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Abstract. Declarative systems aim at solving tasks by running infer-
ence engines on a specification, to free its users from having to specify how
a task should be tackled. In order to provide such functionality, declar-
ative systems themselves apply complex reasoning techniques, and, as a
consequence, the development of such systems can be laborious work. In
this paper, we demonstrate that the declarative approach can be applied
to develop such systems, by tackling the tasks solved inside a declara-
tive system declaratively. In order to do this, a meta-level representation
of those specifications is often required. Furthermore, by using the lan-
guage of the system for the meta-level representation, it opens the door
to bootstrapping : an inference engine can be improved using the inference
it performs itself.

One such declarative system is the IDP knowledge base system, based
on the language FO(·)IDP, a rich extension of first-order logic. In this pa-
per, we discuss how FO(·)IDP can support meta-level representations in
general and which language constructs make those representations even
more natural. Afterwards, we show how meta-FO(·)IDP can be applied
to bootstrap its model expansion inference engine. We discuss the ad-
vantages of this approach: the resulting program is easier to understand,
easier to maintain and more flexible.

1 Introduction

Declarative systems aim at solving tasks by running inference engines on a spec-
ification, to free its users from having to prescribe how a task should be tackled.
Many computational tasks can be represented more easily in a declarative lan-
guage than in an algorithmic fashion. Declarative languages and systems are
developed, e.g., in the fields of Functional Programming (FP) [5], Constraint
Programming (CP) [3] and Logic Programming (LP) [22, 23], including Answer
Set Programming (ASP) [4, 16]. To be able to apply inference on declarative
specifications, these systems need to apply complex reasoning techniques, and,
as a consequence, their development can be laborious work. This can be observed
for example from the decreasing number of ASP systems participating in ASP
competitions [2,7,15] and in the relatively large number of available ASP solvers



compared to few available ASP grounders, as the latter work on a much richer
input language.

In this paper, we demonstrate that parts of such systems can themselves be
implemented declaratively, offering the same advantages to the developer as to
the user of the declarative system, such as reduced development time, increased
flexibility and easier maintenance. In order to do this, a meta-level representation
of those specifications is often required. Meta-programming is well-known from
both declarative languages, such as the built-in meta-predicates in Prolog [1], and
procedural languages, such as the template meta-programming component in
C++ [25]. Recently, meta-programming has been applied in ASP. For example,
Gebser et al. [18] present a meta-approach to declaratively debug ASP programs.
In [19], a meta-level ASP representation is used to manage interacting embedded
computational objects that publish their properties as ASP programs.

We develop our ideas in the context of IDP [6, 8], a knowledge-base system
(KBS) [13] for the logic FO(·)IDP, a language that extends first-order logic (FO)
with, among others, inductive definitions and a type system. The system sup-
ports a range of inference tasks, such as querying, model expansion, optimisation,
propagation and deduction. In this paper we will show how to bootstrap IDP:
how to improve the inference performed by IDP, using the inference performed
by IDP itself.

First, we discuss how to support meta-level representations in FO(·)IDP. We
start by describing a highly general representation for propositional logic. In this
representation, all formulas are represented using constructor functions, such as
a function and that maps two formulas to their conjunction. For example, the
formula p ∨ (q ∧ ¬r) is represented by the term

or(atom(p), and(atom(q),not(atom(r)))).

Afterwards, we discuss how to extend this approach to full FO(·)IDP. In this
discussion, we research language features that would make the representation
even more natural, such as sets. Furthermore, we argue that, even without those
extensions, the current finite domain solvers simply cannot do meta-level rea-
soning because the domains are always infinite. Indeed, a total function such
as and that maps two formulas to their conjunction immediately results in an
infinite domain. Therefore, we discuss several solutions to solve the problems
with infinite domains. One of these solutions consists of representing a logical
specification by its parse tree: now the domain consists of a finite set of nodes of
parse trees and we use a new meta-vocabulary, where objects are nodes in the
parse tree of a specific theory. The above formula (p∨(q∧¬r)) is now represented
by a set of parse-tree nodes. Each of these nodes is augmented with additional
information, such as their type (conjunctive node, disjunctive node, negation,
atom, . . . ) and with links to their subformulas. More concretely, we represent



this formula by the following first-order structure:

