
1 
 

Cytokine balance and cytokine-driven natural killer cell dysfunction in 

systemic juvenile idiopathic arthritis 
 

Anneleen Avaua, Karen Puta, Carine H. Woutersb* and Patrick Matthysa* 

 

aLaboratory of Immunobiology, Rega Institute, Leuven, Belgium 
bPediatric Rheumatology, University Hospital Gasthuisberg, Leuven, Belgium. 

*CHW and PM contributed equally  

 

Anneleen Avau, Minderbroedersstraat 10, B-3000 Leuven, Belgium, phone: +32 (0)16 33 73 49 

anneleen.avau@rega.kuleuven.be  

Karen Put, Minderbroedersstraat 10, B-3000 Leuven, Belgium, phone: +32 (0)16 33 73 49 

karen.put@rega.kuleuven.be 

Carine H. Wouters, Herestraat 49, B-3000 Leuven, Belgium, phone: +32 (0)16 34 38 01 

carine.wouters@uzleuven.be 

Corresponding author: Patrick Matthys, Laboratory of Immunobiology, Rega Institute, 

Minderbroedersstraat 10, B-3000 Leuven, Belgium - patrick.matthys@rega.kuleuven.be 

Phone: +32 (0)16 33 73 49 - Fax: +32 (0)16 33 73 40 

 

 

ABSTRACT 

Systemic juvenile idiopathic arthritis (sJIA) is a severe inflammatory childhood 

disorder, characterized by a specific pattern of systemic features and a typical cytokine 

profile. Patients are at risk to develop macrophage activation syndrome (MAS), an acute 

life-threatening condition defined by excessive proliferation and activation of 

macrophages and T cells. Defects of unknown cause in the natural killer (NK) cell 

cytotoxic capacity are presumed to underlie the pathogenesis of MAS and have been 

detected in sJIA patients. Here, we provide an overview of the cytokine profiles in sJIA 

and related mouse models. We discuss the influence of cytokines on NK cell function, 

and hypothesize that NK cell dysfunction in sJIA is caused by altered cytokine profiles. 
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1. Introduction 

 

Juvenile idiopathic arthritis (JIA) denotes a heterogeneous group of arthritic diseases of 

unknown origin that start before the age of 16 and persist for at least 6 weeks. Together, they 

represent the most common chronic rheumatic syndrome in childhood. On the basis of 

number of joints involved and accompanying extra-articular symptoms, 7 different subtypes 

of JIA are distinguished (for an overview and international classification criteria, see [1]). One 

of these subtypes is systemic (s)JIA, formerly known as Still’s disease. sJIA is one of the 

most perplexing childhood disorders, exhibiting distinct disease symptoms compared to other 

forms of JIA. Its distinctive character is expressed by the manifestation of systemic symptoms 

in combination with chronic arthritis and by the absence of associations with MHC class II 

alleles. Extra-articular symptoms of sJIA are spiking fever, lymphadenopathy, rash, 

neutrophilia and thrombocytosis [2;3]. Over the past decades, the knowledge of the 

pathogenesis of sJIA has profoundly expanded, leading to a better understanding and 

eventually to better treatment strategies. A striking feature of sJIA is its association with 

macrophage activation syndrome (MAS). MAS is a severe, potentially life-threatening 

complication of several systemic inflammatory disorders, but it is most frequently observed in 

association with sJIA. The disease is characterized by pancytopenia, hepatosplenomegaly, 

coagulopathy and neurologic involvement [4;5]. The presence of hemophagocytic 

macrophages in bone marrow aspirates of patients and the close resemblance to a group of 

histiocytic disorders, collectively known as hemophagocytic lymphohistiocytosis (HLH), has 

led to the hypothesis of MAS being an HLH variant. HLH comprises two different conditions 

with comparable clinical presentation: primary or familial HLH (FHL) and secondary or 

acquired HLH. FHL represents a group of rare, autosomal recessive immune disorders. 

Secondary or acquired HLH, among which MAS is reckoned, occurs without clear genetic 

background, in association with any of a range of infectious agents, malignancies or 

autoimmune diseases [6;7]. An overview of the clinical and laboratory features of sJIA, MAS 

and FHL is given in Table 1. 

Defects in the cytotoxic machinery of lymphocytes and natural killer (NK) cells 

underlie the symptoms in FHL [6]. The occurrence of comparable defects is well-documented 

in MAS and has also been reported in sJIA patients [8-10]. Cytotoxic cells are essential to kill 

infected cells. Defective cytotoxic machinery thus results in prolonged delivery of antigens, 

leading to excessive proliferation of T cells and macrophages and to escalating production of 

cytokines. In FHL, the decreased killing capacity originates from mutations in cytotoxicity-
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related genes. In MAS and sJIA, the decreased NK cell cytotoxicity is rather an acquired 

defect, presumably resulting from a disrupted cytokine environment [4;11]. In this review, we 

provide an overview of cytokines that are differentially expressed in sJIA when compared to 

healthy controls; we summarize the relation between cytokines and NK cell activity and 

propose a hypothesis about the influence of the cytokine environment on NK cells in sJIA. 

 

2. Distinct cytokine profile in sJIA patients 

 

The distinct clinical presentation and immunologic abnormalities in sJIA have prompted 

investigators to consider it as an autoinflammatory rather than an autoimmune disease [2;11]. 

The absence of HLA associations, the marked neutrophilia and the upregulation of innate 

immune pathways in gene expression profiles of sJIA patients account for this classification. 

Moreover, genetic polymorphisms specifically affecting innate immune gene expression have 

been linked to the disease, and might explain the predisposition of specific children to develop 

excessive inflammation to certain infectious triggers [2;12]. Classically, autoinflammatory 

syndromes are characterized by fever and a systemic inflammation, induced by excessive 

activation of the innate immune system and inappropriately high levels of inflammatory 

cytokines [13]. Several research groups have demonstrated a characteristic cytokine profile in 

sJIA, which will be discussed below. Furthermore, mouse models for sJIA (and MAS) 

emphasize the importance of cytokines with harmful pro-inflammatory potential. 

