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a b s t r a c t

Narrow, tubular, inward projections of the sarcolemma (‘T-tubules’) are an established feature of adult
mammalian ventricular myocytes that enables them to generate the whole-cell Ca2+ transients and
produce coordinated contraction. Loss of T-tubules can occur during ageing and under pathological
conditions, leading to altered cardiac excitation–contraction coupling. In contrast to adult ventricular
cells, atrial myocytes do not generally express an extensive T-tubule system at any stage of develop-
ment, and therefore rely on Ca2+ channels around their periphery for the induction of Ca2+ signalling
and excitation–contraction coupling. Consequently, the characteristics of systolic Ca2+ signals in adult
ventricular and atrial myocytes are temporally and spatially distinct. However, although atrial myocytes
do not have the same regularly spaced convoluted T-tubule structures as adult ventricular cells, it has
been suggested that a proportion of adult atrial cells have a more rudimentary tubule system. We exam-
ined the structure and function of these atrial tubules, and explored their impact on the initiation and
recovery of Ca2+ signalling in electrically paced myocytes. The atrial responses were compared to those
in adult ventricular cells that had intact T-tubules, or that had been chemically detubulated. We found
that tubular structures were present in a significant minority of adult atrial myocytes, and were unlike
the T-tubules in adult ventricular cells. In those cells where they were present, the atrial tubules sig-
nificantly altered the on-set, amplitude, homogeneity and recovery of Ca2+ transients. The properties of
adult atrial myocyte Ca2+ signals were different from those in adult ventricular cells, whether intact or

detubulated. Excitation–contraction coupling in detubulated adult ventricular myocytes, therefore, does
not approximate to atrial signalling, even though Ca2+ signals are initiated in the periphery of the cells in
both of these situations. Furthermore, inotropic responses to endothelin-1 were entirely dependent on
T-tubules in adult ventricular myocytes, but not in atrial cells. Our data reveal that that the T-tubules in
atrial cells impart significant functional properties, but loss of these tubular membranes does not affect

ically
Ca2+ signalling as dramat

. Introduction

The heart is triggered to contract and pump blood to the
ungs and body each time a depolarising action potential passes

rom the sinoatrial node to the conductive cells and contrac-
ile myocytes of the heart. At the cellular level, this process of
xcitation–contraction coupling is driven by an elevation of cytoso-
ic Ca2+ [1]. Depolarisation of a cardiac myocyte causes opening of

∗ Corresponding author at: Calcium Group, Laboratory of Molecular Signalling,
he Babraham Institute, Babraham, Cambridge CB22 3AT, UK. Tel.: +44 1223 496000.
∗∗ Corresponding author. Tel.: +44 1223 496000.

E-mail addresses: llewelyn.roderick@bbsrc.ac.uk (H.L. Roderick),
artin.bootman@bbsrc.ac.uk (M.D. Bootman).

143-4160/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
oi:10.1016/j.ceca.2009.10.001
as detubulation in ventricular myocytes.
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L-type voltage-operated Ca2+ channels (VOCCs) on the sarcolemma,
and a consequent influx of Ca2+ from the extracellular space. The
Ca2+ ions that enter through the L-type VOCCS diffuse across a
short inter-membrane space, the dyadic cleft, and activate clus-
ters of Ca2+ release channels (ryanodine receptors; RyRs), which
are embedded in the adjacent membrane of the sarcoplasmic retic-
ulum (SR) [2]. RyRs permit Ca2+ ions stored within the SR to enter
the cytosol, thereby substantially amplifying the initial Ca2+ influx
signal; a process known as Ca2+-induced Ca2+ release (CICR). The
Ca2+ ions released through the RyRs diffuse out of the dyadic cleft

and engage the myofilaments consequently triggering contraction.
Alteration of this precise coupling machinery causes unwarranted
Ca2+ signals with pathological potential [2,3].

The mammalian heart is comprised of two atrial and two ven-
tricular chambers. The myocytes within these chambers share

http://www.sciencedirect.com/science/journal/01434160
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any structural and functional features, but they are not exactly
like [4]. A key feature of adult ventricular myocytes is their

transverse-tubule’ system (T-tubules); narrow (∼200 nm) inward
rojections of the sarcolemma [5,6]. In adult mammalian ven-
ricular myocytes, T-tubules are present every ∼1.8 �m along the
ongitudinal length of the cells (at the Z-disks), and can have com-
lex branched morphologies, with both transverse and longitudinal
egments of varying lengths [7]. Since they are physically and elec-
rically contiguous with the sarcolemma around the circumference
f myocytes, T-tubules convey the action potential deep into the
ells. L-type VOCCs are expressed largely on T-tubule membranes,
o the trigger Ca2+ signal that activates CICR occurs in the proxim-
ty of T-tubule membranes [8]. The regular T-tubule spacing within
entricular myocytes allows CICR to be activated simultaneously
hroughout the cells. The resultant homogenous global Ca2+ tran-
ient is necessary to ensure a coordinated cellular contraction. From
his description, it is evident that T-tubules are an essential com-
onent of adult ventricular myocytes. In addition to L-type VOCCs,
umerous other ion channels (e.g. for K+, Na+) and signalling pro-
eins are expressed on T-tubule membranes [5].

Many laboratories have reported that adult atrial myocytes lack
he well-developed T-tubule invaginations found in ventricular

yocytes [5,9], and therefore express L-type VOCCs solely on the
arcolemma around the circumference of the cells [4]. This means
hat action potentials can only trigger Ca2+ entry and CICR at the
uter edge of an atrial myocyte. The distribution of RyRs in adult
trial cells appears to be similar to that in ventricular myocytes
10–12]. However, there is an important functional difference.
iven that the L-type VOCCs are expressed in the sarcolemma,

ather than on T-tubules, only a small fraction of the RyRs (the ‘junc-
ional RyRs’), around the circumference of the cells, is positioned to
espond to the opening of the VOCCs [12–14]. Ca2+ signals in atrial
yocytes therefore originate at L-type VOCCs around the periph-

ry of the cells, and are locally amplified by the junctional RyRs in
he subsarcolemmal space.

In many species, including rat [11,15], guinea pig [16,17], cat
12,18] and human [19], it has been demonstrated that the subsar-
olemmal Ca2+ signal does not propagate fully, or at all, into the
entre of atrial cells. Therefore, at the peak of the response fol-
owing depolarisation, substantial Ca2+ gradients can be observed

ithin atrial myocytes; the subsarcolemmal Ca2+ concentration can
e hugely elevated with no effect deeper inside the cell. This is
urprising given that clusters of RyRs are regularly spaced ∼2 �m
part within a 3-dimensional lattice that runs throughout every
trial cell [10,11]. It could be expected that RyRs would convey the
ubsarcolemmal Ca2+ signal deep into a myocyte via CICR. How-
ver, without the addition of a positive inotropic stimulus, the
on-junctional RyRs in the centre of atrial myocytes can be largely
nresponsive [20]. The significance of this spatially heterogeneous
esponse is that under basal conditions, the Ca2+ signal does not
each the interior of the cell where the myofibrils are located.
onsequently, the contraction of the cells is slight compared to
entricular myocytes [13].