Symbol = {p, q, r} Formula = {ϕ1, . . . , ϕ6}
Subform = {(ϕ1, 1) 7→ ϕ4, (ϕ1, 2) 7→ ϕ2, (ϕ2, 1) 7→ ϕ5, (ϕ2, 2) 7→ ϕ3, (ϕ3, 1) 7→ ϕ6}
KindF = {ϕ1 7→ disj , ϕ2 7→ conj , ϕ3 7→ neg , ϕ4 7→ atom, ϕ5 7→ atom, ϕ6 7→ atom}
SymbolF = {ϕ3 7→ p, ϕ4 7→ q, ϕ5 7→ r}

The above structure represents a disjunctive formula (ϕ1) with two subformulas
(ϕ4 and ϕ2 respectively). The first of these subformula is an atom, namely p,
etcetera. From a representation point of view, we prefer the first solution, where
we use the infinite domains as they result in clear and simple representations.
However, from a practical point of view, we prefer the second solution, where
only relevant nodes in the parse tree are taken into account. Conceptually, the
latter solution is similar to the approach taken in many applications of meta-
reasoning in the context of ASP [17–19]. The biggest difference is that in ASP,
one typically enforces restrictions on programs to handle infinite domains: pro-
grams are assumed to be safe, i.e., written by a careful programmer to ensure
that the grounding is finite, while we allow any FO(·)IDP theory.

Afterwards, we show how a subtask of model expansion, can be modelled on
the meta-level and solved using the model expansion engine itself. This allows us
to effectively bootstrap parts of our engine. This reduces development effort and
yields more flexible, bug-free, and maintainable code. The application we discuss
consists of finding an optimal strategy to split a theory in many pieces that can be
handled individually, or pieces that can safely be ignored by the model expansion
engine. Model expansion is closely related to constraint programming and answer
set generation, as discussed in [11]. Hence, this application, and similar meta-
level bootstrapping applications, can also be applied in the context of CP and
ASP systems. Solving them declaratively could also reduce development effort
in those fields.

The main contributions of this paper are that it introduces and compares
several solutions to meta-modelling in FO(·)IDP and presents a new application
of meta-modelling, and shows how this application can be used to bootstrap
declarative systems.

The rest of the paper is structured as follows. In Section 2, we review relevant
concepts and notations. In Section 3, we present meta-level FO(·)IDP representa-
tions and discuss their properties. In Section 4, we present a detailed application
of the meta-level representations. In Section 5, we briefly discuss several other
bootstrapping applications that can be used to optimise IDP. In Section 6, we
discuss the implementation of the application. Concluding remarks and future
work follows in Section 7.

2 Preliminaries

In this section we present the language FO(·)IDP, focusing on the aspects that
are relevant for this paper. Details and examples can be found in [6, 8]. We
assume familiarity with basic concepts of FO. FO(·)IDP is a many-typed logic;



thus, a vocabulary Σ is a set of type, predicate, and function symbols. We write
p[t1, . . . , tn] and f [t1, . . . , tn → t′] for the predicate p with arguments of type
t1, . . . , tn, respectively the function f with input arguments of type t1, . . . , tn
and an output argument typed t′. We use ∀x ∈ t : ϕ and ∃x ∈ t : ϕ to indicate
that x is quantified over the elements in type t. When introducing a predicate
p[t1, . . . , tn], we often immediately define its informal semantics. In order to do
this, we write p[x1 : t1, . . . , xn : tn] with a natural language sentence explaining
the meaning of an atom p(x1, . . . , xn) where x1, . . . , xn are variables of the correct
type. For example “we use a predicate r[x : t, y : t] to express that y is reachable
from x in the graph at hand”. A domain atom is an expression of the form P (d)
or of the form f(d) = d′, where P is a predicate symbol, f is a function symbol
and the d are domain elements. Structures can be three-valued. Concretely, this
means that a structure assigns a truth value true (t), false (f) or unknown (u)
to every domain atom. If I is a structure over a vocabulary Σ, and σ a symbol
in Σ, σI denotes the interpretation of σ in I. In FO(·)IDP, one can declare a
type t as a constructed type, a type constructed from a finite set of constructor
function symbols {f [t1, . . . , tn → t], . . . , g[s1, . . . , sm → t]}. Concretely, these
constructors are total injective functions, have disjoint ranges and the union of
their ranges is (the interpretation of) t. For example, we can define the infinite
type List representing lists of integers as the type constructed from nil[→ List]
and cons[int, List→ List]. In the untyped case, this corresponds to the condition
that the domain is the Herbrand universe.

