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Abstract: Records of past climate variability and associated vegetation response exist in various 

regions throughout Central and Eastern Europe (CEE). To date, there has been no coherent synthesis of 

the existing palaeo-records. During an INTIMATE meeting (Cluj Napoca, Romania) focused on 

identifying CEE paleo-records, it was decided to address this gap by presenting the palaeo-community 

with a compilation of high-quality climatic and vegetation records for the past 60-8 kyrs. The 

compilation should also serve as a reference point for the use in the modelling community working 

towards the INTIMATE project goals, and in data-model inter-comparison studies. This paper is 

therefore a compilation of up to date, best available quantitative and semi-quantitative records of past 

climate and biotic response from CEE covering this period. It first presents the proxy and archive used. 

Speleothems and loess mainly provide the evidences available for the 60-20 ka interval, whereas 

pollen records provide the main source of information for the Lateglacial and Holocene. It then 

examines the temporal and spatial patterns of climate variability inferred from different proxies, the 

temporal and spatial magnitude of the vegetation responses inferred from pollen records and 

highlights differences and similarities between proxies and sub-regions and the possible mechanisms 

behind this variability. Finally, it identifies weakness in the proxies and archives and their geographical 

distribution. This exercise also provides an opportunity to reflect on the status of research in the area 

and to identify future critical areas and subjects of research. 
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 A comprehensive review of climate change and impacts on vegetation 
in Central and Eastern Europe 

 Synchronous climate shifts in CEE and the wider North Atlantic region 
between 14.7-8 ka  

 Reduced magnitude of these climatic shifts in the continental part of 
Europe  

 Cooling intervals between 14.7 and 11.7 ka cal BP strongly expressed 
during winters 

 Vegetation in CEE responded less drastically to the climate shifts 
compared to Western Europe 
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Records of past climate variability and associated vegetation response exist in various regions 1 

throughout Central and Eastern Europe (CEE). To date, there has been no coherent synthesis 2 

of the existing palaeo-records. During an INTIMATE meeting (Cluj Napoca, Romania) focused 3 

on identifying CEE paleo-records, it was decided to address this gap by presenting the palaeo-4 

community with a compilation of high-quality climatic and vegetation records for the past 60-8 5 

kyrs. The compilation should also serve as a reference point for the use in the modelling 6 

community working towards the INTIMATE project goals, and in data-model inter-comparison 7 

studies. This paper is therefore a compilation of up to date, best available quantitative and semi-8 

quantitative records of past climate and biotic response from CEE covering this period. It first 9 

presents the proxy and archive used. Speleothems and loess mainly provide the evidences 10 

available for the 60-20 ka interval, whereas pollen records provide the main source of 11 

information for the Lateglacial and Holocene. It then examines the temporal and spatial patterns 12 

of climate variability inferred from different proxies, the temporal and spatial magnitude of the 13 

vegetation responses inferred from pollen records and highlights differences and similarities 14 

between proxies and sub-regions and the possible mechanisms behind this variability. Finally, it 15 

identifies weakness in the proxies and archives and their geographical distribution. This 16 

exercise also provides an opportunity to reflect on the status of research in the area and to 17 

identify future critical areas and subjects of research. 18 

 19 

Keywords: terrestrial records, climate, pollen, vegetation response, INTIMATE, latitudinal 20 

gradients, glacial, Holocene 21 
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1. Introduction  23 

One of the main aims of the INTegration of Ice-core, MArine, and TErrestrial records 24 

(INTIMATE group) is to reconstruct past climatic changes and their impact on the biotic and 25 

abiotic environment for the period between 60 and 8 ka. The main mechanisms used to achieve 26 



 5 

this aim are the refinement of dating methods and resulting chronologies of past changes, 1 

quantification of past climatic changes and related impacts, testing for leads and lags in the 2 

climatic system and improvement of all the above by modelling the mechanisms driving these 3 

changes (Björck et al., 1998, Walker et al., 1999; Blockley et al., 2012a). Initially, the main area 4 

of interest was the immediate vicinity of the North Atlantic, later expanding to Eastern Europe 5 

(Blockley et al., 2012b) and even farther afield (Petherick et al., 2013). However, discrepancies 6 

between regions in terms of data availability and quality have lead to a marked dichotomy 7 

between Western and Eastern Europe, which strongly hampers, inter alia, testing synchronicity 8 

of climatic events, analysis of possible lags in the transfer of climatic influences from the North 9 

Atlantic towards the east, and analysis of the response of vegetation to climate changes. 10 

Further, while records of past climate variability exist in various regions throughout Central and 11 