Although there is wide agreement that adult atrial myocytes
o not possess the extensive T-tubule network found in their ven-
ricular counterparts, it has been proposed that they express a

ore rudimentary transverse-axial tubular network [21–25]. It has
een presumed that this tubular system would influence atrial Ca2+

ignalling and excitation–contraction coupling [25], but there is
imited functional data in support of this notion. In this study, we
haracterised the T-tubules within adult rat ventricular and atrial

yocytes, and examined the effect of their presence on the charac-

eristics of Ca2+ signalling and responses to cardioactive hormones.
or comparison, we examined Ca2+ signalling in control myocytes
ith an intact tubular system and cells that had been detubulated
sing an established technique involving osmotic swelling [26,27].
m 47 (2010) 210–223 211

2. Materials and methods

2.1. Reagents

Collagenase type II was obtained from Worthington Biochem-
ical Corporation. Endothelin-1 was purchased from Calbiochem.
Isoproterenol and salts for extracellular solutions were purchased
from Sigma–Aldrich or BDH. Ca2+-sensitive indicators were pur-
chased from Invitrogen. Wistar rats were obtained from Harlan
UK.

2.2. Myocyte isolation and detubulation

Adult atrial and ventricular myocytes were isolated as described
previously [11]. In brief, male Wistar rats weighing approximately
250 g were anaesthetised in a CO2 chamber, and then killed by cer-
vical dislocation. The heart was then dissected from the thorax
and positioned on a modified Langendorff apparatus and per-
fused in a retrograde manner with HEPES buffer solution (NaCl
135 mM, KCl 5 mM, CaCl2 1 mM, HEPES 10 mM, glucose 10 mM
and MgCl2 0.4 mM, pH 7.35) at 37 ◦C for 4 min. This was followed
by perfusion with a low Ca2+ buffer solution (NaCl 120 mM, KCl
5 mM, CaCl2 80 �M, HEPES 10 mM, taurine 20 mM, glucose 20 mM,
MgSO4 5 mM, NTA 5.5 mM and sodium pyruvate 5 mM, pH 6.96)
for 3.5 min. Subsequent to the low Ca2+ solution, an enzyme buffer
solution (NaCl 120 mM, KCl 5 mM, CaCl2 35 �M, HEPES 10 mM,
taurine 20 mM, glucose 20 mM, MgSO4 5 mM and sodium pyru-
vate 5 mM, pH 7.4) was recirculated through the apparatus for
10 min. This solution also contained 319 IU/ml type II collage-
nase. Following dissociation of the myocytes, they were allowed
to settle, and Ca2+ was reintroduced in an incremental manner
to prevent intracellular Ca2+ overload and hypercontracture. The
myocytes were kept at room temperature until ready for use. Only
myocytes with no signs of deterioration and that had no sponta-
neous activity at rest were used for experiments. The myocytes
were settled on poly-l-lysine-coated coverslips for 30 min before
loading with a fluorescent Ca2+ indicator. All experiments were
performed in accordance with the guidelines from the code of prac-
tice for humane killing under Schedule 1 of the Animals (Scientific
Procedures) Act 1986.

Detubulation of myocytes was induced by osmotic swelling and
retraction as described previously [27]. Briefly, cells were bathed
with 1.5 M formamide for 20 min at room temperature. Cells were
then washed with formamide free solution (NaCl 113 mM, KCl
5 mM, MgSO4 1 mM, Na2HPO4 1 mM, sodium acetate 20 mM, glu-
cose 10 mM, HEPES 10 mM, CaCl2 0.5 mM pH 7.4) for another
15–20 min prior to loading with a fluorescent Ca2+ indicator. In
some experiments, untreated and detubulated cells were labelled
with 10 �M di-8-aminoaphthylethenylpyridinium (Di-8-ANNEPS)
for 5–10 min, washed in control solution for 10 min and imaged
using a Olympus FV1000 confocal microscope (488 nm excitation
and detection at >514 nm). As described below, formamide-treated
myocytes were viable, could be electrically paced and loaded with
fluorescent Ca2+ indicators to the same degree as control cells. From
these morphological and functional criteria, treatment of myocytes
with formamide does not appear to have deleterious effects.

2.3. Immunofluorescence

Cardiomyocytes were allowed to settle on poly-l-lysine-coated
coverslips and were subsequently fixed with 2% paraformaldehyde

for 15 min at room temperature. Immunofluorescence and confocal
was performed as described elsewhere [28]. Briefly, myocytes
were permeabilised with PBS containing 0.2% Triton X-100 and
were subsequently incubated with blocking buffer (PBS containing
0.1% Triton X-100, 5% goat serum and 10% BSA). Cells were then
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tained with antibodies against L-type Ca2+ channels (Calbiochem,
at. no. 681507; 1:20 dilution in antibody buffer-PBS containing
.05% Triton X-100, 2% goat serum and 10% BSA), Ryanodine
eceptors (Calbiochem, cat. no. NR07; 1:20 dilution in antibody
uffer) and Endothelin receptor A subtype (Alomone Labs. cat. no.
ER-001; 1:20 dilution in antibody buffer). Appropriate secondary
ntibodies were used that were either goat anti-mouse or goat
nti-rabbit conjugated with Alexa Fluor 488 or Alexa Fluor 568
1:500 dilution of both). Cells were mounted in Vectashield con-
aining DAPI on glass slides. Single slice and/or images stacks were
btained using an Olympus FV1000 confocal microscope. Raw
mage data were deconvolved using AutoDeblur software (Media
ybernetics). Co-localisation analysis (dependency of pixels to
ach other in dual-channel images) was performed by determining
earson’s coefficient using JACoP tool within ImageJ software [29].
earson’s coefficient values for double-stained cells were obtained
or three different regions on each cell and pooled together (+1
mplies complete positive correlation, 0 for no correlation and −1
or negative correlation).

.4. Confocal and photometry imaging

In photometry experiments, cells were loaded with indo-1 by
ncubation with the acetoxymethyl ester form of the indicator
3 �M for 30 min at room temperature). The cells were then
ashed in fresh buffer and left for a further 30 min before use,

o allow complete de-esterification. For laser scanning confocal
icroscopy experiments, cells were loaded with fluo-4 using a

imilar procedure to that for indo-1, except that the myocytes
ere incubated with 4 �M fluo-4 acetoxymethyl ester for 30 min

t room temperature.
For the photometry recordings, simultaneous measurements of

a2+ and contraction were made using a Photon Technology Inter-
ational RatioMaster system with two photomultiplier detectors
for indo-1 fluorescence) and an edge detection system (for con-
raction) fitted on inverted microscope (Olympus IX71). Coverslips
earing indo-1-loaded myocytes were placed on the stage of the
icroscope and superfused with HEPES buffer solution containing
mM CaCl2. The cells were stimulated with a potential difference
f 100 V at 0.33 Hz via a pair of platinum field electrodes placed
quidistant from the cell. The pacing frequency was 0.33 Hz. Indo-1
as excited using 360 nm light, and the fluorescence emission at

05 and 490 nm was sampled using two independent photomul-
iplier detectors every 10 ms. The background fluorescence at 405
nd 490 nm emission was determined from fields of view without
ells immediately after each measurement, and this was subse-
uently subtracted from the respective experimental records by the
oftware. The cells were paced continually throughout an experi-
ent. To reduce bleaching of the indicator, indo-1 fluorescence was

ampled discontinuously (30 s illumination and recording period
ollowed by 30 s without illumination). The fluorescence emission
atio (405 nm/490 nm) increases as Ca2+ is elevated. Contraction
cell shortening) was simultaneously measured with a video edge
etector and recorded using the PTI software mentioned above.
he fractional shortening was calculated as the difference between
he maximum in cell length at the end of the diastolic phase and
he minimum cell length during each pacing cycle. The amplitude
f contraction was averaged for each 30 s recording interval.

