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Abstract 

In this paper we present a new method for solving the linear programming relaxation 

of the Cutting Stock Problem. The method is based on the relationship between 

column generation and Lagrange relaxation. We have called our method the Hybrid 

Simplex Method/Subgradient Optimization Procedure. We test our procedure on 

generated data sets and compare it with the classical column generation approach. 
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Introduction. 

The Cutting Stock Problem (CSP), in its simplest form, is as follows. From one 

raw material type of a given length, b, available in unlimited supply, a set of n orders of 

finished product types requiring di units of length Ii (i = 1, 2, , .. , n) has to be cut such 

that the total number of the raw material used is minimized. In this case, copy j of the 

raw material type corresponds to a "cutting pattern", that is, a way of partitioning the 

copy of the raw material type into various units of the different finished product types. 

The Bin Packing Problem (BPP) is a special case of the cutting stock problem 

and thus can be solved likewise. Each item i of a set of n items with size or weight Ii, 

must be assigned to exactly one bin of capacity b. In terms of the notation defined 

above this implies that d i = 1 . The total number of bins used must be minimized. 

According to Dyckhoff's typology (1990) the CSP is a IIV/IIR problem. This means 

that it is a one-dimensional problem (1), where all items must be assigned to a selection 

of objects (V), the large objects are identical (1) and there are relatively few different 

items (R). The BPP is denoted by 1 IV/lIM. The difference with the CSP is that there 

are many different items (M). 

As recently as 1996, state-of-the-art heuristics were published for the cutting 

stock problem (Wascher and Gau 1996). During that time, various authors (Degraeve 

1992, Vance 1998, Degraeve and Schrage 1999 and Vanderbeck 1999) were 

developing an exact solution approach by branch and price. This technique was 

demonstrated to be efficient for solving binary cutting stock problems (Vance et al. 

1994) and the generalized assignment problem (Savelsbergh 1997). 

In this paper we will focus on solving the linear programming (LP) relaxation. 

We will present a Hybrid Simplex Method/Subgradient Optimization Procedure (HP). 

The outline of this paper is as follows. In a first section we will give two formulations 

of the esp. The second section presents the HP. In the third section we present the 

data sets that we will use to test our procedure. In the fourth section we give 

computational results. Finally we conclude in section five, 

1. Formulations 

One possible formulation of the Cutting Stock Problem is the generalized 

assignment formulation. We use the following notation: 
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11 : number of finished product types (demand lengths), index i, 

m some upper bound on the minimum number of copies of the raw 

material needed, 

I; : length of finished product type i, 

d; : demand, i.e., number of units required, of finished product type i, 

b : length of the raw material type (raw width), 

Yj = 1, if copy j of the raw material is used, 0, otherwise, 

Xu = the number of times finished product type i is cut from the raw 

material copy j. 

The generalized assignment formulation for CSP is then as follows: 

(i) minimize the total number of raw materials used; 

subject to 

(ii) satisfy demand; 

m 

"L>ij ?:d; i = 1, ... ,11 
j~j 

(iii) cut at most the raw material width; 

n 

L)iXij ~bYj 
;~l 

(iv) integrality; 

xij E {0,1,2, ... } 

Yj E {O,l} 

j=I, ... ,m 

i = 1, ... ,11, j = 1, ... ,m 

j=I, ... ,m 

Gilmore and Gomory (1961) introduced a different formulation for the CSP. Let P be 

the index set of all feasible cutting patterns (ajj,a2j, ... ,anJ, where aij represents the 

number of times item i is cut out of patternj i.e. P = {j!(ajj, ... ,an) : tZ;aij :s; b}, and 

let Zj be number of times to use pattern j in the solution, then we can state their 

formulation as follows: 

(i) minimize total number of patterns used; 
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Min LZj 
jEP 

subject to 

(ii) satisfy demand for each finished product type; 

Lauzj ~di 
}EP 

(iii) integrality; 

z} E {0,l,2, ... } 

i = 1,2, ... ,n 

j = 1,2, ... ,p 

Enumerating all feasible cutting combinations is practically impossible when n 

becomes high. Therefore column generation is used to solve this problem. Let lfj be the 

dual price of demand constraint i. If a subset of all columns P is presented in a 

restricted master problem, then, a new column that can improve the current value of 

the restricted master vRMLP , can be found by the solving the following general integer 

knapsack problem: 

n 

Max LlfjaU 
j:::l 

subject to 

n 

L1iaij ~b 
i::::l 

alj E {0,1,2, ... } i = 1,2, ... ,n 

If tlfi ai; > 1, the new column (a;j,a;j, ... ,a:J, which is the optimal solution vector to 
i=} 

