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ABSTRACT
Historically, several different approaches have been applied to explain the metabolic
cost of uphill human running. Most of these approaches result in unrealistically high
values for the efficiency of performing vertical work during running uphill, or are
only valid for running up steep inclines. The purpose of this study was to reexamine
the metabolic cost of uphill running, based upon our understanding of level running
energetics and ground reaction forces during uphill running. In contrast to the verti-
cal efficiency approach, we propose that during incline running at a certain velocity,
the forces (and hence metabolic energy) required for braking and propelling the body
mass parallel to the running surface are less than during level running. Based on this
idea, we propose that the metabolic rate during uphill running can be predicted by a
model, which posits that (1) the metabolic cost of perpendicular bouncing remains
the same as during level running, (2) the metabolic cost of running parallel to the
running surface decreases with incline, (3) the delta efficiency of producing mechan-
ical power to lift the COM vertically is constant, independent of incline and running
velocity, and (4) the costs of leg and arm swing do not change with incline. To test
this approach, we collected ground reaction force (GRF) data for eight runners
who ran thirty 30-second trials (velocity: 2.0–3.0 m/s; incline: 0–9◦). We also mea-
sured the metabolic rates of eight different runners for 17, 7-minute trials (velocity:
2.0–3.0 m/s; incline: 0–8◦). During uphill running, parallel braking GRF approached
zero for the 9◦ incline trials. Thus, we modeled the metabolic cost of parallel running
as exponentially decreasing with incline. With that assumption, best-fit parameters
for the metabolic rate data indicate that the efficiency of producing mechanical power
to lift the center of mass vertically was independent of incline and running velocity,
with a value of ∼29%. The metabolic cost of uphill running is not simply equal to
the sum of the cost of level running and the cost of performing work to lift the body
mass against gravity. Rather, it reflects a constant cost of perpendicular bouncing,
decreased costs of parallel braking and propulsion and of course the cost of lifting
body mass against gravity.

Subjects Anatomy and Physiology, Kinesiology
Keywords Incline, Locomotion, Efficiency, Metabolic cost, Oxygen consumption, Biomechanics

INTRODUCTION
The energetic cost of running affects the behavior/performance of animals in nature,

humans seeking fitness and athletes in competition. We believe that reasonable
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biomechanical explanations for the energetic cost of level running have been developed

(Alexander & Ker, 1990; Arellano & Kram, 2014; Kram & Taylor, 1990; Minetti & Alexander,

1997; Roberts et al., 1998), but the world is not flat. We all know intuitively that running up

even a slight incline is dramatically more exhausting, yet we lack a coherent biomechanical

model for the energetic cost of uphill running.

In this paper, we develop and test a new model for the metabolic cost of uphill human

running. Historically, several different approaches have been applied to this topic. Most

of these approaches result in unrealistically high values for the efficiency of performing

vertical work (Asmussen & Bonde-Petersen, 1974; Lloyd & Zacks, 1972; Pugh, 1971), or are

only valid for running up steep inclines (Margaria et al., 1963; Margaria, 1968; Minetti et

al., 2002) and not for running up inclines more typical of recreational/fitness running. The

purpose of the current study was to reexamine the cost of uphill running, based upon our

understanding of level running energetics (Kram & Taylor, 1990; Roberts et al., 1998) and

ground reaction forces during uphill running (Gottschall & Kram, 2005).

First, we give an overview of how the energetics of uphill running have been approached

in the past. Margaria and co-workers (Margaria et al., 1963; Margaria, 1968) calculated net

mechanical efficiency of uphill running as:

Net mechanical efficiency = vertical mechanical power/net metabolic rate (1)

Here, the vertical mechanical power is the rate of performing work to raise the body mass

(m) against gravity (g):

vertical mechanical power = m · g · sin(θ) · v (2)

where θ is the incline in degrees and v is the running velocity parallel to the incline.

Margaria obtained the net metabolic rate by subtracting the basal metabolic rate from

the metabolic rate during running. In level running, at a constant velocity, upon landing

the body absorbs mechanical power (performs negative work) and then generates positive

power (performs positive work) but no net external mechanical power is required because

the negative and positive work quantities are opposite in sign but equal in magnitude

(Cavagna, Saibene & Margaria, 1964). Margaria (1968) proposed that the equal and

opposite positive and negative external work can be considered to be wasted, since

performing this work has a metabolic cost but does not propel the runner forward.