For the line-scanning confocal recordings, coverslips bearing
uo-4-loaded myocytes were placed on the stage of an inverted
icroscope (Olympus FV1000) and superfused with HEPES buffer
olution containing 1 mM CaCl2. Myocytes were scanned at 580 Hz
long a line perpendicular to their long axis. The line was positioned
o avoid the nuclear area. Each recording lasted for approximately
our contraction cycles. Data was analysed off-line with Image J
NIH, US).
m 47 (2010) 210–223

All experiments were performed at room temperature
(20–22 ◦C), since cell viability and dye loading is prolonged at this
temperature. Prior to starting experiments, all cells were paced for
a brief period to establish a steady-state Ca2+ response. Generally,
it took between 10 and 20 depolarisations to reach equilibrium.

2.5. Statistical analysis

Results are expressed as mean ± standard error. Statistical sig-
nificance was determined using Student’s t-tests. The ‘p’ value is
indicated for results that were statistically significant (i.e. where
p < 0.05). The number of cells (‘n’) used in each experiment is indi-
cated in the figures.

3. Results

3.1. Distribution of L-type VOCCs and RyRs in adult ventricular
and atrial myocytes

To explore the relative roles of T-tubules in adult ventricu-
lar and atrial myocyte EC-coupling, we examined the structure of
these cells before and after chemical detubulation. L-type VOCCs
and RyRs are the principal Ca2+ channels underlying EC-coupling.
Their relative distributions in adult ventricular and atrial myocytes
are illustrated in Fig. 1. Type 2 RyRs exhibited a regular pattern of
striations perpendicular to the long axis of both cell types. The dis-
tribution of RyRs was similar in atrial and ventricular myocytes,
apart from an obvious extra component of RyR immunostaining
around the periphery of the atrial cells that was not evident for
ventricular cells. This peripheral population of junctional RyRs
sits closest to the L-type VOCCs in the atrial sarcolemma, and is
responsible for the initial Ca2+ responses observed during atrial
EC-coupling [11,30].

The distributions of L-type VOCCs in atrial and ventricular
myocytes were distinctive (Fig. 1Aii and Cii). Ventricular myocytes
displayed a striated pattern of L-type VOCs that could be entirely
superimposed on that of the RyR distribution (Fig. 1Aiii), and co-
localisation analysis suggested a high degree of spatial overlap
(Fig. 1E). The spatial correlation between L-type VOCCs and RyRs in
ventricular myocytes is also evident from the immunofluorescence
intensity profiles shown in Fig. 1Aiv. These data are consistent with
the well-known distribution of RyRs and L-type VOCCs in ventric-
ular myocytes, which have T-tubules regularly spaced along their
length [31].

In contrast, for atrial myocytes, the L-type VOCC immunostain-
ing was significant around their periphery, with only small patches
of staining within the centre of the cells. Co-localisation analysis
concurred with the notion of limited RyR and L-type VOCC over-
lap (Fig. 1E). The lack of striated L-type VOCC staining in atrial
myocytes is consistent with previous reports which have concluded
that these cells do not possess an extensive T-tubule system [4].
However, although there was no striated pattern of L-type VOCC
distribution in atrial myocytes, in a minority of cells there were
irregular strands of L-type VOCC immunostaining consistent with
the notion of a tubule. One such example is depicted by the arrow
in Fig. 1Cii. The intensity profile derived from a line running across
this region indicates the substantial density of immunostaining
within this strand, and also the fact that it was correlated with a
RyR striation (Fig. 1Civ).

Orchard and colleagues have established a method for detubu-
lating myocytes using brief application of 1.5 M formamide solution

to cause a rapid osmotic shock [26,27]. Formamide treatment did
not alter the distributions of type 2 RyRs or L-type VOCCs in atrial
myocytes (Fig. 1Di–iii), nor the striated appearance of RyR or L-
type VOCC immunostaining in ventricular myocytes (Fig. 1Bi–iii).
Co-localisation analysis revealed that the detubulation process did
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Fig. 1. Localisation of RyRs and L-type VOCCs in ventricular and atrial myocytes. The images in panels A–D depict single ventricular (A and B) or atrial (C and D) myocytes
i tubula
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mmunostained for type 2 RyRs or L-type VOCCs, either with or without chemical de
y measuring the intensity of fluorescent antibody labelling across the cellular reg
epresent 10 �m. Panel E shows a quantitative measure of RyR/L-type VOCC co-loca
ach condition, sampled from at least three independent preparations. NS indicates

ot significantly affect the spatial overlap of RyRs and L-type VOCCs
n either ventricular or atrial myocytes (Fig. 1E).

.2. Ventricular and atrial adult myocytes possess a T-tubule
ystem

To more closely examine the ventricular T-tubule system, and
ny putative tubular structures within atrial myocytes, cells were
tained with the lipophilic fluorescent indicator Di-8-ANNEPS,
hich specifically intercalates within the plasma membrane.
ypical examples of Di-8-ANNEPS-stained ventricular and atrial
yocytes are shown in Fig. 2. Regular transverse striations were

bserved in ventricular myocytes, as was depicted for RyRs in
ig. 1Ai–ii. The spacing of the Di-8-ANNEPS striations (∼1.8–2 �m)
atched that observed for RyR and L-type VOCC immunostain-
tion. The scale bars represent 10 �m. The intensity profiles (Aiv–Div) were obtained
epicted by the white lines in the overlay images. The white bars in the cell images
n in control and detubulated myocytes. The data are representative of >50 cells for
ignificant (p > 0.05; Student’s t-test).

