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Abstract

In this paper we give a survey of some results concerning the computation of quadrature
formulas on the unit circle.

Like nodes and weights of Gauss quadrature formulas (for the estimation of integrals with
respect to measures on the real line) can be computed from the eigenvalue decomposition of
the Jacobi matrix, Szegő quadrature formulas (for the approximation of integrals with respect
to measures on the unit circle) can be obtained from certain unitary five-diagonal or unitary
Hessenberg matrices that characterize the recurrence for an orthogonal (Laurent) polynomial basis.
These quadratures are exact in a maximal space of Laurent polynomials.

Orthogonal polynomials are a particular case of orthogonal rational functions with prescribed
poles. More general Szegő quadrature formulas can be obtained that are exact in certain spaces of
rational functions. In this context, the nodes and the weights of these rules are computed from the
eigenvalue decomposition of an operator Möbius transform of the same five-diagonal or Hessenberg
matrices.

Keywords: Szegő polynomials, orthogonal Laurent polynomials, orthogonal rational functions,
Szegő quadrature formulas, Hessenberg matrices, CMV matrices, Givens transformation, Möbius
transform.
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1. Introduction

A well known procedure to approximate the integral Iσ(f) =
∫ b
a
f(x)dσ(x), σ being a positive

measure on [a, b], is an n-point Gauss-Christoffel quadrature rule which takes the form Iσn (f) =∑n
j=1Ajf(xj) and is such that Iσ(P ) = Iσn (P ) for any polynomial of degree up to 2n − 1. The

effective computation of the nodes {xj}nj=1 and weights {Aj}nj=1 in Iσn (f) has become an interesting
matter of study both from a numerical and a theoretical point of view. As shown by Gautschi
among others (see e.g. [30, 31]), the basic element is the three-term recurrence relation satisfied by
the sequence of orthogonal polynomials for the measure σ. This recurrence is characterized by a tri-
diagonal matrix (Jacobi matrix) so that the eigenvalues of the n-th principal submatrix coincides
with the nodes {xj}nj=1 i.e., with the zeros of the n-th orthogonal polynomial. Furthermore, the
weights {Aj}nj=1 are precisely the first component of the normalized eigenvectors.
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1The work of this author was partially supported by the research project MTM2011-28952-C02-01 from the
Ministry of Science and Innovation of Spain and the European Regional Development Fund (ERDF), and by project
E-64 of Diputación General de Aragón (Spain).

2The work of this author was partially supported by research projects of Ministerio de Ciencia e Innovación
under grant MTM2011-28781.

Preprint submitted to Journal of Computational and Applied Mathematics October 31, 2014



In this paper, we shall be concerned with the approximate calculation of integrals of 2π-periodic
functions with respect to a positive measure µ on [−π, π] or more generally, of integrals on the
unit circle like Iµ(f) =

∫ π
−π f

(
eiθ
)
dµ(θ). In analogy with Gaussian rules, we propose an n-point

quadrature rule In(f) =
∑n
j=1 λjf(zj) with distinct nodes on the unit circle but now imposing

exactness not for algebraic polynomials but for trigonometric polynomials or more generally, Lau-
rent polynomials. It should be recalled that Laurent polynomials on the real line were used by
Jones and Thron in the early 1980’s in connection with continued fractions and strong moment
problems (see [43] and [45]) and also implicitly in [46]. Their study underwent a rapid development
in the last decades giving rise to a theory of orthogonal Laurent polynomials on the real line (see
e.g., [15, 24, 41, 42, 50, 54]), and it was extended to a theory of more general orthogonal rational
functions (see [8]).

On the other hand, the rapidly growing interest in problems on the unit circle, like quadratures,
Szegő polynomials and the trigonometric moment problem has suggested to develop a theory
of orthogonal Laurent polynomials on the unit circle introduced by Thron in [54], continued in
[16, 37, 44] and where the recent contributions of Cantero, Moral and Velázquez in [11–13] have
meant an important and definitive impulse for the spectral analysis of certain problems on the
unit circle. Here, it should be remarked that the theory of orthogonal Laurent polynomials on
the unit circle establishes features totally different from the theory on the real line because of the
close relation between orthogonal Laurent polynomials and the orthogonal polynomials on the unit
circle (see [18]).

The orthogonal polynomials are a particular case of a more general kind of orthogonal functions
with interest in many pure and applied sciences: the orthogonal rational functions with prescribed
poles (see [8] and references therein). We may look at polynomials as a special case of rational
functions having only a pole at∞. The main difference between orthogonal polynomials on the real
line and on the unit circle is not only the location of the support of the measure, but also the relative
localization of the pole with respect to this support. The natural generalization of (orthogonal)
polynomials with pole at infinity is to have rational functions with poles in a neighborhood of
infinity. Hence on the real line, where polynomials are assumed to be real, it is natural to choose
the poles of the (orthogonal) rational functions to be real as well, i.e., choose them on the extended
real line. For the unit circle however, the polynomials depend on a complex variable, and are
therefore also assumed to be complex functions, so that the generalization to rational functions
will be to select poles that can be anywhere ‘near’ infinity, i.e., away from the support of the
measure, which in our case will mean in the exterior of the closed unit disk.

A more general situation can also be considered with respect to the quadrature formulas:
involving orthogonal rational functions on the unit circle with prescribed poles not on T, but inside
or outside of the unit disk. This situation, already studied in [6], gives rise to the rational Szegő
quadrature formulas. In this case, the nodes are the zeros of the corresponding para-orthogonal
rational functions and the quadrature formula is the integral of the rational Lagrange interpolant
in these nodes, so that the weights are obtained from the integral of the corresponding rational
Lagrange basis functions. An alternative approach to these quadrature formulas, using Hermite
interpolation is considered in [6].

In the paper [2], an alternative way to calculate the nodes and the weights to the rational
Szegő quadrature formulas was presented by using the recently obtained matricial representation
for orthogonal rational functions on the unit circle with prescribed poles (see [55]). These matrices
are the result of applying a matrix Möbius transformation of unitary Hessenberg and unitary five-
diagonal matrices, having the same form as in the polynomial case. The five-diagonal matrices are
also known as CMV matrices. The operator Möbius transformation of the unitary truncations of
order n of these matrices, led us to obtain the nodes and the weights of rational Szegő quadrature
formulas as in the polynomial case, by computing the eigenvalues and the first component of the
normalized eigenvectors of such matrices.

The main purpose of this paper is to give a survey of recent results obtained in the study of
matricial representations, both for orthogonal Laurent polynomials defined with respect to any
order and for orthogonal rational functions, as well as the analysis and computation of the nodes

2



and weights of Szegő quadrature formulas. Also, some new theoretical approaches along with new
numerical experiments will be given.

The rest of the paper is organized as follows: In Section 2, sequences of orthogonal Laurent
polynomials on the unit circle with respect to a general order and satisfying certain recurrence
relations are constructed. The multiplication operator in the space of Laurent polynomials with
a general nesting of the subspaces is considered in Section 3. On the unit circle, this operator
plays a fundamental role in the five-diagonal or Hessenberg representation obtained in [12] that
are the analogs of the Jacobi matrices on the real line. Our main result of this section is the
minimal representation obtained with an approach that differs from the one in [13]. In Section 4
a matrix approach to Szegő quadrature formulas in the more natural framework of orthogonal
Laurent polynomials on the unit circle is analyzed and we illustrate these results with a numerical
example in Section 5. Section 6 is dedicated to the study of orthogonal rational functions for
which in Section 7 we will introduce two different bases in the space of rational functions that
will generalize the orthogonal polynomials and the orthogonal Laurent polynomials. This allows
the derivation of two different matrix representations of the multiplication operator with respect
to these bases that will be operator Möbius transformations of a Hessenberg and a five-diagonal
matrices respectively. We also give the expressions for the sequences of para-orthogonal rational
functions, whose zeros are eigenvalues of unitary truncations of the multiplication operator. In
Section 8, we apply these results to the computation of the nodes and weights of rational Szegő
quadrature formulas on the unit circle. Finally, in Section 9 we illustrate the preceding results
with some numerical examples.

2. Orthogonal Laurent polynomials on the unit circle

We start this section with some convention for notation and some preliminary results that we
will use in the rest of the paper. We denote by T := {z ∈ C : |z| = 1}, D := {z ∈ C : |z| < 1}
and E := {z ∈ C : |z| > 1} the unit circle, the open disk and the exterior of the closed unit disk in
the complex plane, respectively. P = C[z] is the vector space of polynomials in the variable z with
complex coefficients, Pn := span{1, z, z2, . . . , zn} is the corresponding subspace of polynomials
with degree less than or equal to n while P−1 := {0} is the trivial subspace. Λ := C[z, z−1] denotes
the complex vector space of Laurent polynomials in the variable z and for m,n ∈ Z, m ≤ n,
we define the subspace Λm,n := span{zm, zm+1, . . . , zn}. Also, for a given function f we define

the “substar-conjugate” as f∗(z) := f (1/z). For a polynomial Pn ∈ Pn\Pn−1 its reversed (or
reciprocal) polynomial is defined by P ∗n(z) := znPn∗(z) = znPn (1/z).

Throughout the paper, we shall be dealing with a positive Borel measure µ supported on the
unit circle T, normalized by the condition

∫ π
−π dµ(θ) = 1 (i.e, a probability measure). As usual,

the inner product induced by µ is given by

〈f, g〉µ =

∫ π

−π
f
(
eiθ
)
g (eiθ)dµ(θ).

For our purposes, we start constructing a sequence of subspaces of Laurent polynomials {Ln}∞n=0

satisfying
dim (Ln) = n+ 1 , Ln ⊂ Ln+1 , n = 0, 1, . . . .

This can be done by taking a sequence {pn}∞n=0 of nonnegative integers such that p0 = 0, 0 ≤ pn ≤ n
and sn = pn − pn−1 ∈ {0, 1} for n = 1, 2, . . .. In the sequel, a sequence {pn}∞n=0 satisfying these
requirements will be called a “generating sequence”. Then, set

Ln := Λ−pn,qn = span
{
zj | − pn ≤ j ≤ qn

}
, qn := n− pn.

Observe that {qn}∞n=0 is also a generating sequence and that Λ =
⋃∞
n=0 Ln if and only if limn→∞ pn =

limn→∞ qn =∞. Moreover,

Ln+1 =

{
Ln ⊕ span{zqn+1} if sn+1 = 0,

Ln ⊕ span{z−pn+1} if sn+1 = 1.
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In any case, we will say that {pn}∞n=0 has induced an “ordering” in Λ, i.e., a nesting of the
subspaces Ln. Sometimes we will need to define p−1 = 0 and hence s0 = 0. Now, by applying
the Gram-Schmidt orthogonalization procedure to Ln, an orthogonal basis {ψ0(z), . . . , ψn(z)} can
be obtained. If we repeat the process for each n = 1, 2, . . ., a sequence {ψn(z)}∞n=0 of Laurent
polynomials can be obtained, satisfying

ψn ∈ Ln\Ln−1, n = 1, 2, . . . , ψ0 ≡ c 6= 0

〈ψn, ψm〉µ = κnδn,m, κn > 0 , δn,m =

{
0 if n 6= m,
1 if n = m.

