An OpenCL implementation of a forward
sampling algorithm for CP-logic

Wiebe Van Ranst and Joost Vennekens

firstname.lastname@kuleuven.be
Dept. of Computer Science, KU Leuven
Campus De Nayer
J.-P. De Nayerlaan 5, 2860 Sint-Katelijne-Waver

Abstract. We present an approximate query answering algorithm for
the Probabilistic Logic Programming language CP-logic. It complements
existing sampling algorithms by using the rules from body to head in-
stead of in the other direction. We present an implementation in OpenCL,
which is able to exploit the multicore architecture of modern GPUs to
compute a large number of samples in parallel, and demonstrate that
this is competitive with existing inference algorithms.

1 Introduction

The Distribution Semantics, originally developed by Sato [13], has given rise to
a family of Probabilistic Logic Programming (PLP) languages. Examples of such
languages are Sato’s own PRISM language [13], the Independent Choice Logic [7]
and CP-logic [17]. The most common inference task for these languages is that
of computing the probability of a query. For CP-logic,which subsumes the other
mentioned languages, this task has been implemented in a number of different
ways. The Problog system (http://dtai.cs.kuleuven.be/problog) supports
the CP-logic language with algorithms based on weighted CNFs [3] and Binary
Decision Diagrams [4]. A separate family of inference algorithms for CP-logic
[11,10] is based on more traditional Logic Programming methods such as SLG
resolution. One of these, the PITA algorithm for CP-logic, is currently part of
the XSB Prolog system (http://xsb.sourceforge.net).

Both families of algoritms compute the exact probability of a query. However,
because the high computational complexity of this task can be problematic for
real applications, several approximate algorithms have also been developed. One
possibility [4, 8] is to compute only a subset of all proofs of the query, as opposed
to computing all proofs which produces an exact probability. An alternative is
the Monte Carlo algorithm MCINTYRE [9], which repeatedly samples an SLD
proof tree of the query. All these methods use the rules of a CP-logic theory in
a backwards way, i.e., going from the head to the body.

In this paper, we propose an alternative sampling algorithm, which uses the
rules in a forwards way, from body to head. As we will argue, this is a useful
complement to the backwards methods. Moreover, because different samples are

independent, our method can easily be parallellised. We demonstrate this by
developing an implementation that runs in parallel on GPU (Graphics Process-
ing Unit) hardware. While originally intended only for graphical computations,
the processing power available in modern GPUs is becoming more and more
popular as a tool for general purpose computation. This GPGPU (General Pur-
pose computing on GPU) trend differs from traditional parallel programming
by its massive multi-core approach: instead of using a relatively small number
of powerful processors in parallel, a massive number of relatively weak proces-
sors are used. Sampling approaches in general depend for their accuracy on the
ability to construct a large number of samples, with each individual sample be-
ing comparatively easy to compute. This fits in a natural way into the GPGPU
paradigm, where a massive number of weak processors can each compute a sin-
gle sample. Indeed, in the literature, we already find many examples of GPGPU
sampling methods, e.g., in the context of computer graphics [14] or financial
simulations [1]. However, to the best of our knowledge, this paper is the first to
apply GPGPU sampling to PLP query answering.

Our implementation will make use of the OpenCL framework. This is a
platform-independent framework for GPGPU programming (in contrast to its
predecessor CUDA, which is specific to NVidia hardware), which allows so-called
kernels, written in a dialect of C99, to be executed on a variety of different de-
vices. This paper will not discuss OpenCL in detail. Instead, we will introduce
the main concepts as needed in Section 5, when discussing our implementation.

2 Preliminaries: CP-logic

A theory in CP-logic consists of a set of CP-laws of the form: V& (41 : o) V

-V (An @ ap) < ¢. Here, ¢ is a conjunction of literals and the A; are atoms,
such that the tuple of variables @ contains all free variables in ¢ and the A;. The
ay; are non-zero probabilities with Y a; < 1. Such a rule expresses that ¢ causes
some (implicit) non-deterministic event, of which each A; is a possible outcome
with probability ;. If >~ «; = 1, then at least one of the possible effects A;
must result if the event caused by ¢ happens; otherwise, the event may happen
without any (visible) effect on the state of the world. For a CP-law r, we refer
to ¢ as body(r), and to the sequence (A;, ;)" ; as head(r). The body may be
omitted for events that are vacuously caused.

