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Abstract

We present a Markov model to analyze the queueing behavior of the non-
stationary G(t)/G(t)/s(t) + G(t) queue. We assume an exhaustive service
discipline (where servers complete their current service before leaving) and
use acyclic phase-type distributions to approximate the general interarrival,
service, and abandonment time distributions. The time-varying performance
measures of interest are: (1) the expected number of customers in queue, (2)
the variance of the number of customers in queue, (3) the expected number
of abandonments, and (4) the virtual waiting time distribution of a customer
arriving at an arbitrary moment in time. We refer to our model as G-RAND
since it analyzes a general queue using the randomization method. A com-
putational experiment shows that our model allows the accurate analysis of
small- to medium-sized problem instances.

Keywords: Nonstationary arrivals, Time-varying demand, Markov model,
G(t)/G(t)/s(t) + G(t) queue, Performance measurement

1. Introduction

Many service systems exhibit a cyclic demand for service. For example,
in call centers, emergency departments, banks, and retail stores, the number
of arrivals typically displays a daily, weekly, or monthly recurring pattern.
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Figure 1, for instance, shows the daily fluctuations in arrival rate at the emer-
gency department of a regional hospital in Belgium [1]; other examples can
be found in Green et al. [2], Brown et al. [3], and Dietz [4], among others.
Apart from the time-varying nature of demand, additional complexities may
arise because of (1) the presence of customer impatience, which causes cus-
tomers to abandon before receiving service if their waiting time is too long
and (2) the general distribution of service and abandonment times.

The Poisson assumption is commonly used in the literature for the ar-
rival process, the service process, and the abandonment process (Kim and
Whitt [5], Ingolfsson et al. [6], Whitt [7], Garnett et al. [8]). Kim and Whitt
[5] largely justify this assumption for the arrival process, whereas Zeltyn
and Mandelbaum [9] and Hueter and Swart [10] use empirical data of
an emergency department and a restaurant setting to justify the use of an
exponential service time distribution. Yet, in many realistic settings, the
exponential assumption does not hold for the service and/or abandonment
processes. For instance, Brown et al. [3] report lognormal distributions and
Castillo et al. [11] report Erlang distributed service times and Mandelbaum
and Zeltyn [12] report good fits for the abandonment time distribution with
with Log-Pearson III and generalized gamma distributions.

Moreover, many existing models in the literature implicitly assume a pre-
emptive service discipline, such that service is interrupted and customers
rejoin the queue when a server leaves. An exhaustive service policy, where
servers complete their current service before leaving, is often more appropri-
ate (especially in service systems with human customers and servers). This
feature, however, is frequently overlooked in the literature [6, 13].
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Figure 1: Hourly average arrival rates at the emergency department of a
Belgian regional hospital
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Capacity planning models rely on a performance evaluation method as a
subroutine to assess the solution quality of any given capacity vector. There-
fore, performance analysis for systems with time-varying arrivals is highly
important when making capacity decisions. We refer to Green et al. [14],
Whitt [15], and Defraeye and Van Nieuwenhuyse [16] for extensive reviews
on capacity planning in time-varying systems.

This article presents a Markov model that approximates the transient
and periodic steady-state behavior of the G(t)/G(t)/s(t) + G(t) queue with
exhaustive service discipline and time-varying arrival, service, and abandon-
ment rates. The model evaluates the following time-varying performance
metrics: (1) the expected queue length, (2) the variance of the queue length,
(3) the expected number of abandonments, and (4) the virtual waiting time
distribution of a customer arriving at an arbitrary moment in time. Our ap-
proach extends the work of Ingolfsson et al. [6] and Ingolfsson [17], who apply
the randomization method introduced by Jensen [18] and Grassmann [19] to
systems with nonstationary arrival rates. Ingolfsson et al. [6] and Ingolfsson
[17] target M(t)/M/s(t) queues with an exhaustive service policy (an outline
on how to include customer impatience is provided, yet not implemented).

We refer to our model as G-RAND since it uses the randomization method
to analyze a queue with general interarrival, service, and abandonment time
distributions. To the best of our knowledge, this is the first analytical model
that studies a queue with an exhaustive service policy, customer impatience,
and generally distributed (time-varying) arrival, service, and abandonment
rates. Our model does not rely on heavy-traffic or many-server asymp-
totics that are commonly used in the literature, and is intended for small-
to medium-sized systems with human servers (e.g., banks, retail stores, or
small-scale call centers). Larger systems can be analyzed as well, albeit at a
higher computational cost.

The remainder of the article is organized as follows: Section 2 starts with
a brief overview of the literature on performance measurement in systems
with time-varying arrivals. In Section 3, we present an in-depth description
of the Markov model itself. Section 4 evaluates the accuracy of the model
by means of a computational experiment. Finally, in Section 5, we highlight
the main conclusions and suggest directions for further research.
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2. Related literature

Previous work has mainly focused on systems with time-varying arrival
rates. In this section, we provide a brief overview of the most popular per-
formance evaluation methods for such systems.

Stationary approximations are by far the most widely adopted approach.
The arrival rate that is fed into the stationary model can be, for instance, the
instantaneous arrival rate (as in the Pointwise Stationary Approximation or
PSA [20, 21, 7]) or the average arrival rate over a given interval (Stationary
Independent Period-by-Period or SIPP [22, 7]). However, time-varying sys-
tems typically display a time lag (or congestion lag): peaks in actual offered
load lag the arrival rate peaks, with an amount that is proportional to the
expected service time [23, 24]. Accounting for this lag can greatly improve
the accuracy of SIPP and PSA, particularly when service times are long (see
the lagged variants of SIPP and PSA [25, 23, 22]). The Modified Offered
Load (MOL) approximation accounts for the congestion lag by relying on
analytically tractable results for infinite server queues, which can be found
in Eick et al. [26, 27]. Further details on MOL can be found in Feldman et
al. [28], Jennings et al. [29], Liu and Whitt [30], Jagerman [31], Massey and
Whitt [32, 33], and Davis et al. [34]. Though stationary approximations are
straightforward and generally applicable, additional challenges may arise in
complex systems, for which the stationary model itself is intractable. For
instance, the applicability of MOL to the M(t)/G/s(t)+G model necessarily
relies on the availability and accuracy of approximations for the correspond-
ing stationary M/G/s+ G model (Whitt [35] and Iravani and Balciog̃lu [36]
provide approximations for this queue). We refer to Green et al. [14], Whitt
[15], and Defraeye and Van Nieuwenhuyse [16] for further references on the
stationary approximations available in the literature.

For the M(t)/M/s(t) system, performance can be evaluated by numeri-
cally integrating the Chapman-Kolmogorov forward equations, a set of Ordi-
nary Differential Equations (ODEs) that describe the behavior of the system
(see Gross et al. [37] for general background; Ingolfsson et al. [6] and Green
and Soares [38] provide a more thorough discussion). This can be achieved
using an ODE-solver such as the Euler or Runge-Kutta ODE solver from
the Matlab ODE Suite [39]. Ingolfsson et al. [6] show that this approach re-
quires substantial computational effort and suggest using the randomization
approach instead: this enables a drastic reduction in computational effort,
at the cost of a slightly lower accuracy. The randomization (or uniformiza-
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tion) approach was originally developed for stationary systems [18, 19, 40],
but can be applied successfully to nonstationary queues [17, 6]. In gen-
eral, methods that use randomization or that numerically solve ODEs, rely
heavily on Markovian assumptions. The majority of these methods use an
exponential distribution for the service and/or abandonment process. Izady
[41] describes how these methods can be extended to phase-type distribu-
tions, and concludes that the computational effort increases considerably (as
is confirmed by the results of our computational experiment, see Section 4).
Furthermore, these approaches currently do not take into account abandon-
ments (though Ingolfsson [17] provides an outline on how to accommodate
abandonments in the randomization approach).

Closure approximations [42, 43, 44] approximate the set of forward differ-
ential equations by a small number of differential equations. Rothkopf and
Oren [42], for instance, use one for the mean and one for the variance of the
number in system at each time instant. However, as shown in Ingolfsson et
al. [6], the approach is cumbersome to implement and is dominated by other
methods (such as MOL or randomization) in terms of both accuracy and
computation speed.

Discrete-Time Modeling (DTM) is used for performance evaluation of
systems with general service time distributions [45, 46, 47, 48, 49]. This
approach approximates the general service process by means of a discrete
process using a two-moment matching technique [46, 47]. Wall and Wor-
thington [49] report distinct advantages over stationary approximations such
as MOL and PSA, particularly when temporal overloading is present. The
complexity and computational effort of DTM, however, increase drastically
with the number of servers; Wall and Worthington [49] propose an approxi-
mation method to mitigate this effect. Note that the current DTM articles all
study the M(t)/G/s system (i.e., they assume a constant number of servers
and no abandonments).