However, in uphill running, net positive external work and power are produced since

the center of mass (COM) is raised against gravity. Margaria et al. (1963) hypothesized and

demonstrated that on steeper inclines, the wasted external work decreases and the observed

net mechanical efficiency approaches the same value as the efficiency of predominantly

concentric exercise, such as cycle ergometry (∼25%). It is important to note that this

approach only results in such physiologically realistic efficiency values when the energetic

cost of running is dominated by the work needed to raise the COM (i.e., at steep inclines)

(Minetti et al., 2002). For running up inclines more typical of recreational/fitness running

the net mechanical efficiencies calculated are much lower than the values for concentric

muscle contractions (Smith, Barclay & Loiselle, 2005).
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Another approach is to calculate “vertical efficiency” by dividing the mechanical power

needed to lift the COM vertically by the difference in metabolic rates between locomotion

on an incline and level locomotion at the same velocity (e.g., Full & Tullis, 1990; Rubenson

et al., 2006). Published values for vertical efficiency range from 30% for red kangaroos

(Kram & Dawson, 1998) to ∼46% for humans (Asmussen & Bonde-Petersen, 1974; Lloyd &

Zacks, 1972; Pugh, 1971), to values near 50% (walking turtles; Zani & Kram, 2008) or even

higher (60% for mice and 66% for chimpanzees; Taylor, Caldwell & Rowntree, 1972). In

running, these efficiency values, which are much higher than isolated muscle contraction

efficiency, have been attributed to elastic energy storage and reutilization in muscle–tendon

complexes (Asmussen & Bonde-Petersen, 1974; Lloyd & Zacks, 1972; Cooke et al., 1991).

But, as emphasized by Roberts et al. (1997), the increase in potential energy of the body in

uphill locomotion can only be done by active concentric muscle work, since passive elastic

mechanisms simply return energy stored previously in a step. Thus, these high efficiency

values remain enigmatic.

Alternatively, Minetti, Ardigò & Saibene (1994) developed a model which assumed that

the metabolic cost can be predicted completely based on measures of mechanical work. In

their model, internal work (due to the kinetic energy changes of body segments relative to

the body COM), positive external work and negative external work were each assumed to

be performed with a separate efficiency value. Minetti, Ardigò & Saibene’s model (1994)

also estimates the amount elastic energy storage and release, however the costs of muscle

force production to generate tension to allow this energy storage and release is not taken

into account.

Although we believe that the cost of generating force to support body weight is the

major determinant of the metabolic cost of level running (for review, see Arellano & Kram,

2014; Kram, 2000), none of the models for uphill running explicitly include this cost.

Briefly, the cost of generating force hypothesis posits that in running the muscles primarily

act to generate tension that allows the tendons to store and return elastic energy. Muscles

consume energy whenever they generate tension, regardless of whether they perform

work. The cost of generating force to support body weight has been found to be inversely

proportional to the foot-ground contact time, presumably because generating force more

rapidly requires faster and less economical muscle fibers (Roberts et al., 1998).

In this study, we introduce a model for the metabolic cost of uphill running which

combines the cost of generating force and the cost of performing mechanical work

approaches. Our overall view is that the net metabolic cost of running is comprised of the

costs of generating force to support body weight, braking and propelling body mass in the

forward (parallel) direction, swinging the legs and arms and maintaining balance (Arellano

& Kram, 2011; Arellano & Kram, in press; Arellano & Kram, 2014; Chang & Kram, 1999;

Farley & McMahon, 1992; Kram & Taylor, 1990; Modica & Kram, 2005; Moed & Kram, 2005;

Roberts et al., 1998; Teunissen, Grabowski & Kram, 2007). For level running, obviously body

weight must be dynamically supported in the vertical direction, but for uphill running,

we prefer to call this term the cost of “perpendicular bouncing” to emphasize that the

metabolic power required to lift the COM vertically is not included in that term (Fig. 1).
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Figure 1 The total metabolic cost of running is comprised of several components. Parallel running
refers to the task of running parallel to the surface whether that surface is level or inclined. The task of
parallel running intrinsically requires bouncing perpendicular to the surface and that bouncing incurs a
metabolic cost.

This approximation introduces only a small error because the perpendicular component

is only slightly less than the vertical component, for example, the cosine of 9 degrees

equals 0.988. Furthermore, Gottschall & Kram (2005) observed that both the perpendicular

active force peaks and the contact times during uphill running (up 3, 6 and 9◦) were

not significantly different from those during level running. Thus, based on the cost of

generating force hypothesis, the cost of perpendicular bouncing should not change with

incline. So, in uphill running, the net metabolic rate should be equal to the sum of the rates

of metabolic energy consumption for perpendicular bouncing, braking and propelling

body mass parallel to the surface, swinging the legs and arms and, of course, raising of

the COM vertically. In Fig. 1 parallel running refers to the task of running parallel to the

surface whether that surface is level or inclined. The task of parallel running intrinsically

requires bouncing perpendicular to the surface and that bouncing incurs a metabolic cost.