(1.8)-(1.10), prices out attractively, i.e. its reduced cost is negative, it is added to the 

master and column generation continues, otherwise, column generation can stop and 

we have an LP optimum to the master, denoted as v~p, Traditionally, the restricted 

master is resolved each time after adding a new column to obtain new dual prices. 

However, solving the restricted master problem becomes very time consuming 

particularly when the number of items is large. In this paper we present a different 

method to compute the LP relaxation of (I. 5) - (I. 7), called the Hybrid Simplex 

Method/Subgradient Optimization Procedure (HP). 
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2. Hybrid simplex method/Subgradient optimization procedure 

In this section, we outline an efficient method to find the LP relaxation of the 

master program using the Lagrange dual. Instead of uniquely relying on the simplex 

method to compute the dual prices, 7[;, to generate new columns, we have implemented 

a combination of the simplex method and subgradient optimization. This HP essentially 

consists of a nested double loop. In the outer loop, we compute first the dual prices 

using the simplex method, then, in the inner loop, sub gradient optimization is used to 

update the dual prices for a specific number of iterations. Each time new dual prices 

are found they are used to price out a new column. 

We use the following additional notation: 

7[ = vector of the dual prices of the demand constraints, 

w( 7[) = objective value of the Lagrange relaxation for a given vector of 

dual prices 7[, 

Ww = objective value oftheLagrange dual, 

: index of the outer loop indicating the number of times the dual 

prices are computed with the simplex method in the hybrid simplex 

method/subgradient optimization procedure, 

k : index of the inner loop indicating the number of iterations of the 

subgradient optimization in the hybrid simplex method/subgradient 

optimization procedure, 

W{D = approximation to the Lagrange dual at iteration I, 

7[1,k = vector ofthe dual prices at the iteration I, k. 

The Lagrange relaxation for the CSP and BPP obtained by dualizing the demand 

constraints (1. 3) of generalized assignment formulation (1. 1 )-( 1.4) with dual prices 7[;, 

is then as follows: 

subject to 

n 

II;xu:::; by} j=I, ... ,m 

i=l 

Xij E {O,l,2, .. .} i = 1, ... ,n, j = 1, ... ,m 
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}=l, ... ,m 

Solving this problem is equivalent to solving m times the same knapsack problem, so 

we can drop the index} and rewrite the above problem as follows: 

subject to 

I1iXi ~by 
i=1 

Xi E {0,1,2, ... } 

y E {0,1} 

i = 1, ... ,n 

The solution of problem (2.5) - (2.8) is as follows. If the solution of the knapsack 

problem: 

is greater than one, then y is one, else y and Xi, i = 1, ... ,n, are zero. To find the 

Lagrange dual ww, we must maximize (2.5) - (2.8) over the dual prices, or : 

Ww =Max{w(1l'):1l'~O} 
1f 

It is well known that the optimal value of the Lagrange dual is equal to the 

optimal LP relaxation value of formulation (1.5)-(1.7), i.e. Ww = v~. Indeed LP 

based column generation can be considered as a way to find the Lagrange dual 

(Wolsey 1998 or Martin 1999). We will exploit this fact in our new procedure for 

finding the LP lower bound on the Gilmore and Gomory formulation (1.5)-(1.7). 

At the outset, the master problem (1.5)-(1.7) is initialized with n initial 

columns. Each initial column contains, for each finished product type, its maximum 

number given demand and knapsack constraint, i.e. aii = min ( di , lx J} i = 1, 2, ... , 

n, and this is complemented by other finished product types to create a non-dominated 

pattern. We solve the restricted master with the simplex method and collect the dual 

prices. These dual prices are used as the initial values to start the sub gradient 

optimization procedure. In terms of the notation introduced above, they constitute the 

vector 1l'l.O. 
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We now use subgradient optimization to find the Lagrange dual. Let tk denote 

the step size. The updating formula for the dual price of demand constraint i at iteration 

k is then as follows : 