FO(·)IDP extends FO with (inductive) definitions: sets of rules of the form
∀x : p(t) ← ϕ, (or ∀x : f(t) = t′ ← ϕ) where ϕ is an FO formula and the
free variables of ϕ and p(t) are among the x. We call p(t) (respectively f(t) =
t′) the head of the rule and ϕ the body. The connective ← is the definitional
implication, which should not be confused with the material implication ⇒.
Thus, the expression ∀x : p(t)← ϕ is not a shorthand for ∀x : p(t)∨¬ϕ. Instead,
its meaning is given by the well-founded semantics (for functions, semantics of
the graph predicate is considered, i.e., as if the rule were graphf (t, t)← ϕ); this
semantics, for example, correctly formalises all kinds of definitions that typically
occur in mathematical texts [12,14]. An FO(·)IDP theory consists of a set of FO
sentences and definitions.

The model expansion task takes as input a theory T and structure I, both
over a vocabulary Σ, and vocabulary σout, subset of Σ. We denote such a task
as MX 〈Σ, T , I, σout〉. The aim is to find two-valued σout-structures for which
a Σ-expansion exists that is more precise than I and is a model of T . This
task corresponds to finding, e.g., a partial solution to a constraint satisfaction
problem with the guarantee that a total solution exists.

3 Approaches for Meta-Reasoning: Problems and
Solutions

In order to develop a meta-language to reason about FO(·)IDP, there are several
possibilities, each with their own advantages and disadvantages. In Section 3.1,



we first describe a highly general, flexible approach to meta-modelling proposi-
tional logic. In Section 3.2, we discuss how to extend this method to FO(·)IDP.
Afterwards, in Sections 3.3 and 3.4, we discuss alternative approaches that are
less flexible, but more efficient to work with. The application presented in Section
4 uses those more efficient approaches.

3.1 A General Approach to Meta-Modelling Propositional Calculus

The approach we discuss in this section, which we call the Herbrand approach, is
based on constructor functions (see Section 2). Consider for example an alphabet
Σ of propositional symbols. The language L of propositional formulas over Σ is
then defined as follows

– if p ∈ Σ, then p is a formula,

– if ϕ and ψ are formulas, then ϕ ∧ ψ is a formula.

– if ϕ and ψ are formulas, then ϕ ∨ ψ is a formula,

– if ϕ is a formula, then ¬ϕ is a formula.

To represent propositional formulas with constructors in a typed language, we
use two types: Symbol and Formula (abbreviated below as S and F , respec-
tively). The type Formula is constructed from four constructor functions, one
for each of the above rules, namely atom[S → F ], and [F, F → F ], or [F, F → F ]
and not [F → F ]. Hence, every structure interprets F as the union of the images
of each of these four functions.

Example 1. The formula p ∨ (q ∧ ¬r) is represented by the term

or(atom(p), and(atom(q),not(atom(r))))

with Symbol interpreted as (a superset of) {p, q, r}.

This approach has many advantages. First of all, it is very generic and flexible.
All interesting information about a formula can be derived from a representation
as above. For example, if we want to define a relation subfOf [F, F ] that expresses
that a formula is a (direct or indirect) subformula of another, we do this as
follows: 

∀x : subfOf (x, x).
∀x, y : subfOf (x, and(x, y)). ∀x, y : subfOf (y, and(x, y)).
∀x, y : subfOf (x, or(x, y)). ∀x, y : subfOf (y, or(x, y)).
∀x : subfOf (x,not(x)).
∀x, y : subfOf (x, y)← ∃z : subfOf (x, z) ∧ subfOf (z, y).


Second, since Herbrand interpretations are used, all formulas over the available
symbols are in the domain. This allows reasoning about formulas not explicitly in
the input. For example, the transformation nnf [F → F ] that maps formulas to



their equivalent formula in Negation Normal Form (NNF) by pushing negations
inwards can be defined as follows

∀x : nnf (not(not(x))) = nnf (x).

∀x, y : nnf (not(and(x, y)) = or(nnf (not(x)),nnf (not(y)).
...


In order to use this meta-modelling approach for bootstrapping (a proposi-

tional version of) IDP, one needs to implement two transformations: converting
internal data structures that represent a logical specification into a structure
in the meta-vocabulary and back again. Given these two transformations, one
can use inference on the structure that represents a specification, obtain a new
structure (e.g., after applying model expansion) and successively transform it
back into internal data structures.

