KU LEUVEN

Multi-paradigm process
mining: retrieving better
models by combining rules
and sequences

De Smedt J, De Weerdt J, Vanthienen J.

KBI_1413

Multi-Paradigm Process Mining: Retrieving
Better Models by Combining Rules and
Sequences

Johannes De Smedt, Jochen De Weerdt and Jan Vanthienen

KU Leuven Faculty of Economics and Business
Department of Decision Sciences and Information Management
Naamsestraat 69
B-3000 Leuven, Belgium
firstname.lastname@kuleuven.be

Abstract. Business process mining is a well-established field of research
which focuses on the automatic retrieval and analysis of process flows,
extracted from event logs which are the outcome of today’s omnipresent
information systems. The discovery and representation of these models
is based on techniques that come in all shapes and forms. Most notably,
procedurally-based algorithms such as Heuristics Miner have been used
successfully for this purpose. Also, declarative process model miners have
been proposed, which give other insights into the model by generating
rules that apply on the activities. This paper proposes an integrated
approach to combining these paradigms to discover process models that
contain best of both worlds to enrich insights into the event logs under
scrutiny. The findings have been implemented as a ProM plug-in that is
based on Heuristics Miner and Declare miner.

Keywords. Business Process mining, Mixed-Paradigm mining, Causal
Nets, Declare

1 Introduction

Over the last decade, the field of process mining has gained a lot of traction. Its
main focus lies on the automatic retrieval and subsequent analysis of business
process models and insights from data logs containing events [1]. The three pillars
of process mining focus on process discovery, enhancement and conformance
checking. The former has become the main part of the mining process on which
the two other ones build. Its goal is to represent the information on processes
in the most comprehensive, comprehensible and correct way. In order to do so,
many mining techniques have been proposed, including, amongst others, Alpha
Miner [2], Heuristics Miner [3] and Fuzzy Miner [4]. The representation forms
used for these models are rather procedural. More recently, declarative process
modeling and mining has gained popularity and numerous discovery techniques
such as Declare Miner [5], MinerFul++ [6] and UnconstrainedMiner [7] have been
implemented for discovery purposes. These miners retrieve rules from process

logs to create models with a more descriptive rather than prescriptive view on
the information contained in the log.

In accordance with the “maps” view on process models proposed by [8], one
retrieves different information by mining for different paradigms. Similar to read-
ing maps with different perspectives which cover multiple layers of an area, it is
possible to retrieve different paradigms at once to gain complementary insights
from the information retrieved from the log. For example, combining street maps
with altitude information can provide a deeper understanding of the explored
area.

This paper presents an algorithm for combining procedural and declarative
constraints in one map and shows results that indeed provide a new way of
looking at mined processes. Both process mining approaches offer different char-
acteristics that each enlighten certain aspects of an event log, but these aspects
have not been merged yet to form a richer process model. The main challenges
arise when the two types of maps need to be merged and made compatible in a
sense-making and understandable way. The findings have been implemented in
ProM! as a plug-in which builds on the two most frequently used process mining
techniques for each paradigm, (Flexible) Heuristics Miner and Declare Miner.

The remainder of this paper is structured as follows. The first section covers
a running example which uncovers current problematic behavior and contains a
comparison of mining approaches for both paradigms. Next, a hybrid model for
mining is proposed. Section four provides an overview of the implementation,
followed by the last section with conclusions and future work.

2 Procedural and Declarative Process Mining Techniques

2.1 Running Example

As a running example, we provide the simple model in Figure 1. Both declarative
ConDec constraints [9] and more sequentially-based Petri nets are added to
resemble the possible progress of a PhD student throughout his career, which
contains the strict order of a first and second seminar followed by the defence.
Meanwhile, he/she creates content which is subsequently published to journals
or seminars at a conference, resembled by the Alternate Precedence constraints.
The first seminar cannot happen before a first contribution to a conference and
the second seminar has to be preceded by a journal publication. Note that the
Petri net could have been replaced by two Succession constraints. Inspired by
the approach proposed by [10] for creating test logs in CPN Tools, we enacted
the model. If one mines the simulation log for a procedural model with (Flexible)
Heuristic Miner or Alpha Miner, the algorithms are unable to retrieve the exact
position and relation of the three activities Content Creation, Conference and
Journal Paper as shown in Figure 2 and 3. The results by Declare Miner are
shown in Figure 4. There are many constraints, even for a support of 100 %,
due to the search for rules between every activity and the others, but the overall

