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Abstract

When handling fuzzy number data, it is common practice to make use of a
metric to quantify distances between fuzzy numbers. Several metrics have
been suggested in the literature for this purpose. When statistically analyzing
fuzzy number-valued data, L2 metrics become especially useful. This paper
introduces a new family of generalized L

2 metrics which take into account
key features of the involved fuzzy numbers, namely, a measure of central
location and two measures associated with the shape of the fuzzy numbers
are used. A crucial property related to these three measures is that necessary
and sufficient conditions can be established for them to characterize fuzzy
numbers. Furthermore, the family of generalized L

2 metrics depends on
one parameter. A discussion is provided regarding the interpretation of this
parameter which can guide selection of its value in practice.
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1. Introduction

A metric is a numerical description of how far apart objects of a given
space are. It is a powerful tool in many fields from Physics to Statistics, and
the nature of objects a metric can be applied to is very diverse.
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In the last decades the notion of fuzzy number, also referred to as fuzzy
interval in the literature, has become appealing to model real life objects
that cannot be quantified precisely such as linguistic terms, experimental
data associated with human ratings, perceptions, judgments, etc.

To analyze fuzzy number data, a metric between fuzzy numbers can be
very helpful. Such a metric allows us to formalize problems involving fuzzy
numbers and facilitates related developments and methods to solve them.
For example, metrics have been used

• to classify fuzzy data (see, for instance, Coppi et al. [1], Ferraro and
Giordani [2] and Guillaume et al. [3]),

• to obtain some limit and probabilistic results for random fuzzy numbers
(see, for instance, Colubi et al. [4], Molchanov [5], Terán [6, 7], Quang
and Thuan [8], Aletti and Bongiorno [9]),

• in optimization problems (see, for instance, Abbasbandy and Asady [10],
Abbasbandy and Amirfakhrian [11], Prochelvi et al. [12], Báez-Sánchez et
al. [13], Bana and Coroianu [14], Bera et al. [17], Coroianu [15], Coroianu et
al. [16])

• and especially in performing many statistical analyses (see, for instance,
Näther [18, 19], Körner and Näther [20], Körner [21], Garćıa et al. [22],
Montenegro et al. [23, 24], Gil et al. [25], Coppi et al. [26], González-
Rodŕıguez et al. [29, 30, 31], Ferraro et al. [27], Ferraro and Gior-
dani [28], Ramos-Guajardo and Lubiano [32], Sinova et al. [39]).

In the literature on fuzzy numbers and more general fuzzy sets, several
metrics have been suggested (see, for instance, Puri and Ralescu [33], Kle-
ment et al. [34]). One of the best known metrics is the L

2 distance based
on the support function studied by Diamond and Kloeden [35]. In the case
of fuzzy numbers one of the strengths of this L2 distance is that it uses the
inf/sup representation of fuzzy numbers. This is a representation for which
necessary and sufficient conditions have been stated to characterize fuzzy
numbers.

The metric of Diamond and Kloeden has been extended with the aim to
take into account not only the extreme-points of the level sets of the fuzzy
numbers but the complete level sets. One of these extensions has been given
by Bertoluzza et al. [36] (see also Trutschnig et al. [37] for a definition for
general fuzzy values and Grzegorzewski [38] for a more general metric), which
can be characterized by using the mid/spread (i.e., center/radius) represen-
tation of fuzzy numbers. This family of metrics is quite versatile and has a
rather intuitive interpretation. The family can be treated as a parameterized
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distance weighting level-wise the deviation in location with respect to the
deviation in vagueness of the level sets of the involved fuzzy numbers. Along
this century, a statistical methodology has been developed on the basis of
Bertoluzza et al.’s metrics and its Trutschnig et al.’s extension. However,
a drawback of these metrics is that for the mid/spread representation there
are no necessary and sufficient conditions that allow to characterize fuzzy
numbers.

Recently (Sinova et al. [40]) introduced a new parametric family of L1

metrics with the goal of defining a robust centrality measure for fuzzy data.
These metrics are based on a new representation of fuzzy numbers that coin-
cides with the mid/spread representation in case of symmetric fuzzy numbers.
An advantage of this new representation is that it has been possible to state
necessary and sufficient conditions to characterize fuzzy numbers. However,
no discussion has been carried out regarding the interpretation of the in-
volved parameter, which makes it difficult to make a suitable choice for this
parameter in practice.

This paper introduces a new parametric family of L2 metrics between
fuzzy numbers that is based on a modification of the fuzzy number repre-
sentation in [40]. This new parametric family of metrics aims to allow an
intuitive interpretation of the involved parameter which facilitates the selec-
tion of its value in practice. Moreover, the modified representation of fuzzy
numbers preserves the important property that necessary and sufficient con-
ditions to characterize fuzzy numbers can be stated. This new representation
and hence the associated L

2 metrics take into account the (squared) deviation
in central location and level-wise the (squared) deviations in shape between
fuzzy numbers.

