
KATHOLIEKE
UNIVERSITEIT

LEUVEN

DEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

RESEARCH REPORT 0017

SOLVING THE LINEAR PROGRAMMING
RELAXATION OF CUTTING AND PACKING

PROBLEMS: A HYBRID SIMPLEX
METHOD/SUBGRADIENT OPTIMIZATION

PROCEDURE
by

Z.DEGRAEVE
M. PEETERS

0/2000/2376/17

Solving the Linear Programming Relaxation of Cutting and Packing

Problems:

A Hybrid Simplex Method/Subgradient Optimization Procedure

Zeger Degraeve

Katholieke Universiteit Leuven, Department of Applied Economics, Leuven,

Belgium

London Business School, Regent's Park, London NWI 4SA, United Kingdom

Marc Peeters

Katholieke Universiteit Leuven, Department of Applied Economics, Leuven,

Belgium

Abstract

In this paper we present a new method for solving the linear programming relaxation

of the Cutting Stock Problem. The method is based on the relationship between

column generation and Lagrange relaxation. We have called our method the Hybrid

Simplex Method/Subgradient Optimization Procedure. We test our procedure on

generated data sets and compare it with the classical column generation approach.

Programming: Linear Programming, Column Generation, Lagrange Relaxation;

Katholieke Universiteit Leuven

Department of Applied Economics

Naamsestraat 69, B-3000 Leuven

zdegmeve@london.edu

marc. peeters(Q)econ.kuleuven.ac. be

May, 2000

Introduction.

The Cutting Stock Problem (CSP), in its simplest form, is as follows. From one

raw material type of a given length, b, available in unlimited supply, a set of n orders of

finished product types requiring di units of length Ii (i = 1, 2, , .. , n) has to be cut such

that the total number of the raw material used is minimized. In this case, copy j of the

raw material type corresponds to a "cutting pattern", that is, a way of partitioning the

copy of the raw material type into various units of the different finished product types.

The Bin Packing Problem (BPP) is a special case of the cutting stock problem

and thus can be solved likewise. Each item i of a set of n items with size or weight Ii,

must be assigned to exactly one bin of capacity b. In terms of the notation defined

above this implies that d i = 1 . The total number of bins used must be minimized.

According to Dyckhoff's typology (1990) the CSP is a IIV/IIR problem. This means

that it is a one-dimensional problem (1), where all items must be assigned to a selection

of objects (V), the large objects are identical (1) and there are relatively few different

items (R). The BPP is denoted by 1 IV/lIM. The difference with the CSP is that there

are many different items (M).

As recently as 1996, state-of-the-art heuristics were published for the cutting

stock problem (Wascher and Gau 1996). During that time, various authors (Degraeve

1992, Vance 1998, Degraeve and Schrage 1999 and Vanderbeck 1999) were

developing an exact solution approach by branch and price. This technique was

demonstrated to be efficient for solving binary cutting stock problems (Vance et al.

1994) and the generalized assignment problem (Savelsbergh 1997).

In this paper we will focus on solving the linear programming (LP) relaxation.

We will present a Hybrid Simplex Method/Subgradient Optimization Procedure (HP).

The outline of this paper is as follows. In a first section we will give two formulations

of the esp. The second section presents the HP. In the third section we present the

data sets that we will use to test our procedure. In the fourth section we give

computational results. Finally we conclude in section five,

1. Formulations

One possible formulation of the Cutting Stock Problem is the generalized

assignment formulation. We use the following notation:

2

11 : number of finished product types (demand lengths), index i,

m some upper bound on the minimum number of copies of the raw

material needed,

I; : length of finished product type i,

d; : demand, i.e., number of units required, of finished product type i,

b : length of the raw material type (raw width),

Yj = 1, if copy j of the raw material is used, 0, otherwise,

Xu = the number of times finished product type i is cut from the raw

material copy j.