! http://www.processmining.org/

process is hard to discern. This paper tries to offer an integrated approach like
stated above, which combines the insights of both the procedural and declarative
process mining approaches to establish better models.

1

<) 3 First 3 () 3 Second 3 () 3
Seminar Seminar Defence

Conference

Content
Creation

Journal
Paper

Fig. 1: A rather declarative process model representing a PhD’s progress flow.

START {entCreat b— T rrssennr |y 15 /_\
30

— 20 —
151] |_—» Joumapaper > Defence > END

30 30

Conference

Fig.2: A dependency graph retrieved from the mined causal net produced by
Flexible Heuristics Miner (default settings). The mining algorithm is unable to
correctly identify the relationships between, e.g., Second Seminar and Journal
Paper.

: ContentCre: h

_ 7 [ournalPa p MPefence+cd
irstSeminaj > () > > ()

o

Fig. 3: A Petri net retrieved by Alpha Miner (ProM 6 implementation). The min-
ing algorithm cannot derive the relationships between, amongst others, Content
Creation and JournalPaper or Conference correctly.

2.2 Current Mining Approaches

Procedural process miners capture sequence constraints and parallelism by in-
corporating information supporting adjacency and direct succession in a process

ContentCreation

JournalPaper

FirstSeminar

Fig. 4: A Declare model retrieved by Declare Miner (alpha = 0, support = 100%)

log, extended with (X)OR~ and AND-split and -join information. Most of the
constraints are locally defined (an exception is Fuzzy Miner, which uses an op-
tional distance metric for deriving sequence constraints) but calculated on the
log level. Examples of implementations are included in the introduction.

Declarative miners are usually based on ConDec rules expressed in Linear
Temporal Logic (LTL) [11] such as Alternate Precedence or Succession. The latter
two approaches in the introduction convert the templates into regular expressions
to derive the rules in a faster fashion. Afterwards, the different constraints are
checked for the log on trace level and the results are displayed on a diagram
which contains the rules between different activities.

The granularity of capturing relations between activities is different as local
and global (trace-based) constraints carry different information. By combining
the information of both, it is already possible to gain different insights. Consider
this simple example: trace (a, b, ¢, a, a, b) fulfills both an (Alternate) Prece-
dence(a,b) and a local direct succession constraint between a and b, while (b,
¢, a, b, ¢, a, a, b) only fulfills the local constraint. Either the constraint is too
restrictive for a certain log, or the model can be pruned by using the Precedence
constraint as counter evidence for the sequence constraint.

2.3 Advantages of a Combined Mining Approach

The benefits of mining a multi-paradigm process model included in this paper
can be summarized as follows.

On the one hand, a procedural model can benefit from the addition of declar-
ative constraints in order to uncover relations between activities that previously
remained hidden. In this sense, the declarative constraints transform the log
into a richer model which can better fit the parts of the log that were previously
hard to capture. Since rules are defined over the full execution path, they are

also better suited to represent, amongst others, duplicate tasks and long-distance
dependencies. Furthermore, flexible parts of a log that are not captured (well)
by procedural models can be represented with declarative constraints to retrieve
them in a more correct and readable way. Although capturing flexible behavior
might be possible with procedural models, the sequential information would end
up in a very convoluted and unstructured graph of loops, splits and joins, and
arrows pointing every direction due to the ad-hoc appearance of activities. Since
most Declare rules represent behavior that can be labeled as non-trivial token
games, they are better able to retrieve such parts of an event log. For example,
expressing Alternate Precedence in a Petri net is a challenging task, leading to
the usage of artificial model constructs to approximate the same state space.