3.2 A General Approach to Meta-Modelling FO(·)IDP

The above approach using Herbrand interpretations can be extended to represent
full first-order formulas, or, more general, FO(·)IDP theories. It is, however, less
trivial to do this in a nice and principled way. Consider, e.g., how to represent:

– An FO(·)IDP theory, which is a set of FO sentences and inductive definitions,
– A first-order atom, which is a predicate symbol applied to a list of terms.

For this, we need to be able to represent sets or lists (of unknown size) in some
way. We see three solutions. Either, we use type theory or higher-order logic to
integrate the notions of sets and/or lists in the language. Or, we use infinitely
many constructors, i.e., one for each possible arity. Or, as a third possibility, we
encode lists in some way, for example as Prolog-like head-tail lists. However, all
three solutions have some disadvantages. We discuss these in the following two
sections and show how they can be addressed to obtain a feasible meta-modelling
approach.

3.3 Obtaining Finite Domains

From a knowledge representation point of view, the approach using constructor
functions is the best solution. However, this approach has some practical disad-
vantages. The most important one is that, since all formulas and terms over Σ
are part of the domain, the domain immediately is infinite, thus no finite do-
main solvers can be used to perform inference on such specifications. Searching
for models of a theory over an infinite domain often requires smart forms of
reasoning. It is ongoing research to handle infinite domains better [10], but this
is far from finished. Hence, in this paper we provide alternatives to the infinite
encodings.

In order to obtain finite domains, we consider several solutions. One solution
(i) is to restrict our attention to formulas and terms occurring in the input the-
ory. This can be achieved by simply restricting types such as Formula to relevant



objects. This implies that all of the constructor functions now become partial
functions, e.g., and(ϕ,ψ) is only defined if the conjunction of ϕ and ψ occurs
in the input theory. Representationally, this approach is still very similar to the
Herbrand approach. Furthermore, it works well for applications that are con-
cerned with analysis, e.g., checking whether the input theory satisfies a certain
criterion. However, sometimes we need to reason about formulas not in the input
theory; in this case, things get more difficult. For example, the above-mentioned
application to push negations inward requires more formulas than only the ones
that occur in the original theory. Other solutions to avoid infinite domains are
then (ii) to overestimate the number of additional required domain elements or
(iii) to iteratively perform the inference with more domain elements.

To apply (ii) or (iii), we need to be able to use domain elements with un-
known properties. For example, in order to transform a formula to NNF, we are
searching for a formula that is equivalent with the original one, but that is in
NNF. Of course, we do not know in advance which formula this is. Now, we
note that when restricting the Herbrand approach to formulas occurring in the
input, the domain elements are basically nodes in the parse tree of a specifi-
cation. For each of these nodes, certain information is known. For example the
node and(ϕ,ψ) is a node representing a conjunctive formula, with subformulas
ϕ and ψ. Our alternative representation approach is based on that observation:
domain elements in Formula are nodes of a parse trees and certain information
about those nodes is known.

To define our alternative meta-approach, we start from scratch. An FO(·)IDP
vocabulary Σ is represented with a meta-vocabulary consisting of the following
types:

– Type, containing all types in Σ,
– Symbol , containing all predicate and function symbols in Σ,
– and Index , to refer to the possible argument positions.

Furthermore, we use a function arity[s : Symbol → n : Index ], which expresses
that s has arity n, and a partial function type[s : Symbol , i : Index → t : Type],
such that t is the i’th type in the type signature of s. For n-ary function symbols,
the function type maps index n+ 1 to the output type of f .

In order to also represent FO(·)IDP theories, we add the following types:

– Formula, to represent formulas in the domain of interest,
– Variable, to represent variables,
– and Term, to represent terms in the domain of interest.

For each formula and term in the domain, their properties must also be described
as part of the meta-specification. For example, a formula ∀x : P (x) is a universal
quantification over variable x with subformula P (x). In order to represent these
properties we use:

– a type KindFormula that is used to distinguish the different kinds of formulas;
this type has a fixed interpretation consisting of conj , disj , quantuniv , atom,
etc.,



– a function kindFormula [f : Formula → t : KindFormula ] that maps every
formula f to the kind of formula it represents (for example, the formula
∀x : P (x) would be mapped to quantuniv ),

– a type KindTerm , similar to KindFormula , that contains all kinds of terms. In
our case, these are domElem (domain elements), var (variables) or functerm
(terms obtained by function application),

– a function kindTerm [t : Term → k : KindTerm ] such that k is the kind of
term represented by t,

– partial functions that map formulas to their constituent components, such
as symbolFormula [f : Formula → s : Symbol ], that maps atoms f to their
predicate symbol s, and subform[f : Formula, i : Index → sf : Formula],
which indicates that sf is the i’th subformula of f (for example a quantifica-
tion has one subformula and a conjunction has two). The meta-vocabulary
contains similar functions for terms and subterms.

