amplitude of the specimen. Measured geometric imperfection 

distributions for the four faces of a typical beam specimen are shown in Fig. 3. Tables 5, 7, 9 

and 11 report the local imperfection amplitudes for the specimens tested under pure 

compression, four-point bending, uniaxial bending plus compression and biaxial bending plus 

compression, respectively.  

 

2.4 Stub column tests 

 

For each section size, a concentric stub column test was performed for the determination of 

deformation and load-carrying capacities under pure compression. The nominal length of 

each stub column specimen fell within the range between three times the width of the widest 

plate element and 20 times the least radius of gyration of the gross cross-section, as 

recommended in EN 1993-1-3 [35]; this length is deemed short enough to avoid global 

flexural buckling, but still long enough to contain a representative pattern of local geometric 

imperfection and residual stress. The member length, geometric dimensions and imperfection 

amplitude for each specimen were measured prior to stub column testing and are reported in 

Table 5, where L is the member length, B and H are the outer section width and depth, 

respectively, t is the material thickness, ir  is the internal corner radius, A is the cross-section 

area and 0  is the measured maximum local imperfection.  

 

The ends of each stub column were milled flat and square to allow accurate seating of the 

ends on the parallel platens of the test machine, which ensured a uniform load distribution on 

the specimen during testing. The parallel end platens were fixed against rotations and twist 

about any axis to achieve fixed boundary conditions. All the tests were performed under 
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displacement-control at a constant speed of 0.15 mm/min. Fig. 4 depicts the stub column test 

setup, in which the instrumentation consists of four LVDTs to measure the end shortening, 

four linear electrical resistance strain gauges attached to each specimen at a distance of four 

times the thickness from the corners at mid-height to determine the corresponding 

longitudinal strains, and a load cell to record the applied load. Each test was continued into 

the post-ultimate range to enable the falling path to be captured. All data, including the 

applied load, strain gauge readings and LVDT values were recorded at 1 s intervals, using 

acquisition equipment ScanWin. 

 

As indicated in previous studies [10,36], the end shortening measurements from LVDTs 

include not only the end shortening of the specimen but also the elastic deformation of the 

end platens of the test machine. Based on the strain gauge readings, the true end shortening 

values were obtained following the procedure recommended in [36]. Fig. 5 depicts the 

modified true load–end shortening curves for all the specimens, while a summary of key test 

results, including the ultimate load uN , the ratio of 0.2/uN A  and the corresponding end 

shortening u  at ultimate load, is given in Table 6. Note that the high 0.2/uN A  ratios are 

associated with the assumption that the yield load ( 0.2A ) is the limiting capacity of the 

cross-section, which neglects the influence of strain hardening. All specimens failed by 

inelastic local buckling. Typical deformed specimens, for SHS 100×100×5-1A and RHS 

150×100×6-3A, are depicted in Figs. 6 and 7, respectively. 

 

2.5 Four-point bending tests 

 

In total, five symmetric four-point bending tests were carried out to investigate the flexural 

performance and rotation capacity of the stainless steel sections under constant bending 



8 

 

moment. Owing to the closed nature of the tested sections and the relatively short span 

lengths, there was no possibility of lateral torsional buckling; hence only local geometric 

imperfections were measured, as previously described. Table 7 lists the measured geometric 

properties, initial local geometric imperfection amplitude 0 , total member length tL , 

flexural span length 
fL , and the length between loading points mL  for each specimen. The 

total member length tL  was equal to the flexural span length 
fL  between steel roller supports 

plus two equal overhanging lengths of 100 mm beyond the centrelines of supports. 

 

As shown in Fig. 8, the simply-supported beams were loaded symmetrically at two points 

through a spreader beam. Steel transfer plates were introduced between the specimen and the 

two loading points to distribute the load and wooden blocks were inserted into the tube at the 

loading points to prevent web crippling. A similar arrangement has been successfully 

employed in previous studies [12,37]. Strain gauges were attached to the top and bottom 

flanges of the test specimens at a distance of 5 mm from the mid-span to avoid contact with 

the string potentiometer, which was placed at mid-span to measure the vertical deflection. 