The semantics of a theory in CP-logic is defined in terms of its grounding, so
from now on we will restrict attention to ground theories, in which each tuple of
variables @ is empty. Moreover, we assume that the sum), «; of all probabilities
in any head(r) is always precisely 1, since this can always be achieved by adding
a fresh atom as an additional disjunct. A final assumption, made for simplicity,
is that we assume that each body(r) is a conjunction of literals.

Ezxample 1. Suzy and Billy may each decide to throw a rock at a bottle. Suzy
throws with probability 0.5 and if she does, her rock breaks the bottle with

probability 0.8. Billy always throws and his rock hits with probability 0.6.

(Throws(Suzy) : 0.5). (Broken : 0.8) < Throws(Suzy).
(Throws(Billy) : 1). (Broken : 0.6) < Throws(Billy).

The semantics of CP-logic can be defined as a straightforward instantiation
of Sato’s distribution semantics. An instance of a CP-logic theory T is a logic
program that is constructed by choosing a single atom a; from the head of each
rule 7 of T'. In other words, if we denote chosen atom by o(r), then the instance
T7 is the logic program that consists of the rules o(r) < body(r) for all r € T. To
each such instance, we associate a probability 7., which is the product II,.cr .,
where each «,. is the probability of o(r) in head(r). This probability distribution
over instances is then mapped to a probability distribution over interpretation by
applying the Well-Founded Model (WFM) semantics [15] to these logic programs.
In other words, we define a probability distribution 77 over interpretation I as
mr(I) = X wrar(re)=r To- This semantics is only defined for CP-theories which
have the property that each instance T has a two-valued well-founded model,
which can be ensured by imposing a syntactic condition such as stratification.

In [17], an alternative—but equivalent—characterization of this semantics
was developed. It makes use of the concept of an execution model of a CP-theory.
This is a probability tree in which each node s is labeled with an interpretation
I(s). Such trees are constructed, starting from a root node in which all atoms are
false, by “firing” rules whose body holds. The following is an execution model
for Example 1. States s in which the bottle is broken (i.e., I(s) = Broken) are
represented by an empty circle, and those in which it is still whole by a full one.

Suzy throw esn’t throw
0.5 0.5

[] L]
Bottle breal esn’t break Billy1 throws
0.8 0.2 ¢/
O [] []
Billy1 throws Billy1 throws Boc(:)tlé: brea ens’t break
4 | ° 0.1
O [] O []
Bototlée‘brea esn’t break Bo%tlée‘brea esn’t break
’ i/ 0.4 ’ ¢ 0.4
o o o [}

To each branch of such a tree corresponds a set of instances of the theory, namely
all those which make the same choices as the branch for all the rules that actually
fire in the branch. For the rules that do not fire in the branch, it does not matter
which choices the instances make. As shown in [17], the sum of the probabilities
of all these instances is precisely the probability of the branch, and they all have
the interpretation associated with the leaf of the branch as their WFM. For
positive theories, i.e., those without negation, this property is rather obvious. In
the general case, however, some additional care is required when constructing
the execution models. We discuss this in Section 4.

A CP-theory may have many execution models, which differ in the order in
which they fire rules. The differences between these trees are irrelevant, in the
sense that they all produce the same probability distribution 77 in the end [17].

3 A forward sampling method for positive CP-theories

The probability tree characterization of the semantics of CP-logic suggests a
straightforward sampling method. To approximate the probability 71 (Q) of a
query @, we can simply perform repeated random walks in the tree and report
the ratio p of how often we end up in a leaf s such that I(s) E @ versus the
total number of walks. The more walks we take, the more precise this estimate.