In contrast to the vertical efficiency approach, we propose that at a certain velocity

the metabolic rate required for braking and propelling the body mass parallel to the

running surface is less during inclined running (compared to level running), because

there is less braking (negative external work) and thus less wasted work (Margaria, 1968;

Minetti, Ardigò & Saibene, 1994). Gottschall & Kram (2005) quantified how in uphill

running the braking Ground Reaction Forces (GRFs) parallel to the running surface

decrease with steeper inclines. The propulsive GRFs parallel to the running surface are

greater during uphill running, but the majority of the propulsive GRF impulse parallel

to the running surface compensates for the gravitational braking impulse parallel to the

surface m · g · sin(θ) · tstep, where tstep is the time between two consecutive foot strikes.

During steeper incline running, most of the propulsive parallel GRF impulse is required

to overcome the component of the gravitational braking impulse parallel to the surface.

Thus, only a small part of the parallel propulsive GRF impulse is compensating for the

braking GRF impulse (Fig. 2). Although initially counterintuitive, the metabolic costs

of both braking and propelling forces, parallel to the running surface, should decrease
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Figure 2 Ground reaction forces for different inclines. (A) Idealized parallel ground reaction force
versus time traces for running at 3 m/s. (B) parallel component of gravitational impulse for a single step,
and (C) schematic representation of the gravity force vector and its component parallel to the running
surface. Forces are normalized to body weight.

during uphill running. By taking that into account, the efficiency of producing mechanical

power to lift the COM vertically should be closer to the efficiency of concentric muscle

contractions.

Based on these ideas, we propose that the metabolic rate during uphill running can be

predicted by a model, which posits that (1) the metabolic cost of perpendicular bouncing

remains the same as during level running, (2) the metabolic cost of running parallel to

the running surface decreases with incline, (3) the delta efficiency (Gaesser & Brooks,

1975) of producing mechanical power to lift the COM vertically (EffvCOM) is constant,

independent of incline and running velocity, and (4) the costs of leg and arm swing do

not change with incline. We expect EffvCOM to be similar to the delta efficiency of cycling

(∼25%–30%) (Gaesser & Brooks, 1975; Bijker, De Groot & Hollander, 2001). To test these

ideas, we measured GRFs for level and a range of uphill running inclines (1–9◦) for a range

of velocities (2.0–3.0 m/s). Additionally, we measured the metabolic rate during uphill

running for a feasible range of grades at the same velocities (0–8◦ at 2.0 m/s; 0–4◦ at 2.5 and

3.0 m/s).

MATERIALS & METHODS
Ground reaction forces
For this part of the study, eight participants ran on a force treadmill (Treadmetrix, Park

City, UT, USA). Six males and two females participated (31.2 ± 11.0 yr, 177.6 ± 7.1 cm,

69.5 ± 7.9 kg; all mean ± SD). The participants gave written informed consent and the

testing protocol was approved by the University of Colorado Institutional Review Board

(13-0710).
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Each trial lasted 30 s and the first 20 steps after the first 10 s were analyzed. Forces were

collected at 1,000 Hz. Before each trial forces were zeroed by regulating the amplifiers

(MSA-6 MiniAmp, AMTI Watertown, MA, USA) and the acquisition software (Vicon

Nexus, Vicon Motion Systems Ltd., Oxford, UK). Signals were digitally filtered using a

first-order Butterworth filter (pass band frequency of 35 Hz and stop band frequency of

50 Hz) implemented in a Matlab script (Mathworks Inc., USA). A 10 N threshold was

used to determine the instants of foot strike and toe-off. Per step, we calculated the average

braking and propelling GRF impulses parallel to the running surface by integrating all

negative (braking) or positive (propelling) values during each ground contact. We used the

time between two consecutive foot strikes tstep (for example from left foot strike to right

foot strike) to calculate the average gravitational impulses parallel to the surface:

I Gravityparallel = m · g · sin(θ) · tstep (3)

We defined the total propelling impulse per step as the propelling GRF impulse minus the

component of the gravitational impulse, all parallel to the running surface:

I GRFpropelling total = I GRFpropelling − I Gravityparallel (4)

Summation of the absolute values of the braking impulse and of the total propulsive

impulse per step gave the value of the wasted GRF impulse per step:

I GRFwasted = I GRFbraking + I GRFpropelling total (5)