Two additional string potentiometers were employed at the loading points to measure vertical 

deflections at these locations. Displacement-control was again used with a constant speed of 

1 mm/min for all the tests. For each experiment, the specimen cross-section was orientated 

such that the face containing the weld was always the bottom (tension) flange, to achieve 

symmetry. Finally, load, vertical deflections and strain were recorded by a data acquisition 

system DATASCAN at a rate of 1 s. 

 

Fig. 9 depicts the failed beam specimens, all of which exhibited local buckling of the 

compression flange and upper portion of the webs within the constant moment region. The 

normalised moment–curvature curves / /pl plM M    for all tests are shown in Fig. 10, 
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where 
plM  is the cross-sectional plastic bending resistance, 

pl  is the elastic curvature 

corresponding to     and   is the curvature determined from Eq. (1) [38], in which MD  is 

the vertical deflection at mid-span, LD  is the average vertical deflection at the two loading 

points and mL  is the length of the constant moment region (i.e. the distance between the 

loading points). Table 8 reports the key experimental results, including the ultimate test 

moment uM , the ratios of test ultimate moment to the elastic and plastic moment capacities 

( /u elM M  and /u plM M ) and the rotation capacity R, which was evaluated according to Eq. 

(2). The high ratios of test ultimate moment to the elastic and plastic moment capacities can 

be attributed to the assumption of elastic perfectly plastic material behaviour in the definition 

of elM  and 
plM , which does not match closely to the rounded and strain hardening material 

response of stainless steel. 
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where u  is the curvature at which the falling branch of the moment–curvature curve reaches 

plM . 

 

2.6 Combined loading tests 

 

In total, 20 uniaxial bending plus compression tests and four biaxial bending plus 

compression tests were carried out, with the aim of investigating the cross-sectional 

behaviour of stainless steel tubular sections under combined loading conditions. The test 

programme was arranged as follows: For each of the five studied cross-section sizes, four 
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uniaxial bending plus compression tests, with varying initial load eccentricities, were 

conducted. For the RHS 150×100×6 specimens, major axis bending plus compression tests 

were performed, whereas for the RHS 150×100×8 specimens, the bending was about the 

minor axis. In addition to the uniaxial bending plus compression tests, four biaxial bending 

plus compression tests were also carried out on the SHS 100×100×5 specimens.  

 

For each test specimen, geometric dimensions were measured, before 25 mm thick end plates 

were welded to the member ends. The nominal length of each combined loading specimen 

was similar to that of the corresponding stub column specimen. The measured geometric 

properties and imperfection amplitudes, together with the specimen IDs and initial loading 

eccentricities are summarised in Tables 9 and 11 for specimens under uniaxial bending plus 

compression and biaxial bending plus compression, respectively. 

 

The combined loading tests were conducted using an AMSLER 5000 kN hydraulic testing 

machine with hemispherical bearings at both ends providing pin-ended conditions in any 

direction. The centrelines of the hydraulic actuator, the top hemispherical bearing and the 

bottom hemispherical bearing coincided with each other, which ensured no resultant bending 

moment acting on the hemispherical bearings. The common point of the concurrent forces 

imposed by the hydraulic actuator to the hemispherical bearing was located at the centroid of 

the flat face of the hemispherical bearing (see Fig. 11(a)), and therefore the effective length 

eL  in each test was equal to the specimen length plus the thickness of the two welded end 

plates. Fig. 11(a) and Fig. 11(b) provide a schematic diagram and photograph of the test setup. 

Specimens were eccentrically bolted to the hemispherical bearings of the test machine, thus 

resulting in the end sections of the specimens free to rotate about both principal axes. 

However, the twist rotation was restrained by an anchor device, as shown in Fig. 11(a) and 
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Fig. 11(b). The initial loading eccentricities for the combined loading tests were varied to 

generate a range of proportions of bending moment to axial load. 

 

During the experiments, the applied eccentric load initially induces uniform bending moment 

and single curvature along the member length. However, as discussed by Fujimoto et al. [39] 

and Gardner et al. [40], with increasing applied load, the lateral deformation of the specimen 

generates additional second order bending moments. Therefore, in order to evaluate the 

second order bending moments, the lateral deflections in both principal directions were 

measured by means of two string potentiometers, which were affixed to the specimens at 

mid-height. Two inclinometers located at both ends of the test specimens were used for the 

determination of end rotations. Finally, four strain gauges were attached to the extreme fibres 

of the cross-sections at mid-height to capture the longitudinal strains, which would be used to 

derive the actual initial loading eccentricity for each combined loading test, as discussed later. 