Algorithm 1 saturates a given interpretation I by applying rules from a set R

1: procedure SATURATE(T, I) > Updates T and I
2 Fired < {}

3 repeat

4 ToFire < {r € T | I = body(r)}

5: for all » € ToFire do

6: a < RandomChoice(head(r))

7 I(a) + True

8: T < T\ ToFire

9: until ToFire = {}

10: function RANDOMCHOICE((a1, 1), ..., (an, an))

11: r < random floating point number € [0, 1]

12: sum < 0

13: for all i € [1,n] do > If Y o <7 <3 @, then return a;
14: sum <+ sum + o;

15: if » < sum then

16: return a;

At the end of this procedure, the interpretation I is saturated, in the sense
that all rules r € R, such that I = body(r), have been fired, and therefore T
contains at least one true atom from each such head(r).

The following theorem proves the correctness of this procedure.

Theorem 1. Let T be a positive CP-theory and let F' be the interpretation that
assigns false to all atoms. Let Pr be the probability distribution over all possible
runs r of the probabilistic Algorithm 1 when called as Saturate(T, F'). For each
possible run r, let n” be the number of iterations of the inner for-loop (line 5),
and, for each1 < i <n'", let I] be the value of I at the start of the ith iteration of
this loop. Then there exists an execution model x of T' with a one-to-one mapping
f between the branches of x and the possible runs of the algorithm, such that,
for each branch b = (s1,...,8,) of x and the corresponding run r = f(b), the
probability of b is equal to Pr(r) and I(s;) = I for all 1 <i <n’.

To turn this idea into a concrete algorithm, we must decide which of the
execution models of the theory will be used for the random walks. For efficiency
reasons, we construct the tree by first building a list of all rules that are ap-
plicable in a given node, and then firing all of these rules, thereby traversing
a number of nodes in which we do not have to evaluate any rule bodies. This
results in Algorithm 1, which produces a single random walk when called with
the CP-theory T as its first argument and the interpretation that assigns False
to all atoms as the second. Algorithm 2 then estimates the probability of a query.

Algorithm 2 approximates the probability of a query @ according to mp

1: function SAMPLE(T, Q)
2: g+ 0,n+<0 > Nb of samples in which @ holds and total nb of samples
I < the interpretation such that all atoms are False
repeat

I < Saturate(T,I)

if IT=Qtheng<«qg+1

n+<n+1l
until desired accuracy reached > See Section 5
return g/n

4 A forward sampling method for general CP-theories

Negation in a CP-theory is interpreted by the WFM. In [17], the execution
model semantics was also extended to this case. The WFM uses three-valued
interpretations Z, in which atoms and formulas can be Unknown in addition
to True and False. In our execution models, we will label each node s with a
three-valued interpretation Z(s), in addition to the two-valued I(s). The true
atoms of Z(s) and I(s) are always the same, but false atoms of I(s) may be
unknown in Z(s). At the root r of the tree, Z(r) assigns Unknown to all atoms.

The key difference with the positive case is that we now only allow rules
to fire if their body is true in both I(s) and in Z(s) (so, in particular, rules
which are true in I(s) but unknown in Z(s) may not fire). The effect of firing
a rule is the same as before: one atom from the head of the rule becomes true,
both in I(s) and Z(s). In this way, an atom that was originally unknown in
some Z(s) may become true in a child Z(s’). There is also a way in which atoms
that are originally unknown may become false. This is done by a “look ahead”-
mechanism, that makes atoms false when there is no longer any way in which
they could still be caused. The details are as follows.

In each node s, we construct Z(s) from I(s) as the limit of a sequence (Z7);>o
of three-valued interpretations. This sequence starts from the interpretation Z;)
that coincides completely with I(s) (and therefore has no unknown atoms).
Given a 7, we then select a rule r that has not yet fired and whose body is