The rest of this paper is organized as follows. Section 2 recalls some basic
concepts on fuzzy numbers and introduces the proposed representation of
fuzzy numbers. Necessary and sufficient conditions for this representation
to characterize fuzzy numbers are derived as well. In Section 3, the new
parametric family of L2 metrics is presented and their metric and topological
properties are examined. Section 4 presents an equivalent expression for the
new metric which facilitates the interpretation of the role of the parameter in
this family of L2 metrics. Finally, Section 5 provides a discussion on potential
applications of this new family of metrics.

3
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2. The wabl/ldev/rdev representation of fuzzy numbers

A bounded fuzzy number (also called fuzzy interval) is a fuzzy set of

R, that is, a mapping Ũ : R → [0, 1] such that for all α ∈ [0, 1] the α-level of

Ũ , defined as

Ũα =





{x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1]

cl{x ∈ R : Ũ(x) > α} if α = 0,

is a nonempty compact interval. The value Ũ(x) is intuitively interpreted as

the ‘degree of compatibility of x with Ũ ’, or ‘degree of membership of x to
Ũ ’, or ‘degree of truth of the assertion “x is Ũ” ’.

Equivalently, a bounded fuzzy number can be defined as a normalized
upper semicontinuous element of [0, 1]R with bounded 0-level (i.e., the closure
of the support set of the fuzzy set). The class of the bounded fuzzy numbers
is denoted by F∗

c (R).
A representative value of the central location of a bounded fuzzy number

has been introduced by Yager [41], and later extended by de Campos and
González [42] as the .5-average index, and by Nasibov [43] as the weighted

averaging based on levels (see also Nasibov et al. [44]). For any Ũ ∈ F∗

c (R),

the .5-average index is defined as the real number in the interior set int(Ũ0)
such that

wablϕ(Ũ) =

∫

[0,1]

mid Ũα dϕ(α),

where mid Ũα = (inf Ũα+sup Ũα)/2. ϕ is a weighting measure on the measur-
able space ([0, 1],B[0,1]) which can be formalized by means of an absolutely
continuous probability measure with positive mass function on (0, 1). It
should be pointed out that no stochastic meaning is actually associated with
ϕ, but it allows us to weight the ‘degrees of compatibility’ in the α-levels. The
wablϕ measure of central location is often used as a defuzzification function
to rank fuzzy numbers.

The wablϕ measure satisfies several valuable properties. A relevant prop-
erty for this paper is related to the usual arithmetic with fuzzy numbers.
Namely,

wablϕ(Ũ + Ṽ ) = wablϕ(Ũ) + wablϕ(Ṽ ), wablϕ(γ · Ũ) = γ · wablϕ(Ũ),

4
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for Ũ , Ṽ ∈ F∗

c (R), γ ∈ R where the fuzzy arithmetic is based on Zadeh’s ex-
tension principle [45], which extends level-wise the usual interval arithmetic,
i.e. for all α ∈ [0, 1]

(Ũ + Ṽ )α = {x+ y : x ∈ Ũα, y ∈ Ṽα}, (γ · Ũ)α = {γ · x : x ∈ Ũα}.

Moreover, these properties can be joined and generalized to the so-called
Aumann-type expected value of random elements taking on fuzzy number
values (see López-Dı́az and Gil [46]), for which the wablϕ of the Aumann-
type expected value equals the expected value of the wablϕ of the random
element.

We use the central location measure wablϕ as one of the three components
of our new representation of fuzzy numbers. The other two components
are level-wise representative values of the shape of a bounded fuzzy number
relative to this value of central location. They can be formalized as the two
functions:

ldevϕ
Ũ
: [0, 1] → R, α 7→ ldevϕ

Ũ
(α) = wablϕ(Ũ)− inf Ũα,

rdevϕ

Ũ
: [0, 1] → R, α 7→ rdevϕ

Ũ
(α) = sup Ũα − wablϕ(Ũ).

On the basis of these three components we obtain the following represen-
tation of fuzzy numbers.

Definition 2.1. Given an absolutely continuous probability measure ϕ on
the measurable space ([0, 1],B[0,1]) with positive mass function on (0, 1), the

ϕ-wabl/ldev/rdev representation of Ũ ∈ F∗

c (R) is given by the real

number wablϕ(Ũ) and the two functions ldevϕ
Ũ
and rdevϕ

Ũ
. It follows that for

each α ∈ [0, 1]

Ũα =
[
wablϕ(Ũ)− ldevϕ

Ũ
(α),wablϕ(Ũ) + rdevϕ

Ũ
(α)

]
.

For symmetric fuzzy numbers this representation coincides with the mid/
spread respresentation (whatever ϕ may be). Consequently, it also coincides
with the mid/spread representation in the case that fuzzy numbers reduce
to compact intervals.

The following result establishes sufficient and necessary conditions to
characterize each fuzzy number by the ϕ-wabl/ldev/rdev representation.