A data acquisition system ScanWin was utilized to record the applied load, lateral deflections, 

end rotations and longitudinal strains at one-second intervals.  

 

Initial loading eccentricity is one of the key test parameters and has a strong influence on the 

beam-column cross-sectional interaction behaviour. It is also important in the numerical 

modelling in order to accurately replicate the experimental response and predict the ultimate 

load. Prior to testing, each specimen was eccentrically bolted to the hemispherical bearings at 

a specific nominal eccentricity. The test eccentricities were then measured directly and also 

calculated from the strain gauges readings, following the procedure described below. The 

measured and calculated eccentricities were in good agreement, and the calculated values are 

reported in Tables 10 and 12 for uniaxial bending plus compression tests and for biaxial 

bending plus compression tests, respectively. For each axis of bending, the strain due to the 
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bending moment m  is equal to   / 2max min  , where max  and min  are the strain values of 

the maximum compressive fibre and the maximum tensile (or the minimum compressive, in 

some cases) fibre, respectively. The actual bending moment at mid-height can be derived 

from  M EI , where   and   are the weighted average (based on the areas of flat and 

corner parts) Young’s modulus and the second moment of area about the axis of bending, 

respectively, and   is the curvature at mid-height equal to / 0.5m D , in which D  is the 

relevant outer dimension of the cross-section. The actual initial eccentricity is then evaluated 

as 0 ( / )e EI N  , where N  is the applied load and   is the lateral deflection at mid-

height, as measured by the string potentiometer. The final expression for calculating the 

initial eccentricity about each axis of buckling is defined by Eq. (3) 

 
0  

max minEI
e

DN

 
                                                                                                            (3) 

Note that the initial eccentricity was determined as the average calculated value during the 

early stage of loading, where the material behaviour was elastic. 

 

Table 10 summarises the key test results including the failure load uN , the actual initial 

loading eccentricity, referred to as the first order eccentricity 0e , the generated lateral 

deflection at failure load, referred to as the second order eccentricity 'e , the failure moment 

0 '( )u uM N e e   and the corresponding end rotation at failure u  for the uniaxial bending 

plus compression tests. The experimental results for the biaxial bending plus compression 

tests are listed in Table 12, in which the initial loading eccentricities and the corresponding 

lateral deflections, failure moments and end rotations about both principal axes are reported.  

 

The experimental load–end rotation curves for each cross-section under uniaxial bending plus 

compression with varying initial eccentricities are shown in Figs. 12(a)–12(e), whist those 
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under biaxial bending plus compression are depicted in Figs.13(a)–13(d). In terms of failure 

modes, significant local buckling was observed at mid-height for all test specimens; typical 

failure modes for the SHS and RHS specimens under uniaxial bending plus compression are 

displayed in Fig. 14, while a representative failure mode from a biaxial bending plus 

compression test is illustrated in Fig. 15, showing local buckling about both principal axes. 

 

3. Conclusions 

 

A series of experiments performed to investigate the cross-sectional response of stainless 

steel tubular sections under combined loading has been reported. A total of 34 cross-section 

tests were carried out. Five cross-section sizes including three Square Hollow Sections (SHS) 

and two Rectangular Hollow Sections (RHS) of different material grades were employed. 

The experimental programme included material testing, geometric imperfection 

measurements, five stub column tests, five four-point bending tests, 20 uniaxial bending plus 

compression tests and four biaxial bending plus compression tests. Various initial loading 

eccentricities were considered to vary the ratio of bending moment to applied axial load. For 

the RHS, the cross-sectional behaviour under both major and minor axis combined loading 

conditions was examined. The test setup and experimental procedures for each type of test 

have been fully described. Full load–deformation histories have been presented for all test 

types. Key test results including the ultimate load and the corresponding deformation 

parameters at ultimate load have also been tabulated. All experimental results are utilized in 

the companion paper [1] for validation of the numerical models, and evaluation and 

development of suitable procedures for stainless steel cross-sections under combined loading. 
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Table 1 Chemical compositions stated in the mill certificates. 