either True or Unknown in Z{. We derive Z; | from Z; by changing the truth
value of all atoms from the head of r that are still False to Unknown. In this
way, we end up making some of the atoms that are False in I(s) Unknown,
but not (necessarily) all of them. The limit of this sequence is used as Z(s).
For a child s’ of a node s, the three-valued interpretation Z(s’) is therefore
constructed from I(s’), and not from Z(s) directly. Nevertheless, it can be shown
[17] that Z(s") is always more precise than Z(s), in the sense that its true and false
atoms, respectively, are a superset of those of Z(s). This allows us to postpone
the expensive operation of actually computing Z(s'): if a rule body is true in
Z(s) for some ancestor s of s’; we can be sure that it is still true in Z(s') itself.
Moreover, if we construct a different Z' from Z(s) by making some additional
atoms true that are also true in I(s’), then this Z' is still less precise than Z(s),
and therefore all rule bodies that are true in Z' must also be true in Z(s').
This leads us to Algorithm 3. Here, we are now calling the procedure Saturate
with a three-valued interpretation as its argument. In this case, the expression
I |= body(r) in Line 11 of Algorithm 1 has to be interpreted as that the truth
value of body(r) has to be true according to I (i.e., unknown is not enough).

Algorithm 3 samples single branch of execution model of 7', returning the leaf

1: function SINGLESAMPLE(T)

2: T < interpretation that maps each a appearing in 7" to Unknown

3: repeat

4: Saturate(T,T) > Atoms go from Unknown to True
5: Shrink(Z,T) > Atoms go from Unknown to False
6: until fixpoint reached

T return 7

8: function SHRINK(T,Z) > computes Z(s), given the true atoms of Z
9: T’ + interpretation with the same true atoms as Z and all other atoms false
10: repeat

11: ToFire < {r € T | body(r)* +# False}

12: for all atoms a in some head(r) with r € ToF'ire do

13: T'(a) + True

14: T < T\ ToFire

15: until ToFire = {}

16: return 7’

5 OpenCL implementation

To compute a good approximation of the probability of a query, our sampling
algorithm may need a large number of samples. Because different samples are
independent, they can be executed in parallel to achieve a significant speed-up.
We demonstrate this in OpenCL, a recent framework for programming parallel
hardware (typically, but not exclusively, GPUs) in a platform-independent way.

An OpenCL program consists of two parts: there are kernels, which are exe-
cuted in parallel on OpenCL-capable devices such GPUs, and there is host code
which runs on the CPU and is responsible for starting the kernels and loading
the necessary data onto the device where the kernels will run. The kernels are
written in the OpenCL language, which is a variant of C99. Host code can be
written in a variety of standard programming languages, such as C or C++.

When executing a kernel on an OpenCL device, the host code specifies how
many threads, also called work items, have to be run. These work items are
grouped into work groups. All work items in the same work group are executed
in SIMT (Single Instruction Multiple Thread) parallel, meaning that they share a
single program counter and are therefore always executing the same instruction.

Typically, memory management plays a key role in producing efficient OpenCL
code. On an OpenCL device, there are three different kinds of memory. Global
memory is shared across all work items and is the slowest memory. It is also
the only memory that can be accessed from the host, so all data transfer to
and from the OpenCL device has to pass through it. Local memory belongs to a
single workgroup and is typically both smaller and faster than global memory.
The smallest and fastest kind is the private memory of a single work item.

To compute n samples, we create n work items, each running a kernel con-
sisting of Algorithm 3. To make this possible, the host code first copies the
CP-theory T to the global memory of the OpenCL device. It then also allo-
cates the data structures that the work items need for their operation: an array
atoms in which they can store the truth value of each atom, initialized to Un-
known; an array rules in which they can store the truth value of each rule
body (True, False, Unknown or “already fired”), also initialized to unknown;
and a sequence of random numbers for the required random decisions. When a
work item finishes, it leaves its end result in global memory. Once all work items
have finished, the host copies these individual samples back to main memory and
joins them together in order to answer the query. To improve the performance
of this basic OpenCL algorithm, we can apply the following optimisations.

MEM: Each work item wy, . . . wy, needs its own array (a}, ..., a%") in which

' m
to store the truth value of the atoms (ay,...,a,). Instead of storing these ar-

rays as ((ai’",...,a%'), (a}?,...,a%2), ..., (a¥™, ... a%")), it is more efficient to

m ' m m

store them as ((ay",...,aY"), (a3",...,a5™),...,(a%,...,a%")). In this way,
coalesced memory access allows all work items to access their own truth value

for the same atom a; in a single transaction.

