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Abstract

We study a coordinated scheduling problem of production and transporta-
tion, where a set of jobs needs to be transported from a holding area to a
single batch machine for further processing. A number of results for this com-
bined transportation and scheduling environment have recently been pub-
lished, looking into the complexity status of the minimization of the sum of
total processing time and processing cost, and of the sum of makespan and
processing cost, for a fixed number of transporters. In this paper, we add to
these results in that (1) we show that the earlier complexity results are still
valid when the processing cost is removed from the objective, thus reducing
to more “classic” scheduling objectives; (2) we assess the complexity status of
the relevant problem variants with free number of transporters; (3) we prove
that the weighted-completion-time objective leads to an intractable problem
even with a single transporter, contrary to the unweighted case. We also
establish a link with the so-called serial batching problem.

Keywords: scheduling, transportation, batching, NP-hardness, strong
NP-hardness

1. Introduction

Tang and Gong [1] address a coordination scheduling problem of trans-
portation and batching processing in the iron and steel industry. A set
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N = {1, 2, . . . , n} of jobs is initially located at a holding area, and each of
the jobs needs to be transported by one of m available vehicles before it can
be processed by a single batch machine. Each vehicle can transport one job
at a time. We let tj denote the transportation time for job j ∈ N from
the holding area to the machine, and t the (empty) vehicle return time from
the machine back to the holding area (to pick up a new job). All vehicles
are assumed to be located in the holding area at the start of the planning
horizon. In the production stage, up to c jobs can be processed as one batch
on the batching machine; the processing time of (all jobs of) each batch is
equal to p, which is a constant. A processing cost α(b) is also incurred, which
depends on the number b of batches processed on the batching machine. Fol-
lowing [1], the resulting optimization problem is denoted as TBS, short for
transportation and batching scheduling problem (in which we do not include
the specification of the objective function, for ease of notation infra).

Tang and Gong [1] investigate TBS to minimize the sum of total com-
pletion times

∑
Cj and processing cost. They prove that it is NP-hard even

if m = 2 and present a pseudo-polynomial-time algorithm and FPTAS for
any fixed m. Therefore, the TBS problem is NP-hard in the ordinary sense
from their viewpoint. For m = 1, the problem turns out to be polynomially
solvable. Zhu [2] shows that TBS to minimize the sum of makespan Cmax and
processing cost is NP-hard even if m = 2. Using a method similar to [1], he
provides a pseudo-polynomial-time algorithm and FPTAS for any fixed m,
thus again concluding NP-hardness in the ordinary sense; he also describes a
polynomial-time algorithm for TBS to minimize Cmax+α(b) when m = 1. In
a general application, however, one would typically expect m to be free, or
at least O(n), in which case the pseudo-polynomial-time algorithms in [1, 2]
become exponential-time. In the next sections, we show that both the prob-
lem variants are strongly NP-hard when m is free, excluding the existence of
a pseudo-polynomial-time algorithm (unless P = NP).

In the next few lines, we briefly introduce some related works about the
coordinated scheduling of transportation and batching processing. Tang et
al. [3] provide an elaborate description of the practical relevance of this type
of scheduling problems in the context of ingot processing in the steel in-
dustry. They investigate TBS with deterioration considerations to minimize
the makespan and the processing cost in a bi-criteria setting when m = 1;
the authors show that different variants of the problem are all strongly NP-
hard and present heuristic algorithms. Tang and Gong [4] study scheduling
with batch processing and two-stage transportation, including an extra trans-
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portation stage after the stages of TBS. They prove the resulting problem
to be strongly NP-hard for objective Cmax + α(b). Tang and Liu [5] inves-
tigate two-machine flowshop scheduling where a single machine is followed
by a batching machine and a transporter carries jobs between the process-
ing stages; they prove its strong NP-hardness for the makespan objective.
Tang and Liu [6] also consider a two-machine flow-shop setup, but here the
batching machine constitutes the first stage and the second stage is a regular
machine. They show that makespan minimization is strongly NP-hard and
describe a heuristic algorithm.

The contributions of this paper are the following: we show that the com-
plexity results in [1, 2] are still valid when the processing cost is removed
from the objective, thus reducing to more “classic” scheduling objectives; we
assess the complexity status of the relevant problem variants with free m;
and we establish that the weighted-completion-time objective

∑
wjCj leads

to an intractable problem even with a single transporter, contrary to the
unweighted case.