(2.1)

{ψn(z)}∞n=0 will be called a “sequence of orthogonal Laurent polynomials for the measure µ and
the generating sequence {pn}∞n=0”. It should be noted that the orders considered by Thron in [54]
(“balanced” situation), defining the following orderings of nested subspaces of Λ

Λ0,0 , Λ−1,0 , Λ−1,1 , Λ−2,1 , Λ−2,2 , Λ−3,2 , . . .

and
Λ0,0 , Λ0,1 , Λ−1,1 , Λ−1,2 , Λ−2,2 , Λ−2,3 , . . .

correspond to pn = E
[
n+1
2

]
and pn = E

[
n
2

]
respectively, where as usual, E[x] denotes the integer

part of x (see [12, 18, 19] for other properties for these particular orderings). In the sequel we will
denote by {φn(z)}∞n=0 the sequence of monic orthogonal Laurent polynomials for the measure µ
and the generating sequence {pn}∞n=0. Here monic means that the leading coefficient is equal to
1, which is the coefficient of zqn in φn when sn = 0 or of z−pn when sn = 1. Moreover, we will
denote by {χn(z)}∞n=0 the sequence of orthonormal Laurent polynomials for the measure µ and
the generating sequence {pn}∞n=0, i.e. when κn = 1 for all n ≥ 0 in (2.1). This sequence is also
uniquely determined by assuming that the leading coefficient in χn is positive for each n ≥ 0.

On the other hand, when taking pn = 0 for all n = 0, 1, . . . then Ln = Λ0,n = Pn, so that the
n-th monic orthogonal Laurent polynomial coincides with the n-th monic Szegő polynomial (see
e.g. [53]) which will be denoted by ρn(z) for n = 0, 1, . . .. This means that ρ0 ≡ 1 and for each
n ≥ 1, ρn ∈ Pn\Pn−1 is monic and satisfies

〈ρn(z), zs〉µ = 〈ρ∗n(z), zt〉µ = 0, s = 0, 1, . . . , n− 1 , t = 1, 2, . . . , n

〈ρn(z), zn〉µ = 〈ρ∗n(z), 1〉µ > 0.

Moreover, we will denote by {ϕn(z)}∞n=0 the sequence of orthonormal polynomials on the unit circle

for µ, i.e., satisfying ‖ϕn‖µ = 〈ϕn, ϕn〉1/2µ = 1 for all n ≥ 0. This family is uniquely determined
by assuming that the leading coefficient in ϕn is positive for each n ≥ 0 and it is related with the
family of monic orthogonal polynomials by ρ0 ≡ ϕ0 ≡ 1 and ρn = lnϕn with ln = ‖ρn‖µ for all
n ≥ 1.

Explicit expressions for Szegő polynomials are in general not available and in order to compute
them we can make use of the following (Szegő) forward recurrence relations (see e.g. [53]):

ρ0(z) = ρ∗0(z) ≡ 1,(
ρn(z)
ρ∗n(z)

)
=

(
z δn
δnz 1

)(
ρn−1(z)
ρ∗n−1(z)

)
, n ≥ 1,

(2.2)

where δn := ρn(0) for all n = 1, 2, . . . are the so-called Schur parameters (Szegő, reflection, Verblun-
sky or Geronimus parameters, see [52]) with respect to µ. Since the zeros of ρn lie in D, the Schur
parameters satisfy |δn| < 1 for n ≥ 1. Now, if we introduce the sequence {ηn}∞n=1 by

ηn :=
√

1− |δn|2 ∈ (0, 1], n = 1, 2, . . . , (2.3)
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then, a straightforward computation from (2.2) yields η2n =
〈ρn,ρn〉µ

〈ρn−1,ρn−1〉µ or ηn =
‖ρn‖µ
‖ρn−1‖µ , and so,

a forward recurrence for the family of orthonormal Szegő polynomials is given by:(
ϕ0

ϕ∗0

)
≡
(

1
1

)
; ηn

(
ϕn(z)
ϕ∗n(z)

)
=

(
1 δn
δn 1

)(
zϕn−1(z)
ϕ∗n−1(z)

)
, n ≥ 1. (2.4)

There are relations among the families of orthogonal Laurent polynomials and the Szegő poly-
nomials. We consider two of them proved in [12] and [16]. The first one establishes the relation
between the families of orthonormal Laurent polynomials with respect to the generating sequences
{pn}∞n=0 and {qn}∞n=0 whereas the second one states the relation between the families of orthonor-
mal and monic orthogonal Laurent polynomials for a generating sequence {pn}∞n=0 and the families
of orthonormal and monic Szegő polynomials. This last result explains how to construct orthog-
onal Laurent polynomials on the unit circle from the sequence of Szegő polynomials. It should
be remarked here that the situation on the real line, i.e. when dealing with sequences of orthogo-
nal Laurent polynomials with respect to a positive measure supported on the real line, is totally
different (for details, see e.g. [24]).

Proposition 2.1. Let {χ̃n(z)}∞n=0 and {χn(z)}∞n=0 be sequences of orthonormal Laurent polyno-
mials for the measure µ and the generating sequences {qn}∞n=0 and {pn}∞n=0 respectively, where
pn = n− qn for all n ≥ 0. Then, χ̃n(z) = χn∗(z) for all n ≥ 0. �

Proposition 2.2. The families {φn(z)}∞n=0 and {χn(z)}∞n=0 are the respective sequences of monic
orthogonal and orthonormal Laurent polynomials on the unit circle for a measure µ and the ordering
induced by the generating sequence {pn}∞n=0, if and only if,

φn(z) =

{
ρn(z)
zpn if sn = 0,
ρ∗n(z)
zpn if sn = 1,

and χn(z) =

{
ϕn(z)
zpn if sn = 0,
ϕ∗n(z)
zpn if sn = 1,

where {ρn}∞n=0 and {ϕn}∞n=0 are the respective monic orthogonal and orthonormal Szegő polynomial
sequences for the same measure µ. �

The families of orthogonal Laurent polynomials with respect to any order {pn}∞n=0 and the
Szegő polynomials satisfy some recurrence relations. In what follows we consider some of them
which we will use in the next section.

We start with the next result which establishes a three-term recurrence relation for the monic
orthogonal and orthonormal families of Laurent polynomials for the measure µ and the balanced
generating sequences.

Proposition 2.3. Consider the families {φn(z)}∞n=0 and {φ̃n(z)}∞n=0 of monic orthogonal Lau-
rent polynomials for the measure µ and the generating sequences pn = E

[
n+1
2

]
and pn = E

[
n
2

]
respectively. Set

An =

{
δn if n is even,

δn if n is odd.

Then,
φn(z) =

(
An +An−1z

(−1)n)φn−1(z) + η2n−1z
(−1)nφn−2(z) , n ≥ 2,

φ0(z) ≡ 1 , φ1(z) = δ1 + z−1,
(2.5)

φ̃n(z) =
(
An +An−1z

(−1)n+1
)
φ̃n−1(z) + η2n−1z

(−1)n+1

φ̃n−2(z) , n ≥ 2,

φ̃0(z) ≡ 1 , φ̃1(z) = δ1 + z.
(2.6)

�

These recurrences were initially proved by Thron in [54] in the context of continued fractions.
An alternative proof is given in [19]. The equivalence between the recurrences (2.2) and (2.5) (the
same for (2.6)) was proved in [10]. Moreover, the following recurrence relations were proved in
[12].
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Proposition 2.4. The family {χn(z)}∞n=0 of orthonormal Laurent polynomials for the measure µ
and the generating sequence pn = E

[
n
2

]
satisfies

zχ0(z) = −δ1χ0(z) + η1χ1(z) ,

z

(
χ2n−1(z)
χ2n(z)

)
=

(
−η2n−1δ2n −δ2n−1δ2n
η2n−1η2n δ2n−1η2n

)(
χ2n−2(z)
χ2n−1(z)

)
+

(
−η2nδ2n+1 η2nη2n+1

−δ2nδ2n+1 δ2nη2n+1

)(
χ2n(z)
χ2n+1(z)

)
, n ≥ 1.

(2.7)

�

A similar matrix recurrence exists for the generating sequence pn = E
[
n+1
2

]
. The equivalence

of these recurrences with the recurrence given by Proposition 2.3 is proved in [10].

Remark 2.5. Note that the three-term recurrence given in Proposition 2.3 involves alternatingly
a multiplication by z and by z−1 whereas the recurrence given in Poposition 2.4 involves only
multiplication by z. These latter relations will play a fundamental role in the next section.

Until now we have deduced recurrences for the families of orthogonal Laurent polynomials when
the generating sequences associated with the balanced orderings are considered. In the next result
(see [10]) we will consider an arbitrary generating sequence, starting with a three-term recurrence
relation for {φn(z)}∞n=0 involving multiplication by z and z−1.

Theorem 2.6. The family of (monic) orthogonal Laurent polynomials {φn(z)}∞n=0 with respect to
the measure µ and the generating sequence {pn}∞n=0 satisfies for n ≥ 2 the three-term recurrence
relation

φn(z) =
(
An +Bnz

1−2sn
)
φn−1(z) + (−1)1+sn−2−sn−1Cnρ

2
n−1η

2
n−1z

1−sn−sn−2φn−2(z),

with initial conditions φ0(z) ≡ 1 and φ1(z) = k1 + z1−2s1 , An, Bn, Cn depending on the Schur
parameters δn and δn−1 while k1 is either δ1 or δ1 depending on s1 being 0 or 1 and s0 = 0. �

3. Matricial representations

Throughout this section, a fundamental role will be played by the multiplication operator
defined on Λ, namely

M : Λ→ Λ, L(z) 7→ zL(z).

As we have seen, if we consider the sequence of orthonormal Laurent polynomials with respect
to the measure µ and the generating sequence pn = 0 for all n ≥ 0, then the n-th orthonormal
Laurent polynomial coincides with the n-th orthonormal Szegő polynomial, for all n ≥ 0. Since
the operator M leaves P invariant, taking {ϕn(z)}∞n=0 as a basis for P, then the following matrix
representation of the restriction of M to P, with Hessenberg structure, is obtained (see e.g. [16],
[17] or [38]):

H(δ) =


h0,0 h0,1 0 0 0 · · ·
h1,0 h1,1 h1,2 0 0 · · ·
h2,0 h2,1 h2,2 h2,3 0 · · ·
...

...
...

...
...

. . .

 , hi,j :=


−δjδi+1

∏i
k=j+1 ηk if j = 0, 1, . . . , i− 1,

−δiδi+1 if j = i,
ηi+1 if j = i+ 1.

(3.1)
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If we consider now the generating sequence pn = E
[
n
2

]
then it follows from the recurrence given

in Proposition 2.4 that we get the following five-diagonal matrix C(δ) (CMV representation, see
[52]) for the multiplication operator M

C(δ) =



−δ1 η1 0 0 0 0 · · ·
−η1δ2 −δ1δ2 −η2δ3 η2η3 0 0 · · ·
η1η2 δ1η2 −δ2δ3 δ2η3 0 0 · · ·

0 0 −η3δ4 −δ3δ4 −η4δ5 η4η5 · · ·
0 0 η3η4 δ3η4 −δ4δ5 δ4η5 · · ·
...

...
...

...
...

...
. . .