ing (Fig. 1); consistent with those Ca2+ channels being localised
adjacent to the T-tubule membranes. Treatment of cells with for-
mamide before Di-8-ANNEPS application dramatically reduced the
appearance of internal striations (Fig. 2B). The sarcolemma was
intact, with short membrane protrusions emanating from it, but
there was a marked reduction of the regular striated staining
(Fig. 2Bii). The internal Di-8-ANNEPS labelling within control and
detubulated ventricular myocytes is shown in a more quantita-
tive form in Fig. 2Aiii and Biii. The graphs depict the intensity of
Di-8-ANNEPS staining assessed along a line running the longitudi-

nal length of the cells. The intensity peaks indicate the presence
of T-tubule membranes. Comparison of the Di-8-ANNEPS inten-
sity profiles in control ventricular myocytes (Fig. 2Aiii) and that
obtained after formamide treatment (Fig. 2Biii) clearly shows the
dramatic loss of T-tubules.
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Fig. 2. Membrane structures in ventricular and atrial myocytes. The images depict whole living cells (Ai–Di), or enlarged portions of cells (Aii–Dii), labelled with the membrane
indicator Di-8-ANNEPS. The cell in A was a control living cell solely maintained in physiological buffer conditions before, during and after Di-8-ANNEPS labelling. Whereas,
the cell in B was chemically detubulated prior to incubation with Di-8-ANNEPS. Neither of the atrial myocytes depicted in C and D were exposed to formamide. Rather, they
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how the extremes of intracellular membrane labelling recorded in this study. The p
ongitudinal axis of the myocytes, as depicted by the white lines on the images in t
rom at least three independent preparations. Panel E shows the relationship betw
depicts the relationship between cell diameter and the pattern of Ca2+ response (

Whereas the T-tubule distribution in ventricular myocytes was
ighly consistent from cell to cell, the pattern of Di-8-ANNEPS
taining in atrial myocytes was more variable. Fig. 2C and D
epict two representative atrial myocytes that show the extremes
f Di-8-ANNEPS labelling observed in this study. In one cell,

here was a distinct paucity of Di-8-ANNEPS staining, with only

few sporadic structures with variable shapes and diameters
Fig. 2C). The Di-8-ANNEPS intensity profile along the length of
his atrial myocyte resembled that of formamide-treated ventricu-
ar myocytes (c.f. Fig. 2Biii and Ciii). This was the most commonly
(Aiii–Diii) show profiles of Di-8-ANNEPS fluorescence intensity sampled along the
t-hand panels. The data are representative of >15 cells for each condition, sampled
rial myocyte diameter and the presence or absence of tubules (n = 181 cells). Panel
‘W’-shaped) observed in atrial myocytes (n = 42 cells).

observed pattern of Di-8-ANNEPS labelling in atrial myocytes
(82%; n = 17). In a minority of atrial myocytes, such as the one
depicted in Fig. 2Di, there was a substantial membranous sys-
tem, which largely appeared to occupy the centre of the cell but
was also observed in close proximity to the sarcolemma (Fig. 2Di

and ii). These tubules had an irregular distribution, with short
transverse branches and substantial longitudinal elements. The
intensity profile of Di-8-ANNEPS staining shown in Fig. 2Diii illus-
trates the random distribution of tubular elements in this atrial
myocyte.
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It has been previously suggested that the presence of T-tubules
ithin atrial myocytes correlates with the diameter of the cells

25]. In the present study, we also observed a statistically significant
ifference in the width of atrial cells that possessed internal tubu-

ar membranes (Fig. 2E). The mean width of cells without tubules
as 13.7 ± 0.4 �m (n = 88), whereas cells with tubules had an aver-

ge width of 16.6 ± 0.4 �m (n = 93; p < 0.001). All cells with a width
reater than 20 �m possessed tubules, consistent with the notion
hat larger myocytes rely on tubules to coordinate Ca2+ release from
he SR within their central regions.

.3. Spatiotemporal properties of Ca2+ transients in ventricular
nd atrial myocytes

The data presented in Fig. 2A illustrate the well-known T-tubule
ystem within adult ventricular myocytes [26]. The presence of the
ubules allows the action potential to activate L-type VOCCs, and
heir juxtaposed RyRs, throughout a ventricular cell leading to a
omogenous global Ca2+ increase. An example of such a homoge-
ous Ca2+ rise, recorded using confocal line-scanning, is depicted
n Fig. 3A. It is evident that electrical depolarisation caused a rapid
a2+ increase that occurred along the whole length of the scanned

ine. The kinetics of the Ca2+ rise within different regions of the
ell is shown quantitatively by the traces in Fig. 3A. There was
o appreciable delay in any part of the myocyte. In contrast, with

ig. 3. Ca2+ transients in ventricular and atrial myocytes with or without T-tubules. Pane
a2+ transients in: (A) control ventricular myocyte; (B) detubulated ventricular myocy

nternal initiation site. The traces were obtained by sampling fluo-4 intensity along the li
epresentative of >10 cells for each condition, sampled from at least three independent p
r detubulated (F) ventricular myocytes. The data are representative of >10 cells for each
m 47 (2010) 210–223 215

cells that had been detubulated, the pattern of electrically evoked
Ca2+ response was highly variable. No ventricular myocytes (n = 35)
displayed homogenous Ca2+ transients following the detubulation
protocol. Rather, they displayed Ca2+ waves with variable points of
origin. In the majority of cases (n = 16/26), the detubulated ventric-
ular myocytes showed ‘U’-shaped Ca2+ responses, where two Ca2+

waves initiated at the edges of a cell and then propagated inwards.
An example of such a ‘U’-shaped Ca2+ transient in a detubulated
ventricular myocyte is depicted in Fig. 3B. It is evident from the
line-scan image and the corresponding traces that the Ca2+ signal
was spatially and temporally heterogeneous. The central portion
of the cell took >100 ms to respond. Furthermore, the amplitude of
the Ca2+ transient and its rate of rise were substantially reduced fol-
lowing detubulation. In other detubulated ventricular cells, a single
Ca2+ wave was observed, which initiated at one edge of the cell and
propagated all, or part way, across the cell (Fig. 4B). Alternatively,
the Ca2+ signal in detubulated cells had multiple initiation sites,
often with continual stochastic Ca2+ spark activity (see below).

In contrast to adult ventricular myocytes, the majority of atrial
cells (85%; n = 40) displayed a ‘U’-shaped Ca2+ transient under con-

trol conditions (Fig. 3C). The Ca2+ signal initiated at the peripheral
edges of the cell, and subsequently propagated inwards with a
declining amplitude and rate of rise. Such atrial responses were
similar in appearance to those observed in some detubulated
ventricular myocytes, except that the atrial Ca2+ signal was typi-

ls A–D depict the temporal and spatial properties of single depolarisation-evoked
te; (C) atrial myocyte with a ‘U’-shaped Ca2+ signal; (D) atrial myocyte with an
ne-scan images, as depicted by the correspondingly coloured arrows. The data are
reparations. Panels E and F illustrate repetitive Ca2+ transients in single control (E)
condition, sampled from at least three independent preparations.
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Fig. 4. Spatial and temporal characteristics of Ca2+ transients in ventricular and atrial myocytes. The traces in panels A–D illustrate typical systolic Ca2+ rise in the cell
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ypes indicated. The data were obtained by averaging the signal across the entire
ono-exponential fit for the recovery of the Ca2+ transient. Stimulation was applied

r recovery of systolic Ca2+ transients in the cell types indicated. The data were deri
ean ± SEM (n = 16 for each condition).

