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Abstract

When using a domain-based method for solving problems in unbounded do-

mains, the computational domain has to be truncated to a bounded region.

On the truncation, suitable conditions must be imposed to ensure the solu-

tion of the truncated problem is equivalent to the solution of the unbounded

problem. This paper proposes to derive these conditions based on an explicit

model of the unbounded domain exterior to the truncation. The Wave Based

Method (WBM), a Trefftz-based prediction technique for solving Helmholtz

problems, is used to construct this unbounded model. The WBM has proven

to be an efficient alternative for element based techniques and therefore can

be applied towards mid-frequency problems. The obtained method is com-

pared to the DtN FE method, where it is shown that the obtained accuracy

is equivalent, but the proposed hybrid FE-WB framework allows for a more

efficient construction and solution of the model.
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1. Introduction

The solution of Helmholtz problems involving unbounded problem do-

mains has been the subject of substantial research effort. When solving this

problem with a domain-based method, the problem domain is first truncated

to a bounded region, to make the problem amenable to practical implementa-

tion. This truncation is artificial, however, and care must be taken to impose

appropriate conditions on this truncation, such that the obtained bounded

problem is well-posed and its solution matches the solution of the unbounded

problem with the desired accuracy. Several methods have been proposed and

examined to this end [1]: absorbing boundary conditions (ABCs, either local

or non-local), perfectly matched layers (PML) and Infinite Elements (IE).

The ABCs comprise a wide array of different approaches. Bayliss et al.

[2] and Enquist et al. [3] proposed a formulation for local ABCs of arbitrary

order. The use of higher-order derivatives in these formulations, however,

limits the practical applicability in Finite Element (FE) schemes. Several

techniques have been proposed to relax this limitation, usually based on the

introduction of auxiliary variables to eliminate the higher-order derivatives

[4, 5]. The Dirichlet-to-Neumann (DtN) map [6, 7, 8] is the most noteworthy

non-local condition. This method uses a harmonic expansion of an analytical

solution of the exterior problem to relate Dirichlet data to Neumann data

on the truncation. The method offers excellent accuracy and stability, but
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is often computationally expensive: the construction requires multiple inte-

grations over the truncation, and the resulting system contains a dense and

complex block, deteriorating the efficiency of dedicated FE solvers.

The PML concept, originally proposed by Berenger [9], consists of intro-

ducing an artificial layer of elements exterior to the bounded problem. An

adapted formulation used in these elements damps out any incoming waves,

such that they are absorbed before they reach the outer layer of the PML. As

a standard finite element discretisation can be used in the absorbing layer,

the sparsity of the resulting system is preserved; it contains nevertheless

complex coefficients due to the absorbing formulation. The choice of a good

(optimal) absorbing function, relative to the layout of the problem and PML,

is subject of substantial research [10, 11].

Infinite elements [12] take a somewhat different approach by proposing

an explicit model for the unbounded field exterior to the truncation. To

fit in with the FE discretisation, a new element is proposed which extends

to infinity away from the truncation. The basis used in these elements is

selected to be compatible with the FE formulation on the truncation (angular

functions), while the radial functions are defined to represent the outgoing

wave behaviour. Different formulations are proposed mainly by Burnett [13]

and Astley [14], where a trade-off has to be made between near-field accuracy,

far-field accuracy and stability of the formulation.

Recently, a Wave Based Method (WBM) [15, 16, 17] was proposed as an

alternative technique for the solution of Helmholtz problems. It follows a

Trefftz approach [18], using an expansion of basis functions which exactly

satisfy the governing dynamic equations to describe the dynamic field. In
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this way, no approximation error is made inside the domain. However, the

wave functions violate the boundary and continuity conditions. Enforcing

the associated residual errors to zero in a weighted residual scheme yields a

small system of algebraic equations, which can be solved for the unknown

contribution factors in the expansion. The size of the numerical models and

the associated computational resources are substantially lower as compared

to element based methods. Because of the enhanced convergence properties,

the WBM has proven to be applicable for low- as well as mid-frequency

acoustic problems. With a proper selection of the wave functions in the basis,

the WBM can be efficiently used to model also problems in unbounded and

semi-unbounded domains [19, 20, 21, 22, 23].

This paper discusses the use of such an unbounded Wave Based (WB)

model exterior to the truncation of a FE model of an unbounded problem.