Cross-section Grade C  Si  Mn  P S Cr  Ni  N  Mo  Cu  Nb  

    (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

SHS 100×100×5 1.4301 0.044 0.35 1.34 0.029 0.001 18.24 8.12 0.058 0.21 – – 

SHS 120×120×5 1.4571 0.040 0.39 1.22 0.027 0.001 16.70 10.7 0.010 2.06 – – 

RHS 150×100×6 1.4307 0.023 0.39 1.76 0.029 0.001 18.20 8.10 0.043 – – – 

RHS 150×100×8 1.4404 0.022 0.49 1.74 0.032 0.002 17.00 10.00 0.042 2.04 – – 

SHS 150×150×8 1.4162 0.029 0.74 4.97 0.020 0.001 21.68 1.59 0.215 0.32 0.34 – 

 

 

Table 2 Average measured tensile flat material properties. 

Cross-section E  0.2  1.0  u  u  f  R-O coefficient 

  (N/mm
2
) (N/mm

2
) (N/mm

2
) (N/mm

2
) (%) (%) n  0.2,1.0'n  

SHS 100×100×5 193400 434 492 683 48 61 4.7 2.9 

SHS 120×120×5 192550 343 391 605 44 61 6.7 2.4 

RHS 150×100×6 193250 341 385 642 48 60 6.6 2.2 

RHS 150×100×8 196109 335 384 608 45 66 5.9 2.6 

SHS 150×150×8 198700 519 578 728 28 52 5.3 2.8 

 

 

Table 3 Average measured tensile corner material properties. 

Cross-section E  0.2  1.0  u  u  f  R-O coefficient 

 
(N/mm

2
) (N/mm

2
) (N/mm

2
) (N/mm

2
) (%) (%) n  0.2,1.0'n  

SHS 100×100×5 192200 599 773 810 24 33 3.6 19.6 

SHS 120×120×5 192900 526 601 687 28 47 10.8 3.0 

RHS 150×100×6 189750 607 660 808 33 44 8.7 3.0 

RHS 150×100×8 200700 559 622 725 28 51 4.8 3.9 

SHS 150×150×8 206750 831 906 920 3 21 8.9 6.1 

 

Table 4 Mechanical properties stated in the mill certificates. 

Cross-section 0.2,mill  1.0,mill  ,u mill  f  

 
(N/mm

2
) (N/mm

2
) (N/mm

2
) (%) 

SHS 100×100×5 310 – 670 51 

SHS 120×120×5 268 315 584 53 

RHS 150×100×6 284 328 603 56 

RHS 150×100×8 285 336 590 53 

SHS 150×150×8 561 605 747 – 
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Table 5 Measured dimensions of stub column specimens. 

Cross-section Specimen ID L   H   B   t  ir  A  0  

    (mm) (mm) (mm) (mm) (mm) (mm
2
) (mm) 

SHS 100×100×5 1A 349.9 100.0 99.9 4.65 2.08 1736.9 0.015 

SHS 120×120×5 2A 399.9 120.3 120.1 4.65 5.79 2084.8 0.039 

RHS 150×100×6 3A 450.1 150.6 100.0 5.87 7.05 2703.6 0.043 

RHS 150×100×8 4A 450.0 150.1 100.2 7.75 9.65 3459.4 0.028 

SHS 150×150×8 5A 449.8 150.4 150.0 8.04 11.17 4362.8 0.015 

 

 

Table 6 Summary of test results for stub columns. 

Cross-section Specimen ID Ultimate load uN  End shortening at ultimate load u   0.2/uN A  

    (kN)  (mm)    

SHS 100×100×5 1A 1057.0 5.07 1.27 

SHS 120×120×5 2A 928.4 3.58 1.13 

RHS 150×100×6 3A 1323.7 7.06 1.14 

RHS 150×100×8 4A 1825.1 12.78 1.20 

SHS 150×150×8 5A 3257.9 10.27 1.15 

 

 

Table 7 Measured dimensions of beam specimens. 