ally more symmetrical and had a faster on-set and recovery (cf.
ig. 3B and C). In a minority of atrial cells (15%; n = 40), the Ca2+

ignal simultaneously initiated in the periphery and also at one
r two central regions within the cell (collectively termed ‘W’-
haped Ca2+ transients). An example of an atrial cell response
ith a central initiation site is depicted in Fig. 3D. Typical for

trial myocytes with central initiation sites, the Ca2+ signal in
his cell appeared to be more spatially homogenous at its on-set.
n addition, the amplitude of the Ca2+ signal within the centre
f the cell exceeded that of the periphery. Double-labelling of
trial myocytes with Di-8-ANNEPS and fluo-4, to monitor mem-
rane structure and Ca2+ simultaneously, revealed that all atrial

ells with one or more central initiation sites possessed clearly
isible internal tubule structures (100%; n = 7; data not shown).
onsistent with the correlation between cell width and the pres-
nce of T-tubules presented earlier (Fig. 2E), we observed that
hose cells displaying ‘W’-shaped Ca2+ transients were signifi-
l dimension of the line-scan images. The dashed white lines depict the first order
times indicated by the arrowheads. The graphs in E–G depict aspects of the on-set

om global measurements of systolic Ca2+ in fluo-4-loaded cells. The data represent

cantly wider than their counterparts with ‘U’-shaped responses
(Fig. 2F).

As described above, detubulation of ventricular myocytes
decreased the amplitude and increased the rise time of systolic
Ca2+ transients. Furthermore, detubulation caused the Ca2+ sig-
nals within a paced ventricular cell to become more variable.
With control ventricular myocytes, the amplitude of Ca2+ tran-
sients was typically consistent for the duration of stimulation, once
cells had reached steady state (Fig. 3E). Furthermore, with control
cells, there was no intracellular variation in the characteristics of
the Ca2+ signal from beat-to-beat. In contrast, with detubulated
cells, the amplitude of the Ca2+ signal varied substantially between

depolarisations (Fig. 3F; 83% of cells; n = 12). Moreover, there was
intracellular heterogeneity within the Ca2+ transients. This hetero-
geneity was less evident at the periphery of the cells, where the
Ca2+ signals initiated, but often appeared as alternans within the
centre of the detubulated cells. Such variation and alternans were
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Fig. 5. Recovery of SR Ca2+ loading following depletion. Panel A depicts the experi-
mental protocol used to examine SR reloading following caffeine-induced depletion.
Panel B shows the normalised peak systolic Ca2+ level in control and detubulated
ventricular myocytes following continuation of electrical pacing. The amplitude of
the Ca2+ transients was normalised to the level seen prior to caffeine application. The
data represent mean ± SEM (n = 8 for each condition). Panel C shows the normalised
peak systolic Ca2+ level in tubulated (‘W’-shaped) and non-tubulated (‘U’-shaped)
atrial myocytes following continuation of electrical pacing. The cells were desig-
nated into these categories based on the appearance of their electrically stimulated
Ca2+ transients in line-scans obtained at steady state, prior to caffeine applica-
tion. The amplitude of the Ca2+ transients was normalised to the level seen prior
I. Smyrnias et al. / Cell

ot observed in the atrial cells (‘U’- or ‘W’-shaped) used in this
tudy.

The kinetic characteristics of the Ca2+ transients evoked in atrial
yocytes and control or detubulated ventricular cells are depicted

uantitatively in Fig. 4. The traces in Fig. 4A–D depict the average
lobal Ca2+ change in four cells that were typical of those observed
n this study. The recovery of ventricular (control or detubulated)
nd atrial (‘U’- or ‘W’-shaped) systolic Ca2+ transients could be fitted
ith a mono-exponential decay curve with an R2 ≥ 0.96 in all cases

typical fits are depicted by the dashed white lines in Fig. 4A–D),
rom which the half-time for decay was calculated.

It is evident that detubulation of ventricular myocytes had a
arked repressive effect on both the time for Ca2+ transients to

each peak and their rate of rise, such that they were ∼5-fold slower
n both respects (Fig. 4E and F). In addition, the amplitude of systolic
a2+ transients was significantly diminished in detubulated ven-
ricular myocytes compared to control cells (average F/Fo 5.2 ± 0.4
n detubulated versus 7.5 ± 0.9 in control; n = 20; p = 0.02). Although
he bulk of detubulated ventricular cells and control atrial myocytes
isplayed spatially similar ‘U’-shaped Ca2+ transients, detubula-
ion slowed the rise of ventricular Ca2+ signals so that they peaked
ignificantly more slowly than in control atrial cells. Indeed, the
inetics for the on-set of atrial cell Ca2+ responses were intermedi-
te between those of control and detubulated ventricular cells.

In those atrial myocytes that displayed central initiation sites,
he time for the Ca2+ transient to peak was actually longer than
n atrial cells with ‘U’-shaped responses (Fig. 4E). This could seem
araxodical, since the cells with central initiation sites appeared to
ave a greater degree of coordination during the on-set of their Ca2+

ransients (Fig. 3D). However, the atrial cells with central initiation
ites had Ca2+ transients that were ∼25% larger than responses in
U’-shaped atrial cells (n = 20). Furthermore, as depicted in Fig. 3D,
he Ca2+ transients in myocytes with central initiation sites typi-
ally had a delayed peak due to the development of the Ca2+ signal
ithin the centre of the cells. Therefore, the ‘W’-shaped Ca2+ tran-

ients in atrial cells gives larger systolic Ca2+ signals that initiate
ith greater homogeneity than their ‘U’-shaped counterparts, but

hey actually take longer to peak, due to the development of CICR
ithin the centre of the cells.

Detubulation significantly slowed recovery of ventricular Ca2+

ransients (Fig. 4G), even though detubulated cells had Ca2+ signals
ith lesser amplitudes. Atrial myocytes with ‘W’-shaped Ca2+ sig-
als displayed a faster rate of recovery than those with ‘U’-shaped
a2+ transients (Fig. 4G). The expression of central initiation sites

n atrial myocytes therefore gives rise to Ca2+ transients that are
arger, but decay more rapidly. However, due to Ca2+ signals in
ubulated atrial myocytes being larger, the absolute times for ‘U’-
r ‘W’-shaped Ca2+ signals to return to diastolic levels was not
ignificantly different (data not shown).

In addition to having larger Ca2+ signals that decayed more
apidly, cells with ‘W’-shaped Ca2+ transients demonstrated more
apid reloading of the SR with Ca2+. This was demonstrated using an
xperimental protocol whereby the SR was depleted of Ca2+ using
affeine application, and the subsequent increase in systolic Ca2+

as monitored following caffeine wash-out [32]. For ventricular
yocytes, this protocol demonstrated a significant reduction of the

ecovery of SR Ca2+ loading in detubulated cells [32]. An example of
he experimental paradigm used in this study is depicted in Fig. 5A.
he cells were electrically paced to steady state, after which pacing
as halted and caffeine (10 mM) was applied. Following recov-

ry of the caffeine-evoked Ca2+ transient, pacing was re-started.

o prevent excessive illumination, and therefore avoid bleaching
f fluo-4, Ca2+ signals were monitored at the specified intervals
hown. The peak systolic Ca2+ level progressively increased as the
ells were stimulated post-caffeine. Consistent with the findings
f Orchard and colleagues [32], detubulation dramatically slowed
to caffeine application. The data represent mean ± SEM (n = 8 for each condition).
*Statistical significance (p < 0.001).

the recovery of systolic Ca2+ signals in adult ventricular myocytes
(Fig. 5B). Comparison of the responses in atrial cells with ‘U’- or
‘W’-shaped Ca2+ transients revealed that the latter cells recovered
significantly more rapidly (Fig. 5C), suggesting that the presence of
the atrial T-tubule system enhances SR reloading.