The remainder of this paper is structured as follows: the total-completion-
time objective is studied in Section 2, the makespan objective is the subject
of Section 3 and we look into weighted completion times in Section 4. We
establish a link with the so-called serial batching problem in Section 5 and
we provide some concluding remarks in Section 6.

2. Total completion times

In this section, we first present the complexity result for free m. Consider
the following decision problem:

3-PARTITION
Input: 3h elements with integer sizes a1, a2, . . . , a3h, where

∑3h
j=1 aj = ha and

a
4
< aj <

a
2
for j = 1, . . . , 3h.

Question: does there exist a partition I1, I2, . . . , Ih of the index set {1, . . . , 3h}
such that |Ii| = 3 and

∑
j∈Ii aj = a for i = 1, . . . , h?

Problem 3-PARTITION is well known to be strongly NP-complete, see for
instance Garey and Johnson [7].

Theorem 1. TBS to minimize
∑

Cj is strongly NP-hard when m is free.

Proof: The proof is based on a reduction from 3-PARTITION to the decision
variant of TBS, which is to decide whether or not a solution exists with
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objective function value less than or equal to a threshold value y. With a
given instance of 3-PARTITION, we associate the following TBS-instance.
There are two types and a total of 6h jobs: the P-jobs denoted by Pj and
X-jobs denoted by Xj, j = 1, 2, . . . , 3h. Furthermore,

number of vehicles m = h;

transportation time tPj
= aj, tXj

= 0, for j = 1, . . . , 3h;

batch processing time p = a;

vehicle return time t = 0;

batch machine capacity c = 3h;

threshold y = 9ha.

We show that there exists a schedule for this TBS-instance with
∑

Cj ≤ y
if and only if the 3-PARTITION-instance is a yes-instance.

⇐ Consider any yes-instance for 3-PARTITION, with I1, I2, . . . , Ih a com-
plying partition. We construct a schedule for the TBS-instance as follows:
the vehicle i transports the three jobs in Ii one by one, for i = 1, 2, . . . , h.
The total transportation time of each vehicle is thus

∑
j∈Ii aj = a. Since

c = 3h and tXj
= 0, the batching machine can process all X-jobs as the first

batch from time zero and all the P-jobs in the second batch from time a
onwards. The sum of completion times is then 3ma+ 3m · 2a = 9ma = y.

⇒ Suppose conversely that there is a schedule satisfying
∑

Cj ≤ y, con-
taining q batches. Since n = 6h and c = 3h, we have q ≥ 2. If q > 2, then
q ≥ 3 and then

∑
Cj will not be less than 3m · a + (3m − 1) · 2a + 3a =

(9m+1)a > y. Consequently, if q > 2 then the objective value will exceed y,
and so q = 2 (exactly two batches in the schedule). Let Si denote the starting
time of the i-th batch, i = 1, 2. Since 3m · (S1 + a) + 3m · (S2 + a) ≤ 9ma
and S1 + a ≤ S2, we find that S1 = 0, S2 = a. Therefore, all the P-jobs must
processed in the second batch at time a. Let Ii ⊂ N denote the set of jobs
transported by vehicle i (i = 1, 2, . . . , h). Since

∑
j∈Ii tj =

∑
j∈Ii aj ≤ a and∑3h

j=1 aj = ha, it is easy to check that
∑

j∈Ii aj = a for i = 1, 2, . . . , h. From
the definition of 3-PARTITION, each Ii must then contain exactly three jobs,
and so I1, I2, . . . , Ih is a satisfying solution to the 3-PARTITION-instance.
This completes the proof. �

Theorem 1 applies for the classic total-completion-time objective without
processing cost, and so including a processing-cost component in the objec-
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tive, as was the case in the initial reference [1], will not make the problem
easier:

Corollary 1. TBS to minimize
∑

Cj +α(b) is strongly NP-hard when m is
free.