5
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Proposition 2.1. Given a fuzzy number Ũ ∈ F∗

c (R) there exist a value
m ∈ R and two functions l∗ : [0, 1] → R, r∗ : [0, 1] → R satisfying that

i) l
∗ and r

∗ are

− left-continuous functions at any α ∈ (0, 1],
− right-continuous at 0,

− and non-increasing on [0, 1],

with

ii) −l
∗(1) ≤ r

∗(1),

and such that for all α ∈ [0, 1],

Ũα = [m− l
∗(α), m+ r

∗(α)] .

Conversely, let m ∈ R and let l∗ : [0, 1] → R, r∗ : [0, 1] → R be functions

satifying coditions i) and ii). Then there exists a unique Ũ ∈ F∗

c (R) such
that for all α ∈ [0, 1]

Ũα = [m− l
∗(α), m+ r

∗(α)] .

Furthermore, if there is an absolutely continuous probability measure ϕ on
([0, 1],B[0,1]) with positive mass function on (0, 1) and such that

iii)

∫

[0,1]

l
∗(α) dϕ(α) =

∫

[0,1]

r
∗(α) dϕ(α),

then, (m, l
∗
, r

∗) is the ϕ-wabl/ldev/rdev representation of Ũ .

Proof. First, take Ũ ∈ F∗

c (R). Because of the properties of the infimum and
supremum of the level intervals as functions of α (see, for example, Ming [47],
and Negoita and Ralescu [48]), the functions ldevϕ

Ũ
and rdevϕ

Ũ
should be left-

continuous functions of α on (0, 1] and right-continuous at 0. They should
also be non-increasing functions of α on [0, 1]. Moreover,

rdevϕ

Ũ
(1) ≥ −ldevϕ

Ũ
(1),

∫

[0,1]

ldevϕ
Ũ
(α) dϕ(α) =

∫

[0,1]

rdevϕ
Ũ
(α) dϕ(α) ≥ 0.

Since wablϕ(Ũ) ∈ R and for all α ∈ [0, 1] it holds that

Ũα =
[
wablϕ(Ũ)− ldevϕ

Ũ
(α),wablϕ(Ũ) + rdevϕ

Ũ
(α)

]
,

6
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it follows that the real number wablϕ(Ũ) and the two functions ldevϕ

Ũ
and

rdevϕ
Ũ
indeed satisfy conditions (i)-(iii).

On the other hand, given m ∈ R, if l∗ : [0, 1] → R, r∗ : [0, 1] → R are
mappings satisfying Conditions i) − ii), then, the functions l : [0, 1] → R,
r : [0, 1] → R given by

l(α) = m− l
∗(α), r(α) = m+ r

∗(α)

satisfy that

− l is a left-continuous nondecreasing function of α ∈ (0, 1] and right-
continuous at α = 0,

− r is a left-continuous nonincreasing function of α ∈ (0, 1] and right-
continuous at α = 0,

− l(1) = m− l
∗(1) ≤ m+ r

∗(1) = r(1),

then, it is well-known that there exists a unique Ũ ∈ F∗

c (R) such that

Ũα = [l(α), r(α)] = [m− l
∗(α), m+ r

∗(α)]

for α ∈ [0, 1] (see, for instance, Ming [47]).
Furthermore, if there exists an absolutely continuous probability measure

ϕ on ([0, 1],B[0,1]), with positive mass function on (0, 1) such that∫

[0,1]

l
∗(α) dϕ(α) =

∫

[0,1]

r
∗(α) dϕ(α), then

∫

[0,1]

l(α) dϕ(α) = m−
∫

[0,1]

l
∗(α) dϕ(α)

= m−
∫

[0,1]

r
∗(α) dϕ(α) = 2m−

∫

[0,1]

r(α) dϕ(α)

. Hence,

m =

∫

[0,1]

l(α) + r(α)

2
dϕ(α) =

∫

[0,1]

mid Ũα dϕ(α) = wablϕ(Ũ).

Moreover, for all α ∈ [0, 1]

ldevϕ

Ũ
(α) = wablϕ(Ũ)− inf Ũα = m− l(α) = l

∗(α),

rdevϕ

Ũ
(α) = sup Ũα − wablϕ(Ũ) = r(α)−m = r

∗(α). �

To illustrate this result, we now consider the following example.

7
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Example 2.1. Let m = 8, l∗(α) = 5−3α2 and r
∗(α) = 7−6α for α ∈ [0, 1].