 

2.1. Cytokine analysis in sJIA patients 

Gene expression clusters in leukocytes or peripheral blood mononuclear cells (PBMCs) are 

indicative of a typical expression profile in sJIA, distinct from that in healthy controls and 

other subtypes of JIA. This was confirmed at the protein level by analysis of cytokines in the 

plasma of patients or after in vitro stimulation of blood cells. Table 2 summarizes 

inflammatory cytokines of which the expression has been explored in sJIA. Results 

concerning the most extensively studied cytokines, i.e. interleukin (IL)-1β, IL-6, IL-10, IL-17, 

IL-18, tumor necrosis factor (TNF)-α and interferon (IFN)-γ, are described in detail. 

 

Interleukin-1β 

IL-1β is reputed for driving inflammation in many pathological instances and for mediating 

bone erosion in rheumatic diseases [13;14]. In sJIA, multiple symptoms can be explained by 

overexpression of IL-1β, including fever, neutrophilia, thrombocytosis and arthritis [13]. 
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Polymorphisms in genes of the IL-1 family associated with sJIA have been shown for the IL-1 

ligand as well as for the IL-1 receptor cluster region [15]. Although some studies 

demonstrated increased serum levels of IL-1 in patients with sJIA [16-18], most researchers 

observed an absence of a prominent IL-1 gene expression signature or significant protein 

levels, which led to controversy about its relevance in the disease [19-26]. Importantly, 

excessive production of the receptor antagonist of IL-1β was demonstrated in the serum of 

sJIA patients [16;23;24;27;28]. Nonetheless, a strong indication of the importance of IL-1β in 

sJIA came from the successful treatment of patients with the IL-1 receptor antagonist 

Anakinra, which resolved clinical symptoms and laboratory abnormalities [26;29;30]. 

Likewise, clinical trials proved the effectiveness of another IL-1 inhibitor, Canakinumab, in a 

substantial percentage of patients [31]. The over-representation of toll-like receptor 

(TLR)/IL1R pathway genes in gene expression profiles of sJIA patients further indicated 

indirectly an important role for IL-1β in the disease [20;21]. A third indication came from 

Pascual et al. [26], who demonstrated that serum of sJIA patients induced transcription and 

secretion of IL-1β by healthy PBMCs. They also found high amounts of IL-1β in the 

supernatants after in vitro stimulation of PBMCs of sJIA patients with PMA-ionomycin [26]. 

Gattorno et al. could not confirm this finding, which they attributed to the heterogeneity of the 

disease and the different methods used for cell activation [28]. Similarly, whole blood cultures 

of sJIA patients did not spontaneously release IL-1β. Stimulation of whole blood cells with 

LPS or PHA resulted in IL-1β production yields equal to those in cultures from healthy 

controls [27]. Interestingly, Macaubas et al. observed that monocytes from sJIA patients 

responded to LPS stimulation with more IL-1β production than monocytes of healthy 

controls, but higher intracellular levels were not associated with higher levels of secreted 

active IL-1β in the supernatants. Reduced cleavage of pro-IL-1β into the active, secreted form 

may account for this divergence [32]. Loss-of-function mutations in P2X7, which encodes an 

ATP membrane receptor that induces IL-1 secretion, have been described in some sJIA 

patients [28]. In any case, the absent IL-1 gene expression signature and the finding of normal 

or even reduced in vitro IL-1β secretion by cell cultures from sJIA patients is unexpected 

given the IL-1β-related symptoms seen in sJIA and the clinical response to IL-1 inhibition. 

Presumably, IL-1 expression is controlled by the local microenvironments, conditioned by 

several other cytokines, chemokines and the restricted participation of specific cells [28]. IL-1 

related symptoms may originate from IL-1β production by not only leukocytes but also by 

other cytokine-producing cells, such as fibroblasts and endothelial cells [13].  
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Interleukin-6 

Evidence for a role of IL-6 in sJIA has been provided from different angles. First of all, 

polymorphisms in the IL-6 gene linked with enhanced IL-6 responses were demonstrated to 

be associated with higher susceptibility to sJIA [33;34]. Also, gene expression profiling 

performed on PBMCs of sJIA patients revealed an over-expression of the IL-6 gene [19;20]. 

When cultured in vitro, patients’ PBMCs were found to produce more IL-6 than cells of 

healthy controls [35]. However, similar studies with whole blood cultures did not confirm 

such enhanced levels of spontaneous IL-6 production [27], and in vitro stimulation with LPS 

or PMA-ionomycin failed to show different IL-6 response rates [26;32;35]. In synovial fluid 

as well as in plasma of sJIA patients, elevated IL-6 levels were demonstrated and found to 

correlate with the overall disease activity and with some of the symptoms, such as fever, 

growth arrest, anemia and thrombocytosis [16-18;23;25;36-40]. However, a significant 

correlation between IL-6 levels in the patients and the strength of the erythropoiesis signature 

associated with anemia was not found, which might indicate that factors other than IL-6 

contribute to the anemia in sJIA patients [41]. Finally, a clinical trial validated the use of 

Tocilizumab, an IL-6 inhibitor, in sJIA patients [42]. Together the data support the notion that 

production of IL-6 is increased in sJIA and that this plays an overall disease-promoting role.  