, (3.2)

and it can also be expressed as a product of two tri-diagonal ones C(δ) = Ce(δ)Co(δ), (see [12]),
where

Ce(δ) =



1 0 0 0 0 · · ·
0 −δ2 η2 0 0 · · ·
0 η2 δ2 0 0 · · ·
0 0 0 −δ4 η4 · · ·
0 0 0 η4 δ4 · · ·
...

...
...

...
...

. . .


, Co(δ) =



−δ1 η1 0 0 0 · · ·
η1 δ1 0 0 0 · · ·
0 0 −δ3 η3 0 · · ·
0 0 η3 δ3 0 · · ·
0 0 0 0 −δ5 · · ·
...

...
...

...
...

. . .


.

Moreover, it is easy to check that the matrix representation when the generating sequence pn =
E
[
n+1
2

]
is considered is C(δ)T .

Our aim now is to analyze the structure of the matrix representation for the multiplication
operator M when an arbitrary generating sequence is considered. We start with a generalization
of [12, Proposition 2.4] where the result was derived only in the case of a balanced generating
sequence. It can be found as [10, Theorem 4.1] but because the proof is short and elegant, we
repeat it for the convenience of the reader.

Theorem 3.1. Let {χn(z)}∞n=0 be the sequence of orthonormal Laurent polynomials for the mea-
sure µ and the generating sequence {pn}∞n=0 and suppose that limn→∞ qn = ∞. Then, for each
n ≥ 0 there exist k = kn ≥ 1 and t = tn ≥ 1 such that zχn(z) ∈ span{χn−t(z), · · · , χn+k(z)}, i.e.

zχn(z) =

n+k∑
s=n−t

an,sχs(z) , an,s = 〈zχn(z), χs(z)〉µ.

Moreover, k = kn and t = tn are defined as follows:

1. k = 1 if sn+1 = 0 and otherwise k ≥ 2 is defined satisfying sn+1 = · · · = sn+k−1 = 1, sn+k =
0.

2. t = 1 if sn−1 = 1 and otherwise t ≥ 2 is defined satisfying sn−1 = · · · = sn+1−t = 0, sn−t = 1.

Proof. Since χn ∈ Ln then

zχn(z) ∈ zLn = span

{
1

zpn−1
, · · · , zqn+1

}
⊂ Ln+k

with k = kn ≥ 1. Observe that the existence of k is guaranteed from the condition limn→∞ qn =∞.
On the other hand, since χn ⊥ Ln−1 then

zχn(z) ⊥ zLn−1 = span

{
1

zpn−1−1
, · · · , zqn−1+1

}
⊃ Ln−1−t

with t = tn ≥ 1. Since zχn(z) ⊂ Ln+k and zχn(z) ⊥ Ln−1−t, the proof follows. �
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Note that the indices k and t provide the upper width and lower width of the band matrices.
Thus, from Theorem 3.1 we can analyze the matrix representation for the operator M with respect
to a generating sequence with a minimal number of diagonals. As we have seen, the balanced
orderings give rise to five-diagonal matrices. An obvious question is whether there exist other
generating sequences that give rise to a matrix representation with five or less diagonals. We start
by remarking that a five-diagonal representation is obtained if and only if one of the following cases
is satisfied:

1. kn = 1, tn ≤ 3 for all n,
2. kn ≤ 2, tn ≤ 2 for all n,
3. kn ≤ 3, tn = 1 for all n.

(3.3)

Hence, we have the following considerations:

1. If the sequence {sn}n≥1 contains three or more consecutive zeros or ones, then the rep-
resentation will not be five-diagonal. Suppose for example that there are 3 consecutive
zeros: (sn, sn+1, sn+2, sn+3, sn+4) = (1, 0, 0, 0, 1). Then Theorem 3.1 implies that there is
a block (kn, kn+1, kn+2) = (1, 1, 1) and kn+3 ≥ 2 while (tn+1, tn+2, tn+3, tn+4) = (1, 2, 3, 4).
Similarly a block of 3 consecutive ones, say (sn, sn+1, sn+2, sn+3, sn+4) = (0, 1, 1, 1, 0), im-
plies by the same theorem that (kn, kn+1, kn+2, kn+3) = (4, 3, 2, 1) and tn+1 ≥ 2 with
(tn+2, tn+3, tn+4) = (1, 1, 1). In both cases the condition (3.3) fails. Thus, we obtain a
matricial representation with more than five diagonals. In other words, to obtain a five-
diagonal representation the number of consecutive zeros or ones in the sequence {sn}n≥1
must be at most 2.

2. If the number of consecutive zeros or ones is just one for all n then the situation corresponds
to the generating sequences pn = E

[
n
2

]
or pn = E

[
n+1
2

]
and the five-diagonal matrix

representations C(δ) and C(δ)T are obtained, respectively.

Now, let us concentrate on what happens if two consecutive zeros or ones appear in the sequence
{sn}n≥1. Indeed, a block of the form (sn, sn+1, sn+2, sn+3) = (1, 0, 0, 1) implies tn+2 = 2, kn+2 ≥ 2,
tn+3 = 3, kn+3 ≥ 1 and hence a five-diagonal representation is not obtained since condition (3.3)
does not hold. Suppose now a block of the form (sn, sn+1, sn+2, sn+3) = (0, 1, 1, 0). If sn−1 = 0
then tn+1 = 3 and kn+1 = 2 whereas if sn−1 = 1 then tn = 1, kn = 3 and tn+1 = kn+1 = 2,
implying in both cases that the condition (3.3) is not satisfied. Observe that this argument is
valid for all n ≥ 2, but it really holds for n ≥ 0. Indeed, if we consider the generating sequences
pn = E

[
n+1
2

]
for all n ≥ 2 with p0 = p1 = 0 or pn = E

[
n
2

]
for all n ≥ 2 with p0 = 0 and p1 = 1

then it is easy to check that a non-five diagonal matrix representation is obtained. Summarizing,
we can state:

Theorem 3.2. The matrix representation for the multiplication operator M is a five-diagonal
matrix if and only if pn = E

[
n
2

]
or pn = E

[
n+1
2

]
. Moreover, this representation is the narrowest

one in the sense that any matrix representation for another different generating sequence gives rise
to a d-diagonal matrix representation with d ≥ 6. �

Remark 3.3. This proof of Theorem 3.2 based on orthogonality conditions was obtained in [10],
but it had been deduced previously in [13] by using operator theory techniques.

Example 3.4. Suppose that we consider a generating sequence {pn}n≥1 corresponding to the
following order of the natural basis for Λ {1, z, z−1, z2, z3, z4, z5, z−2, z−3, z6, . . .}. By following
similar arguments as in [10, Example 4.5], or alternatively from [17, Section 3], it is an exercise to
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check that the corresponding matrix representation has the following nine-diagonal structure:

−δ1 η1 0 0 0 0 0 0 0 0 · · ·
−η1δ2 −δ1δ2 −η2δ3 η2η3 0 0 0 0 0 0 · · ·
η1η2 δ1η2 −δ2δ3 δ2η3 0 0 0 0 0 0 · · ·
0 0 −η3δ4 −δ3δ4 η4 0 0 0 0 0 · · ·
0 0 −η3η4δ5 −δ3η4δ5 −δ4δ5 η5 0 0 0 0 · · ·
0 0 −η3η4η5δ6 −δ3η4η5δ6 −δ4η5δ6 −δ5δ6 η6 0 0 0 · · ·
0 0 η3η4η5η6δ7 −δ3η4η5η6δ7 −δ4η5η6δ7 −δ5η6δ7 −δ6δ7 −η7δ8 −η7η8δ9 η7η8η9 · · ·
0 0 η3η4η5η6η7 δ3η4η5η6η7 δ4η5η6η7 δ5η6η7 δ6η7 −δ7δ8 −δ7η8δ9 δ7η8η9 · · ·
0 0 0 0 0 0 0 η8 −δ8δ9 δ8η9 · · ·
0 0 0 0 0 0 0 0 −η9δ10 −δ9δ10 · · ·
...

...
...

...
...

...
...

...
...

...
. . .


.

Hessenberg and CMV matrices are actually two particular cases of a more general structural
theorem (see [17]). Indeed, denote by Gk−1,k a Givens (or Jacobi) transformation

Gk−1,k =

 Ik−1 0 0

0 G̃k−1,k 0
0 0 I

 , G̃k−1,k =

(
−δk ηk
ηk δk

)
, k ≥ 1,

where Ik−1 and I denotes identity matrices of sizes k − 1 and ∞, respectively. Givens transfor-
mations can be considered as the most elementary type of unitary matrices and they can be used
as building blocks to construct more general unitary matrices. Our interest is the fact that the
infinite Hessenberg (3.1) and CMV (3.2) matrices allows a factorization as a product of Givens
transformations in the form

H(δ) = G0,1G1,2G2,3G3,4G4,5G5,6 · · · , C(δ) = (· · ·G7,8G5,6G3,4G1,2) · (G0,1G2,3G4,5G6,7 · · ·) .

Note that the latter corresponds to the factorization C(δ) = Ce(δ) · Co(δ) just after (3.2). This
factorization must be understood in the sense that the principal n × n submatrices of H(δ) and
C(δ), and their corresponding expansion in products of Givens transformations, coincide for each
n. The following theorem, proved in [17], gives the recipe to construct the matrix representation
of the multiplication operator on Λ when an arbitrary ordering induced by a generating sequence
{pn}∞n=0 is considered.

Theorem 3.5. Let {χn(z)}∞n=0 be the sequence of orthonormal Laurent polynomials on the unit
circle for a measure µ and the ordering induced by a generating sequence {pn}∞n=0. Then, the matrix
representation S(δ) of the multiplication operator in Λ for the orthogonal basis corresponding to this
ordering can be characterized by a ‘snake-shaped’ matrix factorization S(δ) = S(∞)(δ) constructed
by the following algorithm: We initialize with S(0)(δ) = G0,1. Then, for k ≥ 1 we apply the
following procedure:

1. If sk = 0 then we multiply the matrix with a new Givens transformation on the right by
setting S(k)(δ) = S(k−1)(δ) ·Gk,k+1.

2. If sk = 1 then we multiply the matrix with a new Givens transformation on the left by setting
S(k)(δ) = Gk,k+1 · S(k−1)(δ).

The factorization must be understood in the sense that the principal n×n submatrices of S(n−1)(δ)
and S(δ) coincide for all n. �

Example 3.6. Suppose that the generating sequence {pn}n≥1 is as in Example 3.4. Then the
associated nine-diagonal matrix is factored as

S(δ) = · · ·G8,9G7,8G2,3G0,1G1,2G3,4G4,5G5,6G6,7G9,10 · · · .

The terminology ‘snake-shaped’ matrix factorization, duly explained in [17], arises from the distri-
bution of the non-zero elements in this matrix representation in a zig-zag shape around the main
diagonal.
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4. Matricial computation of Szegő quadrature formulas

Throughout this section we shall be concerned with the estimation of integrals on T of the
form,

Iµ(f) =

∫ π

−π
f
(
eiθ
)
dµ(θ). (4.1)

For the polynomial case, the Szegő-quadrature formulas were introduced in [26]. Also it is remark-
able the work of Geronimus (see [32]). A different approach, for Laurent polynomials, is considered
in [44].