As the WBM contains an intrinsic formulation for unbounded problems, cou-

pling the FEM with such an unbounded WB model mitigates the need for

an implicit absorbing boundary condition. Instead, this condition is replaced

by an explicit WB model of the unbounded region exterior to the FE dis-

cretisation. The basis functions used in such an unbounded WB model are

solutions of the problem exterior to a circle (for two-dimensional problems);

the same solution is used to derive the DtN map for this problem. Using the

framework of a hybrid WB-FE method, derived earlier for bounded problems

[24], an appropriate condition on the FE truncation can be obtained. The

proposed method shares the accuracy and the global nature with the DtN

FE method. It is shown, however, that the hybrid FE-WB framework allows

a more efficient construction of the non-reflecting condition by introducing
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the wave function participation factors as independent degrees of freedom

(DOFs) in a coupled system. Using a three-step solution procedure [25], the

real and sparse nature of the FE system can be retained, allowing efficient

solution with dedicated solvers.

This paper is organised as follows. Section 2 gives the mathematical

problem description of a 2D unbounded acoustic Helmholtz problem and the

associated FE formulation. As the problem domain is unbounded, a trunca-

tion boundary with a suitable boundary condition needs to be introduced.

Section 3 describes the DtN map to provide the needed boundary conditions.

The novel alternative solution, using an explicit unbounded WB model to

account for the unbounded part of the domain exterior to the truncation is

discussed in section 4. The properties of both approaches are compared in

section 5. Two numerical verification cases in section 6 show the computa-

tional advantage of the explicit unbounded WBM as compared to the use of

the DtN map. The paper ends with summarising the main contributions and

conclusions

2. Problem description and FE formulation

Consider a general two-dimensional unbounded acoustic Helmholtz prob-

lem as shown in figure 1. The fluid is assumed to be inviscid with ambient

fluid density ρ0 and speed of sound c. The solution p(r) is defined by:

∇2p(r) + k2p(r) = F(r), (1)

with k = ω/c the acoustic wave number and ω the circular frequency. ∇2

denotes the Laplacian operator, F(r) describes the sources acting on the
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Figure 1: Two-dimensional unbounded Helmholtz problem

computational domain. The problem boundary Γ constitutes 2 parts: the

finite part of the boundary, Γb, and the ficticious boundary at infinity, Γ∞.

On the finite part of the boundary, a general boundary condition is imposed:

B(p(r)) = 0 on Γb, (2)

with B a boundary condition differential operator. At the boundary at in-

finity Γ∞ the Sommerfeld radiation condition [26] for outgoing waves should

be satisfied. This condition ensures that no acoustic energy is reflected at

infinity and is expressed as

lim
|r|→∞

(√
|r|

(∂p(r)
∂|r|

+ jkp(r)
))

= 0 . (3)

Solution of the Helmholtz equation (1) together with the associated bound-

ary conditions (2)-(3) yields a unique dynamic field p(r).

2.1. FE model

The problem domain is in a first step divided into a bounded and an

unbounded part by introducing the truncation Γt as shown in figure 2. The
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FEM discretises the bounded part of the problem Ωb between the boundaries

Γb and Γt. Within this region, the solution field, in this case the pressure

p(r) is described using the polynomial FE shape functions Np(r):

p(r) ≃ u(r) =

nfe∑
p=1

Np(r)dp, (4)

with dp the nodal DOFs and nfe the number of nodes in the model. On the

G
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G
t
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Figure 2: Truncation of the problem for the FEM

finite part of the boundary Γb, a general boundary condition is imposed:

∂u

∂n
(r) + B (u(r)) = 0 on Γb, (5)

with n the local normal on boundary pointing outwards of Ωb. The boundary

Γt is used to truncate the FE model to a bounded region. To compensate for

this truncation, a suitable condition should be imposed along this boundary,

simulating the continuation of the actual field outside the FE discretisation.

This formulation is contained in the operator T :

∂u

∂n
(r)− T (u(r)) = 0 on Γt. (6)
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Compliance with the Helmholtz equation (1) and the boundary (5) and con-

tinuity (6) conditions on Γb and Γt, respectively, is enforced in a weighted

residual formulation, yielding the weak form:∫
Ωb

(∇u · ∇v − k2uv + vF)dΩb +

∫
Γb

vB(u)dΓb −
∫
Γt

vT (u)dΓt = 0. (7)

Using a Galerkin approach, the test function v is expanded using the same

shape functions that are applied to approximate the dynamic field u.

The two next sections describe two distinct ways to construct T : (i) the

DtN map is discussed, and (ii) an alternative explicit unbounded WB model

is introduced.