Deterministic fluid models (intended for systems that do not display
stochasticity) can be used as approximations to derive time-dependent per-
formance in stochastic systems. These methods rely on so-called “fluid scal-
ing”: the system is scaled up (e.g., by multiplying the arrival rates and the
number of servers by the same factor) such that the stochastic randomness
decreases in importance relative to the system dynamics (see Helber and
Henken [50] for an example). Fluid approximations are particularly use-
ful to assess performance in systems that are temporarily overloaded [51],
but may fail to capture system dynamics accurately in underloaded systems
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[52, 53, 54]. Liu and Whitt [55] suggest an approach that works for over-
loaded as well as underloaded systems (separate models are applied in the
two situations). Additional literature on the use of fluid approximations for
Markovian models, can be found in Mandelbaum et al. [56, 57, 58, 59, 60],
Ridley et al. [61], and Jiménez and Koole [54]. For systems with general
service and/or abandonment time distributions, we refer to the more recent
work of Whitt [51] on G(t)/GI/s+ GI models (with state-dependent arrival
rates), Liu and Whitt [55, 62, 63, 64] on the G(t)/GI/s(t) + GI queue, Liu
and Whitt [65] for a network of G(t)/M(t)/s(t)+GI(t) queues, and references
therein. A key characteristic of fluid models is that arrivals and departures
are considered as continuous flows, rather than discrete processes (an as-
sumption that becomes more acceptable as the number of servers increases).
Although Liu and Whitt [55] report reasonably accurate results for a system
with 20 servers, the assumption of fluid scaling renders these approximations
less applicable to small-scale settings where the discreteness of capacity is an
essential characteristic of the system.

Finally, discrete-event simulation is frequently used (see, e.g., [66] for
a comprehensive textbook). The appeal of simulation lies in its inherent
flexibility to evaluate the performance of virtually any given system. As
such, simulation proves particularly useful in settings that are analytically
intractable. On the downside, simulation tends to be rather time-consuming,
both in terms of runtime and time required to build the model. The number
of replications to ensure reliable accuracy may be extremely large; Koop-
man [67] put forward this argument to highlight why numerically solving
ODEs should be preferred over simulation. Although simulation models are
commonly dedicated and context-specific (e.g., [68, 69, 70, 71, 72, 73] de-
scribe simulation applications in emergency departments with time-varying
arrivals), efforts are made to develop generic simulation models (e.g., [74, 75,
76, 77, 78]).

3. Model

In this section, we develop a phase-type (PH) approximation for the
G(t)/G(t)/s(t) + G(t) queue with exhaustive service discipline and aban-
donments. Analogous to the DTM models discussed in the previous section,
we observe the state of the system at discrete moments in time. The main
events that can take place at these observation moments are: arrivals, de-
partures (service completions or abandonments), and capacity changes (these
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basic processes are defined in Section 3.1). Unlike the DTM models, however,
we do not rely on discrete distributions, but use continuous-time PH distri-
butions to match the continuous system processes. The PH distributions,
described in Section 3.2, allow us to decompose a general distribution into a
set of exponential building blocks (so-called “phases”): because each phase
of a continuous-time PH distribution has an exponentially distributed visit-
ing time, the system processes are approximated by mixtures of exponential
distributions. A notable downside of DTM is that it requires keeping track
of each server individually. In our approach, however, this is not the case:
due to the memoryless property of the exponential distribution, it suffices to
keep track of the number of active servers associated with a given phase of
the service process.

Sections 3.3–3.6 detail how the system state is updated from one ob-
servation moment to the next. Our model requires a counting process to
determine the number of arrivals in a given interval (Section 3.3), a proce-
dure to determine the probability that a given number of customers advances
a phase (Section 3.4), and a procedure to determine which customers have
experienced the longest waiting time (Section 3.5). An in-depth discussion
of the model logic is given in Section 3.6. Section 3.7 explains why G-RAND
is an approximation.

Various time-varying performance metrics can be derived (i.e., the ex-
pected queue length, the variance of the queue length, the expected number
of abandonments, and the virtual waiting time distribution of a customer
arriving at an arbitrary moment in time). They are discussed in Section 3.8.
Appendix A provides an overview of the main notations, used throughout
the article.

3.1. Basic Processes

We observe the state of the system at discrete, equidistant moments in
time. The time between observation moments determines the granularity
(and hence the precision) of the model and is denoted by ∆. Define T =
{1, . . . , T}, the set of periods (where T is the last period; the period that
marks the end of the time horizon). There are four basic processes: (I) the
arrival process, (II) the service process, (III) the abandonment process, and
(IV) the staffing process. In the remainder of this article, Roman numerals
I, II, III, and IV are used to label these processes. At the start of any given
period, the parameters of the arrival, service, abandonment, and staffing
process are allowed to change. If such a change takes place, the start of the
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period corresponds to the start of a so-called “epoch”. For each process, we
thus partition the set of periods into a set of epochs, where each epoch is a set
of consecutive periods during which the process parameters do not change.
Let D(·) =

{
1, 2, . . . , D(·)} denote the set of epochs for a process (·), where

D(·) is the total number of epochs over the time horizon. For each process
(·), define td, the first period in epoch d, where t1 = 0 and ti < tj ≤ tD(·) ≤ T

for all i, j : i < j ≤ D(·). Function φ
(·)
t = i maps a period t onto an epoch

i, where i is the ongoing epoch at the start of period t (i.e., there exists
no epoch j for which ti < tj ≤ t). Figure 2 further illustrates the relation
between periods and epochs for an arbitrary process (·).

∆

1
(1)

2
(1)

3
(2)

t -1
(D-1)

t
(D-1)

t+1
(D)

4
(3)

D2 3

T
(D)

1
START OF

EPOCH

PERIOD
(EPOCH)

Figure 2: Relation between periods and epochs

Each epoch d of the arrival, service, and abandonment process is char-
acterized by an independent distribution G

(·)
d that has mean µ

(·)
d and stan-

dard deviation σ
(·)
d . Each epoch of the staffing process represents a so-called

“staffing interval” (during which staffing remains unchanged) and is associ-
ated with a number of servers sd : d ∈ D(IV). Note that ∆ has to be chosen
such that all staffing intervals are integer multiples of ∆. Figure 3 sum-
marizes the multi-server service system with time-varying interarrival times,
service times, abandonment times, and staffing levels.
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Figure 3: The G (t) /G (t) /s (t) + G (t) queueing system
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3.2. Phase-type distributions

We adopt continuous-time PH distributions to approximate the general
interarrival, service, and abandonment time distributions. Continuous-time
PH distributions use exponentially-distributed building blocks to approxi-
mate any positive-valued continuous distribution with arbitrary precision.
More formally, the set of PH distributions is dense in the set of nonnegative
distributions [79] and, in theory, any nonnegative distribution can be approx-
imated arbitrarily closely by a PH distribution [80]. For further details on
PH distributions, refer to Neuts [81], Nelson [79], Latouche and Ramaswami
[82], and Osogami [80].

A PH distribution may be seen as the distribution of time until absorption
in a Markov chain with absorbing state 0 and state space {0, 1, . . . , Z − 1, Z}.
It is fully characterized by parameters τ and R. τ is the vector of probabil-
ities to start the process in any of the Z transient states (i.e., phases) and
R is the transient state transition matrix. The infinitesimal generator of the
Markov chain representing the PH distribution is:

Q =

(
0 0
t R

)
,

where 0 is a zero matrix of appropriate dimension and t = −Re (with e a
vector of ones of appropriate size).

Various techniques exist to approximate a given distribution by means of
a PH distribution (for an overview, refer to Osogami [80], Osogami [83], and
Gerhardt and Nelson [84]). In this article, we adopt a two-moment matching
procedure that uses a minimum number of phases. Let C2 denote the squared
coefficient of variation of the distribution we want to approximate:

C2 = σ2µ−2. (1)

We distinguish three cases: (1) C2 = 1, (2) C2 > 1, and (3) C2 < 1. In the
first case, we approximate the distribution by means of an exponential distri-
bution with rate parameter λ = µ−1. The parameters of the corresponding
PH distribution are:

τ = 1,
R = (−λ) .