 

Interleukin-10 

IL-10 has profound anti-inflammatory properties, limiting excessive immune responses and 

preventing autoimmunity. IL-10 deficiency may therefore co-operate with other cytokine-

related abnormalities in the onset of sJIA. Increased susceptibility for sJIA has been linked to 

haplotypes of the IL-10 and IL 10 promoter genes associated with lower expression rates of 

the cytokine [43;44]. Also, IL-10 production in whole blood cultures of sJIA patients 

stimulated with LPS or PHA was lower than production by control cultures [27]. However, 

PBMCs and purified monocytes of patients contained significantly higher IL-10 mRNA levels 

than cells of healthy controls [19;20], and sJIA PBMC cultures produced more IL-10 whether 

unstimulated or stimulated in various ways, when compared to healthy control cells [35;45]. 

Furthermore, increased plasma levels of IL-10 in sJIA patients were shown in several reports 

[17;25;28;39]. Interestingly, Raziuddin et al. demonstrated an inhibitory effect of IL-10 in 

LPS-stimulated patients’ PBMCs on the production of IL-1β and TNF-α, but not IL-6. The 

authors therefore suggested that the in vivo anti-inflammatory effect of IL-10 may not affect 

IL-6 secretion [45]. The relation between IL-10 and IL-6 in sJIA was also investigated by 
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Pignatti et al. [35]. In concordance with the results of Raziuddin et al., they found reduced 

inhibition of IL-6 by IL-10 in sJIA compared to healthy control PBMCs.  

 

Interleukin-17 

IL-17 is a typical product of Th17 cells, which orchestrate inflammatory responses by 

induction of IL-1, IL-6 and TNF-α. Under certain conditions, innate cells like γδ T cells were 

shown to dominate the IL-17 production [46]. Reports on IL-17 plasma levels in sJIA have 

been inconsistent, as both normal and supra-normal values were found [25;28]. Nonetheless, a 

larger number of IL-17-producing CD3+CD4+ and CD3+CD4- cells was detected in peripheral 

blood of sJIA patients [47]. Hinze et al. observed a positive correlation between the 

erythropoiesis signature typically observed in sJIA patients and serum levels of IL-17, 

pointing to a potential role for IL-17 in the anemia [41]. 

 

Interleukin-18 

IL-18, originally defined as IFN-γ-inducing factor, is structurally related to the IL-1 family 

and uses parallel signal transduction pathways [14]. In contrast to certain other cytokines, data 

concerning IL-18 levels in sJIA are very consistent. Studies have indicated that excessive 

IL-18 plasma levels represent a good indicator for sJIA disease activity; moderately elevated 

amounts even remain noticeable during inactive disease [8;16;25;28;39;48-50]. In vivo, part 

of the total available IL-18 occurs as a complex with IL-18 binding protein (IL-18BP, [14]). 

Thus, the amount of biological active IL-18 depends on the ratio between these two agents. In 

plasma of sJIA patients, both levels were found to be elevated compared to healthy controls, 

but the IL-18/IL-18BP ratio was higher, due to massive IL-18 production [8;50]. Together the 

data emphasize the assumption that IL-18 plays a disease-promoting role in sJIA. 

 

Tumor necrosis factor-α 

TNF-α is an important mediator in the development of arthritic symptoms. Although 

associations have been detected between sJIA and TNF-α gene polymorphisms correlating 

with high expression [51], the role of this cytokine in sJIA seems rather limited, especially 

when compared to its well-established central role in other rheumatic diseases, e.g. 

rheumatoid arthritis and JIA subtypes other than sJIA. In sJIA patients, plasma levels of 

TNF-α remained low or undetectable [17;18;23;25;28;40]. Furthermore, whole blood cultures 

of sJIA patients failed to spontaneously produce TNF-α, and PBMCs stimulated with PMA-

ionomycin did not yield higher amounts of TNF-α than cells of healthy controls [26;27;32]. 
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The minor role of TNF-α in sJIA is also evident from the poor results of anti-TNF-α 

treatments that were proven to be efficacious in other subtypes of JIA [52]. This discrepancy 

again demonstrates the difference between sJIA and other subtypes and reflects the 

dominance of systemic manifestations in sJIA over arthritic symptoms. 

 

Interferon-γ 

IFN-γ, an important cytokine for macrophage activation, has well-established pro-

inflammatory but also anti-inflammatory effects [53]. In FHL patients, IFN-γ levels are vastly 

increased [54;55], and murine models for FHL point to IFN-γ as the dominant causative 

cytokine [56;57]. In MAS patients, IFN-γ levels are likewise elevated [58], and the presence 

of activated IFN-γ-producing lymphocytes in liver biopsies of MAS patients suggests that the 

cytokine has a pro-inflammatory role in the disease [59]. However, controversy exists about 

the relevance of IFN-γ in sJIA. Although Ishikawa et al. identified an upregulated expression 

of a network of genes in which IFN-γ was the central molecule [60], a remarkable absence of 

IFN-γ induced gene expression was shown by Fall et al. [21]. Likewise, other gene expression 

studies did not report an increased IFN-γ signature [19;20;41]. Sikora et al. demonstrated that 

the restricted IFN-γ-induced genetic signature was not the result of hyporesponsive 

monocytes to IFN-γ stimulation in vitro [61]. They consequently hypothesized that limited 

exposure to IFN-γ was a more convenient explanation for the phenomenon. In line with the ex 

vivo gene expression results concerning IFN-γ, no evidence was found for higher IFN-γ 

production by patients’ PBMCs in vitro [45]. However, a higher proportion of 

IFN-γ-producing T cells was demonstrated in the peripheral blood of sJIA patients in 

comparison with pediatric age-matched healthy controls [47]. In plasma of patients, Gattorno 

et al. demonstrated elevated levels of IFN-γ and interferon-inducible protein 10, whereas 

others mention undetectable IFN-γ levels [25;28;40]. We recently found increased IFN-γ in 

plasma of sJIA patients, but the levels were low especially in comparison with their high IL-6 

and IL-18 levels (data not shown). Prahalad et al. demonstrated a significant increase in IFN-γ 

serum levels of 77 JIA patients compared to healthy controls, of which 10 were diagnosed 

with sJIA. However, levels were lower than 5 pg/ml in >90% of the patients and the median 

was ~0 pg/ml [17]. Thus, the role of IFN-γ in sJIA remains subject of further investigations.  