Since functions l
∗ and r

∗ satisfy Conditions i) and ii) in Proposition 2.1,

there exists a unique bounded fuzzy number Ũ such that

Ũα = [m− l
∗(α), m+ r

∗(α)] =
[
3 + 3α2

, 15− 6α
]

for every α ∈ [0, 1]. This fuzzy number Ũ is shown in Figure 2.1 and is given
by

Figure 1: Fuzzy number for the given ℓ-wabl/ldev/rdev representation in Example 2.1

Ũ(x) =





√
(x− 3)/3 if x ∈ [3, 6)

1 if x ∈ [6, 9)
(15− x)/6 if x ∈ [9, 15]
0 otherwise

On the other hand, the equality
∫

[0,1]

(5− 3α2) dα = 4 =

∫

[0,1]

(7− 6α) dα

implies that for ϕ ≡ ℓ ≡ Lebesgue measure in [0, 1] we have that

wablℓ(Ũ) = 8, ldevℓ
Ũ
(α) = 5− 3α2

, rdevℓ
Ũ
(α) = 7− 6α.

The representation above is not the only wabl/ldev/rdev representation
for this fuzzy number. In fact, for this example it is possible to find such a

8
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representation for every choice of ϕ. For instance, if one chooses ϕ ≡ β5,1,
i.e.the probability measure associated with the Beta(5, 1) distribution, then

wablβ5,1(Ũ) = 53/7, ldev
β5,1

Ũ
(α) = (32−21α2)/7, rdev

β5,1

Ũ
(α) = (52−42α)/7.

Note that for the Beta(5, 1) distribution it holds that the larger the α-level

of a set, i.e. the greater the degree of compatibility with Ũ , the larger its
weight is in the corresponding wabl/ldev/rdev representation.

Remark 2.1. It should be emphasized that on the basis of the Weighted
Mean Value Theorem for integrals, whenever mid Ũα is a continuous function
of α in [0, 1], then for each ϕ there exists at least one βϕ ∈ [0, 1] such that

mid Ũβϕ
=

∫

[0,1]

mid Ũα dϕ(α) = wablϕ(Ũ).

Hence, for each wabl/ldev/rdev representation of a fuzzy number in Defini-
tion 2.1 there is a corresponding representation as introduced in Sinova et
al. [40].

3. The wabl/ldev/rdev-based L
2 metrics

L
2 metrics between fuzzy numbers have been shown to be very suitable in

the development of statistical methodology for experimental fuzzy data. The
recent review of Blanco-Fernández et al. [49] gathers most of these statistical
methods. González-Rodŕıguez et al. [31] provides a detailed explanation
of this approach when using the Bertoluzza et al.’s L

2 metric. Moreover,
they reveal a clear and interesting connection with the statistical analysis of
functional data through the so-called support function of fuzzy sets.

Bertoluzza et al.’s L2 metric can be expressed in terms of the mid/spread
representation for fuzzy numbers (see, for instance, Gil et al. [50]). In the
particular case of interval-valued data one can easily establish necessary and
sufficient conditions for this representation to characterize a compact inter-
val (given simply by the non-negativeness of the spread). However, for the
general case of fuzzy numbers this is not possible anymore. It is known
that the spread function should be a nonnegative, left-continuous at (0, 1],
right-continuous at 0, and a nonincreasing function of α, but nothing can be
imposed on the mid function to characterize a fuzzy number. This concern

9
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can be a setback for certain developments, especially for those related to
certain minimization problems.

We now introduce a family of metrics based on the ϕ-wabl/ldev/rdev
representation with the purpose of establishing L

2 metrics between fuzzy
numbers with the following properties.

• The metrics extend the mid/spread-based metric for interval-valued
data;

• The metrics take into account the central location and shape of the
involved fuzzy numbers;

• The metrics are based on a characterizing representation of fuzzy num-
bers.

The new metrics are also partially inspired by previous L
2 distances (see

Yang and Ko [51], Ferraro et al. [52]).

Definition 3.1. Given an absolutely continuous probability measure ϕ on
([0, 1],B[0,1]) with positive mass function on (0, 1), and a parameter θ ∈
(0, 1], the ϕ-wabl/ldev/rdev-based L

2 metric is the mapping Dϕ
θ : F∗

c (R)

× F∗

c (R) → [0,+∞) such that for Ũ , Ṽ ∈ F∗

c (R)

D
ϕ
θ (Ũ , Ṽ ) =

[(
wablϕ(Ũ)− wablϕ(Ṽ )

)2

+

θ

∫

[0,1]

(
1

2

[
ldevϕ

Ũ
(α)− ldevϕ

Ṽ
(α)

]2
+

1

2

[
rdevϕ

Ũ
(α)− rdevϕ

Ũ
(α)

]2)
dϕ(α)

]1/2
.

Note that θ and ϕ do not have a stochastic meaning but have a weighting
interpretation in the definition of this metric. It is clear that the role of
the parameter θ in the distance is to weigh the influence of the ‘deviation in
shape’ between the fuzzy numbers (quantified through ldev and rdev) with
respect to the influence of their ‘deviation in central location’ (quantified
through wabl). A more detailed interpretation of the values for θ that can
be chosen follows in Section 4. Moreover, the choice of ϕ allows us to weight
the influence of each α-level (i.e., the different degrees of ‘compatibility’).