INI: Initializing the arrays atoms and rules can be done as the first oper-
ation of the kernel, to avoid copying two large arrays of Unknown values from
host to device memory.

PRI: The array atoms can be cached in private memory to reduce the time
spent accessing global memory.

RAN: Instead of generating random numbers on the host and transferring
them to the OpenCL device, we can also run a random number generator on the

OpenCL device, so that we only have to transfer a single seed. We will use the
MWC64X OpenCL random number generator.!

RED: Instead of copying the results of the individual samples back to the
host, we can run a second kernel Reduce on the OpenCL device to aggregate the
results there, so only the final count has to be transferred back.

CHU: While the OpenCL device is constructing samples, the host is idling.
To avoid this, we can opt for a chunking strategy, in which we compute our n
samples in chunks of m <« n at a time. While the OpenCL device is computing a
chunk of samples, the host can transfer the results of the previous chunk back to
host memory and aggregate them. Because this is a relatively cheap operation, it
should be finished before the ithe chunk of samples is done, so the host should be
ready in time to initiate the next chunk. In this way, we no longer need a separate
Reduce kernel and keep the OpenCL device continually busy generating samples.
A possible downside of this approach is that we now incur multiple times the
overhead of starting a kernel on the OpenCL device and waiting for it to finish.

All of the above optimisations can
be combined, with the exception of
the mutually incompatible RED and
CHU. In addition, we also experi-

Optimisations
EEE Growingbody (size 20)

=1 Bloodtype (size 4) mented with caching part of the the-
Il Growinghead (size 20)

ory (in particular, the heads of rules)
in local memory. However, due to lim-
ited size of local memory this was only
possible for very small benchmarks.
Moreover, it did not significantly im-
prove performance. We have therefore
not considered this further. Instead of
running a fixed number of iterations,
e @ we can also stop the algorithm once
o * ° a desired accuracy has been reached.
Fig. 1: Effect of different optimisations. This is particularly useful in combina-
tion with the optimisation CHU, be-

cause we can then check the accu-

racy after each chuck. The Problog

Monte Carlo algorithm [4] uses a criterion based on the central limit theorem:

221_qay2y/ @ < 9, where p is the measured probability of the query, z, is the
x percentile of a standard normal distribution, k is the number of samples and ¢
is the desired width of the confidence interval. The MCINTYRE algorithm uses
the same criterion, with the additional requirement that kp > 5 and k(1—p) > 5
to ensure that approximation provided by the central limit theorem is trustwor-
thy. We will use the same criterion with the same parameters of a = 0.05 (so
Z1—q/2 = 1.96) and 6 = 0.01. With these parameters, the worst case value for k
(reached for p = 0.5) is 38416. We will use the same criterion as Problog Monte

10°

Time (s)

10"

2

10% B S
L g
ofa® W o

! nttp://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x . html

Carlo and MCINTYRE. The worst case value for the number of samples k that
may need to be computed is k = 38416.

6 Experimental results

The experiments presented in this section were run on a Linux machine with an
Intel Core i7 965 CPU (3.20GHz) and an NVIDIA GeForce GTX 295 (GT200)
GPU. This GPU has 896 MiB of global memory and consists of 30 streaming
multiprocessors, each with 16 KiB of local memory and consisting of 8 individual
cores operating at 1242MHz. When executing OpenCL code, each work item oc-
cupies a single core, with work items in the same work group running on the same
streaming multiprocessor. Each core has an additional 8 KiB of private memory
available. Our experiments use the BLOODTYPE, GROWINGHEAD and GROW-
INGBODY benchmarks from [6]. The latter two benchmarks consist of ground
programs. However, the BLOODTYPE benchmark first needs to be grounded be-
fore we can apply our algorithm. Source code and graphs of our experiments can
be downloaded at: http://www.cs.kuleuven.be/~joost/PLP/

Figure 1 investigates the effect the different optimisations. The variant Reduc-
tion contains the optimisations RAN+MEM+RED; Private extends this further
with PRI; and Chunking is RAN+MEM+PRI+CHU. For each version, we have
run a single instance of the three benchmarks. The smallest gain is observed in
the GROWINGBODY benchmark, where the fully optimized version is only about
4x faster. For BLOODTYPE and GROWINGHEAD, the speedup is 15x and 37x,
respectively. Our remaining experiments will therefore be conducted using the
fully optimized version (overlap).

o [T S

I gges-

° s g G 5 I ey e oy iy T g g a0 S o e oy ey g g
(a) BLOODTYPE (b) GROWINGHEAD (c) GROWINGBODY

Fig. 2: Convergence of the algorithm.