In detail, one can simply add α(b) = 0 to the proof of Theorem 1.
Tang and Gong [1] study TBS with objective

∑
Cj +α(b) and show that

it is (ordinarily) NP-hard for m = 2. Also here we can remove the processing
cost component α(b) and maintain the complexity status. This can be shown
via reduction from (2-)PARTITION, analogously to the proof of Theorem 1
in [1], requiring only minor changes in the parameter choices, namely setting
the processing cost α(b) = 0 and the threshold value y = 3ah. Due to the
number of jobs n = 2h and the machine capacity c = h, the number of
batches q ≥ 2. The minimal total completion time is 3ah = y when q = 2
and otherwise it exceeds y, so that q = 2. The remainder of the proof can
proceed identically to [1], leading to the following result:

Proposition 1. TBS to minimize total completion times is NP-hard even if
m = 2.

We find this format for this negative result important enough to be stated
in its own right because it pertains to a “classic” objective function, without
processing cost.

3. Makespan

We obtain the following straightforward negative result for the case where
the number of transporters is not fixed.

Theorem 2. TBS with objective Cmax is strongly NP-hard when m is free.

Proof: Consider problem P ||Cmax, the classic parallel machine scheduling
problem with makespan objective and free number of machines, which is
strongly NP-hard [7]. In this problem, we denote the machine set by {1, . . . ,m′}
and the job set by {1, . . . , n′}, where each job j has a processing time pj. For
an arbitrary instance of P ||Cmax we construct a TBS-instance, as follows:
number of jobs n = n′, number of vehicles m = m′, transportation time
tj = pj, for j = 1, . . . , n, processing time p = 0, return time t = 0, machine
capacity c = 1. Clearly, a minimum-makespan TBS-schedule will also yield
an optimal schedule for P ||Cmax, and vice versa. �
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Note that the ‘trick’ of setting p equal to zero in the proof could not be used
in Theorem 1 because P ||

∑
Cj is polynomially solvable, via a variant of the

SPT (shortest processing time) rule [8].

Corollary 2. Problem TBS to minimize Cmax + α(b) is strongly NP-hard
when m is free.

Zhu [2] considers the problem TBS to minimize the sum of makespan and
processing cost and proves that it is NP-hard via reduction from (2-)PARTITION
for m = 2. Applying similar modifications as in the proof of Theorem 2, it
is easy to check that TBS with makespan objective only when m = 2 is
equivalent to P2||Cmax, which is NP-hard: set m = m′ = 2. We formalize
this result as follows:

Proposition 2. Problem TBS to minimize Cmax is NP-hard even if m = 2.

Tang et al. [3] consider the problem TBS with deterioration considera-
tions. In this model, they define the exposure time of a job as the length of
the time interval from the departure from the holding area to the start of
the processing on the machine. A job is said to be a ‘hot’ job if its exposure
time does not exceed a threshold value E, otherwise it is called a ‘cold’ job.
A batch that contains only hot jobs has processing time ph, otherwise the
processing time is pc > ph. It is shown in [3] that TBS with deterioration
to minimize Cmax + α(b) when m = 1 is strongly NP-hard. Below, we es-
tablish the complexity of this problem with makespan objective only (α(b)
is constant).

Theorem 3. TBS with deterioration to minimize Cmax is strongly NP-hard
when m = 1.

Proof: For a given instance of 3-PARTITION we construct an instance of
TBS, as follows:

number of jobs n = 3h;

number of vehicles: m = 1;

transportation time tj = aj for j = 1, . . . , 3h;

processing time ph = a, pc = (h+ 1)a;

return time t = 0;
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exposure threshold value E = a;

machine capacity c = 3;

threshold value y = (h+ 1)a.

We prove that there exists a schedule for this TBS-instance with Cmax ≤ y
if and only if the 3-PARTITION-instance is a yes-instance.

⇐ Suppose that I1, I2, . . . , Ih is a solution to 3-PARTITION. We con-
struct a schedule for the TBS-instance as follows: the vehicle consecutively
transports the jobs of each set I1, I2, . . . , Ih, one by one. The batching ma-
chine can process all jobs in Ii as the i-th batch from time a onwards. The
makespan is then (h+ 1)a = y.