10
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3.1. Metric and topological properties of Dϕ
θ

To examine some of the main properties of Dϕ
θ , it is convenient to point

out that given the absolutely continuous probability measure ϕ on ([0, 1],B[0,1])

with positive mass function on (0, 1), an arbitrary fuzzy number Ũ ∈ F∗

c (R)
can be characterized by its υϕ-vector given by

υ
ϕ

Ũ
: [0, 1] → R

3
, α 7→ υ

ϕ

Ũ
(α) = (wablϕ(Ũ), ldevϕ

Ũ
(α), rdevϕ

Ũ
(α)).

The υ
ϕ-vector function can be stated as the function

υ
ϕ : F∗

c (R) → H
2
, υ

ϕ(Ũ) 7→ υ
ϕ

Ũ
,

whereH2 = {L2 type 3-dimensional vector-valued functions defined on [0, 1]}.
Moreover, this function allows us to induce a parametric family of L2

metrics on F∗

c (R) from a parametric family of L2 norms on R
3. More pre-

cisely, for an arbitrarily fixed parameter value θ ∈ (0, 1] we can consider the
L
2 norm on R

3 which is given by

|x− y|
θ
=

√
[x1 − y1]2 +

θ

2
· [x2 − y2]2 +

θ

2
· [x3 − y3]2,

for any x = (x1, x2, x3),y = (y1, y2, y3) ∈ R
3. Actually, the υ

ϕ-vector en-
ables to isometrically embed the space Fc(R) in a convex cone of H2. The
corresponding L

2 norm in this subset of H2 would be:

‖f − g‖ϕ
θ
=

√∫

[0,1]

(|f(α)− g(α)|
θ
)2 dϕ(α)),

where f and g represent two elements in the cone. Using this relation and
ideas similar to those in Trutschnig et al. [37], one can conclude that

Proposition 3.1. Let ϕ be an arbitrarily fixed absolutely continuous proba-
bility measure on ([0, 1],B[0,1]), with positive mass function on (0, 1), and θ ∈
(0, 1] be a weight parameter. The mapping D

ϕ
θ : F∗

c (R) × F∗

c (R) → [0,+∞)
satisfies that

i) (F∗

c (R),D
ϕ
θ ) is a metric space.

ii) D
ϕ
θ is an L

2-type metric, and it is translation and rotation invariant.

iii) For fixed ϕ, the υ
ϕ-vector function satisfies that

11
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− υ
ϕ is an isometry

− υ
ϕ(Ũ + Ṽ ) = υ

ϕ(Ũ) + υ
ϕ(Ṽ ) for all Ũ , Ṽ ∈ F∗

c (R)

− υ
ϕ(γ · Ũ) = γ · υϕ(Ũ) for all Ũ ∈ F∗

c (R) and λ > 0.

The proof of this proposition is based on the fact that the metric D
ϕ
θ

defined in Definition 3.1 coincides with the norm ‖ · ‖ϕ
θ
of the difference of

the corresponding υ
ϕ-vector functions:

D
ϕ
θ (Ũ , Ṽ ) =

√∫

[0,1]

(
|υϕ

Ũ
(α)− υ

ϕ

Ṽ
(α)|

θ

)2

dϕ(α) = ‖υϕ(Ũ)− υ
ϕ(Ṽ )‖ϕ

θ
.

As a consequence, the υϕ-vector function preserves the semilinearity of F∗

c (R)
and relates the fuzzy arithmetic to the functional arithmetic, which implies
that F∗

c (R) can be isometrically embedded in a convex cone of H2.
For the special case ϕ ≡ l with l the Lebesgue measure as in Example 2.1,

the corresponding metric D
ℓ
θ is topologically equivalent to some well-known

metrics between fuzzy numbers. In particular, the next proposition shows
that D

ℓ
θ is equivalent to the well-known L

2 metric ρ2 based on the inf/sup
representation of fuzzy numbers (Diamond and Kloeden [35]) and given by

ρ2(Ũ , Ṽ ) =

√
1

2
·
∫

[0,1]

[
inf Ũα − inf Ṽα

]2
dα +

1

2
·
∫

[0,1]

[
sup Ũα − sup Ṽα

]2
dα.

Proposition 3.2. Let ℓ be the Lebesgue measure on ([0, 1],B[0,1]), and θ ∈
(0, 1] be a weight parameter. Then, the metric D

ℓ
θ is topologically equivalent

to the metric ρ2 on F∗

c (R). More precisely,

√
θ · ρ2(Ũ , Ṽ ) ≤ D

ℓ
θ(Ũ , Ṽ ) ≤ ρ2(Ũ , Ṽ )

for all Ũ , Ṽ ∈ F∗

c (R).