In order to represent rules, we add a type Rule with two functions head [Rule →
Formula] and body[Rule → Formula] mapping a rule to their head and body
respectively. Definitions (sets of rules) and theories (sets of definitions and sen-
tences) are encoded with predicates in[e :Rule, s :Definition], in[e :Definition, s :
Theory ] and in[e : Formula, s : Theory ] meaning that the object e is an element
of the set s. Similar types and functions can straightforwardly be defined to also
represent structures, but this is not necessary in this paper. Below, we often
abbreviate Formula to F and Term to T .

One advantage of this approach is that we can add extra domain elements to
F and T , for example add an extra formula, without fixing their properties in
advance. A reasoning engine can then assign kinds and properties to these extra
symbols. For example, for the NNF transformation from the previous section, if
the input is ¬(P ∨Q), the input theory consists of four formulas (P , Q, P ∨Q and
¬(P ∨Q)). In order to transform it to NNF, we add 4 extra domain elements to
F and leave their properties open (one to represent the NNF form of each of the
formulas). The system only needs to use three of those four extra placeholders,
namely to represent the formulas ¬P , ¬Q and ¬P ∧ ¬Q.

Example 2. If p[T, T ] is a predicate and f [T → T ] a function, then a formula
∀x[T ] : p(x, f(x)) is represented as follows. The information about the symbols
is represented by

Type = {T},Symbol = {p, f},
Index = {1, 2},
arity = {p 7→ 2, f 7→ 1},
type = {(p, 1) 7→ T, (p, 2) 7→ T, (f, 1) 7→ T, (f, 2) 7→ T}

In addition, we introduce domain elements ϕ1 and ϕ2 to represent the formulas
∀x ∈ T : p(x, f(x)) and p(x, f(x)), and domain elements t1, t2 and t3 to repre-
sent the term occurrences x (first occurrence), respectively f(x) and the second



occurrence of x. The remaining information can then be encoded as follows.

Formula = {ϕ1, ϕ2}, Term = {t1, t2, t3},Variable = {x},
kindF = {ϕ1 7→ quantuniv , ϕ2 7→ atom},
kindT = {t1 7→ var, t2 7→ functerm, t3 7→ var},
subform = {(ϕ1, 1) 7→ ϕ2, (ϕ2, 1) 7→ t1, (ϕ2, 2) 7→ t2},
symbolF = {ϕ2 7→ p}, symbolT = {t2 7→ f},
. . .

In order to implement bootstrapping applications using the above approach
we need to translate internal data structures into structures over the above
vocabulary (and back) and come up with methods to approximate the number
of extra required domain elements of every sort.

3.4 Abstractions

The previous sections describe a very detailed way to represent FO(·)IDP theories.
For most applications, such a detailed representation is not necessary and an
abstraction of the detailed information suffices. For example, in Section 4, we
describe an application where an optimal model expansion workflow is computed
for a given theory. The only input it requires is

– which symbols are defined in which definitions,
– which symbols are open in which definitions, and
– which symbols occur in first-order sentences.

In the presentation of all of our applications, we assume a representation at the
right level of abstraction is available a priori. In Section 4.1, we will show that
obtaining input in the right abstraction level can itself be cast as a bootstrapping
task.

4 Splitting the Model Expansion Task

As explained above, the model expansion task takes as input a theory T and
structure I, both over a vocabulary Σ, and vocabulary σout, subvocabulary of
Σ. The aim is to find two-valued σout-structures for which a Σ-expansion exists
that is more precise than I and is a model of T . By default, the IDP system uses
the ground-and-solve technique to solve model expansion problems. However, for
many special cases more efficient techniques exist. One important challenge is
to detect these special cases as often as possible. For example, calculating the
well-founded model of a definition whose parameters are known corresponds to
querying a logic program, a task that has been studied intensively, and has been
implemented in various Prolog systems. Jansen et al. [20] show that great per-
formance gains are possible by splitting the model expansion task: first evaluate
all definitions whose open predicates are interpreted using dedicated techniques
and subsequently use ground-and-solve for the rest of the theory. Or, as a second
example, given the output vocabulary, one can often ignore parts of the theory
that are not relevant for the problem at hand.