On the other hand, declarative process models can benefit from the struc-
turing and representation that procedural model discoverers offer, thus making
represented flows more readable and more defined where no flexibility is needed,
i.e. a very fixed process sequence.

3 Hybrid Process Models for Mining

In order to retrieve hybrid models for mining practices, we build a definition
for hybrid process models based on causal graphs [12] and ConDec constraints.
The choice is founded on the usage of these representation forms in Heuristics
Miner and Declare Miner. For modeling purposes, mixed-paradigm approaches
have already been proposed for, amongst others, YAWL and Declare [13] and
Petri nets and Declare [14].

We use the definition of causal nets for the procedural model (PM) as follows:
Let PM be a tuple PM = (A, a;,a,,D,1,0) with A the finite set of activities,
a; € A the start activity, a, € A the end activity, D C A x A the dependency
relations, I € A — AS the set of possible input bindings and O € A — AS the
set of possible output bindings with AS ={X C P(A) | X =0V 0 ¢ X}. P(A)
represents the powerset of A. Causal nets represent markings over a directed
graph to express sequential and parallel behavior in a process model by allowing
transitions through the different input and output bindings. By nature, these
graphs are already more declarative than, for example, Petri nets, but can be
transformed to one. We have included this transformation for the examples in
section 4 for illustration purposes.

We define declarative, rule-based models as follows: Let DM be a tuple DM =
(A,) with 7 the rules over the activities in set A, or m — A™. 7 can express
LTL rules over A, e.g. m(a,b) = O(a — ¢ b) = Response(a, b).

The different behavior of the models can be represented as proposed by [13].
Figure 5a shows the declarative behavior m(A) in green and the procedural be-
havior (A, a;, a,, D,I,0) in yellow. While the graph was proposed for modeling,
it is now applied to mining. Therefore, the behavior contained in the log should
be included. It is represented in orange.

We propose a hybrid model as follows: Let HM be a tuple HM = (A, a;, a0, D, 1,0,).
As such, we define both rules and explicit sequences over the activities. The out-
come of the model is then any part of PM U DM = HM, which constricts the
behavior of A in different ways:

— A more narrow result: PM N DM: by taking the intersection of the be-
havior allowed by both models, it becomes possible to more strictly describe
the process flow. This is represented by Figure 5b.

— A broader result: PM U DM: by taking the union of all behavior, it
becomes possible to capture behavior in the log that previously remained
undiscovered or was too broadly captured by either model type separately.
By taking subsets of this union, it becomes possible to more closely retrieve
the behavior in the log. This is shown in Figure 5c.

— A different result: if PM C DM or vice versa: by choosing the best repre-
sentation form for the mined area, it becomes possible to represent processes
in an event log in the most informative way. In other words, where declara-
tive and procedural behavior overlap, one can choose the representation form
most suited for clarification. For example, strict processes can be captured
by causal graphs, while cluttered areas are more conveniently approached by
some rules.

(b) ()

Fig. 5: Graphical representation of the behavior allowed by the procedural model
(yellow), the declarative model (green) and the behavior contained in the log
(orange)

4 Hybrid Miner

4.1 Introduction

The Hybrid Miner implementation? is based on the combination of Flexible
Heuristics Miner (the Causal Net Retrieval implementation) and Declare Miner.
Starting from the dependency graph, it captures activities that introduce a lot of
behavior in the log, which indicates that they play a key role in the structuring
of flows and the model overall. Especially the causing of a lot of non-conclusive
behavior indicates the more flexible nature of their existence. As such, we target
them for inclusion in the set of activities that are subject to Declare mining in
the second part of the mining process. Finally, the information is displayed in a
model which contains all mined behavior, which can be pruned optionally.