In the second case (C2 > 1), we use a two-phase Coxian distribution
where the rate parameter of the first phase is determined by means of a
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scaling factor κ:

λ1 =
1

µκ
, (2)

where κ ∈ [0, 1] and can be arbitrarily chosen. Unless mentioned otherwise,
we assume κ = 0.5. The expected value of the two-phase Coxian distribution
is:

µ = λ−1
1 + βλ−1

2 , (3)

where λ2 is the exponential rate parameter of the second phase and β is
the probability of visiting the second phase. The variance of the two-phase
Coxian distribution is:

σ2 = λ−2
1 + 2βλ−2

2 − β2λ−2
2 . (4)

When deriving parameters λ2 and β as a function of parameters µ, C2, and
κ, we obtain:

λ2 =
2 (κ− 1)

µ (2κ− 1− C2)
, (5)

β =
2 (κ− 1)2

1 + C2 − 2κ
. (6)

The parameters of the corresponding PH distribution are:

τ = e1,

R =

(
−λ1 βλ1

0 −λ2

)
,

where e1 is the first unit vector.
In the third case (C2 < 1), we use a hypo-exponential distribution (a

convolution of exponential distributions whose parameters are allowed to
differ; a generalization of the Erlang distribution). The number of required
phases equals:

Z = dC−2e. (7)

We assume that the first Z − 1 phases of the hypo-exponential distribu-
tion are exponentially distributed with rate parameter λ1. The last phase is
exponentially distributed with rate parameter λ2. The expected value and
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variance of the hypo-exponential distribution are:

µ = (Z − 1)λ−1
1 + λ−1

2 , (8)

σ2 = (Z − 1)λ−2
1 + λ−2

2 . (9)

When deriving parameters λ1 and λ2 as a function of parameters µ, C2, and
Z, we obtain:

λ1 =
(Z − 1)−

√
(Z − 1) (ZC2 − 1)

µ (1− C2)
, (10)

λ2 =
1 +

√
(Z − 1) (ZC2 − 1)

µ (1− ZC2 + C2)
. (11)

The parameters of the corresponding PH distribution are:

τ = e1,

R =



−λ1 λ1 0 · · · 0 0 0
0 −λ1 λ1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −λ1 λ1 0
0 0 0 · · · 0 −λ1 λ1

0 0 0 · · · 0 0 −λ2


.

For the three cases, Z equals 1, 2, and dC−2e respectively. Figure 4 provides
an overview of the PH distributions that are used in this article.

Many other two-moment matching procedures are available in the liter-
ature. These procedures typically rely on a mixture of Erlang distributions
if C2 is smaller than 1 (see Marie [85] and Johnson and Taaffe [86, 87], for
instance) and use hyperexponential distributions (e.g., Sauer and Chandy
[88] and Whitt [89]) or two-phase Coxian distributions (e.g., Altiok [90]) if
C2 is larger than 1. In Section 4.4 we further discuss the impact of our fitting
procedures on the accuracy of our model.

Note that, although in this article we limit ourselves to the use of simple
PH distributions, G-RAND can easily be extended to work with any acyclic,
continuous-time PH distribution. Therefore, our model can also be used to
assess the queueing behavior of systems where general processes are approx-
imated by more complex PH distributions (albeit at a higher computational
cost, if more phases are required).
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Figure 4: Overview of PH distributions

3.3. Counting process

We use a counting process to obtain Pr (x, v|u, d), the probability of hav-

ing x arrivals during an interval t (of length ∆) for which φ
(I)
t = d, and an

arrival process at final phase v given that the arrival process starts in phase
u and is modeled using a PH distribution with parameters τ

(I)
d and R

(I)
d .

The counting process has continuous-time rate matrix [91]:

Qd =


Ld Fd 0 0 · · ·
0 Ld Fd 0 · · ·
0 0 Ld Fd · · ·
0 0 0 Ld · · ·
· · · · · · · · · · · · . . .

 ,

where Ld = R
(I)
d and Fd = t

(I)
d

(
τ

(I)
d

)>
. Cd holds the transition probabilities

of the counting process during an interval of length ∆ during epoch d, and
may be obtained using randomization (see for instance Grassmann [19] and
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Van Moorsel [92]):

Cd = e∆Qd , (12)

=
∞∑
i=0

∆i

i!
Qi
d, (13)

= e−∆λd,max

∞∑
i=0

(∆λd,max)i

i!
Pi
d, (14)

where λd,max = −min (Diag (Rd)) and Pd is obtained as follows:

Pd =
Qd

λd,max

+ I, (15)

where I is an identity matrix of appropriate dimension.
The first block row of Cd holds the distribution of the number of arrivals

(i.e., probabilities Pr (x, v|u, d)). In order to obtain the first block row of Cd,

it suffices to compute P
(i)
d,1, the first block row of Pi

d, for all i ≥ 0. For i = 0,

the first block row of Pi
d is defined as follows:

P
(0)
d,1 = (I 0d,1) , (16)

where 0d,1 is a zero-matrix with infinite number of columns and a number of
rows equal to the number of phases in the PH distribution with parameters
τ

(I)
d and R

(I)
d . For i > 0, P

(i)
d,1 is obtained using the Chapman-Kolmogorov

equations (see Latouche and Ramaswami [82] and Tijms [93] for instance):

P
(i)
d,1 =

(
Ld

λd,max

+ I

)
P

(i−1)
d,1 +

(
0d

Fd

λd,max

P
(i−1)
d,1

)
, (17)

where 0d is a square zero-matrix with a number of columns/rows equal to

the number of phases in the PH distribution with parameters τ
(I)
d and R

(I)
d .

3.4. Procedure to determine the probability of advancing a phase

The following procedure is used to determine the probability to advance a
phase in the service and abandonment processes. Let Pr (y|x, u, d)(·) denote
the probability that y customers successfully complete phase u of process (·)
during an interval of length ∆, given that x customers are present in phase
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u at the start of the interval and that the process is modeled using a PH
distribution with parameters τ

(·)
d and R

(·)
d .

In order to compute Pr (y|x, u, d)(·), we use a Markov process that has
infinitesimal generator:

Q
(·)
d,u =



−yλ(·)
d,u yλ

(·)
d,u · · · 0 0 0

−(y − 1)λ
(·)
d,u (y − 1)λ

(·)
d,u · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · −2λ
(·)
d,u 2λ

(·)
d,u 0

0 0 · · · 0 −λ(·)
d,u λ

(·)
d,u

0 0 · · · 0 0 0


,

where λ
(·)
d,u is the exponential rate that corresponds to the u-th phase of a

PH distribution with parameters τ
(·)
d and R

(·)
d . C

(·)
d,u holds the transition

probabilities after an interval of length ∆ during epoch d. The first row
of C

(·)
d,u holds the distribution of the number of successes (i.e., probabilities

Pr (y|x, u, d)(·)) and may be obtained using an approach similar to the one
outlined in the Section 3.3.

3.5. Procedure to determine which customers have experienced the longest
waiting time

In this section, we determine Pr (bs|b, d), the probability that bs contains
the distribution of customers who have experienced the longest waiting time,
given that (1) b is the distribution of customers over the different phases
of the abandonment process and (2) the abandonment process is modeled

using a PH distribution with parameters τ
(III)
d and R

(III)
d . In order to obtain

Pr (bs|b, d), we first need to determine Pr (eu|b, d), the probability that a
customer in abandonment phase u has waited the longest, given that the
abandonment process is modeled using a PH distribution with parameters
τ

(III)
d and R

(III)
d (where eu is the u-th unit vector).

If the abandonment process requires only a single phase (i.e., if Z
(III)
d = 1),

Pr (e1|b, d) = 1 for all b ∈ B. If Z
(III)
d = 2, a customer in the first phase has

waited longer than any of the customers in the second phase if two criteria
are met. First, the waiting time of the customer has to be larger than the
maximum time that was spent in the first phase by any of the customers who

14



are currently in the second phase. This occurs with probability:

b1

b1 + b2

,

where bu is the u-th entry of vector b. Second, the waiting time of the
customer has to be larger than the maximum time that has already been
spent in the second phase by any of the customers who are currently in the
second phase. This occurs with probability:

∞∫
0

g
(
x|b1, λ

(III)
d,1

) x∫
0

g
(
y|b2, λ

(III)
d,2

)
dy dx,

where g (x|n, λ) is the probability density function of the maximum of n i.i.d.

exponential distributions with rate parameter λ. Note that if λ
(III)
d,1 = λ

(III)
d,2 :

b1

b1 + b2

=

∞∫
0

g
(
x|b1, λ

(III)
d,1

) x∫
0

g
(
y|b2, λ

(III)
d,2

)
dy dx.