3. Construction of T : DtN FE model

The Dirichlet-to-Neumann (DtN) map, a non-local absorbing boundary

condition, is a technique to enable the application of the FEM to unbounded

problems. The DtN map [6] constructs a mapping of Dirichlet (pressure) data

on the truncation Γt to Neumann (velocity) data on the same boundary, using

an analytical model for the dynamic field exterior to Γt. In general such a

map takes the form:
∂u

∂n
= Mu, on Γt, (8)

where n is the unit normal on Γt pointing outwards. The operator M is the

mapping operator, describing the relation between the Dirichlet and Neu-

mann data. The DtN map proposed by Keller and Givoli [6] uses a multipole

expansion to describe the field in Ωub. This model is not used explicitly to

describe the field, but instead condensed to a relation between pressure and

8



velocity on Γt the so-called DtN map:

Mu =
1

π

∞∑
n=0

′ kH
(2)′
n (kR)

H
(2)
n (kR)

∫ 2π

0

cosn(θ − θ′)u(R, θ′)dθ′, (9)

where H
(2)
n (•) is the n-th order Hankel function of the second kind; H

(2)′
n (•)

is the derivative of this function with respect to its argument. The prime

(′) after the sum indicates that the term with n=0 is multiplied by 1/2.

The condition is exact for an infinite number of terms in the summation. In

practice, the series will be truncated to nmax terms, yielding an approximated

condition Mnmax based on the harmonics up to the truncation number nmax.

Harari and Hughes [27] proved that choosing nmax > kR guarantees the

uniqueness of the solution. This condition can be relaxed, however, when

using the modified DtN formulation [7] (MDtN). The idea of this modification

is to apply a simple, approximating non-reflecting boundary condition to all

harmonics not included in (9). Such a condition can be written as:

∂u(R, θ)

∂r
= Bu, (10)

with B an appropriate constant. A common selection is B = jk, such that

(10) approximates the Sommerfeld radiation condition (3). The modified

DtN condition is then given as:

∂u(R, θ)

∂r
= (Mnmax −Bnmax)u+Bu, (11)

with the operators Mnmax and Bnmax defined as:

Mnmaxu =
1

π

nmax∑
n=0

′ kH
(2)′
n (kR)

H
(2)
n (kR)

∫ 2π

0

cosn(θ − θ′)u(R, θ′)dθ′, (12)

Bnmaxu =
1

π

nmax∑
n=0

′ B

∫ 2π

0

cosn(θ − θ′)u(R, θ′)dθ′. (13)
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The Neumann data resulting from the DtN map is enforced on the FE

model over Γt. The operator T (6) can now be derived from the DtN map.

Based on (12) and (13), the boundary operator T for the DtN map can be

defined as:

T (u) = Mnmaxu for the standard DtN,

T (u) = (Mnmax −Bnmax)u+Bu for the modified DtN.
(14)

The FE system (7) can be completed using these derived expressions for

T : substituting the DtN condition (14) in the weak form yields a matrix

system in the FE unknowns d:[
AFE +ADtN

][
d
]
=

[
fFE

]
. (15)

The matrices AFE and fFE result from integrating the residuals on the

Helmholtz equation and the boundary conditions, respectively:

AFE =

∫
Ωb

(∇u · ∇v − k2uv)dΩb, (16)

fFE = −
∫
Γb

vB(u)dΓb−
∫
Ωb

(Fv)dΩb. (17)

The vector fFE describes the effect of acoustic sources present in the problem

domain. Besides, it consists only of known components in the case of a

Neumann boundary condition. For Robin conditions, equation (17) will also

yield a contribution to the FE system in the left-hand side.

The matrix ADtN results from integrating the boundary operator T , in

this case resulting from the DtN map, over Γt:

ADtN =

∫
Γt

vT dΓt =

∫
Γt

v [(Mnmax −Bnmax)u+Bu] dΓt

=

∫
Γt

v(Mnmax −Bnmax)udΓt +

∫
Γt

vBudΓt. (18)
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When evaluated with the definition of M and B from equation (9) and (10)

respectively, and limiting (M − B) to the first nmax circumferential modes

on Γt, this yields:

ADtN =

∫
Γt

v
1

π

nmax∑
n=0

′
[ kH

(2)′
n (kR)

H
(2)
n (kR)

− jk
] ∫ 2π

0

cosn(θ − θ′)u(R, θ′)dθ′dθ

+

∫
Γt

vjkudΓt. (19)

As this expression contains nested integrals, the construction of ADtN is

relatively expensive. The computational costs and system properties are

discussed in detail in section 5.

4. Construction of T : hybrid FE-WB model

4.1. Hybrid modelling concept and procedure

The use of an unbounded WB model in a hybrid FE-WBM allows this

resulting hybrid method to inherently tackle unbounded problems. As such,

this explicit unbounded WB model can be seen as an alternative to the

techniques described in the introduction section, enabling the application of

the FEM to unbounded problems. It shares many similarities with the DtN

FE model, using a similar expansion of analytic solutions to describe the

field in the unbounded region exterior to Γt. Contrarily to the DtN method,

in which this expansion is never constructed explicitly, but is instead used

to derive a mapping between Dirichlet and Neumann data on Γ, additional

degrees of freedom are introduced in the FE-WBM method to account for

the unbounded region of the problem domain.