For level running, the wasted GRF impulse per step equals the summation of the absolute

values of the braking impulse and the propulsive impulse per step, similar to the concept of

wasted work per step as introduced by Margaria (1968). We note that not all of the wasted

impulse is actively done by muscle length changes; a substantial part is likely provided

through passive elastic storage and return. Based on earlier studies with kinetic (Gottschall

& Kram, 2005) and kinematic (Minetti, Ardigò & Saibene, 1994) measurements of uphill

running and the fact that I GRFwasted cannot be negative, we hypothesized that I GRFwasted

decreases exponentially to zero for steeper inclines:

I GRFwasted = I GRFwasted level · e−γ ·sin(θ) (6)

Parameter I GRFwasted level represents the value of the wasted GRF impulse per step during

level running. The decay constant γ determines how steeply I GRFwasted decreases with

incline (expressed as sin(θ)).

Metabolic measurements
We recruited a different set of eight participants for this part of the study (4 males and 4

females, 26.2 ± 4.0 yr, 174.3 ± 12.4 cm, 67.3 ± 11.8 kg; all mean ± SD). All participants

had extensive treadmill running experience and had recently run a 5 km race in less than

20 min (18:28 ± 52 s; mean ± SD). Based on pilot testing, we were confident that for this

caliber of runner, the most demanding test condition would be submaximal. We applied
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this 20-minute 5 km criteria to ensure that the energy supply during our experimental

trials was predominately oxidative and to avoid fatigue effects. The participants gave

written informed consent that followed the guidelines of the University of Colorado

Institutional Review Board (0606.29).

Participants completed different sessions on two separate days. They ran a total of 17

different conditions on a classic Quinton 18–60 treadmill with adjustable velocity and

incline. Note that we modified this treadmill so that we had calibrated, digital electronic

readouts for velocity and incline. On the first day, participants ran at a velocity of 2.0 m/s

at seven different inclines ranging from 0 to 8◦. The second day consisted of five trials at

both 2.5 m/s and 3.0 m/s at inclines ranging from 0 to 4◦ (for a complete list of the trials,

refer to Table 2 in the Results section). We measured the rates of oxygen consumption and

carbon dioxide production during these 7-minute trials. Each experimental day started

with determining the body mass of the participant. We then determined metabolic rate

during a 7-minute standing trial. This was followed by a 10-minute warm-up of level

running at 2.0 m/s or 2.5 m/s, for the first and second day, respectively. During warm-up,

participants breathed through the expired-gas analysis system to allow acclimatization. For

each running velocity, the different incline conditions were randomized to prevent order

effects.

We measured the rates of oxygen consumption (V̇O2) and carbon dioxide production

(V̇CO2) using an open-circuit expired-gas analysis system (True One 2400, Parvo Medics,

Salt Lake City, UT, USA). We calibrated the gas analyzers before each test using reference

gases. The flow-rate transducer was calibrated using a 3 liter syringe (Rudolph Inc., Kansas

City, MO, USA). Each trial lasted 7 min based on pilot data showing that steady state

was reached in less than 5 min during the different trials. We averaged V̇O2, V̇CO2 and

respiratory exchange ratios (RER) for the last 2 min of each trial. Rest periods of at least

4 min occurred between the trials. During the rest periods, the treadmill was adjusted to

the incline and velocity of the following trial.

Calculations
To fit a generic curve to the wasted impulse data (Eq. (6)), we first normalized the impulse

data to body mass and divided the values by running velocity, similar to the cost of

transport concept (see below). Mechanical vertical COM power (in Watts) was calculated

using belt velocity and incline (similar to Eq. (2)):

Mechanical vertical COM power = m · g · sin(θ) · v (7)

where θ is the incline in degrees and v is velocity in m/s. Metabolic rates (in W/kg)

were calculated from respiratory measurements using the Brockway equation (Brockway,

1987). Net metabolic power was calculated as running metabolic rate minus the standing

metabolic rate. We calculated the traditional values of delta efficiency of producing

mechanical power to lift the COM vertically as the ratio of mechanical vertical COM

power to the difference in metabolic rate between level running and running on incline at

the same velocity (Gaesser & Brooks, 1975).
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Net metabolic Cost of Transport (CoT) is the net metabolic cost per unit distance

traveled parallel to the running surface. It is calculated by dividing the net metabolic rate

by the running velocity and is expressed in J/(kg m). Cost of Transport values allowed us

to develop a generalized equation, independent of running velocity. Based on the general

concepts underlying our uphill running model, we generated a custom equation and fitted

this to the data to calculate the parameters resulting in the best fit (see below). The format

of the equation is:

Net CoT (J/(kg · m)) = A + B · e−λ·sin(θ)
+

g

EffvCOM
· sin(θ) (8)

In this equation, the CoT of parallel running is represented by A + B · e−λ·sin(θ). We

postulated that the cost of parallel running decreases exponentially with incline. We

expected that at steep inclines, where I GRFwasted equals zero, the cost of braking and

propelling would be reduced to zero and that the cost of parallel running would consist

of only the costs of perpendicular bouncing, leg swing and arm swing. In terms of

our model, the first term A represents the CoT related to perpendicular bouncing,

leg swing and arm swing. Parameter B represents the CoT for braking and propelling

during level running. For inclined running, the CoT for braking and propelling parallel

to the running surface decreases exponentially with the sine of the incline angle θ :

CoTbraking/propelling = B · e−λ·sin(θ). The decay constant λ determines how steeply the

CoTbraking/propelling decreases with sin(θ). Logically, the CoTbraking/propelling decreases

proportionally to the wasted GRF impulse per step I GRFwasted, i.e., that λ in Eq. (8) is

equal to γ in Eq. (6).

The CoT of producing mechanical power to lift the COM vertically is represented by

the third term in Eq. (8). To relate the mechanical vertical COM power (Eq. (7)) to the

metabolic CoT, it should be divided by body mass, velocity and the efficiency of producing

mechanical power to lift the COM vertically, resulting in g
EffvCOM

· sin(θ).

Statistical analyses
We present all results in the text as mean values ± SD. We used a traditional level of

significance (α = 0.05) for all statistical tests. To test for significant differences between the

three tested running velocities and between different angles, we applied two-way analyses

of variance (ANOVAs) on the impulse, step frequency and contact time data. We applied

the non-linear least squares method to fit non-linear curves on the data and the linear least

squares method to fit lines. We utilized r2 to evaluate goodness of fit.

RESULTS
Ground reaction forces
For running at a velocity of 2.0 m/s, the braking GRF impulse per step, parallel to the

running surface, normalized to body mass and divided by the running velocity, decreased

significantly from −0.128 for level running to −0.003 for running up a 9◦ incline. For

2.5 m/s and 3.0 m/s similar decreases were observed (Table 1). For two participants, we
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Table 1 Braking, total propelling and wasted impulses, step frequencies and contact times
(mean ± SD) for the different test conditions.

Level 9◦

Braking Impulse (10−3) 2.0 m/s −63.9 ± 11.9 −1.7 ± 1.7

2.5 m/s −58.3 ± 10.8 −3.4 ± 2.6

3.0 m/s −55.1 ± 8.8 −3.5 ± 2.2

Total Propelling Impulse (10−3) 2.0 m/s 64.3 ± 12.2 0.9 ± 1.3

2.5 m/s 58.5 ± 10.7 2.0 ± 2.5

3.0 m/s 55.3 ± 8.7 2.3 ± 2.1

I GRFwasted (10−3) 2.0 m/s 128.2 ± 24.0 2.6 ± 2.9

2.5 m/s 116.8 ± 21.5 5.4 ± 5.0

3.0 m/s 110.3 ± 17.4 5.7 ± 4.2

Step freqency (steps/second) 2.0 m/s 2.68 ± 0.15 2.72 ± 0.18

2.5 m/s 2.78 ± 0.20 2.84 ± 0.16

3.0 m/s 2.84 ± 0.19 2.94 ± 0.16

Contact times (s) 2.0 m/s 0.31 ± 0.03 0.32 ± 0.03

2.5 m/s 0.28 ± 0.03 0.28 ± 0.03

3.0 m/s 0.25 ± 0.02 0.25 ± 0.02

Table 2 Measured rates of oxygen consumption (V̇O2) and metabolic rates (mean ± SD) for the
different test conditions.

Day Velocity
(m/s)

Angle
(degrees)

Grade
(%)

V̇O2
(ml/(kg min))

Metabolic rate
(W/kg)