Example 3. As a small example, consider a theory consisting of the definitions
∆1 = {p← q}, ∆2 = {q ← r} and ∆3 = {t← r ∧ s} and the single FO sentence
q ∨ s. If model expansion on this theory is performed with an input structure
that interprets r, ∆2 can be evaluated beforehand, hence the value of q can be
determined before grounding and solving. This implies in turn that also ∆1 can
be evaluated in advance. We can go further than this: evaluation of ∆1 and of
∆3 can be postponed until after the search since symbols p and t do not occur in
the FO sentence and are irrelevant for the search. Furthermore, if t is not part
of the output vocabulary σout, definition ∆3 does not need to be evaluated at
all.

Summarised, for a model expansion task with theory T , structure I and output-
vocabulary σout, we partition the set of definitions in T into four parts:

– Preprocess: Definitions that can be evaluated before grounding and solving
the theory.

– Postprocess: Definitions that can be evaluated after search.
– Forget: Definitions that are irrelevant for this model expansion problem.
– Search: Definitions without special properties, i.e., that should be consid-

ered during search.

The definition we preprocess are highly similar to domain predicates in the ASP
grounder lparse [24]. In lparse, some parts of an ASP program (some definitions,
as we would say) are also evaluated prior to grounding. We extended these ideas
to also postprocess and/or forget some parts of the theory.

We modelled the partition of the definitions in an FO(·) theory in the above
four classes of definitions using the approach described in Section 3.4. The in-
put for this partition problem is a structure interpreting the following symbols
(hence, an abstraction of the most precise meta-representation):

– types: Def and Symbol ,
– relations open[d : Def , s : Symbol ] and def [d : Def , s : Symbol ], with in-

tended interpretation that s is open (respectively defined) in d,
– a relation occursInFO [s : Symbol ], meaning that s occurs in FO constraints,
– a relation twoVal [s : Symbol ] meaning that s is two-valued in the input

structure of the model expansion task,
– a relation output [s : Symbol ] meaning that s is an element of the output-

vocabulary σout.

The output of the problem then consists of the relations pre[Def ], search[Def ],
post [Def ] and forget [Def ], describing the definitions to preprocess, use for search,
postprocess, and forget respectively. Furthermore, in the theory below, we use
auxiliary relations

– hasOpen[s1 : Symbol , s2 : Symbol ] meaning that some definition of s1 has s2
as open,

– outRel [s : Symbol ] meaning that the value of s is relevant for computing the
values of all symbols in the output vocabulary, and



– searchIrrel [s : Symbol ] meaning that the value of s is irrelevant for the search
problem.

The following theory then describes an optimal splitting for step 3 of the model
expansion workflow, where definitions are either ignored or evaluated in post-
and preprocessing steps as much as possible:

∀s, s′ : hasOpen(s, s′)←∃d : def (d, s) ∧ open(d, s′).

∀s : outRel(s) ← output(s).

∀s : outRel(s) ←∃s′ : hasOpen(s′, s) ∧ outRel(s′).

∀s : searchIrrel(s) ←¬occursInFO(s)

∧#{d | def (d, s)} ≤ 1

∧∀s′ : hasOpen(s′, s)⇒ searchIrrel(s′).



∀d : pre(d) ← (∃s : ¬searchIrrel(s) ∧ def (d, s))

∧(∀s : open(d, s)⇒
(twoVal(s) ∨ ∃d′ : def (d′, s) ∧ pre(d′))).

∀d : search(d)←¬pre(d) ∧ ∃s : ¬searchIrrel(s) ∧ def (d, s).

∀d : post(d) ← (∃s : def (d, s) ∧ outRel(s)) ∧ ¬pre(d) ∧ ¬search(d).

∀d : forget(d) ←¬pre(d) ∧ ¬search(d) ∧ ¬post(d).