If λ
(III)
d,1 6= λ

(III)
d,2 , the probability can be evaluated numerically. Due to the

memoryless property of the exponential distribution, both events (i.e., meet-
ing the first and the second criterion) are independent and therefore, proba-
bilities Pr (eu|b, d) can be obtained as follows:

Pr (e1|b, d) =
b1

b1 + b2

∞∫
0

g
(
x|b1, λ

(III)
d,1

) x∫
0

g
(
y|b2, λ

(III)
d,2

)
dy dx, (18)

Pr (e2|b, d) = 1− Pr (e1|b, d) . (19)

Note that:

• if b1 > 0 and b2 = 0, Pr (e1|b, d) = 1 and Pr (e2|b, d) = 0,

• if b1 = 0 and b2 > 0, Pr (e1|b, d) = 0 and Pr (e2|b, d) = 1,

• if b1 = 0 and b2 = 0, Pr (e1|b, d) = 0 and Pr (e2|b, d) = 0,

• if customers in the second phase do not visit the first phase, only the
second criterion has to be met.
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If Z
(III)
d > 2, a similar logic may be applied in order to obtain Pr (eu|b, d).
Given Pr (eu|b, d), Pr (bs|b, d) can be computed recursively:

Pr (bs|b, d) =

Z
(III)
d∑
u=1

Pr (bs − eu|b, d) Pr (eu|b, d) . (20)

3.6. Model building blocks

Let (a,k,b)t denote the state of the system at the start of period t,
where (1) a is the phase of the arrival process, (2) k is a vector that holds
the number of customers in each service phase, and (3) b is a vector that
holds the number of customers in each abandonment phase. K and B are
the sets of all possible vectors k and b respectively. In addition, define
π (a,k,b)t, the probability to visit state (a,k,b)t. The maximum dimension
of the state space at the start of any period depends on (1) the maximum

number of phases of the arrival process Z
(I)
max, (2) the maximum number of

phases of the service process Z
(II)
max, (3) the maximum number of phases of

the abandonment process Z
(III)
max , (4) the maximum number of servers smax,

and (5) the maximum number of customers allowed in queue Qmax.
In order to determine the state of the system at the start of a period t, we

propose a stepwise procedure in which the arrival, service, and abandonment
process are decomposed and are processed independently. After each step,
the state of the system is updated. The stepwise procedure executes the
following steps in sequence:

1. Initialization.

2. Activate or deactivate servers if necessary.

3. Arrival of customers.

4. Service of customers.

5. Abandonment of customers.

To make a transition from a state (a,k,b)t towards a state (a,k,b)t+1, we
manipulate the statespace for each of these steps. We use temporary proba-
bility vectors π (1− δ, a,k,b) and π (δ, a,k,b) (where δ is a binary variable,
π (1− δ, a,k,b) is the probability vector that represents the state of the
system before manipulation, and π (δ, a,k,b) is the probability vector that
represents the state of the system after manipulation). Our method requires
the state of the system to be stored only before and after each manipulation,
which enables significant memory savings. This is of critical importance, as
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it is often infeasible to store the state space over the entire time horizon
(even for small instances). After each state space manipulation, the binary
variable δ is updated as follows: δ = 1− δ.

3.6.1. Initialization

During the initialization step, we initialize the temporary probability vec-
tors. More formally, we let π (1− δ, a, s,b) = 0 and π (δ, a, s,b) = π (a, s,b)t
for all s ∈ S, b ∈ B, and a ∈

{
1, . . . , Z

(I)
φt

}
.

3.6.2. Activate or deactivate servers

If the staffing process changes, two options arise: (1) new servers become
available or (2) the number of servers decreases.

If new servers become available, waiting customers are selected according
to a first-come first-serve (FCFS) policy (i.e., we select those customers who
have experienced the longest waiting time). From Section 3.5, we obtain
probabilities Pr (bs|b, d). Using these probabilities, we can determine the
state of the system after new servers have become available (the transition
probability is indicated above the arrow):

(1− δ, a,k,b)
Pr(bs|b)

φ
(III)
t−−−−−−−→ (δ, a,k + nbse1,b− bs) ,

with nbs the sum of all entries in vector bs:

nbs = tr (bsI) , (21)

where tr is the matrix trace operator. We assume that customers who enter
service, start in the first phase of the service process, however, it is easy to
adapt the model to allow service to start in another phase as well.

In case of a decrease in capacity, we need to account for the exhaustive
service policy: servers complete a customer’s service, even if they are se-
lected to leave. We adopt an approach that is similar to the technique used
by Ingolfsson [17]: since servers that work overtime no longer influence the
performance of future customers, these are removed from the system (along
with the customers they serve). Although in reality, these customers are still
in the system, this modification is necessary to correctly calculate other per-
formance measures (such as the distribution of the virtual waiting time, see
Section 3.8). Whereas Ingolfsson [17] randomly removes servers (which can
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be idle or busy), we accommodate a decrease of x servers by first removing
idle servers (if any). If insufficient idle servers are available, c(x,k,t) active
servers are removed:

c(x,k,t) = max (0, x− st + nk) , (22)

where nk = tr (kI) and st − nk represents the number of idle servers. Given
a distribution of customers k over the different phases of the service process,
the probability to remove a server that is processing a customer who is in
phase u of his service process equals:

Pr (u|k) =
ku
nk

, (23)

where ku is the u-th entry of vector k. For each active server that is removed,
the following state-space manipulation is performed:

(1− δ, a,k,b)
Pr(u|k)−−−−→ (δ, a,k− eu,b) ,

The exhaustive service policy can be implemented in other ways, depend-
ing on which servers are removed when capacity decreases: e.g., random se-
lection, selecting idle servers, or selecting servers with the smallest remaining
processing times first. G-RAND is not restricted to the implementation de-
scribed above, and could be modified to accommodate alternative disciplines.

3.6.3. Arrival, service, and abandonment of customers

From the counting process discussed in Section 3.3, we obtain probabil-
ities Pr (x, v|u, d). Using these probabilities, we can determine the state of
the system after arrivals have taken place. Because the size of the queue is
limited to Qmax customers, we impose a reflecting boundary (i.e., whenever
x customers arrive, with x ≥ Qmax − nb, the resulting queue length equals
Qmax). More formally:

(1− δ, u,k,b)
Pr

(
x,v|u,φ(I)t

)
−−−−−−−−→

{
(δ, v,k,b + xe1) if Qmax ≥ nb + x,
(δ, v,k,b + (Qmax − nb) e1) otherwise.

Customers in service are only allowed to advance a single phase during an
interval of length ∆. The probabilities of advancing a phase (i.e., probabilities

Pr (y|x, u, d)(·)) are obtained from the procedure given in Section 3.4. For
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each phase, a state-space manipulation is performed and phases are processed
in reverse order. Customers who are in the last phase of their service process
complete service (note that Z

(II)
φt

is the last phase of the service process):

(1− δ, a,k,b)
Pr(x|ku,u,φt)(II)−−−−−−−−−→

{
(δ, a,k− xeu,b) if ku > 0 ∧ u = Z

(II)
φt
,

(δ, a,k,b) otherwise.

If the service process is modeled using a hypo-exponential distribution,
customers who are not in the last phase of their service process advance a
phase:

(1− δ, a,k,b)
Pr(x|ku,u,φt)(II)−−−−−−−−−−−→

{
(δ, a,k− xeu + xeu+1,b) if ku > 0 ∧ 1 ≤ u < Z

(II)
φt

,

(δ, a,k,b) otherwise.

If the service process is modeled using a two-phase Coxian distribution, there
is a probability that customers in the first phase complete service instead of
advancing a phase. The probability of completing service equals 1 − β

(II)
φt

.
The probability that y out of x customers complete service is binomially
distributed and equals:

Pr (y|x, φt)(II) =
x!

y! (x− y)!

(
1− β(II)

φt

)y (
β

(II)
φt

)x−y
. (24)

The state-space transitions are summarized as follows:

(1− δ, a,k,b)
Pr(x|ku,u,φt)(II)Pr(y|x,φt)(II)−−−−−−−−−−−−−−−−→ (δ, a,k− xeu + (x− y) eu+1,b) .

After service completion, waiting customers are taken into service (i.e., servers
are activated; see Section 3.6.2).

With respect to the abandonment process, customers waiting in queue
can only advance a single abandonment phase during an interval of length
∆. The state space manipulations are analogous to the ones described for
the service process.

After the abandonment step, probabilities π (a,k,b)t+1 are readily avail-
able:

π (a,k,b)t+1 = π (δ, a,k,b) . (25)

3.7. Model discussion

We emphasize that the presented model is an approximation because of
the following reasons:
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• The general arrival, service, and abandonment processes are approxi-
mated by means of PH distributions. Within each period, the time-
varying rates are assumed to remain constant.

• We assume a finite queue length (in heavily-loaded or in large-scale
systems, the finite queue size may need to be very large to maintain
accuracy).

• The arrival, service, and abandonment process are decomposed and are
processed independently, using a stepwise procedure. As a result, any
interaction between the different processes during an interval of length
∆ is not taken into account.

• We assume that any phase in the service and abandonment process
takes at least one interval to complete. Therefore, PH distributions
that have short phases, require lower values of ∆ in order to maintain
accuracy.

Clearly, the error that is induced by the two last assumptions tends to zero
as ∆ approaches zero.

3.8. Performance measures

Because of the computational effort involved, performance metrics are not
necessarily evaluated at the start of every period t ∈ T. Instead, we measure
the performance at intervals w ∈ W, with W ⊆ T the set of performance
intervals. Define ϕ

(·)
w = i, the function that maps a performance interval w

onto an epoch i, where i is the ongoing epoch of process (·) at the start of
performance interval w. We obtain the following performance measures: (1)
the time-average expected queue length, (2) the expected queue length at the
start of performance interval w, (3) the time-average variance of the expected
queue length, (4) the variance of the queue length at the start of performance
interval w, (5) the expected number of abandonments during performance
interval w, and (6) the waiting time distribution of a virtual customer arriving
at the start of performance interval w. The virtual waiting time at the start
of period t is defined as the time a virtual customer spends in queue if he
were to arrive at the start of period t (cf. Gross et al. [37] and Campello
and Ingolfsson [94]). The expected queue length at the start of performance
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interval w equals:

Qw =

Z
(I)
ϕw∑
a=1

∑
k∈K

∑
b∈B

π (a,k,b)w nb. (26)

The time-average expected queue length is approximated by:

Q =
1

T

T∑
t=1

Qt, (27)

where Qt denotes the queue length at the start of period t.
The variance of the queue length at performance interval w equals:

Vw =

Z
(I)
ϕw∑
a=1

∑
k∈K

∑
b∈B

π (a,k,b)w (nb −Qw)2 . (28)

The time-average variance of the queue length is approximated by:

V =
1

T

T∑
t=1

Vt, (29)

where Vt denotes the variance of the queue length at the start of period t.
LetAw denote the expected number of abandonments during performance

interval w. Aw can easily be computed during the abandonment step by
keeping track of the transitions in which customers abandon the queue.