⇒ Suppose conversely that there is a schedule satisfying Cmax ≤ y, con-
taining q batches. Since n = 3h and c = 3, we have q ≥ h. Let S1 denote the
starting time of the first batch; we have S1+qa ≤ y = (h+1)a. Knowing that
S1 ≥ 0, we obtain that either q = h or q = h + 1. If q = h + 1 then S1 = 0,
which is impossible because each tj = aj > 0, and therefore q = h. Let Ii
denote the set of jobs that are processed in the i-th batch of the schedule
(i = 1, 2, . . . , h). We can see that Ii contains exactly three jobs. Denote the
total transportation time

∑
j∈Ii tj of batch i as xi for i = 1, 2, . . . , h. Due

to pc = (h + 1)a, we have xi ≤ E = a. Since
∑h

i=1 xi = ha, xi must be
exactly a for i = 1, . . . , h. Therefore, I1, I2, . . . , Ih is a satisfying solution to
the 3-PARTITION-instance. This completes the proof. �

4. Weighted completion times

In practical operational scheduling environments, the jobs to be processed
often have different weights. The weight wj of job j ∈ N is basically a
priority factor, denoting the importance of job j relative to the other jobs
in the system [8]. This weight can for instance represent the actual cost of
keeping a job in the system, or the importance of early processing because
the job is part of a larger order, or a measure of the importance of the
client who placed the corresponding order. The following theorem establishes
the computational complexity of TBS for minimizing the sum of weighted
completion times and processing cost with a single transporter.

Theorem 4. TBS with objective
∑

wjCj +α(b) is strongly NP-hard even if
m = 1.
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Proof: Consider an arbitrary instance of 3-PARTITION, for which we con-
struct a TBS-instance in the following manner:

number of jobs n = 3h;

only one vehicle: m = 1;

transportation time tj = aj for j = 1, . . . , 3h;

weight wj = aj, j = 1, . . . , 3h;

processing time p = a;

return time t = 0;

processing cost α(b) = 3h+h2

2
a2b;

machine capacity c = 3;

threshold value y = (h+1)(3h+h2)
2

a2.

The time it takes to construct the instance is obviously polynomial. We prove
that there exists a schedule for this TBS-instance with

∑
wjCj +α(b) ≤ y if

and only if the answer is ‘yes’ for the 3-PARTITION-instance.
⇐ Suppose that I1, I2, . . . , Ih is a solution to 3-PARTITION-instance. We

construct a schedule for TBS as follows: the vehicle consecutively transports
the jobs of each set I1, I2, . . . , Ih, one by one. The total transportation time
of each set Ii is

∑
j∈Ii tj =

∑
j∈Ii aj = a. Since p = a and c = 3, the batching

machine can process the jobs Ii as the i-th batch at time ia. Then

3h∑
j=1

wjCj =
∑
j∈I1

wj · (a+
∑
l∈I1

tl) +
∑
j∈I2

wj · (a+
∑

l∈I1
∪

I2

tl) + . . .

+
∑
j∈Ih

wj · (a+
∑

l∈I1
∪

I2
∪
...

∪
Ih

tl)

= a · 2a+ a · 3a+ . . .+ a · (h+ 1)a

=
3h+ h2

2
a2.

We also obtain that α(b) = h(3h+h2)
2

a2, which leads to
∑

wjCj + α(b) =
(h+1)(3h+h2)

2
a2 = y.

⇒ Suppose conversely that there is a schedule satisfying
∑

wjCj+α(b) ≤
y, containing q batches. Since n = 3h and c = 3, we have q ≥ h. If
q > h, then q ≥ h + 1 and the processing cost alone will be no less than
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(h+1)(3h+h2)
2

a2 = y, so the total objective value will be higher than y. Con-
sequently, there are exactly h batches in the schedule. This implies the
following upper bound on the total weighted completion time:∑

wjCj ≤
3h+ h2

2
a2. (1)

Let Ii denote the set of jobs that are processed in the i-th batch of the
schedule (i = 1, 2, . . . , h). We see that Ii contains exactly three jobs. Denote
the total transportation time

∑
j∈Ii tj of batch i as xi for i = 1, 2, . . . , h. We

have the following inequalities:

3h∑
j=1

wjCj ≥ x1(x1 + a) + x2(x1 + x2 + a) + . . .+ xh(x1 + x2 + . . .+ xh + a)

= (x2
1 + x2

2 + . . .+ x2
h) + a(x1 + x2 + . . .+ xh)

+(x2x1 + x3x1 + x3x2 + . . .+ xhxh−1)

=
1

2

h∑
i=1

x2
i + a(

h∑
i=1

xi) +
1

2
(

h∑
i=1

xi)
2

=
1

2

h∑
i=1

x2
i +

2h+ h2

2
a2. (2)

According to the Cauchy-Schwarz inequality,(
h∑

i=1

x2
i

)(
h∑

i=1

12

)
≥

(
h∑

i=1

xi · 1

)2

= (ha)2,

so we have
∑h

i=1 x
2
i ≥ ha2, where equality holds if and only if x1 = x2 = . . . =

xh = a. Combining with (1) and (2), the value
∑3h

j=1wjCj is exactly
3h+h2

2
a2.