4.2 The algorithm

By analyzing the strength of the direct succession metric between activities,
one can retrieve the activities most closely related in a small window. Activities
that have a lot of other activities connected or are somewhat, but not strongly,
connected, are candidates to be placed in the set of declarative activities R C
A. Others that have few, but strong connections to neighboring activities, are
candidates to remain in the procedural basis of the model P C A. Note that PU
R = A. Also, the occurrence of numerous level-two loops, much like the unclear
direct succession count, can indicate the ad-hoc all-over-the-place occurrence of
activities, which results in non-structured and cluttered up sequential process
models. Note that this approach also often captures the activities that cannot
be fitted into the model and thus contains tasks that are connected only when
the “All activities connected” option is chosen in Heuristics Miner.

To check for such activities we propose a metric called Activity Entropy (AE):

— AE; = Z;L DS;;, Vi, j(i # j),DSij < d, n=|L| with L the log.
— e, a configurable threshold.
— |E| =|A|(1 — e), with |A| the number of activities in the log.

AE captures the average of the direct succession (DS) metrics between the
activity and the others in the log where the dependency threshold d is not met.
In other words, it captures weak dependencies. Procedural activities in a log
will have a very low activity entropy, as most of the connections will be either
strong (> d) or non-existing (close or equal to zero). Based on a given threshold
e, a proportion of the log is withheld. The different values AFE; are ranked and
|A|(1 — e) activities are kept in the sorted set E. Furthermore, if there is a gap
of 1/e between two activities in E, the activities are removed. This procedure is
installed to avoid introducing too many activities and possibly too many rules
between them. Note, however, that a fully declarative model can be obtained by
using 1 for e. ConDec rules mined for single activities are always included in the
log. As such m — A.

2 The implementation can be found at j.processmining.be/hybridminer/.

4.3 Pruning and constraint choice

After the results of both miners are retrieved, an optional manipulation of the
outcome is performed which cuts and adds some constraints, extending the ap-
proach proposed by [15]. E.g., Precedence and Response constraints are trans-
formed into Succession constraints when the antecedents and consequents in-
volved only appear once, and Co-ezistence is removed when both activities ap-
pear at least once. After this pruning phase, a check for transitivity is performed,
which can now include extra Succession constraints.

In Hybrid Miner, the Declare model that is mixed with the procedural one
is derived in a more straightforward and sequential fashion, which offers an
alternative to the approach in Figure 4. This greatly improves the readability
of the resulting model. Furthermore, it is possible to substitute the behavior
of the procedural part with the declarative constraints between two activities,
providing the possibility to either retrieve a more loosely defined model, or a
stricter model on which both paradigms are applied, as illustrated in Figure 5.

Finally, since the ConDec rule set contains over 20 entries and we combine this
set with a procedural model, some constraints become obsolete or less relevant:

— (Strong) Init() and Last() constraints are captured by the procedural model
by start and end activities (a;, a,).

The Chain Response/Precedence/Succession() constraints are capture by the
direct succession constraints in the procedural model.

The Choice() constraints are captured by the XOR- and AND-joins and
-splits in the procedural model.

Negative constraints are also left out of scope.

4.4 Results

The following representation is used in the mixed Declare and Causal Graph
figures:

The full (blue) arcs represent the procedural behavior as introduced by
Heuristics Miner.

The checkered activities exceed the entropy threshold.

The red activities fulfill the Ezactly! constraint.

The green activities fulfill the Existence constraints.

The striped arrows represent ConDec constraints, which are labelled.

The PhD process The running example is used to demonstrate the capabilities
of Hybrid Miner. In Figures 6 through 9 the results in ProM and the correspond-
ing Petri nets are compared for different threshold levels for e. Even for a small
entropy value (Figures 6 and 7), the activity Content Creation becomes subject
to Declare constraint mining. By its constant enabledness it can appear any-
where in the workflow and clutter up a sequential process. By retrieving a few
rules for the activity, we are able to represent it in a sense-making way in a mixed
model. The constraints for single activities are always applied, as they can only

improve the understanding of the model. Since we use a simulated example, we
can use a rule support of 100%. The model is already capable of capturing the
initial model more correctly, as the relationships between ContentCreation and
the other activities are correct. The arc between SecondSeminar and Journal-
Paper is still incorrect.