Standing – – 4.3 ± 0.5 1.5 ± 0.1

0 0 24.5 ± 1.5 8.3 ± 0.4

1 1.7 26.1 ± 1.2 8.9 ± 0.4

2 3.5 29.1 ± 1.3 9.9 ± 0.4

3 5.2 31.6 ± 1.8 10.8 ± 0.5

4 7.0 34.3 ± 1.1 11.7 ± 0.4

6 10.5 40.5 ± 1.8 13.9 ± 0.6

1
2.0

8 14.1 47.1 ± 2.1 16.3 ± 0.7

Standing – – 4.7 ± 0.4 1.6 ± 0.1

0 0 29.0 ± 1.3 9.8 ± 0.4

1 1.7 31.6 ± 1.4 10.7 ± 0.4

2 3.5 35.4 ± 1.4 12.0 ± 0.4

3 5.2 38.3 ± 1.2 13.1 ± 0.4

2.5

4 7.0 42.2 ± 1.0 14.4 ± 0.3

0 0 35.3 ± 1.6 11.9 ± 0.5

1 1.7 38.9 ± 2.0 13.2 ± 0.6

2 3.5 43.1 ± 1.8 14.7 ± 0.6

2

3 5.2 47.1 ± 1.7 16.1 ± 0.5

3.0

4 7.0 51.6 ± 2.2 17.8 ± 0.7
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Figure 3 The wasted GRF impulse per step decreases for increasing inclines. Wasted GRF impulse for
different inclines and velocities. Each small dot represents a single participant’s wasted GRF impulse for
a specific trial. The black line is the best-fit curve to the data according Eq. (6); the grey line is the best-fit
linear equation. Note that the secondary horizontal axis at the top is the incline angle θ , which is not
linear, so the tick marks are not evenly spaced.

could not analyze the kinetic data at 2 m/s since they “ran” without a clear aerial phase at

this velocity. As such, their stance phases partially overlapped, invalidating the assessment

of the braking and propelling impulses during each stance phase. In addition, for the same

reason, we excluded 4 separate trials for other participants. Similar to the braking impulse,

the total propelling impulse per step, parallel to the running surface, and the wasted GRF

impulse per step (I GRFwasted), also decreased with incline (Table 1; Fig. 3; individual

trial data is contained in Supplemental Information 1). Recall that total propelling

impulses were calculated as the propelling GRF impulse parallel to the surface minus

the component of the gravitational impulse parallel to the running surface. Summation of

the absolute values of the braking impulse and of the total propelling impulse per step gave

I GRFwasted. In line with our hypothesis, I GRFwasted values decreased exponentially with

incline. Curve fitting of Eq. (6) to the GRF data resulted in best-fit parameter values of

I GRFwasted level = 0.1208 and γ = 18.24, with r2
= 0.89 (Fig. 3). Fitting a linear equation

to the data resulted in a lower correlation between the data and the fit (r2
= 0.79) and

implied negative I GRFwasted values for inclines steeper than about 8 degrees.

The step frequency increased significantly with incline and with running velocities

(Table 1). In contrast, contact times were similar between inclines (p = 0.7) and decreased

significantly with velocity (Table 1).
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Figure 4 Net metabolic Cost of Transport. (A) Net metabolic Cost of Transport (CoT) for different
inclines and velocities. CoT is the net metabolic energy consumed per meter traveled parallel to the
running surface. Each small dot represents a single participant’s CoT for a specific trial. The black line
is the best-fit curve of the net CoT according equation 8. Note that the secondary horizontal axis at the
top is the incline angle θ , which is not linear, so the tick marks are not evenly spaced. (B) Net metabolic
CoTtotal and metabolic CoTvertical. (C) Metabolic CoT of parallel running. The grey line represents the
constant CoT components of parallel running (perpendicular bouncing, leg and arm swing and lateral
balance); the remainder, the CoT of braking and propelling, approaches zero at steeper inclines. Symbols
represent mean values: ◦,2.0 m/s; Δ,2.5 m/s; �,3.0 m/s.

Metabolic measurements
In Table 2 we present the mean rates of oxygen consumption (V̇O2) and metabolic

energy consumption (individual trial data is contained in Supplemental Information

2). For all participants, RER (0.86 ± 0.05; range 0.74–0.96) was less than 1.0 for all trials,

indicating that the metabolic energy was derived primarily from oxidative sources. The

mean metabolic rate for standing was 1.53 ± 0.08 W/kg.

Decreasing cost of parallel running
Net metabolic Cost of Transport (CoT) data for all participants are shown in Fig. 4A

for different inclines and velocities. The net CoT data are plotted versus the sine of the

incline angle θ on the primary horizontal axis (at the bottom) because the vertical power

is proportional to the sine of the incline angle. The net CoT is the net metabolic cost

expressed per unit distance traveled parallel to the running surface.