Eastern Europe, to date there has been no thorough review paper that synthesizes the available 12 

high-resolution climate records and data on the biotic responses to the climatic changes. 13 

Present-day climatic differences between Eastern and Western Europe very likely 14 

translate into different climatic histories between the two regions in terms of the timing and/or 15 

amplitude of palaeoclimatic events. The proximity of Western Europe to the North Atlantic leads 16 

to a strong oceanic influence on terrestrial ecosystems, likely overwhelming other possible, 17 

distant influences. In contrast, the reduced Atlantic influence in CEE allows for a stronger input 18 

from other centers of climatic variability (e.g., the Mediterranean Sea, NW Russia and the Black 19 

Sea). These influences result in the northern part (in the vicinity of the Baltic Sea) having cold 20 

winters and short, wet summers, while the southern (closer to the Mediterranean Sea) part has 21 

relatively warm, wet winters and dry, hot summers. The differences between the two regions 22 

were likely enhanced during the last glacial period by the strong influence of the Fennoscandian 23 

Ice Sheet and Alpine glaciers on air mass circulation (direction and intensity) and temperatures. 24 

During an INTIMATE meeting held in Cluj-Napoca (Romania) in March 2013, it was 25 

decided to address this gap and summarize the existing high-resolution records of climate 26 
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change and related impacts on vegetation in Central and Eastern Europe (CEE) for the period 1 

between 60 and 8 ka. CEE is here loosely defined as the region between the Alps and the Baltic 2 

Sea to the west, the Scandinavian Peninsula to the north, the Rhodope Mountains and Thracian 3 

Plain to the south and the Russian Plain to the east. The 60 and 8 ka interval covers the second 4 

half of the last glacial, the Last Glacial Maximum (LGM, ca 22-18 ka BP), the Lateglacial period 5 

(ca. 14.7-11.7 ka BP), and the early Holocene (ca 11.7-8 ka BP). The period before the 6 

Lateglacial is divided into Marine Isotope Stage 3 (MIS 3, ca 60-28 ka BP) and MIS 2 (ca 28-7 

14.7 ka BP). As in Moreno et al. (this volume), the Greenland ice core stratigraphy has been 8 

applied as a template for CEE climate variability during the 60-8 ka time period (Blockley et al., 9 

2012). This review also serves as a reference point for high-resolution palaeo-data for use in the 10 

modelling community working towards the INTIMATE project goals, and in data-model inter-11 

comparison studies. However, this is not intended to be an exhaustive review of all palaeo-12 

records from the CEE region. This paper should be seen as a companion to a similar 13 

compilation of Western European quantitative terrestrial palaeoclimate reconstructions for the 14 

same period (Moreno et al., this volume). By compiling the best available data from CEE, we 15 

aim to: i) present the palaeo-community with a concise compilation of high-quality climatic and 16 

vegetation records for the 60-8 ka period; ii) decipher the temporal and spatial patterns of 17 

climate variability inferred from different proxies and the magnitude of the vegetation responses; 18 

iii) offer a quantitative (e.g., temperature or precipitation) and qualitative (e.g., colder/warmer, 19 

wetter/drier) visual representation of past variability in climatic conditions, highlighting 20 

differences and similarities between proxies and regions; iv) (partly) understand the 21 

mechanisms behind these changes and variability. 22 

 23 

2. Data compilation and selection criteria 24 

The selection of best available records was guided, as much as possible, by the 25 

following criteria: i) the record should cover a fraction of the INTIMATE 60-8 ka time frame; ii) 26 
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the record should include at least one quantitative or semi-quantitative parameter (proxy or 1 

reconstruction); iii) the records should be independently dated or tightly linked to a well-dated 2 

record age model. However, during the INTIMATE workshop it emerged that the Lateglacial and 3 

early Holocene was the most intensively studied period in CEE and that most records include 4 

pollen data. Abiotic proxies (geomorphology, fluvial sediments, stable isotopes, geochemistry, 5 

etc) were less used, and usually with a generalised or even contradictory explanation of the 6 

mechanisms linking them to climatic parameters. Loess, on the other hand, appeared as the 7 

most complete palaeo-archive for the period beyond the Lateglacial, albeit with a lower 8 

resolution and less precise chronology. 9 

We first identified non-pollen records in order to eliminate the problem of discriminating 10 

between the forcing (i.e., climate change) and the response (i.e., vegetation change). In the 11 

second step, we eliminated those records where it was not clear how a measured variable 12 

registered the climatic signal or what the mechanism was by which changes in measured values 13 

were assigned to a given climate change. However, due to the extremely low number of suitable 14 

records, we have also included the pollen-based annual, summer and winter temperature 15 

reconstructions from Romania as these are among the very few quantitative climate estimates, 16 

are well dated and represent the longest quantitative records from the region. The resulting 17 

quantitative and semi-quantitative temperature reconstructions are based on two chironomid 18 

records, from Poland (Płóciennik et al., 2011) and Romania, respectively (Tóth et al., 2012); a 19 