 



8 
 

To summarize, studies on sJIA patients are supportive for pathogenesis-promoting 

roles of IL-1β, IL-6 and IL-18. Uncertainty reigns as to possible roles of IL-10, IL-17 and 

IFN-γ; the role of TNF-α seems limited. The joint occurrence of excessive IL-18 levels and 

only moderately elevated levels of IFN-γ in sJIA patients is rather surprising, given the 

stimulatory role of IL-18 on NK cell IFN-γ production. Possibly, IL-18 is not the main 

stimulator of IFN-γ in sJIA, or the relation between IL-18 and IFN-γ is defective in the 

disease, as suggested by de Jager et al. [8], which might indicate a subordinate or even 

protective role for IFN-γ in sJIA.  

sJIA consists of a heterogeneous group of patients; some patients seem more prone to 

develop MAS than others [62]. A number of studies have focused on establishing correlations 

between a predominance of particular inflammatory cytokines and clinical profiles or 

responsiveness to therapy. Gattorno et al. observed a distinct response to Anakinra [28]. 

About half of the patients with sJIA improved at first, but relapsed after some time. Arthritic 

symptoms were especially difficult to control in this group. The other half were complete 

responders, with immediate control of systemic and articular symptoms. Fall et al. identified a 

‘normal-ferritin’ and a ‘high-ferritin’ group of sJIA patients, the latter ones also displaying 

other symptoms specific for MAS [21]. Shimizu et al. proposed a coinciding subdivision 

based on plasma cytokine profiles into an IL-6-dominant and an IL-18-dominant group, the 

former one presenting mainly arthritic symptoms and the latter one being prone to develop 

MAS. The different responses of patients to IL-1β and IL-6 blockade could also be explained 

by this subdivision, with an IL-1β/IL-18 dominant group that responds well to Anakinra, and 

an IL-6-dominant group that responds to Tocilizumab [48;63]. However, IL-1β or IL-6 

blockade have proven to be effective regardless of arthritis. In addition, we could not confirm 

this subdivision of patients based on IL-6 or IL-18 expression; patients with MAS 

complicating sJIA even expressed higher levels of IL-6 than sJIA patients without MAS (data 

not shown). Cytokine expression in sJIA patients is even more complex as it may shift with 

successive phases of the disease. As a consequence, patients may initially gain benefit from 

one particular treatment, but need other forms of therapy later on. In general, sJIA can be seen 

as a multilayered complex disease, with many aspects contributing to its development and to 

its predisposition for MAS.  
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2.2. Cytokine analysis in mouse models of sJIA  

Analysis of disease mechanisms in mouse models that mimic certain aspects of sJIA can 

clarify the role of cytokines in the human disease. Table 3 presents an overview of cytokines 

detected in three such models.  

A first mouse model, described by De Benedetti et al., provided evidence suggestive 

for a role of IL-6 production in causing growth impairment, a well-known feature of sJIA 

(and other chronic inflammatory diseases of childhood) particularly evident during periods of 

augmented disease activity [12;64]. In NSE/hIL-6 mice, the rat neurospecific enolase (NSE) 

promoter drives the expression of human IL-6 cDNA in mature neuron and neuroendocrine 

cells. Growth defects were observed in lines with peripheral expression of IL-6 [64]. 

Although the mice did not present signs of arthritis, the model does support the possibility 

that chronic high levels of circulating IL-6 augment the susceptibility of sJIA patients for 

MAS. Indeed, administration of TLR ligands to the IL-6-transgenic mice resulted in increased 

ferritin levels, high serum IL-1β, IL-18 and TNF-α concentrations and hematologic 

abnormalities typical of MAS [65]. The chronically high IL-6 levels seen in sJIA patients 

might cause a hyper-responsiveness to TLR ligands, resulting in triggering of MAS after 

infections. Of note, this mouse model tends to conflict with the subdivision of sJIA patients in 

an IL-6-dominant group with arthritis and an IL-18-dominant group, prone to develop MAS.  

A second model of Kawane et al. addresses the role of cytokines released by activated 

macrophages in causing joint inflammation. DNase II-null mice accumulate undigested DNA 

in lysosomes of macrophages, resulting in lethal anemia in mouse embryos. By using 

inducible knock-outs for DNase II, it was demonstrated that accumulation of undigested DNA 

in macrophages caused prolonged macrophage activation in adult mice. This activation in turn 

resulted in a chronic arthritis and increased TNF-α, IL-1β and IL-6 mRNA levels in the 

affected joints [66]. Although IL-1β and IL-6 could not be detected in the serum, blockade of 

these cytokines rescued mice from the symptoms. High serum IL-18 levels were 

demonstrated, but inhibition of IL-18 did not relieve the symptoms. This mouse model 

indicates that persistent systemic activation of macrophages maintains a cytokine storm that, 

due to locally accumulating DNA, extends to the joint tissue, resulting in arthritic symptoms.  

A third model of sJIA relies on the injection of complete Freund’s adjuvant (CFA, 

containing heat-killed mycobacteria) in WT and IFN-γ-deficient BALB/c mice [67]. The mice 

developed arthritis and many systemic inflammatory symptoms that resembled those of sJIA, 

particularly in the absence of IFN-γ, pointing to a dispensable or even protective role in this 

model. IL-6 levels were substantially increased in the serum of the CFA-injected 
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IFN-γ-deficient mice, while mRNA analysis of lymph node cells revealed increased 

expression of IL-1β and IL-18. Increased IL-17 production by lymph node cells was shown in 

vitro. Likewise, the number of IL-17 producing γδ T cells was elevated. Antibodies against 

IL-17 or against the p40 subunit of IL-12 and IL-23 prohibited the majority of symptoms in 

the mice. These observations point to innate and adaptive IL-17 producing T cells as harmful 

agents in the syndrome. In patients, increased IL-1β and IL-18 may cooperate with IL-23 to 

induce IL-17 production by innate cells, like γδ T cells and invariant NKT cells [68]. 