Therefore, the overall objective value of the schedule is (h+1)(3h+h2)
2

a2 = y and
x1 = x2 = . . . = xh = a.

Since
∑

j∈Ii tj = xi = a and |Ii| = 3 for i = 1, 2, . . . , h, the sets I1, I2, . . . , Ih
form a solution for 3-PARTITION, which completes this proof. �

The foregoing result should be contrasted with the unweighted case (all
wj = 1), for which Tang and Gong [1] show that it can be solved in polynomial
time. This negative result is somewhat less satisfactory than those in the
previous sections, however, because we still need the processing cost in the
objective; we have not immediately found a suitable reduction for the case
with α(b) = 0.
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5. Link between TBS and the serial batching problem

In this section, we investigate the link between TBS and the serial batching
problem 1|s-batch|

∑
wjCj, which pertains to a single machine that processes

jobs in batches. The jobs in one batch are serially processed, their completion
time is defined to be equal to the finishing time of the last job in the batch,
and the processing time of a batch is equal to the sum of the processing times
of all the jobs in the batch. The number of jobs in a batch is called the batch
size, which is an arbitrary number. There is a setup time for the production
of a batch.

In the previous sections, TBS was associated with a limited batch size c
on the batching machine. We now find that

Theorem 5. TBS with unlimited batch size and with objective
∑

wjCj is
strongly NP-hard even if m = 1.

Proof: We use a reduction from 1|s-batch|
∑

wjCj, which is known to be
NP-hard in the strong sense [9]. Consider an instance of serial batching with
a set of jobs N = 1, 2, . . . , n′, processing time pj, weight w′

j for each job
j ∈ N . We now construct an instance of TBS as follows:

number of jobs n = n′;

only one vehicle m = 1;

transportation time tj = pj for j = 1, . . . , n;

weight wj = w′
j, j = 1, . . . , n;

processing time p = s;

return time t = 0;

machine capacity c = n;

It is easy to check that the weighted sum of completion times is the same for
the two instances. �

We can also recognize that TBS with objective
∑

wjCj and with the addi-
tional constraint that each batch must contain exactly three jobs is equivalent
to the serial batch scheduling problem 1|3-in-1, s-batch|

∑
wjCj [10], in which

each batch also consists of exactly three jobs. Problem 1|3-in-1, s-batch|
∑

wjCj

is strongly NP-hard [10]. Consider now an instance of this serial batching
problem with n jobs, processing times pj and job weights wj. We construct
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an equivalent TBS-instance with n jobs, m = 1 vehicle, travel time tj = pj,
return time t = 0, batch processing time p = 0, machine capacity c = 3 and
with the constraint that each batch must contain exactly three jobs. It can
be easily verified that the weighted sum of completion times is the same for
the two instances. Thus, we arrive at the following result.

Proposition 3. When each batch must contain exactly three jobs, TBS to
minimize weighted completion times is strongly NP-hard even if m = 1.

6. Conclusion and final remarks

In this paper, we have investigated a number of variants of a coordinated
scheduling problem of production and transportation, in line with the initial
paper by Tang and Gong [1] in 2009, and which was also studied in a number
of follow-up papers. We show that the earlier complexity results are still valid
when the processing cost is removed from the objective, thus reducing to more
“classic” scheduling objectives. We also assess the complexity status of the
relevant problem variants with free number of transporters, we establish that
the weighted-completion-time objective leads to an intractable problem even
with a single transporter, and we recognize a link with the serial batching
problem.

A number of open problems remain, with the most prominent one being
the complexity status of the scheduling problem with weighted completion
times, one vehicle and without processing cost. For future work, it might be
interesting also to investigate this scheduling environment with other com-
mon scheduling objectives, for instance relating to due-date performance.
From a more practical perspective, bringing the stylized problem statement
closer to practical applications, for instance by incorporating deterioration
effects, has already been undertaken in some recent articles and might be
pursued further, dependent on the needs of individual industrial partners.
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