It is also evident that the systolic Ca2+ transients recovered
most rapidly in control ventricular myocytes (Fig. 5B). Whereas,
the responses in atrial myocytes with ‘U’-shaped Ca2+ transients

2+
recovered the slowest (Fig. 5C). The systolic Ca transients in
detubulated ventricular myocytes and atrial cells with ‘W’-shaped
Ca2+ transients recovered over a similar time course, with ∼50–60%
recovery after ∼10 depolarisations (Fig. 5B and C).
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Fig. 6. Endothelin-1 evoked inotropy and receptor localisation. The traces in panels A and B depict typical patterns of Ca2+ response in single electrically paced ventricular
(A) or atrial (B) myocytes. Panels C–E illustrate the spatial distribution of ETA receptors in a ventricular and an atrial myocyte. The image in panel (Ci) depicts ETA receptor
distribution in a single control ventricular myocyte. The region outlined by the white square in (Ci) is expanded in panel Cii, and the intensity profiles of ETA receptor
immunostaining in the cellular regions indicated by the red and blue lines in (Ci) are shown in (Ciii). The image in panel Civ depicts ETA receptor immunostaining in an
atrial myocyte. Panels Di–iii depict a single ventricular myocytes that was co-immunostained for ETA receptors (Di) and RyRs (Dii). A superimposed image of ETA receptor
and RyR immunofluorescence is shown in (Diii). Panel Ei illustrates ETA receptor immunostaining in a detubulated ventricular myocyte. The intensity profile of ETA receptor
immunostaining in the cellular region indicated by the blue line in (Ei) is shown in (Eii). Panel F illustrates the typical immunostaining obtained when cells were treated
with the anti-ETA receptor antibody in the presence of the peptide sequence to which the antibody was raised. The white bars in the cell images represent 10 �m. The data
are representative of >10 cells for each condition, sampled from at least three independent preparations.
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The traces presented in Fig. 4A and C, from control ventricu-
ar and atrial myocytes respectively, suggest that Ca2+ transients
n ventricular cells have a greater amplitude and longer duration
han in their atrial counterparts. These observations, obtained using
onfocal line-scanning of fluo-4-loaded myocytes, were confirmed
sing ratiometric photometry recording of indo-1 fluorescence
rom individual paced cells. Ventricular myocytes displayed an
verage peak systolic indo-1 ratio of 1.29 ± 0.15 (405:490 nm ratio)
nd a full-width at half-maximal amplitude of 530 ± 63 ms (n = 16).
nder the same stimulation and recording conditions, the sys-

olic indo-1 signal in atrial myocytes was 0.84 ± 0.1 (405:490
atio; n = 16), and a full-width at half-maximal amplitude of
36 ± 14 ms.

.4. Effect of detubulation on hormonal responses

The inotropic status of cardiac myocytes is regulated by
umerous hormonal inputs. In particular, the peptide hormone
ndothelin-1 (ET-1) can promote acute changes in Ca2+ signalling
nd contractility within both ventricular and atrial myocytes. We
xplored the relationship between the tubule systems in ven-
ricular and atrial myocytes and responsiveness to ET-1. Typical

entricular and atrial cell responses to ET-1 are presented in Fig. 6A
nd B respectively (n > 30 cells of each type). Essentially, ET-1 appli-
ation stimulated a progressive positive inotropic effect, whereby
he amplitude of the systolic (and sometimes diastolic) Ca2+ levels
as elevated, and concomitantly the cells contracted to a greater

ig. 7. Effect of detubulation on the response of ventricular and atrial cells to ET-1. Pan
entricular myocytes to ET-1 application either with or without detubulation, recorded u
n systolic Ca2+ signal and contraction respectively. The data were normalised to level o
ffect of ET-1 on systolic Ca2+ transient amplitude in adult ventricular and atrial myocytes
onfocal imaging of fluo-4-loaded cells. The data represent mean ± SEM (n = 12 for each c
m 47 (2010) 210–223 219

extent. This positive inotropic effect of ET-1 was observed in all
atrial myocytes and >90% of ventricular myocytes. In some cells,
whether ventricular or atrial, the positive inotropic action of ET-1
was delayed by a brief negative inotropic phase where the ampli-
tude of the systolic Ca2+ signals (and contractility) was decreased.
But even in those cells, positive inotropy eventually superseded the
negative phase.

ETA receptors are abundantly expressed on ventricular
myocytes (Fig. 6Ci), and have a transverse striated appearance
with the same spacing as T-tubule membranes (Fig. 6Cii and iii).
Indeed, the distribution of ETA receptors had a strong overlap
with RyRs, confirming that they are present in tubular mem-
branes (Fig. 6D; Pearson’s correlation coefficient 0.45; n = 3 regions
sample from three different cells). There was no significant ETA
receptor immunostaining around the cells’ periphery (Fig. 6Ci and
ii). Detubulation did not diminish the extent of immunostaining
observed with the anti-ETA receptor antibody. However, the stri-
ated distribution of ETA receptors was marginally less regular after
detubulation (Fig. 6E). The location of the ETA receptors was still
positively correlated with that or RyRs, albeit to a lesser extent than
in control ventricular myocytes (Pearson’s correlation coefficient
0.2; n = 3 regions sample from three different cells). The specificity

of the anti-ETA receptor antibody was confirmed using a blocking
peptide (Fig. 6F). With atrial myocytes, ETA receptor immunostain-
ing was evident around the entire sarcolemma. In addition, there
was some diffuse irregular ETA receptor staining within the centre
of the cells (Fig. 6Civ).

els A and B show the effect of detubulation on the positive inotropic response of
sing photometry of indo-1-loaded cells. The graphs in (A) and (B) show the change
f response observed prior to ET-1 addition. The data in panels C and D show the
that had been chemically detubulated. The data in (C) and (D) were obtained using

ondition).
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Fig. 8. Re-synchronisation of Ca2+ signalling by �-adrenergic stimulation in detubulated ventricular myocytes. Panel A illustrates the spatial and temporal properties of
systolic Ca2+ signals in a detubulated ventricular myocyte. The same cell is depicted in panel B following 5 min of stimulation with isoproterenol (10 nM). The traces were
obtained by sampling fluo-4 intensity along the line-scan images, as depicted by the correspondingly coloured arrows. The data are representative of >10 cells, sampled from
at least three independent preparations. Stimulation was applied at the times indicated by the arrowheads. Panel C depicts averaged data (mean ± SEM; n = 10), showing
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he effect of �-adrenergic stimulation on control and detubulated ventricular my
or �2-adrenergic receptors (Di) and RyRs (Dii). A superimposed image of �2-adre
2-adrenergic receptor and RyR immunofluorescence in the cellular region indica
resented in Div. The white bars in the cell images represent 10 �m.