Proof. Indeed,

(|υℓ
Ũ
(α)− υ

ℓ
Ũ
(α)|θ)2 =

[
wablℓ(Ũ)− wablℓ(Ṽ )

]
2

+
θ

2
·
[
wablℓ(Ũ)− inf Ũα − wablℓ(Ṽ ) + inf Ṽα

]2

12
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+
θ

2
·
[
sup Ũα − wablℓ(Ũ)− sup Ṽα + wablℓ(Ṽ )

]
2

= (1− θ) ·
[
wablℓ(Ũ)− wablℓ(Ṽ )

]2

+
θ

2
·
[
inf Ũα − inf Ṽα

]2
+

θ

2
·
[
sup Ũα − sup Ṽα

]2
,

whence

D
ℓ
θ(Ũ , Ṽ ) =

√
(1− θ) ·

[
wablℓ(Ũ)− wablℓ(Ṽ )

]2
+ θ · (ρ2(Ũ , Ṽ ))2

≥
√
θ · ρ2(Ũ , Ṽ ).

On the other hand,

[
wablℓ(Ũ)− wablℓ(Ṽ )

]2
=

[∫

[0,1]

(
mid Ũα −mid Ṽα

)
dα

]
2

and by applying twice Jensen’s inequality
[
wablℓ(Ũ)− wablℓ(Ṽ )

]2
≤

∫

[0,1]

(
mid Ũα −mid Ṽα

)2

dα

=

∫

[0,1]

[
1

2
· (inf Ũα − inf Ṽα) +

1

2
· (sup Ũα − sup Ṽα)

]
2

dα

≤
∫

[0,1]

[
1

2
· (inf Ũα − inf Ṽα)

2 +
1

2
· (sup Ũα − sup Ṽα)

2

]
dα = (ρ2(Ũ , Ṽ ))2.

Therefore,

D
ℓ
θ(Ũ , Ṽ ) ≤

√
(1− θ) · (ρ2(Ũ , Ṽ ))2 + θ · (ρ2(Ũ , Ṽ ))2 = ρ2(Ũ , Ṽ ). �

Remark 3.1. In an analogous way, if we extend ρ2 by incorporating the
weighting measure ϕ, we can state that the metric Dϕ

θ is topologically equiv-
alent on F∗

c (R) to the metric ρ
ϕ
2
given by

ρ
ϕ
2
(Ũ , Ṽ ) =

√
1

2
·
∫

[0,1]

([
inf Ũα − inf Ṽα

]2
+
[
sup Ũα − sup Ṽα

]2)
dϕ(α).

Thus, √
θ · ρϕ

2
(Ũ , Ṽ ) ≤ D

ϕ
θ (Ũ , Ṽ ) ≤ ρ

ϕ
2
(Ũ , Ṽ ).

13
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Moreover, since ρ2 is also topologically equivalent to the metric d2 given
by

d2(Ũ , Ṽ ) =

√∫

[0,1]

dH(Ũα, Ṽα)2 dα,

where dH denotes the well-known Hausdorff metric on the space of nonempty
closed and bounded intervals, and (F∗

c (R), d2) is a separable metric space (see
Klement et al. [34]), one can immediately derive that

Proposition 3.3. (F∗

c (R),D
ℓ
θ) is a separable metric space.

More generally, it is rather straightforward to extend the proof for the
separability of (F∗

c (R), d2) (see Klement et al. [34] and Diamond and Kloe-
den [35]) to the general metric d

ϕ
2
given by

d
ϕ
2
(Ũ , Ṽ ) =

√∫

[0,1]

dH(Ũα, Ṽα)2 dϕ(α).

Moreover, this metric dϕ
2
is topologically equivalent to the metric ρϕ

2
, so that

we can more generally conclude that (F∗

c (R),D
ϕ
θ ) is a separable metric space.

4. Interpretation of the weight parameter θ

A key question that arises when employing the metric D
ϕ
θ in real-life

problems involving fuzzy data is the selection of a particular element of the
family of metrics. For this purpose, it is very valuable to interpret the roles
played by ϕ and θ in the metric.

The probability measure ϕ can be formally identified with a measure
weighting the ‘importance’ given to the different α-levels of the fuzzy num-
bers. For instance,

• the choice ϕ ≡ ℓ indicates that in quantifying the distance between
fuzzy numbers one gives the same relevance to all levels;

• choosing ϕ such that the greater the value of α the greater its weight
(e.g. ϕ ≡ Beta(p, 1) with p >> 1) indicates that in quantifying the dis-
tance between fuzzy numbers one gives higher relevance to high levels,
that is, one mainly focuses on the levels with high degree of compati-
bility;

14
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• choosing ϕ such that the greater the value of α the lower its weight (e.g.
ϕ ≡ Beta(1, p) with p >> 1) indicates that in quantifying the distance
between fuzzy numbers one gives higher relevance to low levels, that
is, one mainly focuses on the levels with low degree of compatibility.

We illustrate these assertions with the following example.