By raising the entropy level (Figures 8 and 9), more activities are added to the
declarative set R, in this case Conference and Journal Paper. This makes sense
given the model. Only constrained by the appearance of Content Creation, these
activities are also rather unpredictable. Note that the procedural and Petri net
part of the model is becoming smaller and smaller, while the Declare constraints
offer the same behavior and more. Hence, a trade-off between precision and
generalization exists.

If we position this approach in Figure 5, it would be categorized as an attempt
to cover behavior that is not mined by the procedural technique, depicted in
Figure 5c. The rules are applied as follows, 1 — R x A, while D C P x P and
1,0 e P.

Conference T

e e

START ContentCr... . __~""7"7"
L

JournalPa...

- - precedenres ==~

Fig. 7: Corresponding Petri net for e = 0.2

Real-life incident management log A real-life log was used that originated
from an incident management system. The log contains 20 activities and quite
a lot of procedural behavior. By applying Hybrid Miner, we obtain the process
model in Figure 10. The activity entropy is kept quite low (0.4), the dependency
threshold is 0.9 and the Declare rule support 80%.

By interpreting the Declare constraints, it becomes possible to prune se-
quences for a certain support from the process model as illustrated in Figure 5b.
By choosing a certain path between, e.g., activities Status As... and Status W...,

Defence END

\

1

Content
Creation

Defence End

Fig.9: Corresponding Petri net for e = 0.6

other paths become invalid because of the Ezactlyl constraints. For example,
the direct arrow between Status As... and Group OR... (the uppermost activity)
is not supported by the rules, nor are any incoming arcs for the first activity.
Another example of a rule which restricts behavior is the Succession between
Individual and Status Clo.... This prevents going straight to the end when Indi-
vidual is enabled. Note that the Ezactlyl and Succession constraints reinforced
each other in the constraint manipulation phase.

While there is an overlap between the two paradigms in this example, e.g. the
connection between Status As... and Group OR... and the Succession constraint,
they contain different information. For example, a Succession constraint enforces
the appearance of a certain activity, while a regular sequence constraint does not.
Note that by adding the rules, it becomes obsolete to add some extra semantics,
such as splits and joins for the input and output bindings. By knowing in which
order activities appear from the rules, combined with the cardinality, one can
derive which sequences are possible and which ones are not compatible with the
rules that are derived on a trace-based (global) level.

The more straightforward part of the log, which is partially hidden behind
the super-figure in Figure 10, is not included in R and contains very sequential
behavior. This illustrates again that the algorithm is capable of discerning the
two types of activities and does not necessarily include too many rules.

If we position this approach in Figure 5, it would be categorized as an attempt
to cover behavior that is mined by a procedural miner, which is then further
restricted by adding rules. The rules are applied as follows, 1 — R x A, while
D C Ax A and I,0 € A. Furthermore, when the same behavior is captured
and displayed, one can choose to either read the rules or interpret the input and

output bindings, hence choosing which representation form is most suited for
the situation.

Fig. 10: Result of Hybrid Miner for a real-life log with following settings: depen-
dency threshold 0.9, Declare support 80%, and activity entropy 0.4.

These examples have shown the potential of Hybrid Miner; while the former
shows how new relations are uncovered, the latter presents a way of restricting
behavior even further for a certain support, or visualize it in a different way.
As the information retrieved by Declare rules is positioned at trace level, it
becomes possible to extract knowledge that is supported for a fixed part of the
log, cutting, e.g., infrequent behavior.

Hybrid Miner can also be used for an initial log discovery to search for the
amount of different behavior as well. As such, it can serve the purpose of checking
the level of flexibility contained in the event log.