We shall first derive the formulas for nodes and weights of the Szegő quadrature formulas and
then we shall show how these can be practically computed using our different matricial represen-
tations.

4.1. Formulas for the nodes and the weights of Szegő quadrature

As usual, estimates of Iµ(f) may be produced by replacing in (4.1), the integrand f by an
appropriate approximating (or interpolating) function L for which the integral Iµ(L) is easily
computed. Because the space of Laurent polynomials Λ is dense in the space C(T) of continuous
functions on T with respect to the uniform norm (see e.g., [22] and [53]), it seems reasonable to
approximate f in (4.1) by some appropriate Laurent polynomial. The integral of this approximation
gives a “quadrature rule on the unit circle”. By an n-point quadrature formula on the unit circle
we mean an expression like

In(f) :=

n∑
j=1

λjf(zj), zi 6= zj if i 6= j, {zj}nj=1 ⊂ T, (4.2)

where the nodes {zj}nj=1 and the coefficients or weights {λj}nj=1 are chosen so that In(L) = Iµ(L)
for any L ∈ Λ−p,q with p and q nonnegative integers depending on n with p+q as large as possible.
If we first try with subspaces of the form Λ−p,p, it can be easily checked that there can not exist
an n-point quadrature formula In(f) of the form (4.2) which is exact in Λ−n,n. Hence, it holds
that p ≤ n− 1. In [16] the following “necessary condition” on the nodal polynomial is proved:

Theorem 4.1. For n ≥ 1, let In(f) =
∑n
j=1 λjf(zj) with zj ∈ T, j = 1, . . . , n be exact in

Λ−(n−1),n−1, and set Pn(z) =
∏n
j=1(z − zj). Then,

Pn(z) = Cn [ρn(z) + uρ∗n(z)] , |u| = 1, (4.3)

i.e., the nodal polynomial Pn is proportional to a para-orthogonal polynomial Pun := ρn + uρ∗n,
where, for every n, the proportionality constant Cn depending on the Schur parameters δn. �

Moreover, in [44] the following converse result is proved (sufficient conditions on the nodal poly-
nomial):

Theorem 4.2. Consider the para-orthogonal polynomial Pun = ρn + uρ∗n, with u ∈ T. Then,

1. Pun (z) has exactly n distinct zeros z1, . . . , zn on T.

2. There exist positive real numbers λ1, . . . , λn such that

In(f) =

n∑
j=1

λjf(zj) = Iµ(f), for all f ∈ Λ−(n−1),n−1. (4.4)

I.e., the zeros of a para-orthogonal polynomial can be used as nodes in a quadrature formula satis-
fying (4.4). �
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The quadrature formula In(f) given by (4.4), and earlier introduced in [44] is called an “n-
point Szegő quadrature formula”. It is the analogue on the unit circle of the Gaussian formulas
for intervals of the real axis. However, in this respect two big differences should be remarked:
the nodes are not the zeros of the n-th orthogonal polynomial with respect to µ and the n-point
Szegő formula is exact in Λ−(n−1),n−1, whose dimension is 2n−1 instead of 2n. Observe that since
the nodes are the zeros of an n-th para-orthogonal polynomial depending on a parameter u ∈ T,
a one-parameter family of quadrature formulas exact in Λ−(n−1),n−1 arises. Moreover, it can be
shown that there is a subspace of dimension 2n, depending on u, for which the quadrature formula
is exact (see [51]), but it is not of the form Λ−r,s with r + s+ 1 = 2n.

On the other hand, starting from a generating sequence {pn}∞n=0 we know that Ln−1 is a
Chebyshev system on T of dimension n (since 0 6∈ T). Hence, for n distinct nodes z1, . . . , zn on
T, we can find a unique set of parameters λ1, . . . , λn so that, In(L) = Iµ(L) for all L ∈ Ln−1. In
order to recover Szegő formulas in the natural framework of the orthogonal Laurent polynomials
on the unit circle, and inspired by the ordinary polynomial situation, we will deal with subspaces
of Λ of the form LnLr∗ = Λ−(pn+qr),qn+pr with dimension n+ r + 1 (observe that Ln−1 ⊂ LnLr∗,
0 ≤ r ≤ n− 1). Now we might try to make r = r(n) as large as possible. The first trial should be
to consider r = n− 1, but a negative answer is proved in [16]:

Theorem 4.3. There cannot exist an n-point quadrature formula like (4.2) with nodes on T which
is exact in LnL(n−1)∗ for any given arbitrary generating sequence {pn}∞n=0. �

The second step is to consider r = n− 2. For this purpose, we set ßn = pn − pn−2 ∈ {0, 1, 2}. The
results obtained in [16] are summarized in:

Theorem 4.4. Let {χn(z)}∞n=0 be the sequence of orthonormal Laurent polynomials with respect
to the measure µ and the ordering induced by the generating sequence {pn}∞n=0. Let {δn}∞n=0 be the
sequence of Schur parameters associated with µ, ηn given by (2.3), suppose that ßn = pn−pn−2 = 1
and consider

Run(z) = Cn [ηnχn(z) + τnχn−1(z)] , (4.5)

where Cn 6= 0 and

τn =

{
u− δn if sn = 1,
u− δn if sn = 0,

(4.6)

with u ∈ T. Then,

1. Run(z) has exactly n distinct zeros on T.

2. If z1, . . . , zn are the zeros of Run(z), then there exist positive numbers λ1, . . . , λn such that

In(f) =
n∑
j=1

λjf(zj) = Iµ(f), for all f ∈ LnL(n−2)∗. (4.7)

3. There cannot exist an n-point quadrature formula with nodes on T which is exact in LnL(n−2)∗
if ßn = 0 or ßn = 2. �

Thus, under the assumption that ßn = pn − pn−2 = 1, we see that LnL(n−2)∗ = Λ−(n−1),n−1.
Therefore, the quadrature rule given by (4.7) coincides with an n-point Szegő quadrature formula
for µ and, taking into account that the solutions of the finite difference equation ßn = pn−pn−2 = 1
for n ≥ 2 are given by

pn =

{
E
[
n
2

]
if p0 = p1 = 0,

E
[
n+1
2

]
if p0 = 0 , p1 = 1,

we see that the natural balanced orderings earlier introduced by Thron in [54] are again recovered.
Furthermore, they are the only ones which produce quadrature formulas with nodes on T with a
maximal domain of validity. On the other hand, as we have seen in Section 3, these orderings
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correspond with the narrowest matricial representation of a sequence of orthonormal Laurent
polynomials.

We want to emphasize that the generating sequence {pn}∞n=0 necessary to provides the maximal
domain of validity of Szegő quadrature rules coincides with the ordering for which we obtain the
narrowest matricial representation for the multiplication operator defined in Λ.

In order to complete the construction of such quadrature formulas we give expressions for the
weights also proved in [16]:

Theorem 4.5. Let {χn(z)}∞n=0 be the sequence of orthonormal Laurent polynomials with respect
to the measure µ and the ordering induced by a generating sequence {pn}∞n=0. Then, the weights
{λj}nj=1 for the quadrature formula (4.7) are given for j = 1, . . . , n by

λj =
1∑n−1

k=0 |χk(zj)|2
(4.8)

or equivalently, by

λj =
(−1)sn

2<
[
zjχ′n(zj)χn(zj)

]
+ (pn − qn) |χn(zj)|2

, (4.9)

where the nodes {zj}nj=1 are the zeros of Run given by (4.5), or the zeros of Pn given by (4.3). �

Once quadrature formulas on T with a maximal domain of validity have been constructed
(nodes from (4.3) or (4.5) and weights by (4.8) or (4.9)) we need some efficient method to compute
them. Traditionally the numerical values for nodes and weights of Szegő quadrature have mostly
been obtained either for measures whose sequences of Szegő polynomials are explicitly known or by
computing the polynomials by Levinson’s algorithm (see e.g. [48], [21] and [37]). In these situations
the zeros of (4.3) or (4.5) can be found by using any standard root finding method available in the
literature (as for a specific procedure concerning rational modifications of the Lebesgue measure
see also [36]).

In the rest of the section we shall review some alternative strategies to effectively compute the
nodes {zj}nj=1 and weights {λj}nj=1 for an n-point Szegő quadrature formula based on the matricial
representations of Section 3. These will involve eigenvalue computations much like the traditional
Golub-Welsch algorithm for Gauss-Christoffel quadrature formulas on the real line [35].

4.2. Computation using Hessenberg matrices

Recall the nodal polynomial Pn(z) =
∏n
j=1 (z − zj) given by (4.3) we can write from (2.2) (see

[11]) as
Pn(z) = Pun (z) = zρn−1(z) + uρ∗n−1(z) , |u| = 1.

It can be easily checked that {zϕ0(z), . . . , zϕn−2(z),−uϕ∗n−1(z)} is an orthonormal basis of Pn−1
which must be related to {ϕ0(z), . . . , ϕn−1(z)} by a unitary matrix Un. Setting for n ≥ 0, en =

〈ρn, ρn〉µ (recall that en =
∏n
k=1 η

2
k for n ≥ 1 and that ϕn = e

−1/2
n ρn) it is straight forward to

check that Un is the n-truncation of the Hessenberg matrix (3.1) in which the Schur parameter δn
is replaced by u. Therefore we shall denote it as Hun:

Hun :=


d0,0 d0,1 0 · · · 0
d1,0 d1,1 d1,2 · · · 0

...
...

...
. . .

...
dn−1,0 dn−1,2 dn−1,2 · · · dn−1,n−1

 , (4.10)

where all entries di,j are equal to the corresponding entries hi,j of (3.1), except on the last row,
i.e.,

hi,j =


−δju

√
en
ej

if i = n− 1 , j ≤ n− 1,

−δjδi+1

√
ei
ej

if i ≤ n− 2 , j ≤ i,
ηi+1 if i ≤ n− 2 , j = i+ 1.

(4.11)
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Hence, we can write 
zϕ0(z)

...
zϕn−2(z)
−uϕ∗n−1(z)

 = Hun


ϕ0(z)

...
ϕn−2(z)
ϕn−1(z)

 .

Observe that, if we introduce the notation Hn(δ0, . . . , δn) to indicate the principal submatrix of
H(δ) (given by (3.1)) of order n, then Hun = Hn(δ0, . . . , δn−1, u) (i.e., replace δn by u). Now,

zϕ0(z)
...

zϕn−2(z)
−uϕ∗n−1(z)

 =


zϕ0(z)

...
zϕn−2(z)

zϕn−1(z)− zϕn−1(z)− uϕ∗n−1(z)

 = z


ϕ0(z)

...
ϕn−2(z)
ϕn−1(z)

−


0
...
0

Pun (z)√
en−1

 .

Thus, we have the identity
zVn(z) = HunVn(z) + bn(z), (4.12)

where

Vn(z) = (ϕ0(z), ϕ1(z), · · · , ϕn−1(z))
T
, bn(z) =

(
0, · · · , 0, P

u
n (z)
√
en−1

)T
,

with |u| = 1. From (4.12) one sees that any zero ξ of Pun (z) is an eigenvalue of Hun, and vice versa,
with associated eigenvector Vn(ξ). So, let zj be a zero of Pun (z) for j = 1, . . . , n and consider the
corresponding normalized eigenvector of Hun:

Wn(zj) =
Vn(zj)[∑n−1

k=0 |ϕk(zj)|2
]1/2 .