The generalized assignment formulation for CSP is then as follows:

(i) minimize the total number of raw materials used;

subject to

(ii) satisfy demand;

m

"L>ij ?:d; i = 1, ... ,11
j~j

(iii) cut at most the raw material width;

n

L)iXij ~bYj
;~l

(iv) integrality;

xij E {0,1,2, ... }

Yj E {O,l}

j=I, ... ,m

i = 1, ... ,11, j = 1, ... ,m

j=I, ... ,m

Gilmore and Gomory (1961) introduced a different formulation for the CSP. Let P be

the index set of all feasible cutting patterns (ajj,a2j, ... ,anJ, where aij represents the

number of times item i is cut out of patternj i.e. P = {j!(ajj, ... ,an) : tZ;aij :s; b}, and

let Zj be number of times to use pattern j in the solution, then we can state their

formulation as follows:

(i) minimize total number of patterns used;

3

(Ll)

(1.2)

(1.3)

(1.4)

Min LZj
jEP

subject to

(ii) satisfy demand for each finished product type;

Lauzj ~di
}EP

(iii) integrality;

z} E {0,l,2, ... }

i = 1,2, ... ,n

j = 1,2, ... ,p

Enumerating all feasible cutting combinations is practically impossible when n

becomes high. Therefore column generation is used to solve this problem. Let lfj be the

dual price of demand constraint i. If a subset of all columns P is presented in a

restricted master problem, then, a new column that can improve the current value of

the restricted master vRMLP , can be found by the solving the following general integer

knapsack problem:

n

Max LlfjaU
j:::l

subject to

n

L1iaij ~b
i::::l

alj E {0,1,2, ... } i = 1,2, ... ,n

If tlfi ai; > 1, the new column (a;j,a;j, ... ,a:J, which is the optimal solution vector to
i=}

(1.8)-(1.10), prices out attractively, i.e. its reduced cost is negative, it is added to the

master and column generation continues, otherwise, column generation can stop and

we have an LP optimum to the master, denoted as v~p, Traditionally, the restricted

master is resolved each time after adding a new column to obtain new dual prices.

However, solving the restricted master problem becomes very time consuming

particularly when the number of items is large. In this paper we present a different

method to compute the LP relaxation of (I. 5) - (I. 7), called the Hybrid Simplex

Method/Subgradient Optimization Procedure (HP).

4

(1.5)

(1.6)

(1.7)

(l.8)

(l.9)

(1.10)

2. Hybrid simplex method/Subgradient optimization procedure

In this section, we outline an efficient method to find the LP relaxation of the

master program using the Lagrange dual. Instead of uniquely relying on the simplex

method to compute the dual prices, 7[;, to generate new columns, we have implemented

a combination of the simplex method and subgradient optimization. This HP essentially

consists of a nested double loop. In the outer loop, we compute first the dual prices

using the simplex method, then, in the inner loop, sub gradient optimization is used to

update the dual prices for a specific number of iterations. Each time new dual prices

are found they are used to price out a new column.

We use the following additional notation:

7[= vector of the dual prices of the demand constraints,

w(7[) = objective value of the Lagrange relaxation for a given vector of

dual prices 7[,

Ww = objective value oftheLagrange dual,

: index of the outer loop indicating the number of times the dual

prices are computed with the simplex method in the hybrid simplex

method/subgradient optimization procedure,

k : index of the inner loop indicating the number of iterations of the

subgradient optimization in the hybrid simplex method/subgradient

optimization procedure,

W{D = approximation to the Lagrange dual at iteration I,

7[1,k = vector ofthe dual prices at the iteration I, k.

The Lagrange relaxation for the CSP and BPP obtained by dualizing the demand

constraints (1. 3) of generalized assignment formulation (1. 1)-(1.4) with dual prices 7[;,

is then as follows:

subject to

n

II;xu:::; by} j=I, ... ,m

i=l

Xij E {O,l,2, .. .} i = 1, ... ,n, j = 1, ... ,m

5

(2.1)

(2.2)

(2.3)

}=l, ... ,m

Solving this problem is equivalent to solving m times the same knapsack problem, so

we can drop the index} and rewrite the above problem as follows:

subject to

I1iXi ~by
i=1

Xi E {0,1,2, ... }

y E {0,1}

i = 1, ... ,n

The solution of problem (2.5) - (2.8) is as follows. If the solution of the knapsack

problem:

is greater than one, then y is one, else y and Xi, i = 1, ... ,n, are zero. To find the

Lagrange dual ww, we must maximize (2.5) - (2.8) over the dual prices, or :

Ww =Max{w(1l'):1l'~O}
1f

It is well known that the optimal value of the Lagrange dual is equal to the

optimal LP relaxation value of formulation (1.5)-(1.7), i.e. Ww = v~. Indeed LP

based column generation can be considered as a way to find the Lagrange dual

(Wolsey 1998 or Martin 1999). We will exploit this fact in our new procedure for

finding the LP lower bound on the Gilmore and Gomory formulation (1.5)-(1.7).