Define Pr (Ww = h), the probability that a virtual customer who ar-
rives at the start of performance interval w receives service during interval
w + h (i.e., the virtual customer receives service after waiting h intervals of
length ∆). In addition, let Wmax denote the user-defined maximum waiting
time over which probabilities Pr (Ww = h) are observed. In order to obtain
Pr (Ww = h), we use a quasi-death process and stop the arrival process at the
start of performance interval w. The first period during which a server be-
comes idle defines the waiting time of the virtual customer. More formally,
the virtual waiting time equals h∆ where h is the first integer for which
Nw+h < sw+h (where Nw+h denotes the number of customers in system after
h∆ time units if the arrival process is stopped at the start of performance
interval w; note that Nw+h does not include customers serviced by servers
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working overtime). The analysis of the quasi-death process requires a signifi-
cant computational effort, especially for large values of Wmax. Note, however,
that the quasi-death process does not need to be analyzed in order to com-
pute the delay probability (the delay probability is given by 1−Pr (Ww = 0)
and may be obtained by setting Wmax = 0).

G-RAND enables both the transient and the periodic steady-state analy-
sis of the G(t)/G(t)/s(t)+G(t) queue. To reach steady state, the model may
have to run for multiple consecutive “cycles” (each with a length equal to the
time horizon T∆). Let cmax denote the number of cycles after which steady-
state results are obtained. In addition, define εc, the relative difference in
queue lengths for cycles (c− 1) and c:

εc =
T∑
t=1

∣∣∣∣1− Qt,c
Qt,c−1

∣∣∣∣ , (30)

where Qt,c denotes the expected queue length at the start of period t in cycle
c. If εc is smaller than the (user-specified) parameter εmax, cycle c is the last
cycle and steady-state results have been obtained. In other words, cmax is the
smallest integer for which εcmax < εmax. In the case of a transient analysis,
the user can specify the number of cycles that need to be processed.

4. Results

We use a simulation study to assess the accuracy of the model over a set
of 162 problem instances. Both the Markov model and the simulation model
are implemented in Visual Studio C++. All tests are performed on an AMD
Phenom II 3.40 GHz computer, with 4 GB RAM.

In what follows, we first describe the computational experiment (Sec-
tion 4.1) and discuss the main drivers of model accuracy and computation
speed (Section 4.2). Next, we evaluate the model and elaborate further on
the trade-off between accuracy and computation times (Section 4.3). Finally,
we discuss the impact of the PH matching procedure on the accuracy of the
model (Section 4.4).

4.1. Experimental setting

Table 1 provides an overview of the parameter settings that are used to
construct the test set. The parameters give rise to 162 problem instances
that are representative of small- to medium-sized systems. Each instance
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covers a one-day time horizon (i.e., 1,440 minutes) which is divided into
smaller periods of length ∆. In the experiment, ∆ ranges from 0.0625 to 1
minute. The arrival rate is piecewise constant over 10-minute intervals and
the staffing interval has a length of 30 minutes.

The time-varying arrival rate λ
(I)
t is modeled as a discretized sine function

with cycle equal to T∆. Let RA(I) ≡ A/λ̄(I) denote the relative amplitude,
with A the absolute amplitude and λ̄(I) the average arrival rate over the time
horizon. More formally:

λ
(I)
t =

λ̄(I)

2

(
2 + RA(I) sin

(
2πt

T∆

)
+ RA(I) sin

(
2π (t+ 1)

T∆

))
. (31)

Note that λ̄(I) is determined uniquely by the average capacity c̄, the average
service rate λ̄(II), and the average traffic intensity ρ̄ ≡ λ̄(I)/

(
c̄λ̄(II)

)
. Given the

parameter settings in Table 1, it follows that λ̄(I) ranges between 1 and 57 cus-
tomers per hour. To limit the size of the test set, we assume that all processes
have the same C2 (i.e., 0.5, 1, or 2) and that the distribution parameters of
the service and the abandonment process remain constant throughout the
day. We emphasize that G-RAND is not limited to these C2-values and that
it is possible to analyze time-varying service and/or abandonment processes
as well.

The staffing process is modeled as a discretized sine function with relative
amplitude RA(IV). As such:

ct =
c̄

2

(
2 + RA(IV) sin

(
2πt

T∆

)
+ RA(IV) sin

(
2π (t+ 1)

T∆

))
. (32)

Note that the capacity function is not shifted compared to the arrival rate
function (which could be done to account for the commonly observed con-
gestion lag).

The size of the queue (i.e., Qmax) is either a characteristic of the system
itself (e.g., a limited number of phone lines in a call center) or it is a function
of the desired level of accuracy (i.e., if Qmax is set too small, many of the
arriving customers do not join the queue and therefore do not receive service;
they are “reflected”). In the experiment, we set Qmax = 25. Over all problem
instances that we tested, the probability of an arrival being reflected is at
most 0.00006 per cycle. Preliminary computational experiments may be
required to determine an appropriate value for Qmax in other settings.
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Parameter Values

Time horizon T∆ (in min) 1440
Period length ∆ (in min) {0.0625, 0.125, 0.25, 0.5, 1}
Epoch length (arrival process, in min) 10
Epoch length (staffing process, in min) 30
Performance interval length (in min) 1 for Qw, Vw, and Aw; 30 for Pr (Ww = h)

Relative amplitude RA(I) 0.5

Average service rate λ̄(II) (customers/hour) {1, 2, 6}
Average abandonment rate λ̄(III) {0.5λ̄(II), λ̄(II)}
Average capacity c̄ {2, 5, 10}
Relative amplitude RA(IV) 0.5

Average traffic intensity ρ̄ ≡ λ̄(I)/
(
c̄λ̄(II)

)
{0.5, 0.75, 0.95}

Squared coefficient of variation C2 {0.5, 1, 2}
Maximum waiting time Wmax (in min) 30
Maximum allowed deviation εmax 0.0001
Maximum queue length Qmax 25

Table 1: Parameter settings used in the computational experiment

We assessed the accuracy of the following time-varying performance met-
rics: (1) the expected queue length Qw, (2) the variance of the queue length
Vw, (3) the expected number of abandonments Aw, and (4) the delay prob-
ability Pr (Ww > 0). The computation of the delay probabilities themselves
is generally straightforward; in our experiment, however, they are calculated
together with probabilities Pr (Ww = h), which requires a computationally
intensive quasi-death process. As such, we opt to measure the delay proba-
bilities every 30 minutes. For all other performance measures (i.e., Qw, Vw,
and Aw), we use a one-minute performance interval.

The results of our model are compared with the results of an accurate
simulation model that uses 1,000,000 independent replications (the maxi-
mum halfwidth of the confidence interval on the time-varying expected queue
length is 0.00666). As in the Markov model, the simulation starts with an
empty system and continues until steady state is reached. Only the data in
the last cycle is retained, the other cycles may be considered as a warm-up
period. The simulation model uses the same distributions as G-RAND (i.e.,
hypo-exponential, exponential, and two-phase Coxian distributions). This
allows us to evaluate the accuracy of the model without interference of the
PH matching procedure (refer to Section 4.4 for a discussion of the impact
of the PH matching procedure on model accuracy). We emphasize that G-
RAND can easily be adapted to work with other PH distributions and that
other moment-matching approaches can be applied.

Let QSIM
t denote the simulated expected queue length at the start of
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period t. The Relative Error (RE) of the expected queue length at the start
of period t then can be expressed as:

REt =

∣∣QSIM
t −Qt

∣∣
QSIM
t

. (33)

To obtain an aggregate performance metric over the time horizon, REt is
weighted with the queue length. As such, the Weighted Relative Error
(WRE) of the queue length for a given problem instance is defined as follows:

WRE =
T∑
t=1

 QSIM
t

T∑
t=1

QSIM
t

REt

 =

T∑
t=1

∣∣QSIM
t −Qt

∣∣
T∑
t=1

QSIM
t

. (34)

The weighted relative error of the other metrics can be derived analogously.