Now, taking into account that for any z ∈ T, |ϕk(z)|2 = |χk(z)|2, from (4.8) it follows that

Wn(zj) = λ
1/2
j Vn(zj). (4.13)

If we write Wn(zj) = (q0,j , . . . , qn−1,j)
T

and select out the first components of both sides of (4.13),

we obtain q0,j = λ
1/2
j ϕ0(zj). But, since we are dealing with a probability measure, then ϕ0 ≡ 1

and hence, λj = q20,j for all j = 1, . . . , n. In short, the following theorem has been proved:

Theorem 4.6. Let In(f) be the n-th Szegő quadrature formula (4.7) in a balanced situation. Then,

1. The nodes {zj}nj=1 are the eigenvalues of Hun = Hn(δ0, . . . , δn−1, u) given by (4.10)-(4.11),
for all u ∈ T.

2. The weights {λj}nj=1 are given by the squared modulus of the first component of the corre-
sponding normalized eigenvectors. �

This can be stated in an elegant formula following Golub and Meurant [33, 34] as follows:

In(f) = eT1 f(Hun)e1,

where e1 = [1, 0, . . . , 0]T . Indeed, note that Hun is unitary so that with the previous notation,
its eigenvalue decomposition can be written as Hun = WnZnW†n with Zn = diag(z1, . . . , zn), Wn

contains the normalized eigenvectors as columns (assume the first components are real), and †

denotes the Hermitian transpose. Since [λ
1/2
1 , . . . , λ

1/2
n ] = eT1Wn it follows that

In(f) =

n∑
k=1

λkf(zk) = eT1Wnf(Zn)W†ne1 = eT1 f(Hun)e1.

In this form there are many applications in linear algebra solving large scale problems with iterative
methods (e.g., [40]).

Special purpose algorithms for eigenvalue computation of unitary Hessenberg matrices have
been designed in the literature. See for example [25, 39].
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4.3. Computation using CMV matrices

We give now an alternative approach to the computation of a Szegő quadrature formula (4.7)
by using truncations of the five-diagonal matrix C(δ). In the next result we will use the matrix
Cn(δ1, . . . , δn−1, u), that is, the n-th principal submatrix of C(δ) of order n where the Schur pa-
rameter δn is replaced by u ∈ T. Without loss of generality, we can fix the ordering induced
by pn = E

[
n
2

]
(recall that the matrix representation associated with the ordering induced by

pn = E
[
n+1
2

]
is C(δ)T ).

Theorem 4.7. Let In(f) be the n-th Szegő quadrature formula (4.7) in a balanced situation. Then,

1. The nodes {zj}nj=1 are the eigenvalues of Cun = Cn(δ1, . . . , δn−1, u), for all u ∈ T.

2. The weights {λj}nj=1 are given by the squared modulus of the first components of the corre-
sponding normalized eigenvectors.

The first part has been already deduced in [14] by using operator theory techniques while a
proof based on the recurrence relations satisfied by the family of orthonormal Laurent polynomials
is given in [10, Theorem 5.7].

Thus also in this case the Golub-Meurant formula holds In(f) = eT1 f(Cun)e1.

4.4. Computation using ‘snake-shaped’ matrix factorizations

Finally, suppose we have a matrix representation S of the multiplication operator in Λ consisting
in a factorization of

∏∞
k=1Gk−1,k, where the factors under the

∏
-symbol may occur in a certain

order, but by following the recipe given in Theorem 3.5. A drawback is that the principal n × n
submatrix of S is in general not unitary and hence it has eigenvalues strictly inside the unit disk.
A solution to this is to slightly modify the principal n × n submatrix of S in such a way that it
becomes unitary. To do this, Gragg [38] and also Watkins [56] introduced the idea to redefine the
2× 2 block in the n-th Givens transformation by

G̃n−1,n :=

(
u 0
0 v

)
,

where u, v ∈ T (v will actually be irrelevant for what follows), so that we can absorb u and v in
the 2× 2 blocks of the previous and next Givens transformations, respectively:

G̃n−2,n−1 :=


G̃n−2,n−1 ·

(
1 0
0 u

)
if sn−1 = 0,(

1 0
0 u

)
· G̃n−2,n−1 if sn−1 = 1,

, G̃n,n+1 :=


(
v 0
0 1

)
· G̃n,n+1 if sn = 0,

G̃n,n+1 ·
(
v 0
0 1

)
if sn = 1.

We can then put G̃n−1,n = I2, and it is easily seen that S = UV with U =
∏n−1
k=1 Gk−1,k (submatrix

formed by rows and columns 1, . . . , n) and V =
∏∞
k=n+1Gk−1,k (submatrix formed by rows and

columns n+ 1, . . . ,∞). U and V have complementary zero pattern, and hence they commute each
other. The matrix U is a n × n unitary snake-shape matrix factorization and coincide with the
n × n submatrix of S with δn ∈ D replaced by u ∈ T. Now, one could ask why there is such a
similarity between finite Hessenberg and CMV matrices (Theorems 4.6 and 4.7). This is explained
in the next result, which is essentially due to Ammar, Gragg and Reichel [1], and it is based on
the general fact that AB and BA have the same eigenvalues (see [17]):

Theorem 4.8. The eigenvalues and the first component of the normalized eigenvectors of U de-
pend on the Schur parameters but not on the shape of the snake.
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5. A numerical example

In order to numerically illustrate the results given in the previous section we demonstrate the
computation of nodes and weights of the Szegő quadrature formulas considering the absolutely
continuous measure defined on [−π, π] by dµ(θ) = ω(θ)dθ with

ω(θ) =
1√

2π log
(

1
q

) ∞∑
j=−∞

exp

− (θ − 2πj)2

2 log
(

1
q

)
 , q ∈ (0, 1).

The corresponding monic orthogonal polynomials are the so-called Rogers-Szegő q-polynomials.
Throughout this section we also fix the ordering induced by the generating sequence pn = E

[
n+1
2

]
.

An explicit expression for such polynomials is given in [52, Chapter 1] and so the following ex-
plicit expression for the corresponding monic orthogonal Laurent polynomials is deduced from
Proposition 2.2:

φn(z) =


∑k
j=−k(−1)j+k

[
2k
k+j

]
q
q
k−j
2 zj if n = 2k,∑k

j=−(k+1)(−1)j+k+1
[
2k+1
k−j

]
q
q
j+k+1

2 zj if n = 2k + 1,
(5.1)

where, as usual, the q-binomial coefficients
[
n
j

]
q

are defined by[
n

j

]
q

:=
(n)q

(j)q(n− j)q
=

(1− qn) · · · (1− qn−j+1)

(1− q) · · · (1− qj)
, (n)q := (1− q)(1− q2) · · · (1− qn), (0)q ≡ 1.

Now, writing φ2k(z) =
∑k
j=−k ajz

j and φ2k+1(z) =
∑k
j=−(k+1) bjz

j , then the coefficients {aj}kj=−k
and {bj}kj=−(k+1) can be recursively computed by

ak = 1, aj = −aj+1
√
q

1− qk+j+1

1− qk−j
, −k ≤ j ≤ k − 1,

b−(k+1) = 1, bj+1 = −bj
√
q

1− qk−j

1− qk+j+2
, −(k + 1) ≤ j ≤ k − 1.

Also for this particular weight function the corresponding sequence of Schur parameters is given
by δn = (−1)nq

n
2 for all n ≥ 1 (see [52, Chapter 1]).

In order to illustrate our results we have computed the nodes and the weights of the n-point
Szegő quadrature formula (4.7) with n ∈ {15, 16} and q ∈ {0.1, 0.25, 0.5, 0.75, 0.9} (our aim is
merely illustrative and for that reason, a small number of nodes is used). We propose three
methods:

1. The nodes are the zeros of Run(z) given by (4.5) (we have taken u = 1). As for the weights,

we can make use of (4.9) taking into account that χn(z) = φn(z)√
(1−q)···(1−qn)

, with φn explicitly

given by (5.1).

2. From Theorem 4.6 by computing the eigenvalues and the first component of the normalized
eigenvectors of H15(δ0, . . . , δ14, 1) and H16(δ0, . . . , δ15, 1) by using a standard eigenvalue-
finding method.

3. As before but now from Theorem 4.7, by considering the matrices C15(δ0, . . . , δ14, 1) and
C16(δ0, . . . , δ15, 1).

The results for the three methods by using matlabr3 software for n = 15 are displayed in Table 1,
whereas for n = 16 we have represented the locations of the nodes of the Szegő quadrature formula
for the Rogers-Szegő case, in the plots of Figure 1. Since our aim is merely illustrative, a low
number of nodes has been considered here and the results for the three methods coincide. We
display them only once.
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Table 1: Five different cases, depending on the value of q, for a 15-point Rogers-Szegő quadrature formula with
u = 1. Since ω is a symmetric weight and u is real, the coefficients of the n-th orthonormal Laurent polynomial are
real, and hence it follows from (4.8) that the weights corresponding to a pair of complex conjugate nodes are equal.
The nodes are eiθk and the left columns give the θk. Moreover, it is easy to check that for u = 1, z = −1 = eiπ is
always a node of the rule if n is odd whereas if n is even, then the rule has no real nodes (see Figure 1).

nodes = zj = exp(iθj), j = 1, . . . , 15

nodes(θj) | q = 0.1 | weights

±2.020693660378099E− 01 1.053824229964858E− 01
±6.067535362211522E− 01 9.847839556827828E− 02
±1.013158403916661E + 00 8.603266363333939E− 02
±1.422746244907493E + 00 7.039800735830885E− 02
±1.837569086272958E + 00 5.433799575334528E− 02
±2.260636174383480E + 00 4.048668900300233E− 02
±2.695488166595799E + 00 3.104786939314506E− 02
3.141592653589793E + 00 2.767191258819483E− 02

nodes(θj) | q = 0.25 | weights

±1.967461263446201E− 01 1.315190732477971E− 01
±5.909695184434383E− 01 1.180261484415183E− 01
±9.874875672980075E− 01 9.493562791891702E− 02
±1.388225415207939E + 00 6.827907861099329E− 02
±1.795982330151666E + 00 4.377944803893124E− 02
±2.215781208203728E + 00 2.509343083961357E− 02
±2.658750327222901E + 00 1.357168625676975E− 02
3.141592653589793E + 00 9.591013290928357E− 03

nodes(θj) | q = 0.5 | weights

±1.850326604783442E− 01 1.730866443286772E− 01
±5.562044865371203E− 01 1.427872916287331E− 01
±9.308502697829589E− 01 9.676375236738939E− 02
±1.311877002500532E + 00 5.337006798489684E− 02
±1.703437459286332E + 00 2.356234786279431E− 02
±2.112739066667703E + 00 8.086491887354821E− 03
±2.557426706172959E + 00 2.052052160650692E− 03
3.141592653589793E + 00 5.827035590192061E− 04

nodes(θj) | q = 0.75 | weights

±1.592753187503438E− 01 2.268901381737077E− 01
±4.793100886472880E− 01 1.605569608507605E− 01
±8.040304946336945E− 01 7.938814404567303E− 02
±1.137458980003955E + 00 2.665134725379743E− 02
±1.485540114688343E + 00 5.753874019524687E− 03
±1.859004158783506E + 00 7.188047679097230E− 04
±2.284765643114921E + 00 4.044806281122144E− 05
3.141592653589793E + 00 5.656516437058855E− 07

nodes(θj) | q = 0.9 | weights

±1.171019738894465E− 01 2.699653291356543E− 01
±3.526366611998939E− 01 1.615275685720382E− 01
±5.923813640639528E− 01 5.647780298658640E− 02
±8.399840849035561E− 01 1.093217945976319E− 02
±1.100902826514202E + 00 1.055526272428221E− 03
±1.385141693734147E + 00 4.121083711475061E− 05
±1.718290179570013E + 00 3.827326472626507E− 07
3.141592653589793E + 00 3.530250294293521E− 12