5 Conclusions and Future Work

In this paper we proposed a first attempt towards hybrid process mining. By com-
bining principles of miners for both the procedural and declarative paradigm,
we extract models that can capture fixed paths mixed with flexible parts in the
workflow. Hence, it becomes possible to exploit the gap between over- and under-
fitting in a more versatile way. However, to fully asses the power of the technique,
the notion of precision, fitness and generalization needs to be introduced in fu-
ture work. For both paradigms there already exist techniques to evaluate fitness
which can serve as a starting point. Furthermore, compliance and region-based
techniques can be used to extend the proposed approach to more precisely locate
flexible or non-fitting behavior in the log. Also, to improve performance of the
rule mining, faster techniques such as UnconstrainedMiner will be explored as
the current implementation is restricted by the speed of Declare Miner.

Also, the investigation of representing and using mixed models should be
further pursued.

Other research directions include the discovery of mixed-paradigm hierarchies
to distinguish for example a declarative super-process with procedural subpro-
cesses or the other way around.

References

1. Van der Aalst, W.M.: Discovery, Conformance and Enhancement of Business Pro-
cesses. Springer (2011)

2. Van der Aalst, W., Weijters, T., Maruster, L..: Workflow mining: Discovering pro-
cess models from event logs. Knowledge and Data Engineering, IEEE Transactions
on 16(9) (2004) 1128-1142

3. Weijters, A., van der Aalst, W.M., De Medeiros, A.A.: Process mining with the
heuristics miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP
166 (2006)

4. Gunther, C.W., Van Der Aalst, W.M.: Fuzzy mining—adaptive process simpli-
fication based on multi-perspective metrics. In: Business Process Management.
Springer (2007) 328-343

5. Maggi, F.M., Bose, R.J.C., van der Aalst, W.M.: Efficient discovery of under-
standable declarative process models from event logs. In: Advanced Information
Systems Engineering, Springer (2012) 270-285

6. Di Ciccio, C., Mecella, M.: A two-step fast algorithm for the automated discovery
of declarative workflows. In: Computational Intelligence and Data Mining (CIDM),
2013 IEEE Symposium on, IEEE (2013) 135-142

7. Westergaard, M., Stahl, C., Reijers, H.A.: Unconstrainedminer: Efficient discovery
of generalized declarative process models

8. van der Aalst, W.M.: What makes a good process model? Software & Systems
Modeling 11(4) (2012) 557-569

9. Pesic, M., van der Aalst, W.M.: A declarative approach for flexible business pro-
cesses management. In: Business Process Management Workshops, Springer (2006)
169-180

10. De Medeiros, A.A., Giinther, C.W.: Process mining: Using cpn tools to create test
logs for mining algorithms. In: Proceedings of the sixth workshop on the practical
use of coloured Petri nets and CPN tools (CPN 2005). Volume 576. (2005)

11. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.: User-guided discovery of declar-
ative process models. In: Computational Intelligence and Data Mining (CIDM),
2011 IEEE Symposium on, IEEE (2011) 192-199

12. Van Der Aalst, W., Adriansyah, A., Van Dongen, B.: Causal nets: a modeling lan-
guage tailored towards process discovery. In: CONCUR 2011-Concurrency Theory.
Springer (2011) 28-42

13. Pesic, M., Schonenberg, H., van der Aalst, W.M.: Declare: Full support for loosely-
structured processes. In: Enterprise Distributed Object Computing Conference,
2007. EDOC 2007. 11th IEEE International, IEEE (2007) 287-287

14. Westergaard, M., Slaats, T.: Mixing paradigms for more comprehensible models.
In: Business Process Management. Springer (2013) 283-290

15. Maggi, F.M., Bose, R.J.C., van der Aalst, W.M.: A knowledge-based integrated
approach for discovering and repairing declare maps. In: Advanced Information
Systems Engineering, Springer (2013) 433-448

FACULTY OF ECONOMICS AND BUSINESS
Naamsestraat 69 bus 3500

3000 LEUVEN, BELGIE

tel. + 32 16 32 66 12

fax + 3216 32 67 91

info@econ.kuleuven.be
www.econ.kuleuven.be

	KBI_1413
	BPI-JDS-08062014