In an unbounded hybrid FE-WB model, both the FEM and the WBM

will be applied in two geometrically non-overlapping regions of the problem.
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The FE domain is confined to the bounded region Ωb as illustrated in figure 2,

similarly as for the DtN FE model. The WBM is used to explicitly describe

the field in the unbounded region Ωub exterior to Γt.

Both the FE and WB submodels are constructed following the usual pro-

cedures for both methods. The FE system matrices are obtained by integra-

tion of the weak form of the Helmholtz equation and the (natural) boundary

conditions (7). The WB system results from enforcing the boundary and

interface conditions as explained below; in the case of an unbounded WB

model as considered here, the only conditions enforced on the WB model are

the interface conditions on Γt, imposing continuity with the FE solution in

Ωb.

4.2. An explicit WB model

The WBM [15] is a numerical modelling method based on an indirect

Trefftz approach: the dynamic field is described using an expansion of wave

functions, which exactly satisfy the governing equations. The degrees of

freedom are the weighting factors of the wave functions in this expansion.

The WBM has been applied for unbounded Helmholtz problems, and has

proven to be an efficient alternative to element based techniques [21, 22].

Also, a coupling between a FE and a WB model for solving interior acoustic

problems has been successfully examined [25], indicating the possibility to

combine both the flexibility of the FEM and the high computational efficiency

of the WBM in a hybrid method. The use of an unbounded WB model in

such a hybrid approach, allows to construct an efficient explicit model for

the unbounded domain Ωub exterior to the truncation Γt.
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4.2.1. Expansion of the dynamic field

The dynamic field p(r) in the unbounded region Ωub is approximated by

a solution expansion û(r):

p(r) ≃ û(r)=
nw∑
w=1

d̂wΦw(r) + ûf (r)

= Φ d̂+ ûf .

(20)

The wave function contributions d̂w are the weighting factors for each of the

a priori selected wave functions Φw(r). The set of all nw wave function

contributions d̂w is collected in the column vector d̂, while the row vector Φ

contains all nw wave functions. Additionally, ûf (r) represents a particular

solution resulting from the acoustic source term F(r) in the right hand side

of the inhomogeneous Helmholtz equation (1).

4.2.2. Wave functions for an unbounded domain

In addition to being homogeneous solutions of the Helmholtz equation,

the wave functions for the unbounded domain are chosen to implicitly satisfy

the Sommerfeld radiation condition (3). This removes the need to explicitly

impose a radiation condition, similar as in the BEM. Herrera [28] shows that

the following expansion p̂e, exterior to a circular truncation curve with radius

R, yields a convergent set for the pressure field pe, defined by a Neumann

condition on the infinitely long cylinder with radius R:

pe(r, θ) ≃ p̂e(r, θ) = pe,c0H
(2)
0 (kr)

+
nu∑
n=1

(
pe,cnH

(2)
n (kr)cos(nθ) + pe,snH

(2)
n (kr)sin(nθ)

)
,

(21)
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where the contributions pe,c0, pe,cn and pe,sn are determined by the velocity

boundary condition. From this expansion, the following wave function set

for unbounded domains is derived [29]:

Φw(r (r, θ)) =


Φwc(r, θ) = H

(2)
w (kr) cos(wθ)

Φws(r, θ) = H
(2)
w (kr) sin(wθ)

. (22)

For unbounded problems a commonly used excitation for scattering prob-

lems is a plane wave source. For this source, the particular term in solution

expansion (20) yields:

ûf (x, y) = Qpwe
jk
(
d(rq)

)
(23)

with Qpw the plane wave amplitude, rq =
√
(x− xq)2 + (y − yq)2 and d(rq)

the propagation vector.

4.3. Hybrid coupling conditions

The WB system of equation is constructed by enforcing the boundary

and continuity conditions through the weighted residual formulation. In this

case, where the WBM is used in a hybrid FE-WB model, the only conditions

that are imposed on the WB model are the continuity conditions with the

FE model on Γt as the wave functions inherently fulfill the Helmholtz (1)

and the Sommerfeld radiation condition (3). If the residual presenting this

condition is defined as RWB,FE
I , the WB weighted residual formulation can

be written as: ∫
Γt

∇p̃ · nRWB,FE
I dΓt = 0. (24)

A direct pressure and velocity coupling is used, imposing pressure continuity
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Figure 3: Illustration of the hybrid coupling between the FE and WB models

on the WB model, and velocity continuity on the FEM part, as illustrated

in figure 3. The residuals for this coupling can be written as:

RWB,FE
I,p = p̂− u, (25)

RFE,WB
I,v = (∇u−∇p̂) · n. (26)

the normal n is the outwards pointing normal on Γt. Van Hal [30] and

Pluymers [31] discuss alternative coupling conditions for hybrid models. Both

direct and indirect couplings, based on additional frame variables, are con-

sidered. In this study, the direct pressure-velocity coupling is used, due to

its similarity with the DtN formulation: both the unbounded WBM and the

DtN take pressure data on Γt as input, whereas velocity data is coupled back

to the FE model.