(m - W(n- l .k )) 
t k = --','-, ----'---'-'-

2)dj -mxy 
j=l 

We set the upper bound m equal to the objective value of the master problem solved 

with the simplex method at the th iteration rounded up, m = r v RMLP l. 
As a result, the dual prices n-/,k that we obtain with (2.11) are in fact an 

approximation to the dual prices of the master problem at the LP optimum. As we 

have to solve (2.5) - (2.8) at each iteration k of the subgradient optimization 

procedure, a feasible cutting pattern) is generated (alj,a2j, ... ,anJ, where alj = x~ for 

i=I,2, ... ,n and (x;,x;, ... ,x:) is the optimal solution vector of the knapsack problem 

(2.9). We add these columns to the master program if they price out given the dual 

prices of the last solved master, i.e. 

n 

1-2>:·0 aij < 0 
i=1 

and if they are different from the columns added during the current subgradient 

optimization step. After a few iterations or if the reduced cost of the last found cutting 

pattern is non negative, the master with the new columns is solved again with the 

simplex method. This results in a new upper bound on the optimal LP relaxation value, 

m = rvRMLP l and in new dual prices, n-1+1.0. These are used again as input for the 

subgradient optimization process. 

Observe that in the first iteration of each subgradient optimization phase we 

solve a knapsack subproblem that is completely identical to the subproblem we would 

have solved in the LP based column generation approach. If the reduced cost of this 

column is negative, we can be sure that the column is different from all the others 

currently in the master. If the reduced cost of the column is non-negative, the LP 

optimum is found. If the approximation to the Lagrange dual at iteration I rounded up 
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I wiv l is equal to the value of the master LP rounded up IV RMLP l, we can stop 

generating columns as well. 

An overview of the procedure is depicted in Figure 1 (Page 16). In the 

following text, a number between square brackets refers to the number of the 

corresponding box in the Figure. First, we initialize the master problem (1.5)-(1.7) 

with the initial columns as described above [0]. We solve it with the simplex method 

and increase the index I, which indicates the number of times the master is solved [1]. 

Then in [2] we check whether the approximation of the Lagrange dual rounded up 

I wiv l is smaller then the current master LP value rounded up IV RMLP l. If not, we have 

found the LP lower bound [12], else we collect the dual prices of the demand 

constraints in the master ,,1,0, solve subproblem (2.9) and set the number of 

subgradient iterations kto zero [3]. We compute the reduced cost 1- i,,:,o x; [4]. In 
;=1 

case the reduced cost is non negative the LP lower bound is found [12], if it is 

negative, we compute the new Lagrange bound W("I,k) in [5]. In [6], we check again 

whether the new Lagrange bound rounded up is smaller then the current master LP 

value rounded up. Ifit is not, we can stop. Else, we check if we do not exceed a preset 

limit on the number of subgradient iterations in [7]. If not, we perform a new iteration 

of the subgradient optimization procedure in [8] to obtain new dual prices "I,k+l using 

the update formula's (2.11 )-(2.12) and increase the number of iterations k by one. If 

the limit is exceeded, we add the new columns generated in the sub gradient 

optimization process to the master [11] and resolve the master [1]. In [9] we solve the 

subproblem (2.9) again and we compute the reduced cost in [10]. If the reduced cost 

of the cutting proposal found in [9] is negative, we compute the Lagrange bound again 

[5]. Else, we add the new columns [11] and solve the master again [1]. 

The main advantage of our hybrid simplex method/subgradient optimization 

procedure is that we do not need to solve the master problem as an LP each time to 

get new dual prices necessary for pricing out a new column. Solving the master 

problem is computationally much more expensive than performing an iteration of the 

sub gradient optimization procedure. At each subgradient iteration, we get a new 

column and these columns are "good" because the dual prices found with subgradient 

optimization converge towards the dual prices of the master at the LP optimum of the 
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problem. Indeed, at the master's LP optimum, they are approximately equal. 

Therefore, we can expect that columns needed to find the optimal LP solution will be 

generated during the sub gradient optimization phase. This will be confirmed by our 

computational results, which show that only a very few times we need to solve the 

master with the simplex method. A second advantage is that we can stop the column 

generation process short of proving LP optimality of the master. The solution of a 

restricted master LP is an upper bound on the optimal LP relaxation value, while the 

Lagrange bound is a lower on this value. Once the Lagrange bound rounded up and 

the solution of the master LP rounded up are equal, we have found a lower bound to 

CS. As such, we avoid the "tailing-off' effect typical for traditional column generation. 