Figure 2: Three couples of fuzzy numbers

Example 4.1. Consider the three couples of triangular fuzzy numbers in
Figure 2. Note that Ũ and Ṽ share the 0-level (interval [0, 2] but differ

strongly in the shape. Ũ
′ and Ṽ

′ have 0-levels (intervals [0, 1] and [1, 2])
which only overlap in a singleton and also show strongly different shapes.
Finally, Ũ ′′ and Ṽ

′′ have disjoint 0-levels (intervals [0, 1] and [1, 2]) but show
the same shape and are symmetric. Figure 3 graphically displays the distance
D

ϕ
1/3 between the fuzzy numbers Ũ and Ṽ , Ũ ′ and Ṽ

′, and Ũ
′′ and Ṽ

′′ as a

function of p ∈ (0,∞) when ϕ is taken as β(p, 1) and β(1, p) respectively
(note that p = 1 corresponds to ϕ ≡ ℓ). The conclusions from Figure 3
are not unexpected given their location and shape in Figure 2. First note
that due to the symmetry of these fuzzy numbers Dϕ

1/3(Ũ
′′
, Ṽ

′′) is constantly
equal to 1, irrespectively of the choice of ϕ. When ϕ mainly weights the high
levels (i.e., ϕ ≡ β(p, 1) with p >> 1), then D

ϕ
1/3(Ũ , Ṽ ) > D

ϕ
1/3(Ũ

′
, Ṽ

′) >>

D
ϕ
1/3(Ũ

′′
, Ṽ

′′), whereas when ϕ mainly weights the low levels (i.e., ϕ ≡ β(1, p)

with p > 1), thenD
ϕ
1/3(Ũ

′
, Ṽ

′) > D
ϕ
1/3(Ũ , Ṽ ) > D

ϕ
1/3(Ũ

′′
, Ṽ

′′), and for p >> 1,

D
ϕ
1/3(Ũ

′
, Ṽ

′) > D
ϕ
1/3(Ũ

′′
, Ṽ

′′) >> D
ϕ
1/3(Ũ , Ṽ ).

As explained in the previous section, the general role of the parameter
θ in the metric D

ϕ
θ is to weight the influence of the squared deviation in

15
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Figure 3: Distance D
ϕ
1/3 between the couples of fuzzy numbers in Fig. 2 for ϕ ≡ β(p, 1)

(left) and β(1, p) (right).

central location (measured by wablϕ) of the fuzzy numbers in contrast to the
influence of their deviation in shape (measured level-wise by the ldevϕ and
rdevϕ functions). However, the exact meaning of the value of θ is not yet
clear. Therefore, we now establish a result that allows us to interpret better
the value of θ. For this purpose, we take into account that if we consider any
fuzzy number Ũ ∈ F∗

c (R), and a level α ∈ [0, 1], then each

x ∈
[
min{wablϕ(Ũ), inf Ũα},max{wablϕ(Ũ), sup Ũα}

]

can be written as a particular linear combination of the components of υϕ

Ũ
(α).

More precisely, for any of these x’s there exists a λ ∈ [−1, 1] such that

x = f
ϕ

Ũ
(α, λ) = wablϕ(Ũ)−M0(−λ) · ldevϕ

Ũ
(α) +M0(λ) · rdevϕŨ(α),

with M0(λ) = max{0, λ}.
Note that [min{wablϕ(Ũ), inf Ũα},max{wablϕ(Ũ), sup Ũα}] does not al-

ways represent the level Ũα, but in case that wablϕ(Ũ) /∈ Ũα the α level

interval is ‘enlarged’ to include wablϕ(Ũ).

Based on the above expression, for any two fuzzy numbers Ũ and Ṽ , a
one-to-one correspondence between them can be stated by considering the
functions f

ϕ

Ũ
(α, λ) and f

ϕ

Ṽ
(α, λ), so that it seems plausible to consider the

distance between Ũ and Ṽ as given by

Dϕ
η (Ũ , Ṽ ) =

√∫

[0,1]

∫

[−1,1]

[
f
ϕ

Ũ
(α, λ)− f

ϕ

Ṽ
(α, λ)

]2
dη(λ) dϕ(α),

16
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where η is a measure which can formally be identified with a symmetric and
non-degenerate probability measure on ([−1, 1],B[−1,1]).

Since η is assumed to be symmetric on [−1, 1], it can be expressed as a
finite mixture η = .5 · ζ + .5 · ξ with ξ a probability measure on [0, 1] which

is non-degenerate at 0, and ζ(λ) = ξ(−λ). Therefore, the distance Dϕ
η (Ũ , Ṽ )

can be rewritten by taking into account that

∫

[−1,1]

[
f
ϕ

Ũ
(α, λ)− f

ϕ

Ṽ
(α, λ)

]2
dη(λ)

=
1

2

∫

[0,1]

[(
wablϕ(Ũ)− λ · ldevϕ

Ũ
(α)

)
−

(
wablϕ(Ṽ )− λ · ldevϕ

Ṽ
(α)

)]
2

dξ(λ)

+
1

2

∫

[0,1]

[
(wablϕ(Ũ) + λ · rdevϕ

Ũ
(α)

)
−

(
wablϕ(Ṽ ) + λ · rdevϕ

Ṽ
(α)

)]2
dξ(λ).