3matlab is a registered trademark of The MathWorks, Inc.
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q = 0.1 q = 0.25 q = 0.5

q = 0.75 q = 0.9

Figure 1: Five different distributions of nodes (depending on the value of q) in a 16-point Rogers-Szegő quadrature
formula with u = 1. From Proposition 2.2 and since we have fixed pn = E

[
n+1
2

]
, the Mazel-Geronimo-Hayes

Theorem is clearly observed (see [52, Theorem 1.6.11]): the zeros of the Rogers-Szegő polynomials lie on the circle
Tq = {z ∈ C : |z| =

√
q}. Moreover, it was proved in [20, Section 5] that if q → 0+ and q → 1−, then the

Rogers-Szegő weight converges to the Lebesgue measure and to a δ-Dirac distribution at z = 1, respectively. This
explains the behaviour of the distribution of the nodes in Table 1 and Figure 1, and also the reason why the weights
corresponding to nodes with higher real parts are greater than those weights associated with nodes with lower real
parts, specially as q increases (see Table 1).

Here, it should be remarked that if a prescribed precision is required, then a higher number of
nodes should be used, and special eigenvalue-finding methods should be considered because of the
error propagation. For reasons of efficiency and numerical stability, the eigenvalue computation
should preferably be performed using their factorization as a product of Givens transformations,
rather than using their entry-wise expansions. A whole variety of practical eigenvalue computation
algorithms for unitary Hessenberg and CMV matrices has already been developed in the literature,
e.g. LR-iterations, implicit QR-algorithms, divide and conquer algorithms, two half-size singular
value decompositions, matrix pencils methods or the unitary equivalent of the Sturm sequence
method (see [25]).

In the same way that we have analyzed the computation of Szegő quadrature formulas using the
matricial representation of Szegő polynomials and orthonormal Laurent polynomials, we shall in
what follows study the situation for the rational case. First of all we will introduce the orthogonal
rational functions and their matricial representations.

6. Orthogonal rational functions

Polynomials can be considered as rational functions with all their poles at infinity. The idea of
orthogonal rational functions is to generalize orthogonal polynomials by allowing other poles than
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infinity. In the context of this survey we will only consider orthogonal polynomials with respect
to a measure on the unit circle T, and since infinity is as far away from the unit circle as possible,
the generalization will consist in considering poles in the “neighborhood of infinity” which is here
loosely interpreted as all poles are outside the closed unit disk. But just as in the polynomial case
the Laurent polynomials introduce also poles at the origin using the substar conjugate, also here
we will be able to introduce poles inside the disk using the same substar conjugate.

In order to introduce our spaces of rational functions we use a Möbius transform as a building
instrument. It is defined as

ζα(z) :=
$∗α(z)

$α(z)
=

z − α
1− αz

, α ∈ D,

where $α(z) = 1−αz. This ζα is a bijection on C that leaves the sets T, D and E invariant. Note
that the inverse is given by

w = ζα(z)⇔ z = ζ−1α (w) = ζ−α(w).

If α ∈ D, then this first degree rational function ζα has a pole in E. So, to introduce the rational
functions with prescribed poles we shall define a sequence {αn}∞n=0 ⊂ D (we define α0 = 0 in
the rest of this paper) and introduce elementary Blaschke factors as ζn = ζαn . We shall similarly
denote $αn as $n, etc. By defining Blaschke products {Bn}n≥0 as

B0 = 1 and Bn = ζ1 . . . ζn =
π∗n
πn

for n ≥ 1,

where πn(z) = $1(z) · · ·$n(z), we can finally define a nested sequence of rational subspaces,
defined by

Rn := span {B0, B1, . . . , Bn} =

{
p(z)

πn(z)
: p ∈ Pn

}
.

If f ∈ Rn then it has all its poles in the set α̂ = {α̂i : i = 1, . . . , n} ⊂ E, with α̂i = 1/αi. Note that
the polynomials are included as a special case because Rn = Pn if all αk are chosen to be zero. By
our choice of the αn sequence, the overall space R = ∪n≥0Rn, i.e., R = span{Bn}n≥0 will only
contain functions analytic in D. As mentioned above, poles inside the disk can be introduced using
the substar conjugate:

Rn∗ := {f : f∗ ∈ Rn} = span {B1∗, . . . , Bn∗} =

{
q(z)

π∗n(z)
: q ∈ Pn

}
,

and R∗ = ∪n≥0Rn∗. For m,n ∈ N denote L−m,n = Rm∗+Rn and L = R∗+R, which generalizes
the space of all Laurent polynomials. Note that

L−m,n := span {Bm∗, . . . , B1∗, 1, B1, . . . , Bn} .

We also need a reciprocal operation generalizing the polynomial reciprocal. To arrange that R∗n ⊂
Rn, we shall define it for any rn = pn/πn ∈ Rn \ Rn−1 as follows:

r∗n = Bnrn∗ =
p∗n
πn
∈ Rn.

Given the inner product induced by a probability measure µ on T, we can construct the sequence
{φn}n≥0 of orthogonal rational functions (ORF) according to the sequence {αn}n≥0 satisfying
Rn−1 ⊥ φn ∈ Rn \Rn−1 for n ≥ 1 and φ0 = 1. These are not uniquely defined since we can always
multiply with a unimodular constant. This constant can be fixed by making the leading coefficient
of φn with respect to the basis {Bk}k≥0 positive, i.e., φ∗n(αn) > 0. In this paper, this constant is
not essential and we prefer to use the following simplified recurrence which fixes these unimodular
factors implicitly (see [8]):
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(
φn(z)
φ∗n(z)

)
= cn

$n−1(z)

$n(z)

(
1 δn
δn 1

)(
ζn−1(z)φn−1(z)

φ∗n−1(z)

)
, n ≥ 1, (6.1)

with

δn =
φn(αn−1)

φ∗n(αn−1)
, cn =

√
$n(αn)

$n−1(αn−1)

1

1− |δn|2
. (6.2)

A first verification of the rational formulas is that at any moment, setting all αn = 0, one should
recover the polynomial equivalent. In this case, (6.1) turns out to be exactly (2.4) since indeed
then ζn(z) = z, $n(z) = 1, cn = 1/ηn and the δn become the Schur parameters. For that reason
we shall keep the notation δn since they are the direct generalizations of the Schur parameters in
the rational case. As in the polynomial situation these parameters {δn}n≥1 of (6.1) lie in D.

We should mention here that we have chosen the αn to be all in D for convenience, but that
it is possible to choose them anywhere outside T on condition that αiα̂j 6= 1 for all i and j.
This was used in the context of matrix valued ORF in the papers by Lasarow and coworkers
(e.g., [27–29, 47]). A different approach to introduce poles in D and E for a balanced situation is
explained in Section 7 where the CMV representation is derived. This ordering of the poles inside
or outside the disk will influence the computation of sequence of ORF and the spaces that are
spanned in the sequence just like in the Laurent case. We do not include a full generalization here
for simplicity. Anyway, whatever the location and order of the αn, the resulting rational Szegő
quadrature formulas derived in Section 8 will be exact in spaces of rational functions with poles in
the set of selected points αk (in D and/or E) and in the reflected points α̂k, i.e., the space Rn+Rn∗
and that does not depend on whether the Rn has or has not all its poles in E.

7. Matricial representations of ORF

7.1. The multiplication operator in rational function spaces

Like in the polynomial case, it will be crucial to find the matrix representation for the multi-
plication operator M : L → L, f(z) 7→ zf(z) with respect to some ORF basis. Choosing the ORF
basis {φn}n≥0 that we just introduced, and noting that L is M -invariant we get a representation
V that was obtained in [55] as

V = ζ−1A (H), (7.1)

A being the diagonal matrix with the sequence {αn}n≥0 on its diagonal, H is like the Hessenberg

matrix given by (3.1) where ηn =
√

1− |δn|2 with δn as in (6.2) and ζ−1A (H) is the inverse of the
Möbius transformation ζα(z) but generalized to a matrix form:

ζ−1A (H) = ν−1A (I +A†H)(H+A)−1νA† , (7.2)

where, νA =
√

1−AA† and A† is the adjoint of A. (Note that in a scalar version ν-factors cancel
out.) Thus where in the polynomial case, the unitary matrix V was a Hessenberg matrix, here it
is the operator Möbius transformation of a Hessenberg matrix. There is some “rational intuition”
for this formula. To go from the polynomial to the rational case, we have transformed products
of z into products of the form ζi(z), e.g., powers of z are replaced by Blaschke products. Hence to
find a multiplication with z in the rational setting (and this multiplication is what H represented
in the polynomial case) we have to do the inverse transform to go from the ζi(z) back to z, and
this is exactly what (7.2) does.

But there is an alternative basis for L that can be used. In the polynomial case, the basis of
orthogonal polynomials in P could be replaced by a basis of orthogonal Laurent polynomials in Λ.
Similarly, we can also in the rational case obtain a somewhat simpler matricial representation for
M than the one given above.

However in the rational case, it is not so obvious how this should be done. Let us con-
sider the balanced situation for simplicity. Then we can consider the rational generalization
of the nesting of the Laurent polynomial subspaces of the form Λ−pn,qn with pn = E

[
n
2

]
or
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pn = E
[
n+1
2

]
and pn + qn = n. So that could be generalized to the rational spaces Ln =

L−pn,qn = span{Bpn∗, . . . , B0, . . . , Bqn} = span{φ−pn∗, . . . , φ0, . . . , φqn}. The problem is that the
latter is not an orthogonal basis. Instead we will reshuffle the factors of the Blaschke products and
define odd and even Blaschke products:

Bo0 = Be0 = 1 while Bon = ζ1ζ3 . . . ζ2n−1, Ben = ζ2ζ4 . . . ζ2n for n ≥ 1,

and consider the rational functions given by

χ2n = Ben∗φ
∗
2n, χ2n+1 = Ben∗φ2n+1, n ≥ 0.

The subspaces Ln = span {χ0, χ1, . . . , χn} are

L2n = Ben∗R2n = span
{
Be0∗, B

o
1 , B

e
1∗, . . . , B

e
n−1∗, B

o
n, B

e
n∗
}

= L−n,n

and
L2n+1 = Ben∗R2n+1 = span

{
Be0∗, B

o
1 , B

e
1∗, . . . , B

o
n, B

e
n∗, B

o
n+1

}
= L−n,n+1

i.e., L2n and L2n+1 are the sets of rational functions whose poles, counted with multiplicity, are in
{α̂1, α2, . . . , α2n−2, α̂2n−1, α2n} and in {α̂1, α2, . . . , α̂2n−1, α2n, α̂2n+1} respectively.