4.2. Drivers of accuracy and computation speed

We distinguish three main drivers of accuracy and computation speed:

1. The length of ∆.

2. The size of the state space.

3. The approximations used in the model.

The choice of ∆ determines the frequency at which the system is observed.
Evidently, larger values of ∆ lead to shorter computation times. Accurate
results, however, can only be obtained if ∆ is sufficiently small. Because
service and abandonment processes are only allowed to advance a single phase
during an interval of length ∆ (see Section 3.7), accuracy will decrease if ∆
is set too large. In addition, the arrival, service, and abandonment process
are processed independently, using a stepwise procedure (see Section 3.6).
As a result, the interaction between the different processes is not taken into
account and the accuracy of the model decreases as more events are allowed
to aggregate in between observation moments (i.e., if ∆ is set too large and/or
if the event frequency is too high).

The size of the state space only impacts the computation time. The state
space grows linearly with the maximum capacity, the maximum queue length,
and the required number of phases in the arrival, service, and abandonment
processes.

25



As the performance measures are calculated at each performance interval,
an increase in the number of performance intervals will also increase the re-
quired computation time. This is particularly evident when calculating the
virtual waiting time distribution as it involves the evaluation of a compu-
tationally intensive quasi-death process. Note that the computation times
reported in this study include the computation of all aforementioned perfor-
mance measures. Moreover, computation speed depends on the number of
cycles needed to reach steady state. In our experiment, however, the model
consistently terminates after 4 cycles.

4.3. Model accuracy and results

Figure 5(a) presents a box-and-whisker diagram of the WRE of the ex-
pected queue length, for different values of ∆ (more detailed results can be
found in Table 2). It is clear that the proposed method yields highly accurate
results, provided that ∆ is sufficiently small. Figure 6(a) shows the required
CPU times in terms of ∆. We observe a distinct trade-off between accuracy
and computational effort. In the remainder of this section, we further analyze
this trade-off.
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Figure 5: WRE of the expected queue length as a function of ∆ and C2

The lower quantiles of Figure 5(a) show that even for high values of ∆,
the model can yield accurate results. From Table 2 and Figure 5(b) it is
clear that the performance is worst for the instances with C2 = 0.5. If
C2 = 0.5, processes are modeled using a series of exponential distributions
(see Section 3.2). The mean of these exponential distributions is smaller than
the mean of the approximated distribution. As such, the event frequency
increases and smaller values of ∆ are required to obtain accurate results.
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C2 = 0.5 C2 = 1 C2 = 2

∆ = 0.0625
Min 0.002 0.001 0.003
Avg 0.009 0.004 0.009
Max 0.040 0.018 0.021

∆ = 0.125
Min 0.002 0.001 0.003
Avg 0.012 0.005 0.009
Max 0.046 0.022 0.022

∆ = 0.25
Min 0.003 0.001 0.003
Avg 0.019 0.008 0.010
Max 0.067 0.032 0.028

∆ = 0.5
Min 0.007 0.002 0.003
Avg 0.036 0.015 0.014
Max 0.126 0.059 0.051

∆ = 1
Min 0.012 0.004 0.003
Avg 0.074 0.029 0.028
Max 0.277 0.120 0.117

Table 2: WRE of the expected queue length, as a function of C2
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Figure 6: CPU times as a function of ∆ and C2

Figure 6(b) and Table 3 show that the CPU times increase drastically
for non-exponential settings. This is no surprise, as the state space grows
linearly with the number of phases. Figure 6(a), however, shows that the
CPU times are still smaller than those of the simulation model.
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C2 = 0.5 C2 = 1 C2 = 2

∆ = 0.0625
Min 37.44 3.354 149.2
Avg 1,336 53.71 1,115
Max 4,664 153.8 2,720

∆ = 0.125
Min 18.67 1.685 74.66
Avg 677.7 26.82 565.6
Max 2,411 76.94 1,372

∆ = 0.25
Min 9.407 0.827 37.21
Avg 346.7 13.43 279.5
Max 1,224 38.42 692.0

∆ = 0.5
Min 4.695 0.405 18.52
Avg 172.2 6.722 144.1
Max 614.6 19.28 347.5

∆ = 1
Min 2.324 0.202 9.235
Avg 86.78 3.348 70.44
Max 333.7 9.579 176.2

Simulation
Min 266.5 216.6 261.7
Avg 993.5 633.9 1,020
Max 3,978 2,101 3,951

Table 3: CPU time (in sec), as a function of C2

Figure 7 presents the WRE for the variance of the queue length, the
expected number of abandonments, and the delay probability, as a function
of ∆ and C2 (more detailed results are shown in Table 4). The results are
similar to what we observed for the expected queue length (cf. Figures 5(a)
and 5(b)): the WRE depends on the choice of ∆ and the model is least
accurate for C2 = 0.5. The expected number of abandonments and the delay
probability are markedly more accurate than the other metrics, hence, larger
∆-values may suffice to maintain an acceptable level of accuracy. The largest
WREs are observed for the variance of the queue length.

Next, we evaluate how the parameters in Table 1 affect the trade-off
between accuracy and computation time. Figure 8 plots the trade-off between
the accuracy and computation time of the expected queue length, for different
values of the average utilization, the average service, the average capacity,
and the average abandonment rate. In each plot, every observation point
represents the combination of WRE and CPU time for a given value of ∆,
averaged over all instances with a given parameter setting.

Figures 8(a) and 8(c) show that lower utilizations and/or capacity levels
require less computational effort. This is not surprising, as lower utiliza-
tions and/or capacity levels also result in a smaller state space. The average
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(c) Expected abandonments
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(d) Expected abandonments
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(e) Delay probability
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(f) Delay probability

Figure 7: WRE as a function of ∆,
and as a function of C2 (for ∆ = 0.0625)
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Figure 8: Trade-off between accuracy and computation time (expected
queue length)

service rate (see Figure 8(b)) and the average abandonment rate (see Fig-
ure 8(d)) do not impact the required computational effort. Figure 8(a) shows
that lower utilizations result in a smaller accuracy for larger values of ∆. If
utilization is low, the interaction between processes becomes more and more
important and smaller values of ∆ are required in order to maintain accu-
racy (see Section 4.2). Figure 8(b) and 8(c) show that smaller service rates
and/or capacity yield a better accuracy. Again, this is not surprising, as a
decrease in service rate and/or capacity results in a smaller event frequency.
Figure 8(d) shows that the abandonment rate does not impact the compu-
tational effort required to obtain a given level of accuracy. On the one hand,
small abandonment rates decrease the event frequency. They, however, also
increase the utilization.

We can conclude that the trade-off between accuracy and computation
time is mainly influenced by (1) the event frequency, (2) the C2-values of
the arrival, service, and abandonment process, and (3) the size of the state
space. As a result, the model is most effective in settings with low service
rate and/or low capacity (although other settings can also be accurately
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analyzed).

4.4. Impact of the PH matching procedure on model accuracy

In this section, we evaluate the impact of the PH matching procedures
introduced in Section 3.2 on the accuracy of G-RAND. For this purpose, we
replicate the experiment outlined in Section 4.1, using a lognormal distri-
bution for the service and/or abandonment process. We use an exponential
distribution to model the arrival process (as is common in the academic lit-
erature [7, 8, 6]; Kim and Whitt [5] show that this assumption is consistent
with empirical arrival processes observed in call centers and emergency de-
partments). In order to simulate the lognormal service and/or abandonment
process, we adopt the following two-moment matching procedure:

σln =
√

ln (1 + C2), (35)

µln = ln (µ)− σ2
ln

2
, (36)

where σln and µln are the shape and location parameter of the lognormal
distribution respectively. Note that the skewness and excess kurtosis of the
lognormal distribution only depend on σln and hence, are defined by C2 (i.e.,
no matter the mean, the skewness and excess kurtosis remain the same as
long as C2 does not change). The same holds for the PH distributions de-
fined in Section 3.2. Table 5 compares the skewness and the excess kurtosis
of the lognormal distribution (used in the simulation) and the PH distribu-
tions (used in G-RAND; for the two-phase Coxian distribution, we used a
scaling factor κ = 0.5). It is clear that significant differences exist. In what
follows, we analyze how these differences impact performance and explore
how accuracy can be improved.

Lognormal distribution PH distribution

C2 Skewness Excess kurtosis Skewness Excess kurtosis

0.5 2.475 12.56 1.414 3.000
1 4.000 38.00 2.000 6.000
2 7.071 156.0 3.359 16.50

Table 5: Skewness and excess kurtosis of the lognormal distribution and the
PH distributions for various values of C2
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Each instance is simulated using 1,000,000 independent replications, such
that the confidence interval halfwidths on the time-varying expected queue
lengths are sufficiently small to conclude that the simulated metric closely
approximates the “true” value (as is shown in Table 6 the largest confidence
interval halfwidth is 0.00923).