The next result shows that this distance is an equivalent definition for
D

ϕ
θ . Based on this equivalence the role of the parameter θ becomes easier to

interpret.

Theorem 4.1. The family of metrics Dϕ
θ is equivalent to the family of met-

rics Dϕ
η .

Proof. Indeed, for each α ∈ [0, 1]

1

2

∫

[0,1]

[(
wablϕ(Ũ)− λ · ldevϕ

Ũ
(α)

)
−
(
wablϕ(Ṽ )− λ · ldevϕ

Ṽ
(α)

)]2
dξ(λ)

+
1

2

∫

[0,1]

[
(wablϕ(Ũ) + λ · rdevϕ

Ũ
(α)

)
−
(
wablϕ(Ṽ ) + λ · rdevϕ

Ṽ
(α)

)]2
dξ(λ)

=
[
wablϕ(Ũ)− wablϕ(Ṽ )

]2
+

1

2

[
ldevϕ

Ũ
(α)− ldevϕ

Ṽ
(α)

]2
·
∫

[0,1]

λ
2
dξ(λ)

+
1

2

[
rdevϕ

Ũ
(α)− ldevϕ

Ũ
(α)

]2
·
∫

[0,1]

λ
2
dξ(λ)

−
[
wablϕ(Ũ)− wablϕ(Ṽ )

]
2

·
∫

[0,1]

2λ dξ(λ)

+
[
wablϕ(Ũ)− wablϕ(Ṽ )

]
·
[
mid Ũα −mid Ṽα

]
·
∫

[0,1]

2λ dξ(λ),

17
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whence Dϕ
η (Ũ , Ṽ ) = D

ϕ
θξ
(Ũ , Ṽ ) with θξ =

∫
[0,1]

λ
2
dξ(λ).

Consequently, for any non-degenerate symmetric probability measure η

on [−1, 1] there is a probability measure ξ on [0, 1] and non-degenerate at

0 such that η(λ) = .5 · ξ(−λ) + .5 · ξ(λ) and Dϕ
η (Ũ , Ṽ ) = D

ϕ
θξ
(Ũ , Ṽ ) with

θξ =
∫
[0,1]

λ
2
dξ(λ). Conversely, for any parameter value θ ∈ (0, 1] there

are probability measures ξθ on [0, 1] and non-degenerate at 0 such that

Dϕ
ηθ
(Ũ , Ṽ ) = D

ϕ
θ (Ũ , Ṽ ) for ηθ(λ) = .5·ξθ(−λ) + .5·ξθ(λ). For instance, we can

consider ξθ to be the Bernoulli distribution with parameter {(
√
1 + 4θ−1)/2}

or the Beta((
√
θ2 + 8θ + θ)/2, 1)) distribution, etc. �

As an immediate implication from the preceding theorem we can interpret
some choices of the value of θ which will be useful for practical purposes.
Among the most relevant metrics we can highlight

• the choice of θ = 1/3 (considered in Example 4.1) corresponds to choos-
ing ξ as the Lebesgue measure ℓ on [0, 1] (i.e. the points in each ‘en-
larged’ level being uniformly weighted);

• the choice θ = 1 corresponds, among others, to choosing ξ as the indi-
cator function of {1}, so that Dϕ

1
= ρ

ϕ
2
.

5. Concluding remarks

A family of metrics D
ϕ
θ has been introduced in this paper as L2 metrics

based on a representation of fuzzy sets which takes into account the central
locations and shape of the involved fuzzy numbers, and for which necessary
and sufficient conditions can be stated to characterize a fuzzy number. In
this representation the central location of a fuzzy number Ũ is measured by
wablϕ(Ũ) while its shape is measured by the two functions ldevϕ

Ũ
and rdevϕ

Ũ
.

Since it can be shown that these metrics are coherent with the Fréchet
principle in case of fuzzy number-valued random elements and the mean value
is approached by the Aumann-type expectation (see, Puri and Ralescu [33]),
a statistical methodology following the guidelines in [49] can be developed
in the future. A comparative study can then be performed to compare the
power of these metrics. The new metrics can also be used to extend the
notion of L2 median to fuzzy number-valued random elements by extending
the notion of Sinova et al. [53].

A much deeper discussion on the choice of ϕ would be desirable. However,
this is not a point to be covered in this paper but an open problem. It should
be pointed out that the influence of the selection of ϕ will strongly depend on

18
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the particular problem being studied. Studies should be conducted to analyze
the influence on the power of hypothesis tests, on the MSE of estimators, on
the robustness of some measures, etc. Moreover, the discussion should be
developed separately for each problem to which the metric is applied.
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[18] W. Näther, Linear statistical inference for random fuzzy data, Statistics 29 (1997)
221–240.
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[52] M.B. Ferraro, R. Coppi, G. González-Rodŕıguez, A. Colubi. A linear regression model
for imprecise response. Int. J. Approx. Reas. 51 (2010) 759-770.
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