Using those residuals, the WB weighted residual formulation (24) can

be completed. Evaluating the WB residual formulation using the pressure

continuity on the WB model yields:∫
Γt

∇p̃ · n(p̂− u)dΓt = 0. (27)
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The test functions p̃ are expanded using the same wave functions as for the

pressure expansion, following a Galerkin approach:

p̃ =
nw∑
w=1

p̃wΦw = Φp̃w. (28)

Equation (27) imposes the only conditions present on the WB model, and

consequently constitutes the WB system matrix.

The back-coupling to the FE model is achieved by imposing velocity con-

tinuity between the WBM and FEM on the truncation, using the residual

(26). This yields the following term in the FE part of the weighted residual

formulation: ∫
Γt

v(∇p̂) · ndΓt, (29)

From this expression, the formulation of the boundary operator T , see equa-

tion (6) can be determined as:

T = ∇p̂ · n. (30)

4.4. Resulting hybrid system

Substituting the operator T associated with the velocity continuity con-

dition in (7) and introducing the WB field variable expansion (22) completes

the system of equations for the FE part of the problem. Complemented with

the WB model (24), a coupled system in the FE (d) and WB (pw) unknowns

is obtained: AFE CFE−WB

CWB−FE AWB

 d

pw

 =

 fFE + f̂FE

f̂WB

 . (31)

The matrices AFE and fFE result from integrating the residuals on the

Helmholtz equation and the boundary conditions, respectively, and are iden-
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tical to the matrices used in the DtN FE model, given by equations (16) and

(17).

The matrix CFE−WB results from integrating T , representing the velocity

continuity applied on the FE model:

CFE−WB =

∫
Γt

vT (u)dΓt =

∫
Γt

v∇p̂ · ndΓt. (32)

CWB−FE and AWB are obtained from evaluating the pressure continuity on

the WB model:

CWB−FE = −
∫
Γt

∇p̃ · nudΓt, (33)

AWB =

∫
Γt

∇p̃ · np̂dΓt. (34)

The loading vectors f̂FE and f̂WB result from the possible presence of a

particular solution f̂ in the WB pressure expansion (20).

On the truncation circle Γt, all WB DOFs and FE DOFs on Γt are coupled

together. This results in coupling matrices CFE−WB and CWB−FE which

may be either dense or sparsely populated without a banded structure. As a

result, the rows and columns for the entire system of equations (31) cannot

be reordered such that the sparsity of the dynamic stiffness matrix AFE can

be exploited when solving the full coupled model at once. To make optimal

use of the properties of the submatrices in equation (31) Van Hal [25] and

Pluymers [31] propose a three-step solution sequence for a general hybrid

FE-WB numerical model of form (31):

1. In a first step, the FE DOFs are eliminated from the system of equations

(31) by using the top equation to write the FEM DOFs d as a function

of the wave function contributions pw:

d = A−1
FE(fFE + f̂FE −CFE−WBpw), (35)
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where •−1 represents the inverse of a square matrix. Introduction of

(35) in the bottom equation of (31) and regrouping of the terms results

in:

(AWB −CWB−FEH)pw = f̂WB −CWB−FEh. (36)

The (nfe×nw) matrixH and (nfe×1) vector h are obtained by solution

of two sparse systems of algebraic equations:

AFEH = CFE−WB, AFEh = fFE + f̂FE. (37)

Since the coefficient matrix of both systems of equations in (37) is the

uncoupled structural FE dynamic stiffness matrix, highly optimised

sparse solution algorithms can be employed to obtain the matrices H

and h. This is done by solving the system once with multiple right-hand

sides.

2. Next, the remaining dense system of equations (36) is solved using a

dense solution algorithm to obtain the wave function contributions pw.

3. Finally, the FEM DOFs d are retrieved through a simple matrix mul-

tiplication:

d = −Hpw + h. (38)

5. System properties comparison

This section compares the properties of the DtN map with those of the

hybrid FE-WBM presented in the previous section.
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5.1. Accuracy

Both the DtN map and the explicit WB model use the same analytical

formulation for the dynamic field outside of Γt: a product of harmonics on the

circumference of the truncation and Hankel functions, describing the radial

decay of the outgoing waves. When using the same truncation order in the

series, both methods are expected to deliver equally accurate results.

