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Abstract—This paper proposes a novel approach for automatic
speaker height estimation based on the i-vector framework. In
this method, each utterance is modeled by its corresponding i-
vector. Then artificial neural networks (ANNs) and least-squares
support vector regression (LSSVR) are employed to estimate
the height of a speaker from a given utterance. The proposed
method is trained and tested on the telephone speech signals of
National Institute of Standards and Technology (NIST)2008 and
2010 Speaker Recognition Evaluation (SRE) corpora respectively.
Evaluation results show the effectiveness of the proposed method
in speaker height estimation.
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I. INTRODUCTION

In many forensic cases, evidence might be in the form
of voice recordings, e.g. a threat call and a blackmail call.
Forensic experts might have a list of suspects but it can take
time to check them all. In such cases, it could be beneficial
to rank them according to objective criteria such as gender,
age and accent in order to narrow down the number of
suspects [1]–[3]. In this paper, we focus on speaker height
estimation.

Experimental studies have found different acoustic cues
for speaker height estimation [4], [5]. However, the relation
of these acoustic cues with speaker age is usually complex
and affected by many other factors such as speech content,
language, gender, weight, emotional condition, smoking and
drinking habits. Furthermore, in many practical cases we have
no control over the available speech duration, content, lan-
guage, environment, recording device and channel conditions.
Therefore, height estimation from speech signals is a very
challenging task.

Previous studies have investigated a correlation between the
speech signal of a person and his/her height. In experiments
conducted by Van Dommelen and Moxness, the ability of
listeners to estimate the height of speakers from their voice
have been examined. In this study, significant correlations
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between estimated and actual height of male speakers were
reported [4]. In studies on speech-driven automatic height
estimation, several resources have been devoted to identify
acoustic features of speech that can convey information about
speaker height. For example, [4] and [5] analyzed the corre-
lation between speaker height and formant frequencies, based
on the assumption of speech production theory that there is
a correlation between a person’s vocal tract length (VTL)
and his/her height. Recently, Arsikere et al. proposed a new
algorithm based on the assumption of the uniform tube model
of the subglottal system to estimate the speakers’ height from
the subglottal resonances (SGRs) [6], [7]. In other studies,
Pellom and Hansen performed height group recognition by
applying Mel-frequency cepstral coefficients (MFCCs) to train
a height-dependent Gaussian mixture model. Then a maximum
a posteriori classification rule was used to assign each audio
file to one of several height groups [8]. However, this text
independent approach does not estimate the actual height
of a speaker, which can be achieved by using regression
techniques. Ganchev et al. applied a large set of openSmile
audio descriptors and performed support vector regression to
estimate the height of a test speaker [9].

In this paper we suggest a speech-based automatic height
estimation method. We propose a new method for automatic
height estimation based on i-vectors instead of raw acoustic
features as in previous studies. In the field of speaker recogni-
tion, recent advances using the i-vector framework [10] have
increased the classification accuracy considerably. An i-vector
is a compact representation of an utterance in the form of a
low-dimensional feature vector.

To select an accurate regression approach for this problem,
two different function approximation approaches, namely least
squares support vector regression (LSSVR) and artificial neu-
ral networks (ANNs) are compared. We also investigate the
effect of the kernel in LSSVR and of the training algorithm
in ANN. Evaluation on the NIST 2008 and 2010 SRE corpora
shows the effectiveness of the proposed approach.

The rest of the paper is organized as follows. In the section
II the problem of automatic height estimation is formulated
and the proposed approach is described. Section III explains
our experimental setup. The evaluation results are presented
and discussed in Section IV. The paper ends with conclusions
in section V.



II. SYSTEM DESCRIPTION

A. Problem Formulation

In the speaker height estimation problem, we are given a
set of training data D = {xi, yi}Ni=1, where xi ∈ Rp denotes
the ith utterance and yi ∈ R denotes the corresponding height.
The goal is to design an estimator function g, such that for
an utterance of an unseen speaker xtst, the estimated height
y = g(xtst) approximates the actual height as good as possible
in some predefined sense.

B. Height Estimation Using i-vectors

The first step for approximating function g is converting
variable-duration speech signals into fixed-dimensional vec-
tors suitable for regression algorithms. In this research, we
apply the i-vector framework for this purpose. i-vector based
techniques have recently been effectively applied to speaker
verification and recognition [10], language recognition [11],
speaker age estimation [12] and accent recognition [13]. The
i-vector framework, which is also referred to as total variability
modeling, assumes the GMM mean supervector µ can be
decomposed as

µ = m+ Tw (1)

where m is the universal background model (UBM) mean
supervector, with C mean components of dimension F . Sub-
space matrix T denotes a skinny matrix of size C.F × M .
w is a latent vector of size M , which is referred to as i-
vector. An efficient Maximum-Likelihood estimate of matrix
T and a Maximum-a-posteriori (MAP) estimation of w con-
sidering prior standard normal distribution N(0, I) can be
found in [14].