CFA-injected IFN-γ deficient mice did not develop liver failure or increased ferritin levels. 

The appearance of arthritis without clear MAS-like symptoms indicates that this mouse model 

may serve as a model for IL-6-related, arthritis-prominent sJIA. 

To summarize, animal models of sJIA endorse the central role of IL-1β, IL-6 and 

IL-18 in the immune disorder. Furthermore, the models confirm the assumption that TNF-α 

plays a limited role [64;66;67], while IFN-γ seems of subordinate importance or may even be 

protective [67]. In spite of the uncertain role of IFN-γ in sJIA, MAS patients were shown to 

have increased IFN-γ production [58;59]. However, Canna et al., working with a model of 

MAS, demonstrated that IFN-γ was dispensable for the majority of MAS-like symptoms in 

the absence of IL-10 [69]. The model relied on repeated TLR9 stimulation in WT mice [70]. 

Disruption of IL-10 resulted in a more severe disease, indicated by the authors as ‘fulminant 

MAS’ [69]. Levels of IL-6, IL-12p70, IL-18 and IFN-γ were significantly increased in mice 

with fulminant MAS in comparison with untreated control mice. In the more severe disease 

conditions, i.e. fulminant MAS, IFN-γ was not the causative agent, although increased levels 

were seen.  

 

3. NK cell activity and cytokines 

 

Natural killer (NK) cells are large, granular lymphocytes that play a fundamental role in fast 

responses against pathogen-infected and tumor cells. NK cells are activated through 

stimulation of activating receptors by NK-activating ligands, such as viral agents or stress 

antigens. In parallel, inflammatory cytokines are needed for optimal triggering of the effector 

functions. Inhibitory receptors are crucial to avoid reactivity against ‘self’; the balance of 

activating and inhibitory receptors determines the outcome of NK cell triggering [71-73] 
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3.1. NK cell activity: cytotoxicity and cytokine production 

NK cells kill target cells in a fast way via the granule exocytosis pathway and the death 

receptor pathway [73]. The first mechanism relies on the exocytosis of cytotoxic granules. 

The main granule-associated proteins are granzymes, serine proteases that mediate apoptosis 

after uptake, and perforin, which targets the granzymes into the target cells. The second 

mechanism is based on binding of members of the TNF family of cytokines expressed on NK 

cells to their receptors on target cells, leading to caspase-dependent target cell apoptosis. NK 

cell cytotoxicity is activated mainly in response to IFN-α/β and IL-15 [72;73].  

In addition to target cell killing, NK cells are important producers of chemokines and 

cytokines, resulting in recruitment of immune cells and amplification of the immune response. 

In humans, two NK cell subsets with different functions and homing properties have been 

described, based on the expression of cell surface markers. The CD3-CD56dimCD16+ 

population, which accounts for ~90% of peripheral blood and spleen NK cells, has high 

cytotoxic activity and displays low cytokine production. The CD3-CD56brightCD16- cells, 

which reside principally in lymph nodes and tonsils, mainly produce cytokines, such as IFN-γ, 

TNF-β, IL-10, IL-13 and granulocyte-macrophage colony-stimulating factor (GM-CSF) 

[71;74]. Whether NK cells can switch from one type into another, or whether the CD56bright 

NK cells are precursors of CD56dim NK cells, is subject of ongoing research. In mice, three 

NK subsets can be defined via expression of CD11b and CD27, with CD11bdullCD27+ NK 

cells corresponding to CD56bright human NK cells based on phenotype and anatomical 

localization [71]. Mouse NK cells differ in several aspects from human NK cells, for instance 

by the absence of CD56 expression. Thus, care should be taken when translating data from 

mice to the human situation.  

 

3.2. Influence of inflammatory cytokines on NK cell function in vitro 

The differentiation and activation of NK cells is influenced by specific cytokines produced 

within the time window and local niche where stimulation takes place. In vitro studies have 

provided partial understanding of this complex interplay. Important cytokines involved in NK 

cell function are IL-12, IL-15, IL-18, IL-21 and IFN-α/β, but participation of additional ones 

has been described (reviewed in [72;75]). Furthermore, defects in NK cell development and 

function were shown in mice in the absence of IL-2, IL-12, IL-15, IL-18 and IFN-γ [67;76-

79]. In vitro experiments with human NK cells demonstrated that IL-12+IL-18 is the optimal 

cytokine combination for induction of IFN-γ. IL-12, combined with IL-2 or IL-15, was found 
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particularly capable to elicit IL-10 production. The optimal combination of cytokines for 

GM-CSF production was found to be IL-15+IL-18, which also led to IL-13 and TNF-β 

production (Figure 1A) [74;80;81]. Mouse NK cells were demonstrated to produce IFN-γ 

upon stimulation with IL-12 combined with IL-18. IL-10 expression was induced after IL-12 

or IL-21 in combination with IL-2 or IL-15, while IL-18 stimulation, combined with IL-2 or 

IL-15, led to increased IL-13 and GM-CSF (Figure 1B) [82-85].  