5.2. System construction

The FE matrices AFE and fFE are common to both approaches, as

indicated before. They are frequency-independent and relatively easy to

construct, requiring only integration of polynomial functions. Those integrals

are evaluated numerically using a standard Gauss quadrature rule [32]. In

this way, an integral of the form∫
Ω

g
(
v,x

)
f
(
u,x

)
dx ≈

ngp∑
i=1

wig(v, xi)f(u, xi) (39)

with f(v, x) and g(u, x) linear operators, can be evaluated with a computa-

tional cost tint proportional to the size of the involved vectors u and v and

the number of integration points ngp:

tint ∼ size(u)ngpsize(v). (40)

In this relation the computational time is assumed to scale linearly with the

number of basic operations (floating point operations or FLOPs) required to

complete the computation.

In the case of FE or WB system matrix construction, the form (39) can

be specified as:
ngp∑
i=1

wig(v, xi)f(u, xi) =

ngp∑
i=1

wig(Np,i(xi)v)f(Np,i(xi)u), (41)
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with u and v the vectors gathering the DOFs and test function weightings,

respectively; Np,i represent some general shape functions relating the DOFs

to the dynamic field.

DtN FEM. In the case of the DtN formulation, all additional effort is

spent constructing and integrating the DtN operator (9), to obtain the DtN

contribution matrixADtN (18). This involves the evaluation of nmax integrals

over Γt to obtain the Neumann data on Γt (see eq. (9)). Subsequently, this

data is integrated in the weighted residual formulation, requiring another

integration over Γt. The total time for this operation can be approximated

as:

tDtN ∼ nmaxO(n2
gpnfe,Γt) +O(ngpn

2
fe,Γt

) +O(nfe,Γtngp), (42)

where the first term pertains to the construction of the DtN operator through

evaluation of equation (9), with size(v) = size(θ) = ngp and size(u) =

nfe,Γt ; this integration is repeated nmax times. The second term relates to

the integration of this DtN operator in the FE weak form. Additional time is

spent evaluating the trigonometric and Hankel functions, proportional to the

number of evaluations. nfe,Γt refers to the number of FE DOFs on Γt: those

DOFs are directly involved with the evaluation of the dynamic field on Γt

and consequently with the construction and integration of the DtN map. The

number of integration points ngp is proportional to nfe,Γt if a fixed number of

integration points per element is chosen, as is usual in FE implementations.

The total cost of the construction of ADtN is then approximated as:

tDtN ∼ O(nmaxn
3
fe,Γt

). (43)
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hybrid FE-WBM. Construction of the coupled FE-WB model involves the

evaluation of three additional integrals in the weighted residual formulation,

yielding the matrices CFE−WB, CWB−FE and AWB. In this case, however,

the construction of the integrands requires only the evaluation of the dynamic

field and the first-order derivative from both the FE and WB formulations.

No nested integration is required in this case. The cost for the evaluation of

those additional integrals is:

tFE−WB ∼ O(n2
wngp) + 2O(nwngpnfe,Γt) +O(nwngp)

≈ O(n2
maxnfe,Γt) +O(nmaxn

2
fe,Γt

), (44)

with nw ∼ nmax.

From this short analysis, it is clear that the evaluation of the DtN matrix

ADtN is more expensive than the combined coupling/WB system matrices

needed in the hybrid FE-WB. This cost is mainly attributed to the expensive

evaluation of the DtN operator itself, requiring a summation of integrals over

Γt. The cost of the DtN formulation rises more quickly as the size of the

FE system, and consequently also the number of FE dofs on Γt, increases.

Moreover, nfe,Γt will generally be much larger than nmax, as illustrated in

the numerical verification examples.

5.3. System solving

The resulting systems (15) and (31) have substantially different proper-

ties, requiring a different approach for solving. The system resulting from the

DtN formulation constitutes both the basic FE system, which is in general

sparse and often real, and added terms from the DtN condition contained in

ADtN . Since the DtN map requires integration over the entire truncation,
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this matrix contains equations linking together all DOFs on the truncation.

Consequently, the resulting system matrix will partially lose its sparseness,

depending on the constitution of the mesh, in particular at the truncation.

Additionally, the terms introduced by the DtN condition will be complex.

The system can be solved using an optimised FE solver, but the loss in spar-

sity and the added complex terms may deteriorate the efficiency of these

algorithms.