Simulated queue C2 = 0.5 C2 = 1 C2 = 2

PH(t)/PH(t)/s(t) + PH(t)
Min 0.00005 0.00016 0.00026
Avg 0.00157 0.00180 0.00204
Max 0.00663 0.00617 0.00666

M(t)/LN(t)/s(t) + LN(t)
Min 0.00020 0.00017 0.00014
Avg 0.00222 0.00203 0.00182
Max 0.00921 0.00794 0.00664

M(t)/LN(t)/s(t) + PH(t)
Min 0.00020 0.00017 0.00014
Avg 0.00224 0.00208 0.00189
Max 0.00923 0.00810 0.00698

M(t)/PH(t)/s(t) + LN(t)
Min 0.00019 0.00015 0.00012
Avg 0.00206 0.00174 0.00159
Max 0.00790 0.00599 0.00535

Table 6: Halfwidth of the confidence interval on the time-varying expected
queue lengths for different simulated queues

Table 7 reports the WRE of the expected queue length for different values
of ∆ and for different queues. The high WREs show that for the lognormal
distribution, a simple two-moment matching procedure might not be suffi-
cient to obtain accurate results. Moreover, the table reveals that the error
introduced by the PH approximation cannot be compensated for by a de-
crease in the granularity parameter ∆. Table 7 also shows that the service
process is least sensitive to the PH approximation. This seems to confirms
the findings of Chassioti and Worthington [45] and Chassioti et al. [95], who
suggest that, in systems with nonstationary demand and capacity, the second
and higher moments of the service time distribution are relatively unimpor-
tant (note that [45, 95] study systems where customers balk rather than
renege from the queue). In addition, our results suggest that the higher mo-
ments of the abandonment time distribution play an important role when
determining the performance of a system with nonstationary demand and
capacity.

To further explore the importance of the higher moments of the aban-
donment time distribution, we perform an additional experiment in which
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we vary the scale parameter (i.e., κ) of the two-phase Coxian distribution.
Table 8 lists the skewness and excess kurtosis for various values of κ. A value
equal to 0.9 yields the best fit with the lognormal distribution, as is confirmed
in Figure 9, which plots the cumulative distribution functions of the lognor-
mal distribution (with C2 = 2) and matching two-phase Coxian distributions.
Table 9 presents the WREs that result from the comparison of G-RAND (us-
ing different values of κ) and the simulated M(t)/LN(t)/s(t) + LN(t) queue.
It is clear that the accuracy can be increased through an adequate choice of κ
(i.e., through a better matching of the higher moments of the abandonment
time distribution).

C2 Skewness Excess Kurtosis

κ = 0.1 2 2.463 8.506
κ = 0.2 2 2.643 9.767
κ = 0.3 2 2.844 11.38
κ = 0.4 2 3.076 13.51
κ = 0.5 2 3.359 16.50
κ = 0.6 2 3.730 21.07
κ = 0.7 2 4.278 29.15
κ = 0.8 2 5.268 47.82
κ = 0.9∗ 2 8.026 127.4
κ = 0.95 2 13.38 397.8

Lognormal 2 7.071 156.0

Table 8: Distribution moments of the two-phase Coxian distribution with
C2 = 2.0 for various values of κ (∗: best fit with lognormal distribution)
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Figure 9: Cumulative distribution functions of the lognormal distribution
(with C2 = 2) and matching two-phase Coxian distributions (for various

values of κ)

κ(III)
WRE

Min Avg Max

κ = 0.1 0.065 0.259 0.500
κ = 0.2 0.056 0.213 0.414
κ = 0.3 0.046 0.176 0.347
κ = 0.4 0.036 0.146 0.293
κ = 0.5 0.026 0.120 0.250
κ = 0.6 0.017 0.098 0.214
κ = 0.7 0.009 0.077 0.183
κ = 0.8 0.010 0.059 0.153
κ = 0.9 0.012 0.048 0.127
κ = 0.95 0.017 0.052 0.147

Table 9: WRE of the expected queue length for various values of κ(III) and
for the M(t)/LN(t)/s(t) + LN(t) queue where C2 = 2 and ∆ = 0.25

We conclude that caution is advised when the higher moments of the
abandonment time distribution are not adequately matched by the PH dis-
tributions. Note, however, that if the proper value of κ is selected, good
results can still be obtained for C2 > 1. Moreover, G-RAND can easily be
extended to work with any acyclic, continuous-time PH distribution.

5. Conclusions and directions for further research

In this article, we have presented a Markov model that approximates the
transient and periodic steady-state behavior of the G(t)/G(t)/s(t) + G(t)
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queue with exhaustive service policy. We refer to our model as G-RAND
since it uses the randomization method to analyze a general queue. G-RAND
yields the following time-varying performance measures: (1) the expected
queue length, (2) the variance of the queue length, (3) the expected number
of abandonments, and (4) the virtual waiting time distribution of a customer
arriving at an arbitrary moment in time. Whereas most performance metrics
can be computed with limited effort, the computation of the virtual waiting
time distribution is more demanding because it requires the analysis of a
death process.

A computational experiment has shown that results are highly accu-
rate and that computational effort remains limited, especially for small- to
medium-sized systems. Problem instances with a low service rate and/or a
low average capacity typically required less computation time to achieve a
given level of accuracy. Other problem instances can be analyzed as well,
albeit at a higher computational cost. In contrast to most of the existing
work, G-RAND does not rely on heavy-traffic or many-server asymptotics.

We use acyclic phase-type (PH) distributions to approximate the general
interarrival, service, and abandonment time distributions. We adopt simple
two-moment matching procedures, however, more complex PH distributions
can be used as well (though this increases computational effort, in particular
when the number of phases increases). The performance of the model is best
for settings that have moderate to high levels of process variability. Lower
levels of variability require more phases and hence more computation time.

An additional experiment has shown that skewness and excess kurtosis
are of crucial importance when modeling a system with nonstationary de-
mand and capacity. Therefore, caution is advised when the skewness and
excess kurtosis of the abandonment time distribution deviate from those of
the PH distribution that is used to model the abandonment process. The
experiment also revealed that the service process is least sensitive to the PH
approximation (i.e., the higher moments of the service time distribution are
of lesser importance).

Existing models are often incapable of accurately capturing the (time-
varying) behavior of small- to medium-scaled systems. G-RAND is especially
suited for these settings. Banks, retail stores, and emergency departments
are just a few of the example systems that may benefit from our model. Our
approach could, for instance, be used to evaluate the performance of alterna-
tive personnel schedules, or to determine the minimal required staffing levels.
We intend to further explore G-RAND’s applicability within the context of
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capacity planning in future research. Another avenue for future research is
to study the trade-off between accuracy and CPU time. In our model, the
∆-parameter can be used to “tune” this trade-off. In a simulation model, the
trade-off can also be tuned, through the number of replications. In order to
identify the settings where our model offers a more favorable trade-off than
simulation does, an experiment is required in which both ∆ and the number
of replications are varied.
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Appendix A. List of notation

∆ : Time in between two observation moments.

I : Arrival process.
II : Service process.
III : Abandonment process.
IV : Staffing process.

G
(·)
d : Distribution of process (·) during epoch d.

µ
(·)
d : Mean process time for process (·) during epoch d.

σ
(·)
d : Standard deviation of process times for process (·) during epoch d.
sd : Number of servers during epoch d of the staffing process.
C2 : Squared coefficient of variation.
λ : Exponential rate parameter.
Z : Number of phases in the PH distribution.
β : Probability to visit the second phase of the two-phase Coxian distribution.
τ : Vector of starting probabilities of a PH distributions.
R : Transient state transition matrix of a PH distribution.
Q : Infinitesimal generator.
t : Vector that holds the transition rates from transient states towards the

absorbing state.
P : Transition probability matrix.

Z
(·)
max : Maximum number of phases of process (·).

smax : Maximum number of servers.
Qmax : Maximum queue size.
a : Phase of the arrival process.
k : Distribution of customers over different phases of the service process.
nk : Sum of all entries in vector k.
K : Set of all vectors k.

b : Distribution of customers over different phases of the abandonment pro-
cess.

nb : Sum of all entries in vector b.
B : Set of all vectors b.

Pr (x, v|u, d) : Probability of having x arrivals and an arrival process at final phase v
given that the arrival process starts in phase u.

Pr (y|x, u, d)(·): Probability that y customers successfully complete phase u of process (·),
given that x customers are present in phase u at the start.

Pr (bs|b, d) : Probability that bs contains the distribution of customers who have expe-
rienced the longest waiting time, conditional on b.

Pr (u|k) : Probability to remove a server that is processing a customer who is in
phase u.

c(x,k,t) : Number of active servers removed upon a decrease of x servers.

Pr (y|x, φt)(II) : Probability that y out of x customers complete service.
π (a,k,b)t : Probability to visit state (a,k,b)t.

Qw : Expected queue length at the start of performance interval w.
Vw : Variance of the expected queue length at performance interval w.
Aw : Expected number of abandonments during performance interval w.
Pr (Ww = h) : Probability that a virtual customer who arrives at the start of performance

interval w receives service after h∆ time units.

39



[1] M. Defraeye, I. Van Nieuwenhuyse, Controlling excessive waiting times in small service systems
with time-varying demand: An extension of the ISA algorithm, Decision Support Systems, 54(4)
(2013) 1558–1567.