This effect implies that a large percentage of the total number of columns generated is 

needed to prove LP optimality (Vanderbeck and Wolsey 1996). The main disadvantage 

of subgradient optimization is that it does not provide a primal solution. Consequently, 

at the end, we have to solve the master as an LP with the simplex method to obtain 

variable value. A second disadvantage is that the dual prices are only approximately 

equal to the optimal dual prices of the master LP. As a consequence the lower bound 

can be somewhat less tight. 

The hybrid simplex method/subgradient optimization procedure combines the 

speed of sub gradient optimization with the exactness of the simplex method. This 

procedure can be extremely effective for other problems solved with column 

generation and branch and price as well, e.g. for solving the Generalized Assignment 

Problem (Savelsberg 1997). 

3 Description of the Data 

For our computational tests, we use 560 randomly generated data sets for the 

cutting stock problem. The generated data were derived using a portable 

implementation (Degraeve and Schrage 1997) of a problem generator by Gau and 

Wascher (1995). The number of finished product types n determines the size of an 

instance of the problem, it has been fixed to n = 10, 20, 30, 40, 50, 75 and 100. The 

raw material length has been set to b = 10000 . We have modeled the demand lengths I, 

as uniform distributed integer random variables between 1 and a fraction c of b, i.e. 
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1 ~ Ii ~ c*b. The values of the fraction c used are c = 0.25, 0.50, 0.75 and 1. The 

demand of finished product type i, d j , is a uniformly distributed integer random 

variables derived from a constant total demand T with T = 50*n. Combining the 

different values for n, c and T results in 28 (= 7 * 4 * 3) classes of problem instances. 

We have generated 20 problem instances in each class so that a total of 560 data sets 

were used for our computations. 

We test our algorithm on Bin Packing instances as well. We use the classical 

bin packing data set of Martello and Toth (1990). They use three different bin 

capacities b of 100, 120 and 150 and three different intervals from which the item 

length or weight II is randomly drawn from a uniform distribution, namely (1, 100), 

(20, 100) and (50, 100). The number of item generated in these intervals will be 500 

and 1000. We will generate 20 problem instances for each class, using an adapted 

version of the portable problem generator (Degraeve and Schrage 1997). We consider 

a total of360 (= 2 * 3 * 3 * 20) bin packing data sets. In case identical item lengths are 

generated during the construction of the bin packing instances, only the item length is 

considered but the demand is incremented. We are in fact changing a BPP in an 

equivalent CSP instance. 

Finally, we also use the "triplet" instances from the OR-library (Beasley 1990). 

Those instances are so constructed that the optimum is always equal to ~ and in 

addition IJ = ~ * b with n indicating the number of items, Ii the length or weight of 
i=l 

item i and b the bin capacity. The length of each item is carefully chosen from the 

interval (250, 499), the bin capacity b = 1000. Four classes of 20 problem instances 

were constructed with different number of items n = 60, 120,249, 501 which we will 

denote by BPL5, BPL6, BPL 7 and BPL8 respectively. 

We have programmed our procedure in Fortran 77 using the WATCOM 

Fortran compiler version 10.6 and linked with the industrial LINDO optimization 

library version 5.3 (Schrage 1995). The experiments were run on a Dell Pentium Pro 

200Mhz PC (Dell Dimension XPS Pro 200n) using the Windows95 operating system, 

all computation times are given in seconds. 
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4 Computational Results 

In the first table (Table 1.A), you find the computational results for the cutting 

stock instances. In the columns labeled 'TM', you find the CPU seconds to solve the 

LP relaxation, using the traditional method, while in the columns labeled 'HP' you find 

the results for our new procedure. The procedure TM initializes the restricted master 

with the same columns as HP. HP is consistently better than TM, especially as the 

number of different item types becomes large. Table 1.B gives the number of restricted 

master problems that must be solved by procedure 'TM' and 'HP'. As expected, the 

number of masters for the traditional method is a lot higher than for the hybrid simplex 

method/subgradient optimization procedure. 