Detubulation of ventricular myocytes completely prevented the
notropic effects of ET-1. Application of ET-1 to detubulated cells
id not significantly change either the systolic Ca2+ transient ampli-
ude (Fig. 7A and C, photometry and confocal readings respectively;
= 12 for each condition) or contraction (Fig. 7B; n = 12). In con-

rast, the response of atrial myocytes to ET-1 was unaffected by the
etubulation protocol (Fig. 7D; n = 12).

Whereas the response to ET-1 was completely abrogated by
etubulation of ventricular myocytes, the positive inotropy trig-
ered following activation of �-adrenergic receptors was less
ffected. Fig. 8A depicts the response of a detubulated ventricular
yocyte to field stimulation. It is evident that this cell struggled

o mount a co-ordinated Ca2+ signal. Rather, there was a per-
istent stochastic activation of Ca2+ spark sites that produced a
ystolic Ca2+ transient of low amplitude that persisted for a consid-
rable time. Application of isoproterenol (10 nM) for 5 min altered
he pattern of response such that a rapid homogenous Ca2+ tran-
ient was observed upon depolarisation (Fig. 8B). Individual Ca2+

parks were no longer evident, and the Ca2+ transient recovered to
iastolic levels rapidly. Similar effects of �-adrenergic stimulation
ere seen in most ventricular myocytes irrespective of whether

hey had been detubulated or not (Fig. 8C; n = 10). Immunostain-
ng ventricular myocytes for �2-adrenergic receptors indicated that

hey were expressed both within and around the circumference
f the cells (Fig. 8D). Within the cells, the �2-adrenergic recep-
or immunostaining was observed in close spatial correlation to
yRs, suggesting that they were localised on T-tubule membranes
Fig. 8D; Pearson’s correlation coefficient 0.22 ± 0.03). There was
s. Panels Di–iii depict a single ventricular myocytes that was co-immunostained
receptor and RyR immunofluorescence is shown in (Diii). The intensity profile of
the blue line in (Diii) is shown in Div. An enlarged portion of the image in Diii is

also some �2-adrenergic receptor immunostaining distinct from
RyRs. Detubulation did not alter the distribution of �2-adrenergic
receptors relative to RyRs (n = 6 for each condition; Pearson’s cor-
relation coefficient 0.2 ± 0.01).

We have previously shown that isoproterenol acts as a positive
inotropic agent for atrial myocytes by increasing the centripetal of
Ca2+ transients in atrial myocytes. In atrial myocytes stimulated
with isoproterenol, the Ca2+ signal that originates in the subsar-
colemmal region at the on-set of EC-coupling faithfully propagates
into the centre of the cells and thereby enhances contractility
[13]. The detubulation process did not alter the response of atrial
myocytes to isoproterenol. Following isoproterenol treatment,
both control and formamide-treated atrial myocytes displayed
global Ca2+ transients where the Ca2+ signal fully propagated to
the centre of the cells (n = 6; data not shown).

4. Discussion

In the present study, we sought to examine the functional
roles of T-tubules in rat atrial and ventricular myocytes. A com-
parative study of T-tubule location and function in these major
cardiac cells types has not been performed previously. The highly

ordered T-tubules in mammalian ventricular myocytes are known
to be the location of key proteins involved in EC-coupling and
Ca2+ homeostasis [5]. However, much less is known about the
expression and function of sarcolemmal tubules in atrial cells.
Although it is commonly cited that mammalian atrial myocytes
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o not possess T-tubules [5,9,26], it has been suggested that
hese cells possess a rudimentary transverse-axial tubular system
21–23,25,33]. Results obtained from immunostaining (Fig. 1C),

embrane labelling with Di-8-ANNEPS (Fig. 2D) and Ca2+ imag-
ng (Fig. 3D) concur with the notion that some atrial myocytes
ave tubule membranes that can initiate EC-coupling deep within
he cytosol. The presence of the T-tubules accelerated the on-set
f Ca2+ signals within the centre of atrial myocytes and increased
a2+ transient amplitude (Figs 3 and 4Figs. 3D and 4). Although
here was a more synchronous initiation of systolic Ca2+ signals in
trial cells with ‘W’-shaped Ca2+ transients, their overall rate of rise
as not dissimilar from the major population of cells that had ‘U’-

haped Ca2+ signals (Fig. 3F). This was due to a secondary phase of
ICR in the T-tubule-expressing atrial cells, which initiated tens of
illiseconds after the initial depolarisation and slowed the over-

ll kinetics of the Ca2+ signal. This secondary CICR phase is evident
n the line-scan image and traces in Fig. 3D. Atrial myocytes with
-tubules therefore show larger systolic Ca2+ transients that reach
eak more slowly due to an enhanced trigger for CICR from the
on-junctional RyRs. In contrast, atrial cells without T-tubules did
ot show marked CICR in the central regions. Rather, there was a
rogressively diminishing centripetal movement of Ca2+ (Fig. 3C),
onsistent with a non-regenerative inward diffusion of Ca2+ [4,30].

It is well established that a major mechanism for recovery of
a2+ transients in ventricular myocytes is sarcolemmal Na+/Ca2+

xchange, which has been suggested to be concentrated within T-
ubule membranes [5,34]. The reduced recovery of Ca2+ transients
n detubulated ventricular myocytes observed in this study (Fig. 4G)
nd others [8,32], is consistent with this hypothesis. Similarly, we
ound that the presence of T-tubules in atrial myocytes modestly
ccelerated the recovery of the Ca2+ transients (Fig. 4G), suggest-
ng that in these cells the tubular membranes similarly allow more
apid removal of cytosolic Ca2+, plausibly by allowing Na+/Ca2+

xchange function deep within the cells. In addition, tubulated
trial cells displayed a faster recovery of systolic Ca2+ signals fol-
owing SR depletion (Fig. 5). These data suggest that atrial T-tubules
rovide a conduit for Ca2+ exchange deep within the myocytes that
an facilitate both recovery of Ca2+ signals and also refilling of Ca2+

tores. In both of these respects, atrial T-tubules have the same
unctions as in their ventricular counterparts [32].