The convergence behavior of our algoritm is examined in Figures 2a, 2b, 2c.
These figures show boxplots for the probability estimates produced by 10 dif-
ferent runs of our algorithm, each time using a fixed number of samples. The
benchmarks used here are the same as before. As these results show, even a rel-
atively small number of samples can already produce reasonably good approxi-
mations of the true probability. This is most pronounced for BLOODTYPE, where

10 samples already provide a very good estimate (even though the stopping cri-
terion of Section 5 would run until about 350 samples). For GROWINGBODY, the
stopping criterion suggests about 17 000 samples, which is indeed about where
the results of the algorithm begin to seem accurate. The same can be said for
GROWINGHEAD, where the stopping criterion suggests about 30 000 samples.

biooatype

>+ OpenCL (inc = 20000)

« |44 Problog k-best 20

- +—+ Problog k-best 200

s VE

== Problog

¢4 ProbLog Monte Carlo

e—e Problog k-best 2000

= OpenCL (inc = 5000)

»—|s—e OpenCL (k = 38416)
oo PITA

> CVE

+—a MCINTYRE

Fig. 3: Results for the BLOODTYPE benchmark.

Finally, we compare our algorithm to the approach of [5] which transforms
CP-logic into a Bayesian network and then applies the Variable Elimination
(VE) algorithm, to Contextual Variable Elimination (CVE) [6], to the default
and Monte Carlo inference algorithms of the ProbLog system [4], to the PITA
algorithm [12] that is built into XSB Prolog, and to the MCINTYRE backwards
sampling algorithms [9]. For the k-best [4] and k-optimal [8] algorithms, we were
unable to run the most recent version (in YAP 6.3.3) on our system, even after
contacting the authors. We were able to run an older version of k-best (in YAP
6.2.2), but this does not support negation of arbitrary atoms and was therefore
unable to handle the GROWINGBODY benchmark. The k-optimal algorithm is
not available in this version and could not be included in our experiments.

The results for the three benchmarks are shown in Figures 3, 4 and 5. Here,
each data point is the lowest runtime observed in three runs of the systems. Three
variants of our OpenCL algorithm are included in the comparison: inc = 20000,
inc = 5000 and k = 38416. The first two variants use the MCINTYRE stopping
criterion, where inc is the chunk size (i.e., the number of samples that are run at
once). A smaller inc allows the total number of samples computed to be closer
to the actual minimal value for which the stopping criterion is satisfied, but may
increase the likelihood of GPU processors having to wait for data. transfers. Our
experiments show that the large chunk size consistently performs better. Our

third variant does not actually use the stopping criterion at all, but just uses its
worst case value of k = 38416 as a fixed number of samples. For k-best, we have
included experiments with & = 2000, k¥ = 200 and k& = 20. As the results below
show, the precise value of k has only a limited impact on the way in which this
algorithm compares to the others.

»— OpenCL (inc = 20000)

4 VE

~— Problog

«— ProbLog Monte Carlo

= OpenCL (inc = 5000)
¢4 OpenCL (k = 38416)

10° / e PITA

/ = CVE

/ o— MCINTYRE

5 10 15 20 5

Fig. 4: Results for the GROWINGBODY benchmark.