The coupled FE-WB system is best solved according to the procedure

detailed above. This involves the solution of the original FE system matrix

AFE with multiple (complex) right-hand sides to obtain H and h. Since

this matrix retains its real and sparse nature, it is very suitable for efficient

sparse solvers, in contrast to the system obtained using the DtN method.

Additionally, a small but complex and dense system needs to be solved to

obtain the WB DOFs. This system is usually much smaller than the FE

system (nw << nfe), resulting in a small additional computational effort.

6. Numerical examples

This section discusses two two-dimensional numerical examples. In the

first example, the DtN map (modified formulation) and the explicit WB

model are evaluated for the case of a rigid cylinder scattering an incident

plane wave. For this problem, an analytical reference solution is available. A

second example considers the scattering of a star-shaped non-convex polygon.

In both cases, the aim is to investigate the relative performance of both

methods in their ability as an ABC, allowing an FE model to solve an un-

bounded problem. To this end, both methods are implemented based on
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a common FE framework. Matlab R2009a is used as software platform

for constructing the system matrices; the system solution (direct solution

for the DtN and three-step procedure for the FE-WB) is computed using

MD.Nastran R3. All calculations are performed on an intel Xeon 5540 based

system with 24 GB memory running a linux operating system.

6.1. Scattering of a rigid cylinder

1m

1.25m

Wb

Gt

Gb Fpw

Figure 4: Geometry and source definition

The scattering of a plane wave, incident along the negative X-axis on a

rigid circle (cylinder) with radius 1m is considered. The acoustic fluid is air

(c = 340 m/s, ρ0 = 1.225 kg/m3). This simple geometry is chosen due to the

availability of a reference solution for this problem, which can be written in

the form of a series expansion [33]:

pa(r, θ) = −2
∑
n

′
jn

J ′
n(ka)

H
(2)′
n (ka)

H(2)
n (kr) cos(nθ), (45)

with (r, θ) the polar coordinates of the observation point and Jn is the ordi-

nary Bessel function of the first kind and order n. This analytical solution
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provides a good reference for the evaluation of the accuracy of the different

approaches.

Several linear FE models are constructed for the problem, with mesh size

h varying between 50mm and 7mm. The details, including an estimation of

the mesh validity, are given in table 1. The FE model covers the bounded

region Ωb of the problem, as indicated in figure 4. As a measure of the

accuracy, the L2 norm relative error is used:

L2 norm relative error =

(∫
Ω
|uref − u|2dΩ∫
Ω
|uref |2dΩ

)1/2

. (46)

max. mesh size [mm] 50 25 12 7

# DOFs 2068 7917 30914 85476

f ∗
max : 6/λ 1130 2265 4530 7550

f ∗
max : pollution 399 633 1032 1478

Table 1: FE model information for the cylinder model. ∗ maximum frequency considering

interpolation (6 elements per wavelength) and pollution errors [34]

Figure 5 illustrates the amplitude of the scattered field at 2000Hz (ka ≈

40π), calculated using a hybrid FE-WB model. In this case, the 7mm mesh

is used with 50 orders in the unbounded model, yielding a very good error of

0.03% relative to the analytical solution over the computational domain Ωb.

To assess the efficiency of the different approaches, a convergence study is

carried out using the meshes described in table 1 and for increasing number

of orders in both the MDtN map and the unbounded WB model. The L2

norm relative error is used as a measure of the accuracy. Figure 6 shows
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Figure 5: Amplitude of the scattered field, 2000Hz (ka ≈ 40π)

the convergence results for different wave numbers from 250Hz (ka ≈ 5π) to

2000Hz (ka ≈ 40π), using the different meshes. The number of orders in the

unbounded model nmax is increased from 5 to 100, both for the MDtN and

the WB case. For a same number of orders, almost the same level of accuracy

is obtained irrespective of the method used. The difference is only due to

the application of the approximating non-reflecting boundary condition for

the discarded harmonics of the DtN map, see eq. (11). This modification

is more effective at higher frequencies as illustrated in figure 7 for the 7mm

mesh. As mentioned before, this is to be expected since both approaches are

based on the same mathematical description of the exterior field. It is clear,

however, that the WB implementation yields consistently faster calculations;
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this advantage gets more pronounced as the FE model size grows.
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(b) 1000Hz (ka ≈ 20π)
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(c) 2000Hz (ka ≈ 40π)

Figure 6: Error convergence for increasing nmax, comparison between modified DtN and

WBM

On examining more closely the relative CPU time of the different con-

tributions, listed in table 2 for the 7mm mesh, it appears that the main

computational advantage of the WBM is in the construction of the operator

T : whereas the construction and integration of the DtN map takes the ma-
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Figure 7: Error convergence for the 7mm mesh, shown for increasing nmax. Comparison

between modified DtN and WBM

jority of the time in the DtN method, the contribution of the WB model and

interface construction is far less dominant. The computational advantage of

the WBM is clear when comparing the construction time. On average the

time for WB system construction is only about 0.5% of the time needed to

construct the equivalent DtN map.