At the outset, the master problem (1.5)-(1.7) is initialized with n initial

columns. Each initial column contains, for each finished product type, its maximum

number given demand and knapsack constraint, i.e. aii = min (di , lx J} i = 1, 2, ... ,

n, and this is complemented by other finished product types to create a non-dominated

pattern. We solve the restricted master with the simplex method and collect the dual

prices. These dual prices are used as the initial values to start the sub gradient

optimization procedure. In terms of the notation introduced above, they constitute the

vector 1l'l.O.

6

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

We now use subgradient optimization to find the Lagrange dual. Let tk denote

the step size. The updating formula for the dual price of demand constraint i at iteration

k is then as follows :

(m - W(n- l .k))
t k = --','-, ----'---'-'-

2)dj -mxy
j=l

We set the upper bound m equal to the objective value of the master problem solved

with the simplex method at the th iteration rounded up, m = r v RMLP l.
As a result, the dual prices n-/,k that we obtain with (2.11) are in fact an

approximation to the dual prices of the master problem at the LP optimum. As we

have to solve (2.5) - (2.8) at each iteration k of the subgradient optimization

procedure, a feasible cutting pattern) is generated (alj,a2j, ... ,anJ, where alj = x~ for

i=I,2, ... ,n and (x;,x;, ... ,x:) is the optimal solution vector of the knapsack problem

(2.9). We add these columns to the master program if they price out given the dual

prices of the last solved master, i.e.

n

1-2>:·0 aij < 0
i=1

and if they are different from the columns added during the current subgradient

optimization step. After a few iterations or if the reduced cost of the last found cutting

pattern is non negative, the master with the new columns is solved again with the

simplex method. This results in a new upper bound on the optimal LP relaxation value,

m = rvRMLP l and in new dual prices, n-1+1.0. These are used again as input for the

subgradient optimization process.

Observe that in the first iteration of each subgradient optimization phase we

solve a knapsack subproblem that is completely identical to the subproblem we would

have solved in the LP based column generation approach. If the reduced cost of this

column is negative, we can be sure that the column is different from all the others

currently in the master. If the reduced cost of the column is non-negative, the LP

optimum is found. If the approximation to the Lagrange dual at iteration I rounded up

7

(2.11)

(2.12)

(2.13)

I wiv l is equal to the value of the master LP rounded up IV RMLP l, we can stop

generating columns as well.

An overview of the procedure is depicted in Figure 1 (Page 16). In the

following text, a number between square brackets refers to the number of the

corresponding box in the Figure. First, we initialize the master problem (1.5)-(1.7)

with the initial columns as described above [0]. We solve it with the simplex method

and increase the index I, which indicates the number of times the master is solved [1].

Then in [2] we check whether the approximation of the Lagrange dual rounded up

I wiv l is smaller then the current master LP value rounded up IV RMLP l. If not, we have

found the LP lower bound [12], else we collect the dual prices of the demand

constraints in the master ,,1,0, solve subproblem (2.9) and set the number of

subgradient iterations kto zero [3]. We compute the reduced cost 1- i,,:,o x; [4]. In
;=1

case the reduced cost is non negative the LP lower bound is found [12], if it is

negative, we compute the new Lagrange bound W("I,k) in [5]. In [6], we check again

whether the new Lagrange bound rounded up is smaller then the current master LP

value rounded up. Ifit is not, we can stop. Else, we check if we do not exceed a preset

limit on the number of subgradient iterations in [7]. If not, we perform a new iteration

of the subgradient optimization procedure in [8] to obtain new dual prices "I,k+l using

the update formula's (2.11)-(2.12) and increase the number of iterations k by one. If

the limit is exceeded, we add the new columns generated in the sub gradient

optimization process to the master [11] and resolve the master [1]. In [9] we solve the

subproblem (2.9) again and we compute the reduced cost in [10]. If the reduced cost

of the cutting proposal found in [9] is negative, we compute the Lagrange bound again

[5]. Else, we add the new columns [11] and solve the master again [1].

The main advantage of our hybrid simplex method/subgradient optimization

procedure is that we do not need to solve the master problem as an LP each time to

get new dual prices necessary for pricing out a new column. Solving the master

problem is computationally much more expensive than performing an iteration of the

sub gradient optimization procedure. At each subgradient iteration, we get a new

column and these columns are "good" because the dual prices found with subgradient

optimization converge towards the dual prices of the master at the LP optimum of the

8

problem. Indeed, at the master's LP optimum, they are approximately equal.