Most in vitro studies rely on stimulation of NK cells with cytokines for a short period 

of time, thus mimicking acute viral infections in vivo. Brady et al. studied mouse NK cell 

phenotypes following 7-day long in vitro exposure to distinct combinations of cytokines [82], 

which may mimic the situation in vivo in autoinflammatory syndromes. Whereas IL-15 alone 

induced massive proliferation, the induction was antagonized by a multitude of cytokines, 

including IL-4, IL-12, IL-18 and IL-21, and the immunosuppressive cytokine TGF-β, but not 

by IL-10. The reduction in cell number was accompanied by increased cell size, granularity 

and an elevated amount of propidium iodide positive cells, indicating that the decreased cell 

count was caused by differentiation into effector NK cells and upregulation of apoptosis. NK 

cell cytotoxicity was likewise affected by distinct cytokine combinations. IL-15 and IL-21 

induced killing of target cells by NK cells, whereas IL-12, IL-18 and IL-4 antagonized this 

induction without affecting perforin expression or degranulation. IL-10 and TGF-β had no 

effect on killing capacity. Taken together, the cytokine milieu controls NK cell differentiation 

and function during inflammatory reactions. With exception of IL-21, inflammatory cytokines 

induced a ‘helper’ type of NK cells that produced a specific palette of cytokines, and showed 

depressed cytotoxicity [82;83].  

 

4. NK cells in sJIA: influenced by the cytokine environment? 

 

Multiple characteristics of sJIA, and especially of sJIA complicated by MAS, correspond to 

symptoms of FHL. In this disease, loss-of-function mutations in cytotoxicity-related genes 

account for the uncontrolled immune response by excessive proliferation of macrophages and 

T cells. It is possible that failure to remove infected cells by defective cytotoxic cells results in 

the continuous stimulation of the immune system. On the other hand, unsuccessful removal of 

antigen presenting cells and activated T cells after clearance of the infection may likewise 

results in ongoing cytokine secretion. This hypothesis is supported by the fact that an 

infectious trigger cannot always be found in patients [9]. Mutations in the perforin gene PRF1 

are frequently encountered in FHL; other missense mutations are described in UNC13D, 
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STX11 and STXBP2, which all play a role in granule exocytosis [6]. In acquired forms of 

HLH, like MAS, and in sJIA, symptoms comparable to those of FHL are seen without clear 

evidence for a genetic cause. The suspected pivotal role of NK cells in sJIA - complicated by 

MAS - stimulated profound investigation of these cells in the disease.  

 

4.1. NK cell numbers in sJIA 

Reports about NK cell numbers in sJIA are not unanimous. While some research groups 

reported normal numbers of NK cells in patients [10;27;86], Fall et al. found mildly decreased 

numbers of CD56bright as well as CD56dim NK cells in patients’ PBMCs [21]. Two 

independent groups demonstrated a significant decrease of NK cell counts in whole-blood 

samples of sJIA patients compared to samples of patients with other types of JIA or healthy 

controls [87;88]. Furthermore, NK cell numbers were found to be negatively correlated with 

disease activity [87]. The reduction of NK cell numbers in sJIA could be explained by a 

shortage of cytokines that induce their proliferation, such as IL-2 and IL-15, combined with 

increased apoptosis induced by specific cytokines. Indeed, a study by de Jager et al. failed to 

demonstrate significant increases of IL-2 or IL-15 levels in patients with sJIA when compared 

to healthy controls, whereas IL-18 levels were strongly elevated [25]. Shibatomi et al. 

demonstrated a negative correlation between serum levels of IL-18 and NK cell numbers [89]; 

in vitro analysis showed caspase-dependent NK cell death in response to IL-12 and IL-15 

when combined to IL-18. This observation corresponds to the study by Brady et al., in which 

apoptosis was found to be induced by chronic stimulation with IL-4, IL-12, IL-18 and IL-21 

[82]. Reduced NK cell numbers have also been reported in systemic autoimmune diseases, 

such as systemic lupus erythematosus [90], in which high IL-18 levels were proven to 

correlate with disease severity [91]. Likewise, a negative correlation between IL-18 and 

absolute NK cell numbers has been shown in HIV-patients [92]. 

 

4.2. NK cell cytotoxicity in sJIA 

The cytolytic activity of NK cells was found to be suppressed in a number of sJIA patients 

[8;10;88;93]. This defect distinguishes sJIA from other clinical forms of childhood arthritis 

and may explain the specific predisposition of sJIA patients to develop MAS. The reduced 

killing capacity was not solely a consequence of decreased NK cell numbers, nor of the 

steroid treatment. Rather, a combination of patient-specific genetic and acquired factors may 

be held responsible [10;93;94]. Indeed, Grom et al. demonstrated reduced perforin expression 

in sJIA patients complicated by MAS, illustrating a common pathway between sJIA, MAS 
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and FLH [93]. Vastert et al. detected heterozygous missense mutations in the perforin gene in 

subsets of sJIA patients [95]. In a study of Wulffraat et al., the reduced perforin expression in 

sJIA patients was shown to be restored by autologous hematopoietic stem cell transplantation, 

indicating that the low perforin production was not simply caused by genetic defects but 

rather by suppressed transcription in at least part of the patients [94]. Thus, the cytokine 

environment may be held responsible for the lower NK cytotoxicity in sJIA, not only by 

affecting perforin expression, but perhaps also by altering expression of other genes and 

activation pathways in NK cells [9;96]. Since IL-18 is a well-known stimulator of NK cell 

activity, research was performed to elucidate the remarkable finding of high IL-18 plasma 

levels and simultaneously low NK cell activity. IL-18 from patients was found to be 

functional, as the cytolytic capacity of PBMCs obtained from healthy controls was 

significantly increased in vitro after incubation with plasma of sJIA patients. However, the 

response of patient NK cells to exogenous IL-18 was impaired, resulting from a defective 

phosphorylation of the IL-18 receptor [8]. It still needs to be explored if this defect is the 

result of exhaustion or of lower sensitivity to IL-18, which are both reversible, or if a genetic 

factor is involved. Dysfunctional NK cells were also demonstrated in other systemic 

rheumatic diseases. Systemic lupus erythematosus patients, for example, develop decreased 

killing capacity in addition to decreased numbers of active NK cells, and this is related to 

disease severity and outcome [90;97]. Increased serum IL-6 may also account for decreased 

NK cell numbers and function [98].  