Cross-section Specimen ID Axis of bending tL  fL  
mL  H  B  t  ir  0  

      (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

SHS 100×100×5 1B – 1200 1000 333.3 100.0 100.0 4.63 2.10 0.022 

SHS 120×120×5 2B – 1400 1200 400.0 120.1 120.2 4.60 5.80 0.120 

RHS 150×100×6 3B Major 1800 1600 533.3 150.0 100.0 5.82 7.02 0.041 

RHS 150×100×8 4B Minor 1800 1600 533.3 100.0 150.1 7.70 9.60 0.065 

SHS 150×150×8 5B – 1800 1600 533.3 150.1 150.1 8.00 11.10 0.069 

 

 

Table 8 Summary of test results for beams. 

Cross-section Specimen ID Axis of bending Ultimate moment uM   /u elM M  /u plM M  Rotation Capacity R 

      (kNm)       

SHS 100×100×5 1B – 39.1 1.57 1.32 >13.75 

SHS 120×120×5 2B – 42.5 1.42 1.21 12.60 

RHS 150×100×6 3B Major 70.9 1.51 1.23 >19.24 

RHS 150×100×8 4B Minor 59.7 1.27 1.07 >11.52 

SHS 150×150×8 5B – 165.9 1.34 1.12 7.96 
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Table 9 Measured dimensions of uniaxial bending plus compression specimens. 

Cross-section Specimen ID 0e  L  H  B  t  ir  0  

    (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

SHS 100×100×5 

1C 17.9 350.0 100.0 99.9 4.65 2.08 0.060 

1D 25.8 350.0 100.0 100.0 4.70 2.20 0.060 

1E 52.9 350.0 100.0 100.0 4.66 2.14 0.060 

1F 120.0 350.0 100.0 100.1 4.66 2.15 0.060 

SHS 120×120×5 

2C 10.0 399.9 120.2 120.1 4.65 5.79 0.071 

2D 38.0 400.0 120.0 120.1 4.61 5.70 0.071 

2E 68.0 400.0 120.0 120.0 4.61 5.81 0.071 

2F 120.0 399.8 120.0 120.1 4.59 5.75 0.071 

RHS 150×100×6 

3C 44.8 350.1 150.1 100.1 5.85 7.00 0.069 

3D 64.1 449.8 150.4 100.0 5.85 7.05 0.069 

3E 92.4 450.1 150.1 99.9 5.82 7.01 0.069 

3F 128.4 450.0 150.2 100.0 5.90 7.05 0.069 

RHS 150×100×8 

4C 19.9 450.0 150.1 100.0 7.73 9.61 0.041 

4D 51.6 450.2 150.1 100.1 7.70 9.64 0.041 

4E 74.9 450.0 150.1 100.0 7.71 9.70 0.041 

4F 140.0 450.1 150.0 100.0 7.68 9.60 0.041 

SHS 150×150×8 

5C 29.5 449.8 150.2 150.0 8.00 11.10 0.025 

5D 51.6 450.0 150.1 150.0 7.99 11.15 0.025 

5E 84.2 450.0 150.0 150.0 8.02 11.15 0.025 

5F 116.4 450.1 150.0 150.0 8.04 11.17 0.025 
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Table 10 Summary of uniaxial bending plus compression test results. 

Cross-section Specimen ID 0e  uN  'e  uM  u  

    (mm) (kN) (mm) (kNm) (deg) 

SHS 100×100×5 

1C 17.9 743.5 4.4 16.6 1.61 

1D 25.8 622.2 4.8 19.0 1.72 

1E 52.9 472.7 6.1 27.9 2.07 

1F
b
 120.0 – – – – 

SHS 120×120×5 

2C 10.0 793.5 2.6 10.0 0.98 

2D 38.0 550.0 2.8 22.4 1.24 

2E 68.0 424.0 3.0 30.1 1.55 

2F
a
 120.0 296.1 3.2 36.5 – 

RHS 150×100×6 

3C 44.8 825.2 6.2 42.1 2.04 

3D 64.1 685.3 7.2 48.9 2.60 

3E 92.4 575.7 7.4 57.5 2.60 

3F 128.4 473.4 8.8 64.9 3.16 

RHS 150×100×8 

4C 19.9 1173.8 9.5 34.5 3.06 

4D 51.6 800.1 12.4 51.2 3.93 

4E 75.0 626.9 13.2 55.3 4.66 

4F
b
 140.0 – – – – 

SHS 150×150×8 

5C 29.5 2186.7 7.2 80.3 2.40 

5D 51.6 1814.9 7.2 106.7 2.76 

5E 84.2 1403.6 7.3 128.4 3.19 

5F
b
 116.4 1186.9 >3.4 142.2 – 

 

a. Fracture of welded end plate occurred prior to specimen failure. 

b. No rotation data was obtained. 

c. Test was interrupted near peak load. 
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Table 11 Measured dimensions of biaxial bending plus compression specimens. 