The orthonormality of {φn}n≥0 is equivalent to the orthonormality of the sequence {χn}n≥0
(see [55]). So now we do have χn ∈ Ln \ Ln−1 and χn ⊥µ Ln−1. Another way of constructing this
basis is introduced in [7].

This new basis {χn}n≥0 provides a simpler matricial representation for the multiplication op-
erator under non-restrictive conditions. As in the Hessenberg case, if the sequence {αn}n≥1 is
compactly included in D, the ORF {χn}n≥0 associated with {α1, α̂2, α3, α̂4, . . .}, form a basis for
L2
µ and the matrix of M with respect to {χn}n≥0 is

U = ζ−1A (C), (7.3)

where again A is the diagonal matrix with the poles on its diagonal, C is given by (3.2) with
ηn =

√
1− |δn|2 with δn like on (6.2) and ζ−1A (C) the inverse matrix Möbius transform given by

(7.2). The unitary matrix U is not a five-diagonal matrix as in the polynomial case, but it is an
(inverse) operator Möbius transformation of a five-diagonal matrix.

7.2. Para-orthogonal rational functions

The zeros of the ORF {φn}n≥1 and the zeros of {χn}n≥1 are the same, but they are all inside D,
and not on T, so that they are not suitable as nodes for rational Szegő quadrature formulas. Thus
we need a para-orthogonal rational functions (PORF) generalizing the para-orthogonal polynomials
and that have simple zeros on T. The next step is then to show that these zeros can be obtained
by solving some eigenvalue problem.

Given a sequence of orthogonal rational functions {φn}n≥0 with poles {α̂1, α̂2, . . . , α̂n} in E,
the para-orthogonal rational functions (PORF) are defined by

P vn (z) := φn(z) + vφ∗n(z), v ∈ T. (7.4)

The following result (see [8]) shows that these satisfy our needs perfectly.

Theorem 7.1. The para-orthogonal rational function P vn with v ∈ T has n simple zeros which lie
on the unit circle. �

To arrive at the eigenvalue problem, we use the recurrence (6.1) for the ORF φn in the definition
(7.4) of the PORF so that we can rewrite P vn as follows:

P vn (z) = (1 + δnv)cn
$n−1(z)

$n(z)
[ζn−1(z)φn−1(z) + uφ∗n−1(z)], u = ζ−1δn (v).
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Compare this with the recurrence relation for the ORF (6.1) then it is clear that P vn (making
abstraction of the constant factor (1 + δnv) which does not influence the zeros) can be obtained
from the same recurrence relation as the ORF, except that in the last step we have to replace δn
by u = ζ−1δn (v) ∈ T.

We are now all set to mimic the polynomial situation and get unitary truncations of the
matrix representation of the multiplication operator M restricted to R with respect to the ba-
sis {φn}n≥0 or with respect to the basis {χn}n≥0 in L. I.e., we have to find unitary trunca-
tions of ζ−1A (H) and ζ−1A (C). Therefore we introduce the following notation for the truncations:
An = diag(α0, . . . , αn−1), Hun stand for the unitary truncated Hessenberg matrix of dimension
n based on the parameters δ1, . . . , δn−1, u like in (3.1) and set Vun = ζ−1An(Hun). Also Cun and

Uun = ζ−1An(Cun) are introduced in a similar way. Note that Hun as well as Cun are unitary matrices
and this property is maintained by the Möbius transform. The n-th principal submatrices of the
unitary V and U are not unitary, but replacing δn by u ∈ T turn the matrices Vun and Uun into uni-
tary ones. Then the following result provides two different matricial representations of the PORF
as well as of their zeros in terms of matrix Möbius transform of a Hessenberg matrices and CMV
matrices respectively (see [55]).

Theorem 7.2. Let {αn}n≥1 be an arbitrary sequence in D, µ a measure on T, {φn}n≥0 the
corresponding ORF and {χn}n≥0 the ORF associated with the sequence {α1, α̂2, α3, α̂4, . . .}. If
P vn = φn + vφ∗n is the n-th PORF related to v ∈ T, and if we introduce u = ζ−1δn (v), then:

(i.H) The zeros of P vn are the eigenvalues of Vun and if ξ is an eigenvalue then the related eigen-
vectors are spanned by (φ0(ξ), . . . , φn−1(ξ))†. Equivalently, this ξ is also a generalized eigenvalue
of the pencil (An +Hun, In +A†nHun) and the corresponding left eigenvectors are spanned by

(φ0(ξ), . . . , φn−1(ξ))ν
−1/2
An .

(i.C) The zeros of P vn are the eigenvalues of Uun and if ξ is an eigenvalue then the related eigen-
vectors are spanned by (χ0(ξ), . . . , χn−1(ξ))†. Equivalently, this ξ is also a generalized eigen-
value of the pencil (An + Cun , In + A†nCun) and the corresponding left eigenvectors are spanned by
(χ0(ξ), . . . , χn−1(ξ))ν−1An .

(ii.H) P vn =
pvn
πn
, with pvn proportional to the characteristic polynomial of Vun .

(ii.C) P vn =
pvn
πn
, with pvn proportional to the characteristic polynomial of Uun . �

The factorization of the five-diagonal matrix as a product of two simple block diagonals as in
(3.2) for the polynomial case will of course also hold for the rational case. When we truncate
this factorization at the nth principal submatrices and replacing δn by u ∈ T in C as well as in
the factors Ce and Co, i.e., Cuon = Co(δ0, . . . , δn−1, u) and Cuen = Ce(δ0, . . . , δn−1, u), we obtain that
Cun = CuonCuen.

Since Uun is unitary, we can write Uun = [(Uun )†]−1. And thus

Uun = νAn(Cu†n +A†n)−1(In + Cu†n An)ν−1An .

Hence, the eigenvalue decomposition for Uun , viz. UunXn = XnΛn can be rewritten as

(Cu†n +A†n)−1(In + Cu†n An)Yn = YnΛn, Yn = ν−1AnXn,

(Cu†on + CuenA†n)−1(Cuen + Cu†onAn)Yn = YnΛn.

In other words, we have proved the following theorem which implies yet another computational
scheme for the nodes and weights of the quadrature formulas as we shall elaborate in the next
section.

Theorem 7.3. Let {αn}n≥1 be an arbitrary sequence in D, µ a measure on T, {φn}n≥0 the corre-
sponding ORF and {χn}n≥0 the ORF associated with the sequence {α1, α̂2, α3, α̂4, . . .}. Furthermore
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let P vn = φn+vφ∗n be the n-th PORF related to v ∈ T, and suppose that Cuon and Cuen are the unitary
truncations of the matrices of (3.2) where δn is replaced by u = ζ−1δn (v) ∈ T. Then the zeros of

P vn are the generalized eigenvalues of the pencil (Cuen + Cu†onAn, Cu†on + CuenA†n) and if ξ is such an
eigenvalue, then the corresponding right eigenvectors are spanned by [(χ0(ξ), . . . , χn(ξ))ν−1An ]†. �

8. Matricial computation of rational Szegő quadrature formulas.

In this section we consider again the approximation of the integral

Iµ(f) =

∫ π

−π
f(eiθ)dµ(θ),

for any function f defined on T, and for a finite Borel measure which we again assume to be a
probability measure for simplicity of the formulas. As before we shall estimate it by a formula of
the form

In(f) =

n∑
j=1

λjf(zj), (8.1)

with mutually distinct nodes zj on T and positive weights λj , j = 1, . . . , n,. However instead of
designing it in a way that it has a maximal domain of exactness in the space of Laurent polynomials,
we will consider the more general rational functions introduced in the previous sections. This gives
rise to the class of rational Szegő quadrature formulas considered for example in [4–7].

Like in Section 4 we may start from rational interpolatory type quadrature formulas. Since our
space of rational functions has poles that are fixed by the {αn}n≥0, we can still use the freedom
in the numerator to construct a unique rational interpolant in a given set of interpolation points
on T and approximate the integral by the integral of the interpolating rational function. Thus if
R ∈ L−k,k is the interpolant for f , defined by 2k+1 interpolation conditions, then by construction
its integral will be exact in that space L−k,k. The following theorem states this formally and it
can be found in [5].

Theorem 8.1. Let n = 2k + 1. Given the sequence {zj}nj=1 ⊂ T of mutually distinct points, then
there exist unique positive numbers λ1, . . . , λn depending on µ, such that

In(f) =

n∑
j=1

λjf(zj) = Iµ(f), ∀f ∈ L−k,k.

Furthermore, In(f) = Iµ(Rn) where Rn is the unique rational function in L−k,k satisfying the
interpolation condition Rn(zj) = f(zj), j = 1, 2, . . . , n. �

Similarly one may choose 2k interpolation points and construct a rational interpolant from
L−k+1,k or L−k,k−1 to construct a corresponding rational quadrature formula that is exact for
these spaces. However, these interpolatory quadrature formulas with n nodes are exact in the
space of dimension n. Rational Szegő quadrature formulas will generalize the polynomial Szegő
quadrature formulas and rely on a special choice of the n nodes to obtain a quadrature formula
that is exact in a rational space of the form L−p,q with p + q = 2n − 2, i.e., of dimension 2n− 1.
Therefore, the nodes should be chosen as the zeros of para-orthogonal rational functions that we
introduced earlier. Thus, we can improve on the previous theorem as follows.

Theorem 8.2. Let z1, z2, . . . , zn be the zeros of the n-th PORF Pun (with u ∈ T). Then, there
exist positive numbers λ1, . . . , λn such that

In(f) =

n∑
j=1

λjf(zj) = Iµ(f), ∀f ∈ L−(n−1),n−1,

i.e., the rational Szegő quadrature formula is exact on the space L−(n−1),n−1, which has dimension
2n− 1. �
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In this case, L−(n−1),n−1 is the maximal domain of validity in the sense that the formula can not
be exact in L−n,n−1 nor in L−(n−1),n. Moreover, it was also proved in [6] that the only quadrature
formulas with such a maximal domain of validity are just the ones given in Theorem 8.2, i.e., with
weights given by

λj =

∫
T
Lj,n(eiθ)dµ(θ)

with Lj,n ∈ L0,n−1 the rational form of the Lagrangian interpolation basis, that is, defined by
the interpolation conditions Lj,n(zi) = δij . The quadrature formulas of the previous theorem are
called rational Szegő quadrature formulas. It should be noted that there is some subspace Lun of
dimension 2n, depending on u, such that L−(n−1),n−1 ⊂ Lun ⊂ L−n,n in which the quadrature
formula is exact (see [9]), but it is not of the form L−p,q.

Given the result by Theorem 8.2 that the nodes of the rational Szegő quadrature have to be
the zeros of a PORF, and given our matricial representations of Theorem 7.2, we can immediately
state the following corollaries.

Corollary 8.3. The nodes of rational Szegő quadrature formulas are the eigenvalues of matrix
Möbius transformations

(H) Vun of unitary truncations of Hessenberg matrices Hun,

(C) Uun of unitary truncations of five-diagonal matrices Cun. �

For the weights we need to check whether they can be obtained from corresponding eigenvectors.
Therefore we first have to verify whether the weights are given by formulas similar to the polynomial
case and secondly we should check whether these results are obtainable from the eigenvectors
corresponding to the eigenvalues defining the nodes in a way similar to the polynomial case.