We set λ in our model (Eq. (8)) to be equal to γ (from Eq. (6)) and calculated the

best fit to the metabolic data. The parameter of the best fit with λ = γ = 18.24 were

A = 2.70, B = 0.674 and EffvCOM = 29.4% with r2
= 0.97. The best-fit curve is shown

in Fig. 4A. In Fig. 4B this best-fit curve is labeled Net CoTtotal as it includes all terms of

Eq. (8), i.e., the CoT of parallel running and the CoT of producing mechanical power

to lift the COM vertically. The net CoT data are shown as mean values for each running
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velocity in this figure (Fig. 4B). The metabolic CoT of producing mechanical power

to lift the COM vertically is also shown (labeled CoTvertical). This CoT was calculated

based on EffvCOM = 29.4%. In our model, the CoT of parallel running is represented by

A + B · e−λ·sin(θ), and this cost is shown in Fig. 4C for A = 2.70, B = 0.674 and λ = 18.24.

Metabolic data points were calculated by subtracting the calculated metabolic CoT of

producing mechanical power to lift the COM vertically from the net CoT. This resulted in

the following equation:

Net CoT(J/(kg · m)) = 2.70 + 0.674 · e−18.24·sin(θ)
+

g

0.294
· sin(θ) (9)

Note that the best-fit regression for the net CoT versus the sine of the incline angle

θ , using Eq. (8), is fairly insensitive to changes in the parameters. For instance, curve

fitting of Eq. (8) with λ as a free parameter resulted in A = 1.16, B = 2.20, λ = 7.60 and

EffvCOM = 24.9% and produced a similar goodness of fit: r2
= 0.97.

DISCUSSION
In this study, we quantified the ground reaction forces and metabolic cost of uphill human

running and introduced a new model to interpret our results. This is the first model for

uphill running that incorporates the cost of generating force concept. We have found

that the metabolic rate during uphill running can be predicted by a model which posits

that (1) the metabolic cost of perpendicular bouncing remains the same as during level

running, (2) the metabolic cost of running parallel to the running surface decreases with

incline, (3) the delta efficiency of producing mechanical power to lift the COM vertically

(EffvCOM) is constant, independent of incline and running velocity, and (4) the costs of leg

and arm swing do not change with incline.

Ground reaction forces
The GRF data confirmed that the wasted braking and propulsive impulses per step decrease

exponentially with incline supporting our contention that the metabolic cost of parallel

running decreases with incline. Based on this, we generated a general model for the

metabolic cost of uphill running.

Metabolic cost of uphill running
In line with earlier observations of net mechanical efficiency values approaching the

efficiency of concentric contracting muscles on steeper inclines (Margaria, 1968; Margaria

et al., 1963), our model assumes that the efficiency of producing mechanical power to lift

the COM vertically (EffvCOM) is constant, independent of incline and running velocity,

and physiologically realistic. Our method offers an alternative to the model by Minetti

and co-workers (Minetti, Ardigò & Saibene, 1994; Minetti et al., 2002) which assumed

that the metabolic cost can be predicted completely based on measures of mechanical

work. In contrast, our model combines the cost of generating force to support the

runner’s body weight and the cost of performing mechanical work to lift the COM. In

our approach, the different terms in the model each represent different elements of the CoT
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of uphill running. Unfortunately, the CoT of each of these elements cannot be measured

independently. Therefore, we constructed a biomechanical realistic model and applied a

fitting procedure to calculate the parameters needed.

Metabolic cost of parallel running
According to Eq. (9), for level running (θ = 0;sin(θ) = 0), about 80% of the net metabolic

CoT would be attributed to weight support (perpendicular bouncing), leg swing and arm

swing, while 20% would be attributed to braking and propelling the COM. These number

relate well with earlier studies on the cost of supporting body weight (at most 74% of the

net cost of running; Teunissen, Grabowski & Kram, 2007) and of leg swing (only ∼10% of

the net cost of running; Moed & Kram, 2005), which sum up to ∼84% of the net metabolic

cost attributable to weight support and leg swing.

In our model, the CoT related to perpendicular bouncing, leg swing and arm swing

is independent of incline. However, step frequency increased slightly with incline, which

could result in higher values for “internal work” (Minetti, 1998) or joint mechanical power

(Swanson & Caldwell, 2000). We estimated mechanical internal work values (in J/(kg m))

based on step frequency, duty factor and velocity as per the Minetti equation (1998), using

different values for factor q for level and uphill running (Nardello, Ardigò & Minetti, 2011).