If the solving time is considered, the effectiveness of the three-step solu-

tion procedure (detailed in section 4.4) is reflected in the results: in general,

a good speedup can be obtained. This advantage is most pronounced at low

nmax, due to the rising cost of the matrix operations in the three-step pro-

cedure as the number of wave functions grows. For the example considered,

the ‘elbow’ points in the convergence (after which the accuracy is limited

by the mesh size only) are at nmax = 10, 25 and 50 for ka ≈ 5π, 20π and

40π, respectively, yielding a WB solving time 20 - 50% of the equivalent DtN

model.
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WB system DtN system rel., WB vs DtN

nmax construct. solving construct. solving construct. solving

5 0.38 0.9 87 6.1 0.44 % 15 %

10 0.46 1.1 102 6.1 0.45 % 18 %

25 0.72 1.8 147 6.1 0.49 % 30 %

50 1.27 3.1 222 6.1 0.57 % 51 %

100 2.33 5.6 374 6.1 0.62 % 92 %

Table 2: System construction and solving time [s] for the DtN and FE-WB methods;

FE-WB time relative to the respective time for the DtN method [%]. Results shown are

obtained with the 7mm mesh

1m

1.05m
Wb

Gt

Gb

Fpw

0.25m

Figure 8: Geometry and source definition

6.2. Scattering of a non-convex polygon

A second numerical example studies the scattering of an incident plane

wave on a non-convex polygon, as shown in figure 8. The polygon, with

corner points measuring 1m from the center, is enclosed in a truncation with

radius 1.05m. Rigid boundary conditions are imposed on Γb, and the fluid
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properties are taken as air at ambient conditions. The plane wave is incident

at an angle of 30 degrees, to obtain an asymmetric excitation.

This more complex geometry gives rise to interference and diffraction

patterns in the response, as can be seen in figure 9 showing the amplitude

of the dynamic field at 2000Hz. The pressure field shown is calculated with

a hybrid FE-WB model using a 7mm mesh and 40 orders in the unbounded

domain. Similarly to the previous example, a very good accuracy can be

obtained, in this case the L2 norm relative error is 0.5%. The reference for

error calculations for this case is obtained from a detailed BEM calculation,

using a mesh with element size 0.25mm.

2.928
2.662
2.396
2.130
1.863
1.597
1.331
1.065
0.799
0.532
0.266
0

Figure 9: Amplitude of the scattered field, 2000Hz (ka ≈ 40π)

Again, several FE models are constructed to analyse the convergence

characteristics of both the DtN and the hybrid FE-WB method. The model

details are given in table 3. The behaviour observed is in general similar to the

previous case: for a same value of nmax, the same level of accuracy is obtained
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max. mesh size 50 25 12 7

# DOFs 1884 7240 28368 112288

f ∗
max : 6/λ 1125 2250 4500 9000

f ∗
max : pollution 399 633 1032 1478

Table 3: FE model information for the polygon model ∗ maximum frequency considering

interpolation (6 elements per wavelength) and pollution errors [34]

with the different methods. The computational advantage of the FE-WB

method is preserved, as it is based on the more efficient construction of the

boundary operator T . In this example, the more complex geometry and the

small distance between the boundary and Γt result in short-wavelength waves,

often travelling almost tangent to Γt. It should be noted that a very good

prediction accuracy is obtained, regardless of this more complex dynamic

field.

7. Conclusions

This paper discusses the use of an explicit unbounded Wave Based (WB)

model exterior to the truncation of a FE model of an unbounded problem.

The basis functions used in this model are exact solutions of the unbounded

Neumann problem exterior to a circle. Therefore, this basis is equivalent to

the one used to derive the DtN map for such a truncation. It is shown that

this novel approach results in an equivalent accuracy as for the DtN. However,

the hybrid FE-WB method framework allows a more efficient construction of

the model. Moreover, the structure of the resulting hybrid system allows for a

three-step solution where the original FE system is solved with multiple right-
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(b) 1000Hz (ka ≈ 20π)
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(c) 2000Hz (ka ≈ 40π)

Figure 10: Error convergence for increasing nmax, comparison between modified DtN and

WBM

hand sides, but the sparse and real matrix structure is retained, allowing the

use of efficient FE solution routines. The FE-WB method is validated in two

numerical examples, where it is compared to a DtN formulation, illustrating

the potential and the computational advantage of the approach.
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