Cross-section Specimen ID 0 ye  
0ze  L  H  B  t  ir  0  

    (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

SHS 100×100×5 

1G 20.0 20.0 350.0 120.1 120.0 4.60 5.75 0.030 

1H 23.0 43.0 349.9 120.1 120.1 4.70 5.78 0.030 

1I 20.0 60.0 350.0 120.0 120.1 4.65 5.80 0.030 

1J 23.0 78.0 350.0 120.0 120.1 4.65 5.75 0.030 

 

 

Table 12 Summary of biaxial bending plus compression test results. 

Cross-section Specimen ID 0 ye  
0ze  uN  'ye  'ze  uyM  

uzM  uy  
uz  

    (mm) (mm) (kN) (mm) (mm) (kNm) (kNm) (deg) (deg) 

SHS 100×100×5 

1G 20.0 20.0 633.1 3.1 3.1 14.6 14.6 1.48 1.48 

1H 23.0 43.0 484.3 2.8 3.8 12.5 22.7 0.96 1.95 

1I 20.0 60.0 428.1 2.3 4.1 9.5 27.4 0.92 2.38 

1J 23.0 78.0 363.2 2.3 4.2 9.2 29.9 0.82 2.53 
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Fig. 1. Locations of coupons in the cross-section. 

 

 

Fig. 2. Test setup for imperfection measurements. 

 

 

Fig. 3. Typical measured imperfection distributions, shown for specimen RHS 150×100×6-3B. 
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Fig. 4. Stub column test setup. 

 

 

 

Fig. 5. Load–end shortening curves for stub column tests. 
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Fig. 6. Stub column failure mode of specimen SHS 

100×100×5-1A. 

 
 

Fig. 7. Stub column failure mode of specimen RHS 

150×100×6-3A. 

 

 

 

 

Fig. 8. Four-point bending test setup. 
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Fig. 9. Four-point bending failure modes. 

 

 

 

Fig. 10. Normalised moment–curvature curves for four-point bending tests. 
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Fig. 11(a). Schematic diagram of the test setup.  

 
 
 
 

 

 
 

Fig. 11(b). Experimental setup. 

Fig. 11. Combined loading test configuration. 
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Fig. 12(a). Test curves for SHS 100×100×5  

(Specimens: 1C to 1E) 

 

 
 

Fig. 12(b). Test curves for SHS 120×120×5 

(Specimens: 2C to 2E) 

 
 

Fig. 12(c). Test curves for RHS 150×100×6 

(Specimens: 3C to 3F). 

 

 
 

Fig. 12(d). Test curves for RHS 150×100×8 

(Specimens: 4C to 4E). 

 
 

Fig. 12(e). Test curves for SHS 150×150×8 (Specimens: 5C to 5F). 

Fig. 12. Load–end rotation curves for uniaxial bending plus compression tests. 
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Fig. 13(a). Test curves for specimen SHS 100×100×5-1G 

(e0y=e0z=20 mm). 

 

 
 

Fig. 13(b). Test curves for specimen SHS 100×100×5-1H 

(e0y=23mm, e0z=43 mm). 

 
 

Fig. 13(c). Test curves for specimen SHS 100×100×5-1I 

(e0y=20mm, e0z=60 mm). 

 
 

Fig. 13(d). Test curves for specimen SHS 100×100×5-1J 

(e0y=23mm, e0z=78 mm). 

Fig. 13. Load–end rotation curves for biaxial bending plus compression tests. 
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Fig. 14. Typical failure modes for uniaxial bending plus compression tests (from left to right: SHS 100×100×5-

1D, RHS 150×100×6-3D, RHS 150×100×8-4D). 

 

 

 

Fig. 15. Typical failure mode from biaxial bending plus compression tests (SHS 100×100×5-1I: e0y=20mm, 

e0z=60 mm). 

 