These estimates of mechanical internal work increased both with incline and running

velocity. Although the Minetti equation (1998) suggests that internal power would increase

by 37% between 2.0 and 3.0 m/s, we did not observe any change in the overall metabolic

CoT. Similar increases in the internal mechanical power were estimated between level and

uphill running (32–33%, for our range of velocities). It is unclear how these mechanical

internal work estimates relate to the metabolic CoT because of overestimations of internal

work related to the ballistic pendulum-like part of the swing phase of the limbs (Alexander,

1989). Furthermore, Nardello, Ardigò & Minetti (2011) reevaluated the 1998 Minetti

equation for humans of both sexes, for different age groups, running at different velocities

and inclines and they observed no increase in measured internal work as function of

incline for velocities below 2.78 m/s. Additionally, evidence from our laboratory suggests

that the metabolic cost of leg swing in human running is relatively small, ∼10%–20% of

net metabolic cost of running (Modica & Kram, 2005; Moed & Kram, 2005). Finally, guinea

fowl blood flow data suggest that the majority of the increased energy expenditure in uphill

running is used by stance phase muscles (Rubenson et al., 2006). Thus, for simplicity in our

model, we assumed that the cost of leg swing is independent of incline.

It is difficult to estimate the metabolic cost of arm swing. Experiments that restrict arm

swing increase the cost of running by at least 3% (Arellano & Kram, in press) suggesting

that arm swing produces a net energy savings rather than a net cost. In any case, it seems

unlikely that the metabolic cost or savings due to arm swing at a certain running speed

would change greatly during uphill running. Thus, we subsume the cost of arm swing into

the cost of perpendicular bouncing and assume that it does not change.
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Metabolic cost of producing mechanical power to lift the COM
vertically
The CoT of producing mechanical power to lift the COM vertically increases linearly with

sin(θ), proportional to the mechanical vertical COM power. This is a direct consequence

of our assumption that the efficiency of producing mechanical power to lift the COM

vertically (EffvCOM) is constant, independent of incline and running velocity. The efficiency

of producing mechanical power to lift the COM vertically (EffvCOM), according the best

fit of our model was 29.4%. This value is in the same range as earlier reported values of

similar measures of whole body efficiency in cycling. Gaesser & Brooks (1975) defined work

efficiency as work accomplished divided by the energy expended above that in cycling

without a load. They found values ranging from 25.4% to 30.3% for increasing cadence

and power output. Bijker, De Groot & Hollander (2001) reported a mean delta efficiency

(delta work accomplished over delta energy expended) of 25.8% in ergometer cycling. In

contrast, Margaria’s net mechanical efficiency (vertical mechanical power/net metabolic

rate) values were rather low (∼9%–16%; Minetti et al., 2002) for running up inclines

typical of recreational running. Alternatively, the traditional vertical efficiency (vertical

mechanical power/difference in metabolic rate between locomotion on an incline and level

locomotion at the same velocity) and similarly calculated measures result in high values

(∼36%–46%; Asmussen & Bonde-Petersen, 1974; Bijker, De Groot & Hollander, 2001; Cooke

et al., 1991; Lloyd & Zacks, 1972; Pugh, 1971).

Limitations and future directions
Our study has several limitations worthy of mention. As discussed earlier, we performed

the two parts of the study (GRF and metabolic data collection) with two different groups

of participants. We acknowledge this as a limitation of the study, however, because our

model parameters were calculated using regression equations for group data we consider

this not to be a serious concern. Further, we are not attempting to make subject specific

conclusions, rather we are seeking general principles. Overall, we were limited by the

aerobic capacity of the participants. We tried to include a broad range of velocities and

inclines, but we were restricted by our aim to consider only conditions that could be run

at truly submaximal intensities by all our participants. Although we did not quantify the

elastic energy storage and reutilization, we accounted for this by introducing the cost of

perpendicular bouncing, which we assumed to be independent of incline and proportional

to velocity.

The, overall, promising agreement between the experimental data and the equations

based on the assumptions underlying our approach, call for further validation of this

approach in future studies. Addressing any effects on cost of potential changes in internal

work (CoT of leg swing), mechanical joint work and joint posture could refine the accuracy

of and increase the confidence in our approach. It would be interesting to study the

energetics of uphill walking with the same approach as we have done here for running.

More insights into the energetics of downhill running may be gained with our approach.

Of course, our concept of decreased parallel braking impulses would need to be reversed.
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CONCLUSIONS
Overall, we postulate that the metabolic rate during uphill running is not simply equal to

the sum of the cost of level running and the cost of performing work to lift the body mass

against gravity. Rather, our new approach suggests that the metabolic cost of running

at a certain velocity, parallel to the running surface, decreases with incline, and that

the efficiency of producing mechanical power to lift the COM vertically is constant,

independent of incline and running velocity. With this approach, we have been able

to model the observed metabolic rates during uphill running at different velocities and

inclines.
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