Rather than producing homogenous systolic Ca2+ transients,
etubulated ventricular myocytes displayed Ca2+ waves (Fig. 3)
nd Ca2+ sparks (Fig. 8) with variable initiation sites and degrees
f propagation. The lack of synchronous Ca2+ release in detubu-
ated ventricular myocytes is not due to displacement of RyRs
Fig. 1), or lack of SR Ca2+ loading [27,32]. In this study, the most
ommon pattern of response observed in detubulated ventricu-
ar myocytes was ‘U’-shaped Ca2+ waves originating at both edges
f a cell (Fig. 3B). Such responses are reminiscent of atrial cell
a2+ signals, and suggest that removal of T-tubules makes ven-
ricular myocytes largely rely on peripheral VOCC/RyR couplings,
nd subsequent centripetal CICR, just like their atrial counterparts.
owever, whilst atrial myocytes are stereotypic in their pattern of

esponse [11], detubulated ventricular myocytes were more vari-
ble with Ca2+ alternans appearing in a proportion of the cells
Fig. 3F). The variation of systolic Ca2+ concentration during the
lternans was evident at the periphery of the cells, but even more
o within the centre of the cell. These observations suggest that
he peripheral VOCC/RyR couplings in ventricular myocytes do not
ave the same fidelity as in atrial cells, and are not able to con-
istently trigger the centripetal propagation of CICR. Consistent

ith this, it has been shown that the peripheral VOCC/RyR cou-
lings in ventricular myocytes are functionally distinct from their
-tubule-located counterparts. They may be less well arranged for
C-coupling, but provide more Ca2+ influx during depolarisation for
R reloading [35,36]. It therefore appears that following detubu-
m 47 (2010) 210–223 221

lation, ventricular myocytes rely on relatively weaker VOCC/RyR
couplings in their periphery, as compared to the deliberate physi-
ological peripheral VOCC/RyR couplings of atrial myocytes.

The characteristics of atrial Ca2+ transients were markedly dif-
ferent from those recorded in ventricular myocytes. In agreement
with a recent study from Trafford and colleagues [9], we observed
that atrial myocyte Ca2+ transients were smaller and slower to
peak than Ca2+ signals in control ventricular cells (Figs. 3 and 4).
This was true for atrial myocytes displaying ‘U’- or ‘W’-shaped
Ca2+ transients. In addition, the atrial responses recovered more
rapidly (Fig. 4G), which is probably due to the greater degree of
Ca2+ buffering in atrial myocytes [9]. Detubulation of ventricular
myocytes did not make the kinetics of their Ca2+ signals resem-
ble atrial responses. Rather, they displayed Ca2+ transients that
were significantly slower in every respect (Fig. 4). In only one
aspect did detubulated ventricular myocytes resemble atrial cells.
That is, detubulation of ventricular myocytes decreased their sys-
tolic Ca2+ transient amplitude to levels observed in atrial myocytes
with ‘W’-shaped Ca2+ transients (Fig. 4). Our data indicate that
atrial systolic Ca2+ transients are altered by the presence of T-
tubules. However, atrial Ca2+ transients do not resemble ventricular
signals, even in those atrial cells expressing central initiation
sites.

Ventricular and atrial myocytes reacted to ET-1 stimulation
with similar patterns of response (Fig. 6A and B). Both cell types
displayed brief negative inotropic phases eventually leading to sus-
tained positive inotropy, consistent with previous observations in
various mammalian species [4,37–39]. However, the location at
which ET-1-mediated signal transduction occurs is evidently differ-
ent between the two cell types. The positive inotropic effect of ET-1
was completely lost in detubulated ventricular cells (Fig. 7A–C),
whereas formamide treatment had no measurable effect on the
response of atrial myocytes to ET-1 (Fig. 7D). These data indicate
that T-tubules are the primary sites of ET-1 signal transduction in
ventricular myocytes, consistent with the immunolocalisation of
ETA receptors in tubule membranes (Fig. 6) [40–42]. In contrast, ETA
receptors in atrial myocytes are primarily located at the periphery
(Fig. 6Civ). It is plausible that some ETA receptors may be expressed
on atrial cell T-tubules, but they evidently have a modest functional
consequence (Fig. 7D).

The loss of T-tubules in ventricular myocytes leads to decreased
synchrony of Ca2+ release, smaller Ca2+ transients and reduced con-
tractility (Figs. 3, 7 and 8). Activation of cyclic AMP signalling, via
�-adrenergic receptor stimulation, can reverse these effects and
promote better temporal and spatial synchronisation of the systolic
Ca2+ transient (Fig. 8) [26,43]. This synchronisation occurs even in
extremely deleterious situations where detubulation has caused
the cellular response to become fragmented into stochastic Ca2+

sparks (Fig. 8). We observed that �2-adrenergic receptors were
expressed both within ventricular myocytes, on T-tubule mem-
branes, and around the circumference of the cells (Fig. 8D). This
distribution is different to that of the ETA receptors, which were
solely expressed in T-tubules (Fig. 6C). The difference in distribu-
tion patterns most likely explains why detubulation completely
inhibited the inotropic affects of ET-1, but did not significantly alter
the action of isoproterenol (Figs. 7 and 8). The population of �2-
adrenergic receptors expressed around the circumference of the
ventricular myocytes appears to be sufficient to mediate the effects
of isoproterenol.

It has been proposed that adrenergic signalling is compartmen-
talised at T-tubules within cardiac myocytes due to firewalls of

specific phosphodiesterases that prevent the diffusion of cyclic
AMP, as well as localisation of protein kinase A to specific targets
[44,45]. However, the ability of isoproterenol to completely glob-
alise Ca2+ signals in detubulated cells suggests that the range of
cyclic AMP action must extend further than its proposed locality
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round T-tubules [46]. Similarly, for atrial myocytes �-adrenergic
timulation promoted a change from diminishing centripetal prop-
gation of Ca2+ transients (Fig. 3C) to global Ca2+ transients [13].
etubulation did not affect the response of atrial myocytes to iso-
roterenol (data not shown). This also supports the notion that
yclic AMP action extends away from its site of production at the
eripheral sarcolemma, to promote Ca2+ release deep within atrial
ells.

With acute detubulation method used in this study, isopro-
erenol was able to globalise the otherwise dys-synchronous Ca2+

ransients (Fig. 8). The situation is different in situations where
-tubules are lost for prolonged periods, which is known to hap-
en in ageing and during pathological development of the heart.
or example, in myocytes from ischemic pig hearts �-adrenergic
timulation cannot synchronise Ca2+ release in regions devoid of
-tubules [47]. This suggest that acute detubulation, such as that
sed in this study, is functionally rather different from longer-
erm detubulation. Formamide treatment causes the T-tubules to
e rapidly fragmented, but the membranes re-seal and are acutely
etained in the cell, along with their adjacent RyR-bearing SR
Figs. 1 and 2). In contrast, with prolonged T-tubule loss, the cel-
ular region becomes unresponsive to either EC-coupling or the
ynchronising inotropic effects of �-adrenergic stimulation [47,48].

In summary, we have shown that atrial myocytes, like their ven-
ricular counterparts, can express invaginations of the sarcolemma
onsistent with a transverse-axial tubular system. Ventricular
yocytes are highly dependent on their regular T-tubules for

he synchronised high-fidelity EC-coupling and response to some
ormonal agonists. In contrast, the relatively sparse and irregular T-
ubules in atrial myocytes have a more subtle effect on EC-coupling,
nd little apparent action in hormonal signal transduction. The cor-
elation between atrial cell width and T-tubule expression (Fig. 2E)
uggests that the physiological significance of the tubules is to pro-
ote the synchrony of contraction and recovery within the atrial

hambers.
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