Therefore, we can expect that columns needed to find the optimal LP solution will be

generated during the sub gradient optimization phase. This will be confirmed by our

computational results, which show that only a very few times we need to solve the

master with the simplex method. A second advantage is that we can stop the column

generation process short of proving LP optimality of the master. The solution of a

restricted master LP is an upper bound on the optimal LP relaxation value, while the

Lagrange bound is a lower on this value. Once the Lagrange bound rounded up and

the solution of the master LP rounded up are equal, we have found a lower bound to

CS. As such, we avoid the "tailing-off' effect typical for traditional column generation.

This effect implies that a large percentage of the total number of columns generated is

needed to prove LP optimality (Vanderbeck and Wolsey 1996). The main disadvantage

of subgradient optimization is that it does not provide a primal solution. Consequently,

at the end, we have to solve the master as an LP with the simplex method to obtain

variable value. A second disadvantage is that the dual prices are only approximately

equal to the optimal dual prices of the master LP. As a consequence the lower bound

can be somewhat less tight.

The hybrid simplex method/subgradient optimization procedure combines the

speed of sub gradient optimization with the exactness of the simplex method. This

procedure can be extremely effective for other problems solved with column

generation and branch and price as well, e.g. for solving the Generalized Assignment

Problem (Savelsberg 1997).

3 Description of the Data

For our computational tests, we use 560 randomly generated data sets for the

cutting stock problem. The generated data were derived using a portable

implementation (Degraeve and Schrage 1997) of a problem generator by Gau and

Wascher (1995). The number of finished product types n determines the size of an

instance of the problem, it has been fixed to n = 10, 20, 30, 40, 50, 75 and 100. The

raw material length has been set to b = 10000 . We have modeled the demand lengths I,

as uniform distributed integer random variables between 1 and a fraction c of b, i.e.

9

1 ~ Ii ~ c*b. The values of the fraction c used are c = 0.25, 0.50, 0.75 and 1. The

demand of finished product type i, d j , is a uniformly distributed integer random

variables derived from a constant total demand T with T = 50*n. Combining the

different values for n, c and T results in 28 (= 7 * 4 * 3) classes of problem instances.

We have generated 20 problem instances in each class so that a total of 560 data sets

were used for our computations.

We test our algorithm on Bin Packing instances as well. We use the classical

bin packing data set of Martello and Toth (1990). They use three different bin

capacities b of 100, 120 and 150 and three different intervals from which the item

length or weight II is randomly drawn from a uniform distribution, namely (1, 100),

(20, 100) and (50, 100). The number of item generated in these intervals will be 500

and 1000. We will generate 20 problem instances for each class, using an adapted

version of the portable problem generator (Degraeve and Schrage 1997). We consider

a total of360 (= 2 * 3 * 3 * 20) bin packing data sets. In case identical item lengths are

generated during the construction of the bin packing instances, only the item length is

considered but the demand is incremented. We are in fact changing a BPP in an

equivalent CSP instance.

Finally, we also use the "triplet" instances from the OR-library (Beasley 1990).

Those instances are so constructed that the optimum is always equal to ~ and in

addition IJ = ~ * b with n indicating the number of items, Ii the length or weight of
i=l

item i and b the bin capacity. The length of each item is carefully chosen from the

interval (250, 499), the bin capacity b = 1000. Four classes of 20 problem instances

were constructed with different number of items n = 60, 120,249, 501 which we will

denote by BPL5, BPL6, BPL 7 and BPL8 respectively.

We have programmed our procedure in Fortran 77 using the WATCOM

Fortran compiler version 10.6 and linked with the industrial LINDO optimization

library version 5.3 (Schrage 1995). The experiments were run on a Dell Pentium Pro

200Mhz PC (Dell Dimension XPS Pro 200n) using the Windows95 operating system,

all computation times are given in seconds.

10

4 Computational Results

In the first table (Table 1.A), you find the computational results for the cutting

stock instances. In the columns labeled 'TM', you find the CPU seconds to solve the

LP relaxation, using the traditional method, while in the columns labeled 'HP' you find

the results for our new procedure. The procedure TM initializes the restricted master

with the same columns as HP. HP is consistently better than TM, especially as the

number of different item types becomes large. Table 1.B gives the number of restricted

master problems that must be solved by procedure 'TM' and 'HP'. As expected, the

number of masters for the traditional method is a lot higher than for the hybrid simplex

method/subgradient optimization procedure.