C. Function Approximation

1) Least Squares Support Vector Regression: Support vec-
tor regression (SVR) is a function approximation approach
developed as a regression version of the widely known Sup-
port Vector Machines (SVM) classifier [15]. Using nonlinear
transformations, SVMs map the input data into a higher
dimensional space in which a linear solution can be calculated.
They also keep a subset of the samples which are the most
relevant data for the solution and discard the rest. This makes
the solution as sparse as possible. While SVMs perform
the classification task by determining the maximum margin
separation hyperplane between two classes, SVRs carry out the
regression task by finding the optimal regression hyperplane in
which most of training samples lie within an ε-margin around
this hyperplane [15], [16].

In this paper, we use the least squares version of support
vector regression (LSSVR). While a SVR solves a quadratic
programming, which results in high algorithmic complexity
and memory requirement, a LSSVR involves solving a set of
linear equations [16] which speeds up the calculations. This
simplicity is achieved at the expense of loss of sparseness,
therefore all samples contribute to the model, and conse-
quently, the model often becomes unnecessarily large. In this
paper, linear and radial basis function (RBF) kernels are used

Fig. 1. Block diagram of the proposed speaker height estimation approach
in training and testing phases.

to approximate g(x). For the LSSVR with RBF kernels, a 5-
fold cross-validation to tune the smoothing parameter of the
kernels is used.

2) Neural Network Regression: A multilayer perceptron
(MLP) is a supervised, feed-forward neural network, which
is widely applied to regression problems due to their abil-
ity to approximate complex nonlinear functions from input
data [17]–[20]. An MLP usually utilizes a derivative based
optimization algorithm such as back-propagation to train the
network. Different training methods have been suggested dur-
ing the last decades [17]–[20] to enhance the training speed,
provide more memory efficient methods and represent better
convergence properties. In this research, to reach an accurate
network, we apply four training algorithms.

The first one, namely the Levenberg-Marquardt (LM) al-
gorithm, uses step size damping by regularizing the Hessian
matrix and exhibits a fast training [17]. In the second training
approach, the search direction is computed from the new gra-
dient and the previous search direction, based on the Fletcher-
Reeves variation of the conjugate gradient method (CGF) [18].
The third technique, labeled as BFG in this paper, is a quasi-
Newton method for back-propagation, that converges in few
iterations but that requires more computation in each iteration
[19]. The fourth training scheme is the Levenberg-Marquardt
algorithm with a Bayesian regularization that minimizes a
linear combination of the squared error and squared weights,
such that the network will have good generalization capability
[20].

D. Training and Testing

The proposed height estimation approach is depicted in
Fig. 1. During the training phase, each utterance is mapped
onto a 400 dimensional vector using the i-vector framework.
The obtained i-vectors of the training set are then used as
features with their corresponding height labels to train a
regressor for approximating function g. During the testing
phase, an i-vector is extracted from the test utterance and
the estimated height is obtained using the trained regression
function.



Fig. 2. The height histogram of telephone speech utterances for the NIST
2008 and NIST 2010 databases.

III. EXPERIMENTAL SETUP

A. Database

The National Institute for Standard and Technology (NIST)
have held annual or biannual speaker recognition evaluations
(SRE) for the past two decades. With each SRE, a large
corpus of telephone (and more recently microphone) conver-
sations are released along with an evaluation protocol. These
conversations typically last 5 minutes and originate from a
large number of participants for whom additional meta data is
recorded including age, height, language and smoking habits.
The NIST databases were chosen for this work due to the
large number of speakers and because the total variability
subspace requires a considerable amount of development data
for training. The development data set used to train the total
variability subspace and UBM includes over 30,000 speech
recordings and was sourced from the NIST 2004-2006 SRE
databases, LDC releases of Switchboard 2 phase III and
Switchboard Cellular (parts 1 and 2).

For the purpose of height estimation, telephone recordings
from the common protocols of the recent NIST 2008 and 2010
SRE databases are used for training and testing, respectively.
The core protocol, short2-short3, from the 2008 database
contains 3999 telephone recordings of 1236 speakers whose
height is known. Similarly, the extended core-core protocol of
the 2010 database contains 5792 telephone segments from 445
speakers. The height histogram of male and female speakers
of NIST 2008 and 2010 SRE databases of target are depicted
in Fig. 2.

B. Performance Metric

In order to evaluate the effectiveness of the proposed system,
we used the mean absolute error (MAE) of the speakers’
estimated height, and the Pearson correlation coefficient (CC)
between the actual speakers’ height and estimated speakers’

height. MAE is defined as:

MAE =
1

N

N∑
i=1

|fi − yi| (2)

where fi is the ith estimated height and yi is the ith actual
height, and N is the total number of test samples.