This theory states that there are two conditions on definitions in order to pre-
process them: one of their defined symbols is relevant for the search part, and
all of its opens are either input or calculable from input. We ground-and-solve
all definitions that define constrained symbols (symbols that are relevant for the
search) unless they are already preprocessed. Furthermore, we postprocess all
definitions that define a relevant symbol (one that is either in the output vo-
cabulary or is needed to evaluate all symbols from the output vocabulary) and
forget all other definitions. In [21], it has been shown that removing redundant
information from a theory can influence the efficiency of the underlying solver.
However, the information we remove does not have similar side effects, since
we only remove (or postpone) definitions of symbols that are irrelevant for the
search part.

The application we presented is an analysis application: we analyse the struc-
ture of a set of definitions given in the input structure. Hence, this application
does not need the introduction or invention of new values.

4.1 Marshalling

In Section 3.4 we mentioned that for many applications, an abstraction of the
specification suffices. Such abstraction can themselves be obtained through boot-
strapping. For example, in the above bootstrapping application, we silently as-
sumed an input that describes

– which symbols are defined in which definitions,



– which symbols are open in which definitions, and
– which symbols occur in first-order sentences.

Obtaining such abstraction, as described in Section 3.4 starting from the most
detailed representation can be done using definitions. For example, in this appli-
cation, defining which symbols occur in first-order sentences in a theory identified
with constant T is done with

∀s : occursInFO(s) ←∃f [F ] : in(f, T ) ∧ occursIn(s, f).

∀s, f : occursIn(s, f)← kindF (f) = atom ∧ symbol(f) = s.

∀s, f : occursIn(s, f)←∃f ′ : subfOf (f ′, f) ∧ occursIn(s, f ′).


Given a definition that describes an abstraction, definition evaluation yields the
desired abstraction, hence the marshalling is done using bootstrapping as well.

5 More Bootstrapping Applications

The bootstrapping application discussed above is only the tip of the iceberg.
There are, for example, many different transformations that could be handled
in a declarative way. Also several theoretical results, e.g., results about splitting
logic programs or inductive definitions [12], can easily be reformulated in the
meta-vocabulary. Another task currently solved with bootstrapping and meta-
modelling in IDP is in the context of lazy grounding: given a theory, find a
maximally large part of the theory of which the grounding can be delayed. It
would take us too far to present this application here, details can be found in
Section 4.2 of De Cat et al.’s paper on lazy grounding [10].

Furthermore, in this paper we focused on an application that can be cast
as a model expansion task. In a KBS, there are many more bootstrapping op-
portunities. For example the query inference is used to compute the value of
optimisation terms during optimal model expansion and the deduction inference
is used to detect implicit functional dependencies [9].

6 Discussion

In the previous sections, we presented several ideas concerning meta-level repre-
sentations of FO(·)IDP and bootstrapping applications that use these meta-level
representations. We implemented some of these ideas in the IDP system. More
concretely, the application described in Section 4 is now by default part of IDP’s
model expansion workflow, implemented using bootstrapping. Of course, for all
bootstrapping applications, one can argue that dedicated algorithms to perform
these tasks can be more efficient than the bootstrapping approach which applies
a generic model expansion engine. However, the complexity typically scales with
the size of the input structure, which is relatively small as it is actually the en-
coding of a theory. Implementing the other ideas presented in Section 5 is part
of future work.



When bootstrapping model expansion by solving subtasks with model ex-
pansion themselves, we have to be cautious to avoid infinite loops. These loops
are avoided by making the subtasks optional: the user (or the programmer in
case of bootstrapping) can, for example, inform the system that the theory does
not need to be partitioned in the four components described in Section 4.

In our current implementation, we still write out information directly at
the abstraction level of the application. It is part of future work to start from
the most general meta-representation and apply the marshalling techniques de-
scribed in Section 4.1 instead.

7 Conclusion

Declarative systems solve complex reasoning tasks over a general input. In addi-
tion, they aim at not burdening the user with performance considerations during
modelling. As a result, implementing them is laborious, as they need to handle
many special cases to guarantee reasonable efficiency. In addition, it is difficult to
reuse such optimisations over different systems without a lot of implementation
work.

In this paper, we showed that tasks solved within a declarative system
can also be solved declaratively. We presented meta-modelling approaches for
FO(·)IDP to tackle such tasks and an application that is used to bootstrap model
expansion.

These techniques are actively used within IDP to reduce development time
and obtain more flexible, bug-free, and maintainable code. Furthermore, these
bootstrapping techniques cause improvements to one engine to have a positive
effect on the whole system: small improvements to, e.g., its model expansion
engine can result in improved efficiency for all tasks where model expansion is
applied internally.
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