Table LA : Com arison HP and TM, CSP, c u-seconds.
(1,2500) (1,5000) (1,7500) (1,10000)

11 TM lIP TM lIP TM lIP TM lIP
10 0.02 0.01 0.01 0.01 0.00 0.00 0.01 0.00
20 0.09 0.04 0.12 0.07 0.02 0.03 0.01 0.02
30 0.18 0.09 0.38 0.19 0.08 0.06 0.03 0.02
40 0.03 0.15 0.87 0.35 0.26 0.20 0.07 0.06
50 0.44 0.21 1.47 0.52 0.67 0.46 0.14 0.10
75 1.14 0.47 4.82 1.12 4.26 1.14 0.53 0.27
100 3.19 0.84 15.96 2.05 14.78 3.99 1.65 0.73

Table I.E: Com arison HP and TM, CSP, number of masters.
(1,2500) (1,5000) (1,7500) (1,10000)

11 TM lIP TM lIP TM lIP TM lIP
10 17.7 3.3 10.8 3.1 4.2 2.2 2.7 2.0
20 29.0 3.3 39.1 4.8 15.6 3.3 5.6 2.3
30 39.4 3.6 66.9 4.6 19.3 3.0 8.9 2.1
40 50.1 4.0 100.5 4.8 37.6 4.7 16.1 2.6
50 58.1 4.1 116.8 6.1 52.2 4.6 21.5 2.8
75 81.5 3.5 210.6 5.6 103.2 4.9 35.2 2.9
100 113.6 4.8 230.2 7.7 159.5 6.5 56.1 3.5

Table 2 presents the results for the Bin Packing instances. We remark that

before solving the BPP instances, we call a preprocessing routine, which eliminates

some items, using a dominance rule of Martello and Toth (1990). For more details we

refer to Degraeve and Peeters (1998). We can conclude that our new method is always

faster. For the three weight intervals, the average reduction is respectively 83%, 78%

11

and 67%. Table 2.B shows that the number of restricted master problems that must be

solved is considerably lower for HP than for the traditional method.

T bl 2 A C a e ompanson HP d TM BPP an , d , cpu secon s.
(1,100) (20,100) (50,100)

n b TM HP TM HP TM HP
100 0.19 0.04 0.09 0.05 0.03 0.01

500 120 0.70 0.08 0.09 0.01 0.04 0.02
150 0.40 0.14 0.24 0.02 0.05 0.01
100 0.20 0.08 0.07 0.06 0.03 0.01

1000 120 1.49 0.18 0.08 0.01 0.03 0.02
150 1.32 0.22 0.31 0.04 0.05 O.ol

T bl 2B C a e ompanson HP d TM BPP an , b f ,num ero masters.
(1,100) (20,100) (50,100)

n b TM HP TM HP TM HP
100 22.7 2.4 21.3 2.9 1.0 1.0

500 120 44.0 3.0 23.6 2.1 4.4 1.9
150 30.3 2.2 59.0 6.1 18.5 2.0
100 24.3 2.9 16.7 2.9 1.0 1.0

1000 120 62.0 3.5 22.5 2.3 2.9 1.8
150 56.0 4.3 72.9 4.3 17.5 2.0

Finally, Table 3 shows the results for the triplet instances. The column labeled

'CPU' presents the CPU seconds needed to find the lower bound, while the columns

labeled 'MST' presents the number of master problems that must be solved. Again,

The HP is consistently better. For the most difficult problems, BPL8, HP reduces the

CPU time to less then than 1/3.

T bl 3 T· I a e npJets
CPU MST

TM HP TM HP
BPL5 1.71 1.01 201.6 8.8
BPL6 8.15 5.77 467.2 24.0
BPL7 42.49 19.68 829.2 46.9
BPL8 140.57 32.57 1556.2 161.7

12

5 Conclusions and Ideas for Future Research

We have described and tested an improved procedure to solve the LP

relaxation of the CSP and BPP, called the Hybrid Simplex Method/Subgradient

Optimization Method. In our future work we will integrate this method in branch and

price algorithms to solve the one-dimensional cutting stock and related problems.