Although MAE is a helpful performance metric in regres-
sion problems, it is limited in some respects specially in the
case of a test set with a skewed distribution. Therefore, we
use correlation coefficient, which is computed as:

CC =
1

N − 1

N∑
i=1

(
fi − f̄

sf

)(
yi − ȳ

sy

)
, (3)

where f̄ and sf denote sample mean and standard deviation,
respectively.

IV. RESULTS AND DISCUSSION

In this section, the proposed speaker height estimation
approach is evaluated. The acoustic feature consists of 20
Mel-Frequency Cepstrum Coefficients (MFCCs) including en-
ergy appended with their first and second order derivatives,
forming a 60 dimensional acoustic feature vector. This type
of feature is very common in state-of-the-art i-vector based
speaker recognition systems. To have more reliable features,
Wiener filtering, speech activity detection [21] and feature
warping [22] have been considered in the front-end processing.

The results of using MLP trained using four different
algorithms, namely LMB, CGF, BFG and BR are listed in
Table I. For each training algorithm, the network was trained
using different number of hidden layers, hidden neurons and
activation functions. Then, based on the obtained results on
the development set, the best network architecture has been
selected to be evaluated on the test data. The development set
consists of 25% of data of the NIST 2008 SRE database so
that none of them were used in the training set. In addition,
since there are several utterances from each speaker in the data
set, the development set was selected such that there was no
speaker who had utterances in both training and development
sets.

For the three-layer NN, 10 hidden neurons and for the four-
layer NN, 20 neurons in the first hidden layer and 5 neurons
in the second hidden layer have been selected, respectively.
The activation function for hidden layers is a logistic sigmoid
function. In order to perform regression, a linear activation
function has been utilized for the output layers. To attenuate
the effect of random initialization, the training and testing
phases of each experiment was repeated 20 times.

The evaluation results mentioned in Table I have been re-
ported by averaging the performances over all 20 experiments.
As reported in Table I, a MLP with the BFG training algorithm
yields more accurate height estimation results compared the
rest of training methods for both male and female speakers.

The results of using LSSVR as a function approximation
method are listed in Table II. In this paper two different
kernels, namely linear kernel and radial basis function (RBF)
kernel have been used to approximate the function g. The



TABLE I
SPEAKER HEIGHT ESTIMATION USING A MLP WITH DIFFERENT TRAINING

ALGORITHMS. CC IS THE PEARSON CORRELATION COEFFICIENT
BETWEEN ACTUAL AND ESTIMATED HEIGHT.

Male Female
Training Three Four Three Four
Algorithm Layers Layers Layers Layers

LMB 0.23 0.25 0.20 0.20
CGF 0.35 0.36 0.33 0.32
BFG 0.35 0.36 0.36 0.35
BR 0.34 0.24 0.27 0.23

hyper-parameters of the RBF kernel have been tuned using
a 5-fold cross-validation. After optimization of the hyper
parameters, the model has been trained.

As it is shown in Table II, the linear kernel is more effective
than the RBF kernel in this problem. In this case, CC for male
speakers, female speakers and when the male and female data
were pooled together are 0.40, 0.41 and 0.60 respectively. The
scatter plots of estimation for male speakers, female speakers
and when the male and female data were pooled together are
shown in Fig. 3 and 4 respectively. The mean absolute error
(MAE) of estimation is 6.2 cm and 5.8 cm of for male and
female speakers respectively. Although the obtained MAE is
satisfactory and the correlation coefficient is fairly strong when
male and female data are pooled together, the CC within
male and female speakers requires improvement. Unfortu-
nately there is no published results on the same database for
comparison purpose. However, the results of published papers
on other datasets indicate the typical range of performance in
automatic speaker height estimation problem. In [7], reported
CC of speaker height estimation on TIMIT database using a
method based on sub-glottal resonances [6] are 0.12, 0.21 and
0.71 for male speakers, female speakers and when the male
and female data were pooled together respectively. In [8], the
obtained CC of speaker height estimation for male and female
speakers of TIMIT database using a GMM based approach are
0.39 and 0.31 respectively. The obtained results seem to be
reasonable, considering that the applied testing dataset in this
paper consists of spontaneous telephone speech signals and
the number of test set speakers in this paper (3999 telephone
recordings of 1236 speakers) is considerably larger than that
of [7] and [8].

V. CONCLUSIONS

In this paper, utterance modeling with i-vectors has been
used in conjunction with an ANN and LSSVR to address
speaker height estimation. To evaluate the proposed estima-
tor, telephone utterances of the NIST 2008 and 2010 SRE
databases were used for training and testing respectively.