δ18O record from speleothems in Romania (Tămaş et al., 2005), a δ18O record from bulk 20 

carbonates in lake sediments from Slovenia (Andrič et al., 2009), and a pollen-based 21 

quantitative reconstruction of summer, winter and mean annual temperature (MAT), as well 22 

annual precipitation from NW Romania (Feurdean et al., 2008 a, b). The climate data are 23 

presented in two distinct time frames: MIS 3 (60-28 cal BP) and MIS 2 (28-14.7 cal BP), and 24 

Lateglacial to early Holocene (14.7-8 ka). Discussions follow a north to south gradient. 25 

We have used the ages and depth-age models as provided by the authors (see Table 1) 26 
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for the number of dated points and temporal resolution for each record. All data were plotted on 1 

their own depth-age model against the NGRIP stable isotope record (Rasmussen et al., 2006) 2 

and INTIMATE event stratigraphy (Blockley et al., 2012b) for the 14.7-8 ka period (Fig. 2), and 3 

subsequently used to make a semi-quantitative assessment of the climate characteristics in the 4 

region (Table 2). A complete description of the general mechanisms by which these proxies are 5 

recording the climatic variables, the methods used to date and extract the climatic signal and 6 

the associated problems are found in a companion paper by Moreno et al. (this issue) on 7 

Western European climate changes between 60 and 8 ka.  8 

To examine the vegetation response to the climate fluctuations we selected a total of 13 9 

pollen sequences with good temporal and spatial coverage in CEE as follows: for small 10 

countries only a single pollen sequence was included, whereas for larger countries, or those 11 

with significant elevation gradients, the two most complete continuous records per country were 12 

selected. The pollen taxa in these sequences were then grouped into ecological types that 13 

largely follow the protocol for assigning pollen taxa to plant functional types and subsequently 14 

biomes (Fletcher et al., 2010; Moreno et al., this volume). The 5 main types were: coniferous, 15 

cold deciduous trees, temperate deciduous taxa, warm temperate taxa, warm /dry steppe, and 16 

other grassland and dry shrubland (Table 2). In addition, pollen and plant macrofossil maps 17 

were created for the following time slices: 17, 14.7 13.5, 12.7, 11.7, 10.5, 9.3, 8.2 ka cal BP for 18 

each record, to aid better geographical visualization of the vegetation dynamics in the CEE. 19 

 Quantitative reconstruction of climatic conditions during 60-8 ka in the CEE region poses 20 

a series of challenges, including: 1) a lack of investigated records for most of the period 21 

extending beyond the Lateglacial, or extremely fragmentary and low-temporal resolution records 22 

(the notable exceptions are loess deposits, see below); 2) imprecise age control (up to 10% 23 

dating uncertainties), which prevents accurate identification of the ―short‖-lived (less than 500 24 

yrs) events; 3) difficulties in constraining the significance of the various measured variables in 25 

terms of climatic parameter or how the measured values were quantified. Insufficient temporal 26 
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resolution and chronological control of the records also prevented: 1) the assignment of 1 

accurate dates for the timing of the short climatic events, and 2) a precise correlation, in terms 2 

of ―synchronicity‖ or ―lags‖, between the local climatic shifts and the INTIMATź event 3 

stratigraphy. However, within the dating uncertainties, possible correlations have been 4 

proposed. 5 

 6 

3. Climate changes in CEE 7 

Our analysis is based on stable isotope variations in lake sediments, speleothems, loess 8 

and chironomid assemblages (Fig. 2), but is restricted to loess and speleothem records for the 9 

interval between 60 and 14.7 ka.  10 

 11 

3.1. 60-8 ka 12 

3.1.1. Loess records 13 

Loess covers large parts of CEE, especially in areas south of the previous maximal 14 

extent of the former Fenoscandian Ice Sheet. Its distribution widens eastward, towards the 15 