13

References

BEASLEY, lE. 1990. OR-library: Distributing Test Problems by Electronic Mail.

Journal o/the Operational Research Society 41, 1069-1072.

DEGRAEVE, Z. 1992. Scheduling Joint Product Operations with Proposal Generation

Methods, Ph.D. Dissertation, The University of Chicago, Graduate School of

Business, Chicago, IL.

DEGRAEVE, Z. AND PEETERS, M. 1998. Benchmark Results for the Cutting Stock and

Bin Packing Problem. Onderzoeksrapport nr 9820, K.U.Leuven, Departement

of Applied Economics.

DEGRAEVE, Z. AND L. SCHRAGE. 1999. Optimal Integer Solutions to Industrial Cutting

Stock Problems. INFORMS Journal on Computing 11, 406-419.

DEGRAEVE, Z. AND L. SCHRAGE. 1997. Should We Use a Portable Generator in an

Emergency? Research Report, Department of Applied Economic Sciences,

Katholieke Universiteit Leuven, Belgium.

DYCKHOFF, H. 1990. A Typology of Cutting and Packing Problems. European

Journal o/Operational Research 44, 145-159.

GAU T. AND G. WASCHER. 1995. CUTGEN1 : A Problem Generator for the Standard

One-dimensional Cutting Stock Problem. European Journal oj Operational

Research 84, 572-579.

GILMORE, P.e. AND R.E. GoMORY. 1961. A Linear Programming Approach to the

Cutting Stock Problem. Operations Research 9, 849-859.

MARTELLO, S. AND P. TOTIl. 1990. Knapsack Problems: Algorithms and Computer

Implementations. Wiley Interscience Series in Discrete Mathematics and

Optimization, John Wiley & Sons, Chichester.

MARTIN, R.K. 1999. Large Scale Linear and Integer Optimization. Kluwer Academic

Publishers, Boston.

SAVELSBERGH, M. 1997. A Branch-and-Price Algorit~ for the Generalized

Assignment Problem. Operations Research 45, 831-841.

SCHRAGE, L. 1995. LINDO : Optimization Software for Linear Programming. Lindo

Systems Inc., Chicago, IL.

14

VANCE, P.R., BARNHART, c., JOHNSON, E.L. AND G.L. NEMHAUSER. 1994. Solving

Binary Cutting Stock Problems by Column Generation and Branch and Bound.

Computational Optimization and Applications, 3, 111-130.

VANCE, P.R. 1998. Branch-and-Price Algorithms for the One-Dimensional Cutting

Stock Problem. Computational Optimization and Applications. 9(3), 212-228.

VANDERBECK, F. 1999. Computational Study of a Column Generation algorithm for

Bin Packing and Cutting Stock problems, Mathematical Programming 86, Ser.

A,565-594.

VANDERBECK, F. AND LA WOLSEY 1996. An exact algorithm for IP column

generation. OR letters 19,151-159.

WASCHER, G. AND T. GAU. 1996. Heuristics for the Integer One-dimensional Cutting

stock Problem: A Computational Study. OR Spektrum 18, 131-144.

WOLSEY, L.A. 1998. Integer Programming. Wiley Interscience Series in Discrete

Mathematics and Optimization, John Wiley & Sons, Chichester.

15

Figure 1: Flow Chart: Hybrid simplex method/subgradient optimization Procedure.

O. INITIALIZE RMLP 1=0

+
l. SOLVERMLP: VRMLP

1=1+1

~
NO

2.11171.0 l< IIIRA1LPl 7

• YES

1
11. ADD NEW COLUMNS

3. GET DUAL PRICES: :ff1.O

SOLVE SUBPROBLEM (2.9), k=O

...
n L 10 • 4.1- :ffj ' Xj <07

NO

i=l

+ YES

5.COMPUTELAGRANGEAN -----.
BOUND: W(:ff l.k), UPDATE Iwin l

...
NO

6. I ~l,k)l< III RAfLP r I
~ YES NO

I 7. k<MAX ITERATIONS? I
I

+ YES

8. COMPUTE NEW DUAL PRICES:

:fff"k+J =:ff;,k +tk(dj -mx;) AND k=k+1

..
1 9. SOLVE SUBPROBLEM (2.9)

1

+
YES n

NO

L 10 • 10. 1- :ffj ' Xj <07

i=l

J 12. LP LOWER BOUND IS I.
'1

FOUND.
1

16