For BLOODTYPE, the sampling approaches perform quite poorly in general.
While several exact inference methods (PITA, CVE) are able to handle problems
up to size 16 in a second or less; MCINTYRE (not visible in the graph, because
all measured runtimes exceed 10s), Problog Monte Carlo and the three version
of k-best already require more than 100s for size 4. Our algorithm does better
and can handle up to size 6 in about a second. After that, however, the theory no
longer fits in the global memory of our GPU. We have also run some experiments
with the more expensive (+ $ 1500) Tesla C 2075 GPU, which has 6 GiB of global
memory. This allows instances up to size 11 to fit in GPU memory. The runtimes
for these problem sizes were still in the order of a few (< 5) seconds, for all three
variants of our algoritm, following the CVE curve. As this benchmark is the only
non-ground one, the times reported for our algorithm include the time needed
to ground the theory (~ 0.01s-0.1s).

A similar phenomenon can be seen for the GROWINGBODY benchmark. Again,
CVE and PITA perform best, comfortably handling problem sizes > 20, while
the sampling methods of MCINTYRE and Problog MC already struggle to reach
size 10. Here, however, our sampling approach does significantly better. While
its runtimes do grow faster than that of CVE and PITA, it is still able to handle

10"

growingneaa

»—+ OpenCL (inc = 20000)

4—4 Problog k-best 20

~— Problog k-best 200
« VE

=—= ProbLeg

¢ ¢ ProbLog Monte Carlo

e—e Problog k-best 2000

»— OpenCL (inc = 5000)

e—e OpenCL (k = 38416)

o—e PITA

> CVE

a—a MCINTYRE

10"

Time (s)

Size

Fig.5: Results for the GROWINGHEAD benchmark.

sizes > 20 in under a second. Finally, the GROWINGHEAD benchmark is clearly
better suited for the sampling methods. Problog MC is the worst of the sampling
methods, being (slightly) outperformed by the exact inference of PITA, but with
the gap narrowing for the larger problem sizes. For k& = 20, the k-best algorithm
runs slightly faster than PITA, but produces an estimate that is almost 0.2 below
the actual probability. MCINTYRE performs best in this benchmark, handling
problem sizes > 20 in a fraction of a second. Our algorithm is somewhat slower,
probably due to the overhead of copying data to the GPU, but, like MCINTYRE,
it also shows an almost constant runtime (around 0.1s) for this benchmark.

7 Discussion

We have tried to compare an approximative algorithm on GPU with exact al-
gorithms, and with algorithms that run on CPU. To do this in a fair way, we
have used comparatively priced processors (at the time of writing, both our CPU
and GPU are worth around $100-$200) and have used the MCINTYRE stopping
criterion to automatically determine the number of samples.

The main conclusion of our experiments is that our algorithm is a useful
addition to the algorithms that are currently available in the literature.

First, our implementation proved quite robust. While all of the other algo-
rithms had at least one benchmark in which their runtimes explode, our method
was always able to keep reasonable track with the best performing algorithms.
In one of the benchmarks, however, we did run into an inherent limitation of
our approach: once theories no longer fit into the memory of the GPU, our cur-
rent implementation cannot do anything. However, even for this benchmark, we

could still handle significantly larger theories than standard Problog inference,
the k-best method and MCINTYRE, especially when using a higher-end GPU.

Second, our algorithm differs from the existing algorithms by not being query-
oriented: each sample constructs the entire interpretation at one of the leaves
of an execution model. In our experiments, we have used this interpretation
only to check that a single query is satisfied. However, with essentially the same
effort, we can compute the probability of a set of queries at once. By contrast,
all of the other algorithms that we have considered would need to be run for
each query separately. In this sense, the experiments that we have conducted
therefore represent the worst case for our algorithm, namely, that in which only
a single query is of interest. The ability to compute the probability of multiple
queries at once could be useful in applications where the goal is to find the
most probable of a set of atoms, or to compute their entire joint probability
distribution. As such, it is a useful addition to the existing set of algorithms,
which are all query-based.

Third, our algorithm may also be easier to extend to new language features,
because it closely follows the execution model semantics of CP-logic. This may
in particular be the case for language features that extend the expressive power
of the heads of CP-logic rules. For instance, while the head of a CP-logic rule is
currently a choice between a fixed number of alternatives, we could allow the set
of possible alternatives and/or their probabilities to be dynamically determined,
based on the interpretation I(s) in the state s where it is executed. A similar
feature can be found in the P-log language [2], which has some similarities to CP-
logic, but does not follow Sato’s distribution semantics. (A comparison between
CP-logic and P-log can be found in [17].) A second example is that, instead
of allowing only a discrete choice in the head of rules, we could also allow a
value to be selected from a continuous distribution. Finally, recent work [16]
has investigated the possibility of extending CP-logic with negated atoms in the
head. Integrating such features into a forward sampling algorithm seems much
easier than extending one of the proof-based methods.