Table LA : Com arison HP and TM, CSP, c u-seconds. 
(1,2500) (1,5000) (1,7500) (1,10000) 

11 TM lIP TM lIP TM lIP TM lIP 
10 0.02 0.01 0.01 0.01 0.00 0.00 0.01 0.00 
20 0.09 0.04 0.12 0.07 0.02 0.03 0.01 0.02 
30 0.18 0.09 0.38 0.19 0.08 0.06 0.03 0.02 
40 0.03 0.15 0.87 0.35 0.26 0.20 0.07 0.06 
50 0.44 0.21 1.47 0.52 0.67 0.46 0.14 0.10 
75 1.14 0.47 4.82 1.12 4.26 1.14 0.53 0.27 
100 3.19 0.84 15.96 2.05 14.78 3.99 1.65 0.73 

Table I.E: Com arison HP and TM, CSP, number of masters. 
(1,2500) (1,5000) (1,7500) (1,10000) 

11 TM lIP TM lIP TM lIP TM lIP 
10 17.7 3.3 10.8 3.1 4.2 2.2 2.7 2.0 
20 29.0 3.3 39.1 4.8 15.6 3.3 5.6 2.3 
30 39.4 3.6 66.9 4.6 19.3 3.0 8.9 2.1 
40 50.1 4.0 100.5 4.8 37.6 4.7 16.1 2.6 
50 58.1 4.1 116.8 6.1 52.2 4.6 21.5 2.8 
75 81.5 3.5 210.6 5.6 103.2 4.9 35.2 2.9 
100 113.6 4.8 230.2 7.7 159.5 6.5 56.1 3.5 

Table 2 presents the results for the Bin Packing instances. We remark that 

before solving the BPP instances, we call a preprocessing routine, which eliminates 

some items, using a dominance rule of Martello and Toth (1990). For more details we 

refer to Degraeve and Peeters (1998). We can conclude that our new method is always 

faster. For the three weight intervals, the average reduction is respectively 83%, 78% 
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and 67%. Table 2.B shows that the number of restricted master problems that must be 

solved is considerably lower for HP than for the traditional method. 

T bl 2 A C a e ompanson HP d TM BPP an , d , cpu secon s. 
(1,100) (20,100) (50,100) 

n b TM HP TM HP TM HP 
100 0.19 0.04 0.09 0.05 0.03 0.01 

500 120 0.70 0.08 0.09 0.01 0.04 0.02 
150 0.40 0.14 0.24 0.02 0.05 0.01 
100 0.20 0.08 0.07 0.06 0.03 0.01 

1000 120 1.49 0.18 0.08 0.01 0.03 0.02 
150 1.32 0.22 0.31 0.04 0.05 O.ol 

T bl 2B C a e ompanson HP d TM BPP an , b f ,num ero masters. 
(1,100) (20,100) (50,100) 

n b TM HP TM HP TM HP 
100 22.7 2.4 21.3 2.9 1.0 1.0 

500 120 44.0 3.0 23.6 2.1 4.4 1.9 
150 30.3 2.2 59.0 6.1 18.5 2.0 
100 24.3 2.9 16.7 2.9 1.0 1.0 

1000 120 62.0 3.5 22.5 2.3 2.9 1.8 
150 56.0 4.3 72.9 4.3 17.5 2.0 

Finally, Table 3 shows the results for the triplet instances. The column labeled 

'CPU' presents the CPU seconds needed to find the lower bound, while the columns 

labeled 'MST' presents the number of master problems that must be solved. Again, 

The HP is consistently better. For the most difficult problems, BPL8, HP reduces the 

CPU time to less then than 1/3. 

T bl 3 T· I a e npJets 
CPU MST 

TM HP TM HP 
BPL5 1.71 1.01 201.6 8.8 
BPL6 8.15 5.77 467.2 24.0 
BPL7 42.49 19.68 829.2 46.9 
BPL8 140.57 32.57 1556.2 161.7 
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5 Conclusions and Ideas for Future Research 

We have described and tested an improved procedure to solve the LP 

relaxation of the CSP and BPP, called the Hybrid Simplex Method/Subgradient 

Optimization Method. In our future work we will integrate this method in branch and 

price algorithms to solve the one-dimensional cutting stock and related problems. 
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Figure 1: Flow Chart: Hybrid simplex method/subgradient optimization Procedure. 
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