Less research has been performed to investigate the NK cell activity in sJIA with 

respect to cytokine production. Exogenous IL-18 was unable to increase IFN-γ production by 

purified NK cells of sJIA patients, in contrast to cells of healthy controls or of polyarticular 

JIA patients [8], endorsing the previous assumption that sJIA NK cells are hyporesponsive to 

IL-18. However, stimulating patients’ PBMCs with PMA/ionomycin resulted in significantly 

higher percentages of IFN-γ+ and TNF-α+ NK cells when compared to PBMCs from healthy 

control or from patients with oligo- or polyarticular JIA [88].   

 

4.3. Hypothesis about the link between NK cell defects and cytokine profiles  

A growing body of literature addresses defects in NK cell function in chronic systemic 

inflammatory syndromes. It can be hypothesized that the cytokine environment is responsible 

for these observations (Figure 2). Cytokine balances are changed in chronic immune disorders 

most likely because of a failure to turn off immune responses, or because of continuous 

stimulation of hematopoietic and non-hematopoietic cells with danger signals. In sJIA 
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patients, macrophages, dendritic cells and other cells, such as fibroblasts and endothelial cells, 

produce high levels of inflammatory cytokines, such as IL-18. Environmental triggers and 

genetic predisposition may account for these chronic high levels. One of the consequences of 

the higher cytokine levels is over-activation or exhaustion of NK cells. More specifically, as 

seen in the study of Brady et al., continuous high levels of IL-18 together with other 

cytokines, like IL-6, may induce an NK cell ‘helper’ phenotype, with low cytotoxic activity 

but high producing capacity of a specific palette of cytokines, accompanied by increased 

apoptosis [82]. The presence of cytokines like IL-2, IL-15 and IL-21, that induce proliferation 

and cytotoxicity, may be less explicit. Reduced NK cell numbers and reduced cytotoxicity 

will lead to decreased killing of activated immune cells, thereby worsening the disease 

symptoms and resulting in a vicious circle. Besides polymorphisms in cytokine genes, which 

may account for increased production in response to immune stimulation, some sJIA patients 

were shown to display polymorphisms in genes of the cytotoxic machinery. These 

polymorphisms may equally contribute to the vicious circle. Of note, evidence emerges for 

the presence of ‘regulatory’ NK cells in systemic infections, which produce high amounts of 

IL-10 [99;100]. It will be of interest to study this subset in chronic inflammatory immune 

disorders such as sJIA and MAS. Potentially, the typical cytokine environment in sJIA does 

not favor the formation of regulatory NK cells, further stimulating the ongoing inflammatory 

response.  

 

5. Conclusion  

 

sJIA is unique compared to other subtypes of JIA, given its systemic character and its 

intriguing predisposition to develop MAS. A pivotal role in the pathogenesis of sJIA has been 

contributed to the distinct cytokine environment, with IL-1β, IL-6 and IL-18 as most 

important cytokines. Especially IL-18 seems to play a dominant role in the NK cell defects. 

Thus, continuous high plasma levels of IL-18 may lead to apoptotic or hyporesponsive NK 

cells in sJIA patients. The predisposition of subsets of patients to develop MAS probably 

results from the depressed NK cell number as well as NK cell function provoked by high 

IL-18, with defective killing of hyperactive macrophages as a consequence. Inhibition of 

IL-18, e.g. by IL-18 binding protein, would therefore form an alternative treatment strategy 

for sJIA patients complicated by MAS. Pediatric rheumatologists are more and more 

convinced to use biological agents in the early treatment of sJIA, with promising results. The 

outcome of these treatment strategies differs between patients, given the heterogeneity of the 
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disease resulting from different genetic and environmental factors. Care should be taken with 

these biological agents, since inhibitors of cytokines may create an unfavorable imbalance in 

the cytokine network with a risk for complications. Further research is needed to elucidate the 

role of continuous high levels of inflammatory cytokines on NK cell function and to translate 

this into optimally targeting treatment strategies for sJIA patients. 
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Figures and Tables 

 

Table 1 | Symptoms of sJIA, MAS and FHL  

  sJIA  MAS  FHL 
 references [1-3;9;12;101;102] [4;6;7;9;12;101;103-105] [6;7;9;105-112] 
 incidence ~1/100 000 unknown ~0.12/100 000 

C
lin

ic
al

 fe
at

ur
es

 

fever quotidian persistent persistent 
rash evanescent petechial/macular maculopapular 
mucosal bleeding - + + 
hepatomegaly + + + 
splenomegaly + + + 
lymphadenopathy + + + 
arthritis + - - 
serositis + - - 
CNS dysfunction -/+ + + 

La
bo

ra
to

ry
 fe

at
ur

es
 

neutrophil count ↑↑ ↓ ↓ 
platelet count ↑↑ ↓ ↓ 
anemia + + + 
ESR ↑↑ normal or sudden ↓ normal or ↓ 
CRP ↑ ↑ ↑ 
bilirubin normal normal or ↑ ↑ 
ALT/AST normal or ↑ ↑↑ ↑↑ 
PT normal ↑ ↑ 
PTT normal ↑ ↑ 
fibrinogen ↑ ↓ ↓ 
ferritin normal or ↑ ↑↑ ↑↑ 
D-dimers ↑ ↑↑ ↑↑ 
sCD25 normal or ↑ ↑↑ ↑↑ 
hypoalbuminemia - + + 
hyponatremia - + + 
hypertriglyceridemia - + + 
sCD163 normal or ↑ ↑↑ ↑↑ 