[2] L.V. Green, J. Soares, J.F. Giglio, R.A. Green, Using queueing theory to increase the effectiveness
of emergency department provider staffing, Academic Emergency Medicine 13(1) (2006) 61–68.

[3] L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn, L. Zhao, Statistical analysis
of a telephone call center: A queueing perspective, Journal of the American Statistical Association
100(469) (2005) 36–50.

[4] D.C. Dietz, Practical scheduling for call center operations, Omega 39 (2011) 550–557.

[5] S.-H. Kim, W. Whitt, Are call center and hospital arrivals well modeled by nonhomogeneous Poisson
processes? Manufacturing & Service Operations Management (2014), Published online in Articles
in Advance 02 Jun 2014.

[6] A. Ingolfsson, E. Akhmetshina, S. Budge, Y. Li, A survey and experimental comparison of service
level approximation methods for non-stationary M(t)/M/s(t) queueing systems with exhaustive
discipline, INFORMS Journal on Computing 19(2) (2007) 201–214.

[7] W. Whitt, The pointwise stationary approximation for Mt/Mt/s, Management Science 37(3) (1991)
307-314.

[8] O. Garnett, A. Mandelbaum, M. Reiman, Designing a call center with impatient customers, Man-
ufacturing & Service Operations Management 4(3) (2002) 208–227.

[9] S. Zeltyn, A. Mandelbaum, Call centers with impatient customers: Many-server asymptotics of the
M/M/n+ G queue, Queueing Systems: Theory and Applications 51(3-4) (2005) 361–402.

[10] J. Hueter, W. Swart, An integrated labor-management system for Taco Bell, Interfaces 28(1) (1998)
75–91.

[11] I. Castillo, T. Joro, Y.Y. Li, Workforce scheduling with multiple objectives, European Journal of
Operational Research 196(1) (2009) 162–170.

[12] A. Mandelbaum, S. Zeltyn, Data-stories about (im)patient customers in tele-queues, Queueing
Systems: Theory and Applications 75(2-4) (2013) 115–146.

[13] B.K.P. Chen, S.G. Henderson, Two issues in setting call centre staffing levels, Annals of Operations
Research 108(1-4) (2001) 175–192.

[14] L.V. Green, P.J. Kolesar, W. Whitt, Coping with time-varying demand when setting staffing re-
quirements for a service system, Production and Operations Management 16(1) (2007) 13–39.

[15] W. Whitt, What you should know about queueing models to set staffing requirements in service
systems, Naval Research Logistics 54(5) (2007) 476–484.

[16] M. Defraeye, I. Van Nieuwenhuyse, Setting staffing levels in an emergency department: Opportuni-
ties and limitations of stationary queuing models, Review of Business and Economics 56(1) (2011)
73–100.

[17] A. Ingolfsson, Modeling the M(t)/M/s(t) queue with an exhaustive discipline, Working paper,
University of Alberta, Canada (2005).

[18] A. Jensen, Markov chains as an aid in the study of Markov processes, Skand. Aktuarietidskrift 3
(1953) 87–91.

40



[19] W.K. Grassmann, Transient solutions in Markovian queueing systems, Computers & Operations
Research 4(1) (1977) 47–53.

[20] L.V. Green, P.J. Kolesar, A. Svoronos, Some effects of nonstationarity on multiserver Markovian
queueing systems, Operations Research 39(3) (1991) 502–511.

[21] L.V. Green, P.J. Kolesar, The pointwise stationary approximation for queues with nonstationary
arrivals, Management Science 37(1) (1991) 84–97.

[22] L.V. Green, P.J. Kolesar, J. Soares, Improving the SIPP approach for staffing service systems that
have cyclic demands, Operations Research 49(4) (2001) 549–564.

[23] L.V. Green, P.J. Kolesar, On the accuracy of the simple peak hour approximation for Markovian
queues. Management Science 41(8) (1995) 1353–1370.

[24] G.M. Thompson, Accounting for the multi-period impact of service when determining employee
requirements for labor scheduling, Journal of Operations Management 11(3) (1993) 269–287.

[25] L.V. Green, P.J. Kolesar, The lagged PSA for estimating peak congestion in multiserver Markovian
queues with periodic arrival rates, Management Science 43(1) (1997) 80–87.

[26] S.G. Eick, W.A. Massey, W. Whitt, The physics of the Mt/G/∞ queue, Operations Research 41(4)
(1993a) 731–742.

[27] S.G. Eick, W.A. Massey, W. Whitt, Mt/G/∞ queues with sinusoidal arrival rates, Management
Science 39(2) (1993b) 241–252.

[28] Z. Feldman, A. Mandelbaum, W.A. Massey, W. Whitt, Staffing of time-varying queues to achieve
time-stable performance, Management Science 54(2) (2008) 324–338.

[29] O.B. Jennings, A. Mandelbaum, W.A. Massey, W. Whitt, Server staffing to meet time-varying
demand, Management Science 42(10) (1996) 1383–1394.

[30] Y. Liu, W. Whitt, Stabilizing customer abandonment in many-server queues with time-varying
arrivals, Working paper, Columbia University, New York, NY (2009).

[31] D.L. Jagerman, Nonstationary blocking in telephone traffic, Bell Syst. Tech. 54 (1975) 625-661.

[32] W.A. Massey, W. Whitt, An analysis of the modified offered-load approximation for the nonsta-
tionary Erlang loss model, The Annals of Applied Probability 4(4) (1994) 1145–1160.

[33] W.A. Massey, W. Whitt, Peak congestion in multi-server service systems with slowly varying arrival
rates, Queueing Systems 25(1) (1997) 157–172.

[34] J.L. Davis, W.A. Massey, W. Whitt, Sensitivity to the service-time distribution in the nonstationary
Erlang loss model, Management Science 41(6) (1995) 1107–1116.

[35] W. Whitt, Engineering solution of a basic call-center model, Management Science 51(2) (2005)
221–235.

[36] F. Iravani, B. Balciog̃lu, Approximations for the M/GI/N + GI type call center, Queueing Systems
58(2) (2008) 137–153.

[37] D. Gross, J.F. Shortle, J.M. Thompson, C.M. Harris, Fundamentals of queueing theory, 4th Edition,
Wiley Series in Probability and Statistics, Wiley-Blackwell, 2008.

41



[38] L.V. Green, J. Soares, Computing time-dependent waiting time probabilities in M(t)/M/s(t) queue-
ing systems, Manufacturing & Service Operations Management 9(1) (2007) 54-61.

[39] L.F. Shampine, M.W. Reichelt, The MATLAB ODE suite, SIAM Journal on Scientific Computing
18(1) (1997) 1–22.

[40] D. Gross, D.R. Miller, The randomization technique as a modeling tool and solution procedure for
transient Markov processes, Operations Research 32(2) (1984) 343–361.

[41] N. Izady, On queues with time-varying demand. PhD Thesis, University of Lancaster, Lancaster,
UK (2010).

[42] M.H. Rothkopf, S.S. Oren, A closure approximation for the nonstationary M/M/s Queue, Manage-
ment Science 25(6) (1979) 522–534.

[43] G.M. Clark, Use of Polya distributions in approximate solutions to nonstationary M/M/s queues,
Commun. ACM 24(4) (1981) 206–217.

[44] M. Taaffe, K. Ong, Approximating nonstationary Ph(t)/Ph(t)/l/c queueing systems, Annals of
Operations Research 8(1) (1987) 103–116.

[45] E. Chassioti, D.J. Worthington, A new model for call centre queue management, The Journal of
the Operational Research Society 55(12) (2004) 1352–1357.

[46] M. Brahimi, Approximating multi-server queues with inhomogeneous arrival rates and continuous
service time distributions, PhD Dissertation, University of Lancaster, Lancaster, UK (1990).

[47] M. Brahimi, D.J. Worthington, The finite capacity multi-server queue with inhomogeneous arrival
rate and discrete service time distribution and its application to continuous service time problems,
European Journal of Operational Research 50(3) (1991) 310–324.

[48] A.D. Wall, D.J. Worthington, Using discrete distributions to approximate general service time
distributions in queueing models, The Journal of the Operational Research Society 45(12) (1994)
1398–1404.

[49] A.D. Wall, D.J. Worthington, Time-dependent analysis of virtual waiting time behaviour in discrete
time queues, European Journal of Operational Research 178(2) (2007) 482–499.

[50] S. Helber, K. Henken, Profit-oriented shift scheduling of inbound contact centers with skills-based
routing, impatient customers, and retrials, OR Spectrum 32(1/4) (2010) 109–134.

[51] W. Whitt, Fluid models for multiserver queues with abandonments, Operations Research 54(1)
(2006a) 37–54.

[52] S. Aguir, F. Karaesmen, O.Z. Akskin, F. Chauvet, The impact of retrials on call center performance,
OR Spectrum 26(3) (2004) 353–376.
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