TABLE II
SPEAKER HEIGHT ESTIMATION USING LSSVR WITH DIFFERENT

KERNELS. CC IS THE PEARSON CORRELATION COEFFICIENT BETWEEN
ACTUAL AND ESTIMATED HEIGHT.

Kernel type Male Female
Linear 0.41 0.40
RBF 0.30 0.23

Experimental results show the effectiveness of the proposed
approach. The obtained results also show that a LSSVR with
a linear kernel is more accurate than several architecture of
ANN and a LSSVR with a RBF kernel in this problem.
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Fig. 3. The scatter plot of height estimation for male speakers.
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Fig. 4. The scatter plot of height estimation for female speakers.
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Fig. 5. The scatter plot of height estimation for both male and female
speakers.



REFERENCES

[1] M. H. Bahari and H. Van hamme, “Speaker age estimation and gender
detection based on supervised non-negative matrix factorization,” in
Proc. IEEE Workshop on Biometric Measurements and Systems for
Security and Medical Applications, 2011, pp. 1–6.

[2] M. H. Bahari et al., “Speaker age estimation using hidden markov model
weight supervectors,” in 11th International Conference on Information
Science, Signal Processing and their Applications (ISSPA), 2012, pp.
517–521.

[3] D. C. Tanner and M. E. Tanner, Forensic aspects of speech patterns:
voice prints, speaker profiling, lie and intoxication detection. Lawyers
& Judges Publishing, 2004.

[4] W. A. Van Dommelen and B. H. Moxness, “Acoustic parameters
in speaker height and weight identification: sex-specific behaviour,”
Language and Speech, vol. 38, pp. 267–287, 1995.

[5] J. Gonzalez, “Formant frequencies and body size of speaker: a weak
relationship in adult humans,” Journal of Phonetics, vol. 32, pp. 277–
287, 2004.

[6] Automatic height estimation using the second subglottal resonance.
Acoustics, Speech and Signal Processing (ICASSP), IEEE International
Conference on Acoustics, Speech and Signal Processing, 2012.

[7] H. Arsikere, G. K. Leung, S. M. Lulich, and A. Alwan, “Automatic esti-
mation of the first three subglottal resonances from adults speech signals
with application to speaker height estimation,” Speech Communication,
vol. 55, no. 1, pp. 51–70, 2013.

[8] B. L. Pellom and J. H. L. Hansen, “Voice analysis in adverse conditions:
the centennial olympic park bombing 911 call,” in Proc. Of the 40th
Midwest symposium on circuits and systems, 1997.

[9] T. Ganchev, I. Mporas, and N. Fakotakis, “Audio features selection
for automatic height estimation from speech,” Artificial Intelligence:
Theories, Models and Applications Lecture Notes in Computer Science,
vol. 6040, pp. 81–90, 2010.

[10] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front–end
factor analysis for speaker verification,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 19, no. 4, pp. 788–798, 2011.

[11] N. Dehak, P. A. Torres-Carrasquillo, D. Reynolds, and R. Dehak,
“Language recognition via ivectors and dimensionality reduction,” in
Proc. Interspeech, 2011.

[12] M. H. Bahari, M. McLaren, H. Van hamme, and D. Van Leeuwen, “Age
estimation from telephone speech using i-vectors,” in INTERSPEECH,
2012, pp. 506–509.

[13] M. H. Bahari, R. Saeidi, H. Van hamme, and D. Van Leeuwen, “Accent
recognition using i-vector, gaussian mean supervector and gaussian
posterior probability supervector for spontaneous telephone speech,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing, 2013, pp. 7344–7348.

[14] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, “A study
of interspeaker variability in speaker verication,” IEEE Trans. Audio,
Speech and Language Processing, vol. 16, no. 5, pp. 980–988, 2008.

[15] A. Smola and B. Scholkopf, “A tutorial on support vector regression,”
Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

[16] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and
J. Vandewalle, Least squares support vector machines. World Scientific,
2002.

[17] M. T. Hagan and M. Menhaj, “Training feed-forward networks with the
marquardt algorithm,” EEE Transactions on Neural Networks, vol. 5,
no. 6, pp. 989–993, 1994.

[18] L. E. Scales, Introduction to Non-Linear Optimization. Springer-Verlag,
1985.

[19] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization.
Emerald, 1981.

[20] D. J. C. MacKay, “Bayesian interpolation,” Neural Computation, vol. 4,
no. 3, pp. 415–447, 1992.

[21] M. McLaren and D. van Leeuwen, “A simple and effective speech
activity detection algorithm for telephone and microphone speech,” in
Proc. NIST SRE Workshop, 2011.

[22] J. Pelecanos and S. Sridharan, “Feature warping for robust speaker
verification,” pp. 213–218, 2001.