 NK cell dysfunction possible frequent common 

 Hemophagocytic 
macrophages possible frequent very frequent 

+, often diagnosed; -, not diagnosed/described; ↑↑, strong increase; ↑, increase; ↓, decrease. Abbreviations: ALT/AST, 
alanine aminotransferase/aspartate aminotransferase; CNS, central nervous system; CRP, C-reactive protein; ESR, 
erythrocyte sedimentation rate; HLH, hemophagocytic lymphohistiocytosis; MAS, macrophage activation syndrome; NK, 
natural killer; PT, prothrombin time; PTT, partial thromboplastin time; sCD, soluble cluster of differentiation; sJIA, systemic 
juvenile idiopathic arthritis. 
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Table 2| Cytokines in sJIA: ex vivo mRNA levels, in vitro production and plasma levels 

 
Production by leukocytes 

 
Plasma level 

 
ex vivoa in vitrob 

   
IL-1β ↔ [19-22] ↑,↓,↔ [26−28;32]  ↑,↓,↔ [16-18;23-26;28] 
IL-1Ra ND 

 ↔ [27;28] 
 

↑↑ [16;23;24;27;28] 
IL-4 ND 

 ↑,↔ [45;47] 
 

↑,↔ [25;28] 
IL-6 ↑ [19;20] ↑,↔ [26;27;32;35] 

 
↑↑ [16-18;23;25;28;37;39;40;48;49] 

IL-7 ND 
 

ND 
  

↑ [28;113] 
IL-8 ND  ND   ↑,↔ [17;18] 
IL-10 ↑ [19;20] ↑,↓,↔ [27;32;35;45] 

 
↑,↔ [17;25;28;39] 

IL-12 ND 
 

ND 
  

↑ [18;25;28] 
IL-13 ND 

 
ND 

  
↑,↔ [25;28] 

IL-17 ND 
 ↑ [47] 

 
↑,↔ [25;28] 

IL-18 ↑ [50] ↔ [28] 
 

↑↑ [8;16;25;28;39;48-50] 
TNF-α ND 

 ↔ [26;27;32] 
 

↑,↔ [17;18;23;25;28;40] 
IFN-γ ↔ [21] ↑,↔ [45;47] 

 
↑,↔ [25;28;40] 

G-CSF ND 
 

ND 
  

↑↑ [28] 
GM-CSF ND 

 
ND 

  
↑↑ [28] 

amRNA level in PBMCs or whole blood cells; bprotein level after stimulation of leukocytes with LPS, PMA-ionomycin, 
PHA or ant-CD3/CD28 in vitro; ↑, elevated; ↑↑strongly elevated; ↔ undetectable or not elevated; ↓, lower than healthy 
controls; more than one symbol, conflicting results in literature. Abbreviations: G-CSF, granulocyte-colony stimulating 
factor; GM-CSF, granulocyte macrophage-colony stimulating factor; IFN, interferon; IL, interleukin; ND, not described; 
Ra, receptor antagonist; TNF, tumor necrosis factor. 
 

 

Table 3 | Cytokine expression in mouse models for sJIA and MAS [64-67;69;70] 
    Cytokine level 
    IL-1β IL-6 IL-10 IL-12 IL-17 IL-18 TNF-α IFN-γ 
    A B A B A B A B A B A B A B A B 

sJ
IA

 de Benedetti et al. ND ND +a + ND ND ND ND ND ND ND ND ND ND ND ND 
Kawane et al. +b ND +b ND +b ND ND ND +b ND +b + +b ND ND ND 
Avau et al. +c - ±d + +c,d - ND ND +c + +c - - - ND ND 

M
A

S Strippoli et al. ND + ND + ND ND ND ND ND ND ND + ND + ND ND 
Behrens et al.,  
Canna et al. ND - ND + ND + ND + ND ND ND + ND - +e + 

    Influence of cytokine blockade on phenotype 
    IL-1β IL-6 IL-10 p40f IL-17 IL-18 TNF-α IFN-γ 

sJ
IA

  Kawane et al. ↓ ↓ ND ND ND = ↓ ND  

Avau et al. ND ND ND ↓ ↓ ND ND ↑ 

M
A

S Behrens et al.,  
Canna et al.  ND ND ↑ ↓g,=h ND ND = ↓g,=h 

A, mRNA level in aheart and lung tissue, bjoints,  clymph node cells, dblood cells, eliver cells; B, protein level in plasma; 
fsubunit of IL-12 and IL-23; g in WT mice; hin the absence of IL-10; +, significantly increased; -, not increased; ±, 
increased, although not significant; ↑, inhibition leads to worse symptoms; =, inhibition does not change the symptoms; ↓, 
inhibition prohibits the symptoms. Abbreviations: IFN, interferon; IL, interleukin; MAS, macrophage activation syndrome; 
ND, not determined; sJIA, systemic juvenile idiopathic arthritis; TNF, tumor necrosis factor. 
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Figure 1. Effect of cytokines on NK cell cytokine production in vitro 

(A) Human NK cells produce mainly IFN-γ upon stimulation with IL-12 and IL-18. IL-10 is 

mainly induced by IL-2 or IL-15 synergized by IL-12, whereas IL-2 or IL-15 together with 

IL-18 stimulate GM-CSF, IL-13 and TNF-β release. (B) Mouse NK cells produce IFN-γ upon 

stimulation with IL-12 and IL-18. IL-12 or IL-21 stimulates IL-10 production and IL-18 

induces GM-CSF and IL-13 production when combined to IL-15 or IL-2. 
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Figure 2. Proposed mechanism for decreased NK cell function in sJIA 

The specific cytokine profile of sJIA patients, i.e. high levels of IL-1β, IL-6 and IL-18, may 

be the result of overactivated (innate) immune cells, endothelial cells and fibroblasts. This 

cytokine environment rather induces a cytokine-producing NK cell phenotype, with increased 

production of specific cytokines, increased apoptosis and decreased cytotoxicity. The 

presence of cytokines like IL-2, IL-15 and IL-21, that induce proliferation and cytotoxicity, 

may be less explicit (dotted line). As a consequence, NK cell number and cytotoxic function 

are depressed, resulting in a defective termination of the immune response. 
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