8 Conclusion and future work

We have presented a forward sampling method for the expressive PLP language
of CP-logic and have shown how OpenCL can be used to execute this algorithm in
parallel on GPU hardware. As demonstrated by our experiments, it is important
to properly optimize this code in order to achieve efficient results. Once this is
done, the implementation is competitive with existing algorithms. In particular,
our experiments show that, while it is never the fastest method, ours has the
most consistent performance throughout. Additional advantages are that it can
compute the probabilities of a set of queries almost as quickly as that of a single
query, and that it seems easier to adapt to extensions of the CP-logic language,
in particular those that allow more expressive heads of rules.

One limitation of the current work is that we have focused on ground CP-
theories, which means that grounding is a potential bottleneck. In future work,

a lifted method could be developed, which would allow rules to be stored on the
GPU in a first-order format. During the sampling process, these could then be
instantiated on the fly. This could also help to avoid the problems we observed
with memory limitations on the GPU.

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

L. A. Abbas-Turki, S. Vialle, B. Lapeyre, and P. Mercier. High Dimensional Pric-
ing of Exotic European Contracts on a GPU Cluster, and Comparison to a CPU
Cluster. In IEEFE International Symposium on Parallel € Distributed Processing
(IPDPS), 2009.

. C. Baral, M. Gelfond, and N. Rushton. Probabilistic reasoning with answer sets.

Theory and Practice of Logic Programming, 2008.

D. Fierens, G. Van den Broeck, I. Thon, B. Gutmann, and L. De Raedt. Inference
in probabilistic logic programs using weighted cnf’s. In Proc. UAI 2011.

A. Kimmig, B. Demoen, L. De Raedt, V. Santos Costa, and R. Rocha. On the
implementation of the probabilistic logic programming language problog. Theory
and Practice of Logic Programming, 11:235-262, 2011.

W. Meert, J. Struyf, and H. Blockeel. Learning ground CP-logic theories by lever-
aging Bayesian network learning techniques. Fundamenta Informaticae 89(1), 2008.

. W. Meert, J. Struyf, and H. Blockeel. CP-logic theory inference with contex-

tual variable elimination and comparison to BDD based inference methods. In
Proc. ILP, 2009.

D. Poole. Abducing through negation as failure: Stable models within the inde-
pendent choice logic. Journal of Logic Programming 44, 2000.

J. Renkens, G. Van den Broeck, and S. Nijssen. k-optimal: a novel approximate
inference algorithm for problog. In Proc. ILP, 2011.

F. Riguzzi. MCINTYRE: A monte carlo system for probabilistic logic program-
ming. Fundamenta Informaticae, 124(4):521-541, 2013.

F. Riguzzi and T. Swift. Well-definedness and efficient inference for probabilistic
logic programming under the distribution semantics. TPLP 13:279-302, 2013.
Fabrizio Riguzzi. SLGAD resolution for inference on Logic Programs with Anno-
tated Disjunctions. Fundamenta Informaticae 102(3-4):429-466, 2010.

F. Riguzzi and T. Swift. The PITA system: Tabling and answer subsumption for
reasoning under uncertainty. TPLP 11(4-5):433-449, 2011.

T. Sato and Y. Kameya. PRISM: A language for symbolic-statistical modeling. In
Proceedings of IJCAI, 1997.

D. Van Antwerpen. Improving SIMD Efficiency for Parallel Monte Carlo Light
Transport on the GPU. In High Performance Graphics, 41-50, 2011.

A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM 38(3):620-650, 1991.

J. Vennekens. Negation in the head of CP-logic rules. In Proc. ASPOCP, 2013.
J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A language of causal
probabilistic events and its relation to logic programming. TPLP 9(3), 20009.