With respect to the first problem we refer to [8, Theorem 5.4.2] where it has been proved that
the weights λj of the n-point rational Szegő quadrature formulas are given by

λj =

(
n−1∑
k=0

|φk(zj)|2
)−1

, (8.2)

where (φk)k≥0 are the ORF for the measure µ and the sequence {αn}n≥0.
So now it has to be verified if these values are computable from the eigenvectors given in Theo-

rem 7.2. There it was shown that if zj is an eigenvalue of Vun then Vn(zj) = (φ0(zj), · · · , φn−1(zj))
†

is a corresponding eigenvector. Thus a normalized eigenvector W (zj) = (w0(zj), · · · , wn−1(zj))
†

is
given by

Wn(zj) =
Vn(zj)

‖Vn‖
with ‖Vn‖ =

(
n−1∑
k=0

|φk(zj)|2
)1/2

,

or equivalently, using (8.2),

(w0(zj), · · · , wn−1(zj))
†

= λ
1/2
j (φ0(zj), · · · , φn−1(zj))

†
.

Equating the first component of both sides gives

w0(zj) = λ
1/2
j φ0(zj).

If we are dealing with a probability measure, then φ0(zj) ≡ 1 so that λj = w0(zj)
2, showing that

the weight corresponding to the node zj is indeed the squared modulus (the eigenvectors can be
complex) of the first component of the corresponding normalized eigenvector.

Similarly, it also follows from Theorem 7.2 that if zj is an eigenvalue of Uun then the corre-

sponding eigenvector is (χ0(zj), · · · , χn−1(zj))
†
, so that it suffices to remind that

n−1∑
k=0

|χk(zj)|2 =

n−1∑
k=0

|φk(zj)|2,
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to obtain the same result for this situation as in the case of Vun .
In short the following Proposition has been proved:

Proposition 8.4. If z1, . . . , zn are the nodes of the rational Szegő quadrature formula, i.e., the
eigenvalues of Vun (resp. Uun ), then the weights are given by the squared modulus of the first com-
ponents of the corresponding normalized eigenvectors. �

We have formulated the previous results in terms of Vun and Uun but in practice we may of course
implement the computations using the pencils that are mentioned in Theorems 7.2 and 7.3.

This new point of view avoids the calculation of the nodes of rational quadrature formulas
on the unit circle by first constructing the corresponding PORF and then computing its zeros.
It provides a method to calculate the nodes as eigenvalues of the above mentioned matrices or
pencils, that require only the knowledge of the parameters δn and the poles of the corresponding
orthogonal rational functions. The practical drawback is that there are only few examples where
the expressions for the δn are known, and they depend moreover on the choice of the {αn} sequence
and these are to be chosen in function of the problematic points in the integrand. Hence the {δn}
differ for each problem. The latter dependency kills the hope for simple generic expressions for
these rational Schur parameters. They are rather trivial exceptions for cases like the Lebesgue
or Poisson measure. Other known cases where the rational Schur parameters are computable are
Chebyshev rational functions (e.g., [3]), or rational modification of simpler measures for which the
δn are known (e.g., [23]).

Exactly like it was done for the polynomial case in Sections 4.3 and 4.4, our results of Corol-
larie 8.3 in combination with Proposition 8.4 can be summarized in the Golub-Meurant formulas

In(f) = eT1 f(Vun)e1 = eT1 f(Uun )e1.

Such formulas for rational Gauss formulas on the real line can be found in [49]. They received
much attention recently in the context of rational Krylov methods for large scale problems for
example in the analysis of complex networks (see e.g. [40]).

9. Numerical examples

As in the Szegő quadratures on the unit circle, for rational Szegő quadrature formulas we also
will illustrate the preceding results with some numerical examples. Again the algorithms were
implemented in matlab.

Example 9.1. In this first example we will consider the function f given by

f(z) =
2 + 7z

1− z/3
+

1− z
3− z

+
z(1 + 2z2)

(z − 5)(1− 6z)(7− z)
(9.1)

and we will approximate Iµ(f), µ being the Chebyshev measure (1−cos θ)dθ/(2π). For a matricial
computation using the operator Möbius transform for Hessenberg and five-diagonal matrices, we
need the poles and the sequences {δn} and {ηn} that parameterize these matrices.

We consider n = 7 and we choose αn = 1/(n + 1), n = 1, . . . , 7 and α0 = 0 as usual. For the
Chebyshev measure the δn can be derived from the explicit expressions for the φk in [3] as shown
in [2]. We list the first seven parameters in Table 2.

Solving, in this case, the generalized eigenvector problem for the pencil with an appropriate
v ∈ T, (

An +Hun, In +A†nHun
)
,

we obtain the nodes and weights of the Table 3.
If we compute them via the eigenvalues and eigenvectors of the matrix Vun , the results are as

accurate, showing possibly a slight difference in the last digit.
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Table 2: The Schur parameters for the Chebyshev measure
(1−cos θ)dθ

2π
when the poles are given by αk = 1/(k+ 1),

k = 1, . . . , 7.

n δn
1 6.666666666666666E− 01
2 5.555555555555556E− 01
3 2.682926829268292E− 01
4 1.844660194174757E− 01
5 1.433278418451400E− 01
6 1.184971098265896E− 01
7 1.017011834319527E− 01

Table 3: The nodes and weights for the Chebyshev measure
(1−cos θ)dθ

2π
when the poles are given by αk = 1/(k+ 1),

k = 1, . . . , 7 and v = −1.

θj of nodes zj = exp(iθj) weights
0 3.594351732991019E− 01

±1.086641439916068E + 00 2.348319150907187E− 01
±1.169153308542978E + 00 7.385174323898922E− 02
±5.136477064591293E− 01 1.159875502074117E− 02

Similarly one can use the generalized eigenvalues and vectors for the pencils(
An + Cun , In +A†nCun

)
, or (Cuen + Cu†onAn, Cu†on + CuenA†n),

or compute the eigenvalues and eigenvectors of Uun . The numerical values of the nodes and weights
are again the same except for some rounding which only affects one or at most two of the last
digits.

Because the given function belongs to the domain of validity, the quadrature formula should
give the exact integral, viz. −1.385700268332733, which is indeed the case within machine precision,
because the relative error is O(10−16).

For a different, nonreal, choice of v ∈ T, the symmetry is lost, as can be seen in Table 4 where
we listed the nodes and weight for v = i =

√
−1.

Table 4: The nodes and weights for the Chebyshev measure
(1−cos θ)dθ

2π
when the poles are given by αk = 1/(k+ 1),

k = 1, . . . , 7 and v = i.

θj of nodes zj = exp(iθj) weights
−9.852343382366260E− 01 5.111787059177298E− 02
−8.551217874454911E− 01 2.792640925331908E− 01
−3.467594087977110E− 01 5.837499871365035E− 03

2.602181673212490E− 01 3.533166059075208E− 01
6.297216857300113E− 01 1.869962102376529E− 02
1.319929652919720E + 00 1.907125846597272E− 01
1.339860693483318E + 00 1.010517254126578E− 01

Although the symmetry is lost, the integral is still approximated with the same accuracy as in
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the symmetric case.
In practice, of course one usually does not know the poles exactly, but if some good approxi-

mations are known, one gets very fast very good approximations. For example if we replace the
estimated poles by αk = 1/(k + 1.1), we get with the same routine using 7 nodes an error of
O(10−6), but if we take n = 13 and repeat our approximate poles cyclically as αk+7 = 1/(k+ 1.1),
k = 1, 2, . . ., then the error is already O(10−12) and for n = 19, it is O(10−15) which means an
exact result up to machine precision.

Example 9.2. In the second example we will consider the Poisson weight, which is a rational
modification of the Lebesgue measure

dµ(θ) =
1− |r|2

|z − r|2
dθ

2π
, r ∈ D, z = eiθ,

and we shall calculate the integral of f(z) = sin(|R(z)|2) with R(z) a rational function given by

R(z) =
(z − cr)(z − ct)

z − cp
, cr = 0.8eiπ/3, ct = 0.8e−iπ/3, cp = 1.1i.

We know the Schur parameters for the corresponding ORF which are particularly simple
since they are all equal to zero except the first one, which is δ1 = −r. This can be derived
from the formula (3.1) in [6] giving explicit expressions for the ORF, and knowing that δn =
φn(αn−1)/φ∗n(αn−1). Note that this can also be obtained by considering this weight as a rational
modification of the Lebesgue measure, [23, Theorem 7].

The function f(z) for z ∈ T is plotted as a function of θ ∈ [−π, π] where z = eiθ in Figure 2. It
is clear that the essential singularity at z = cp causes some problems near θ = π/2, i.e., at z = i
on T. When we use the Szegő quadrature formula in the polynomial case, i.e., setting all αk = 0
we get no convergence. The 10-log of the relative error is seen in Figure 3. It is the graph that
stagnates with no more than two to three digits correct in the result. However when placing the
αk all at 1/cp ≈ 0.91i, corresponding to the singularity at cp (recall that all our αk are in D), we
see in the same Figure 3 that the method converges linearly to machine precision for n = 400. The
reason is that for all αk = 0, the nodes are almost uniformly distributed over T, while if we set
all αk = 1/cp, then this will attract most of the nodes to the problematic neighborhood of z = i
on T where the function f is highly oscillating. This is illustrated on Figure 4. The explanation
of the periodic dips in the error curve can then be explained by how the nodes align with these
oscillations. If we distribute K nodes in the region with N oscillations, then the accuracy of the
quadrature formula will depend on whether this distribution is in phase with the oscillations or
not. When they are in phase we get a much better approximation, than when they are not.

In the rational case, the previous examples show that these (generalized) eigenvalue methods
for computing the nodes and weights of rational Szegő quadrature formulas are very efficient and
stable as are the polynomial counterparts. The main purpose of the second part of this paper
was to show that also in the case of quadrature formulas on the unit circle based on orthogonal
rational functions, the nodes and weights can be computed by solving an eigenvalue problem for a
(structured) matrix. In this case, this matrix is a matrix Möbius transform of a unitary Hessenberg
matrix Hun or a five-diagonal matrix Cun .

To end this section it should be remarked that we have some indications that these results can
be also stated for matrix Möbius transform of snake-shaped matrices. More details on this issue
are postponed to a future paper.
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Figure 3: The 10-log of the relative error as a function of the number of nodes for example 9.2. The stagnating
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[5] A. Bultheel, P. González-Vera, E. Hendriksen, and O. Nj̊astad. Orthogonal rational functions
and quadrature on the unit circle. Numerical Algorithms, 3:105–116, 1992.
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[33] G.H. Golub and G. Meurant. Matrices, moments and quadrature. In Numerical analysis 1993,
volume 303 of Pitman Research Notes in Mathematics, pages 105–146. Longman Scientific &
Technical, 1994.

[34] G.H. Golub and G. Meurant. Matrices, Moments and Quadrature with Applications. Princeton
Series in Applied Mathematics. Princeton University Press, 2009.

[35] G.H. Golub and J.H. Welsch. Calculation of Gauss quadrature rules. Mathematics of Com-
putation, 23(106):221–230, 1969.
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