Ukrainian and Russian lowlands. The province can further be subdivided into 5 subprovinces, 16 

each experiencing contrasting palaeoclimate: 1. between the Alps and the Carpathians; 2. north 17 

of the Carpathians; 3. the middle Danube Basin; 4. the lower Danube Basin and the northern 18 

coast of the Black Sea; and 5. Ukrainian and Russian continental lowlands (Table 4). The 19 

source and transport directions of loess in these areas are diverse, with material in the N and E 20 

parts of the CEE loess belt likely a large deflation area south of former ice margins. By contrast, 21 

the central Danube Basin loess is probably initially eroded from high mountain regions and then 22 

transported and deposited in floodplains of the Danube and tributaries (Buggle et al., 2008; 23 

Ujvári et al., 2013). Based on grain size investigations at three loess sections west and another 24 

five east of the Carpathian Mountains, Bokhorst et al. (2011) suggested a prevailing westerly 25 

wind over CEE during the MIS 3, and a dominant north-westerly wind during the GS-2. 26 
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Generally, this interpretation corresponds well with the major wind directions previously 1 

reconstructed by Rozycki (1991) and Marković et al. (2008) based on loess landform orientation 2 

and modeling results (Rousseau et al., 2011; Sima et al., 2013). 3 

The Eastern European loess belt provides a unique opportunity for almost continuous 4 

climatic reconstructions over this part of Europe between 60 and 14.7 ka. However each 5 

subprovince experienced quite different palaeoclimatic conditions over the time period 6 

investigated and recovering climatic information is therefore complicated due to the changing 7 

influence of specific controls on the preserved proxies. One of the earliest attempts used soil 8 

types as indicators of past climatic conditions. However, the significant palaeoenvironmental 9 

diversity over the region controls the intensity and type of pedogenesis, meaning the resultant 10 

palaeosols represent a wide variety of habitats, from tundra gley layers (Rousseau et al., 2011; 11 

Antoine et al., 2013), parklands and grasslands soils in the Middle Danube and Ukraine 12 

(żerasimenko and Rousseau, 2008ś Marković et al., 2008ś Schatz et al., 2011ś Kovács et al., 13 

2012), to dry steppic soils in the Lower Danube lowland and around the Black Sea coast 14 

(Buggle et al., 2009). Furthermore, uncertainties in loess age models (see Timar-Gabor et al., 15 

2011; Timar-Gabor and Wintle, 2013 for the Romanian loess) prevent confident correlation of 16 

palaeopedological horizons in the CEE with individual NW European interstadials such as: 17 

Denekamp, Hengelo, Moershoofd or Glinde, or to specific Greenland interstadials. Refining 18 

these correlations represents a significant avenue of future research. 19 

Despite this, attempts have been made to correlate multiple episodes of abrupt climatic 20 

fluctuations recorded in loess grain-size from Moravian Czech Republic and Central Ukrainian 21 

deposits, with cooling in the North Atlantic, partly associated with Heinrich events as well as with 22 

cold phases of Dansgaard-Oeschger cycles recorded in Greenland ice (Antoine et al., 2009, 23 

2013; Rousseau et al., 2011). However, investigations in N Serbia using a similar chronological 24 

framework and level of uncertainty suggest that it is only possible to establish relationships 25 

between grain-size peaks in loess and some Heinrich Events, rather than Greenland stadial 26 
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events, which require greater precision in age-dating (Stevens et al., 2011) and depending on 1 

their magnitude may not show a grain-size response. In any case, Hatté et al. (2013) suggest 2 

that these coarse-grain depositional phases are usually associated with the appearance of dry 3 

and probably cold climatic events. More frequent periods of coarser grain deposition occurred 4 

during the MIS 3 under dominant westerly air circulation (Bokhorst et al., 2011). This greater 5 

deposition of coarser material during the relatively cold early last glacial (loosely 74 to 50 ka) 6 

compared to during the period around the last glacial maximum is likely to be a consequence of 7 

reorganization of atmospheric circulation due to initial ice sheet growth and sediment 8 

mobilization, as well as changes in depositional regime of the Danube fluvial system. By 9 

contrast, during the MIS 2 although ice sheet growth was significantly greater (Wolfarth, 2010), 10 

maximal extension of northern European ice may have partially blocked penetration of the 11 

Atlantic air masses to the east (Dodonov and Baiguzina, 1995). Model results of Van 12 

Huissteden and Pollard (2003) indicate a strong anticyclonal circulation over the Fennoscandian 13 

Ice Sheet around the last glacial maximum. At the same time, the Alpine ice cap played an 14 

important role in the hydrological regime of the Danube River through controlling the 15 

considerable melt-water driven flow of the system, as well as in the production and transport of 16 

source material for later aeolian deposition (Marković et al., 2008). The shift to finer depositional 17 

modes is also likely to have been associated with changes to more dense vegetation cover 18 

during MIS 2 in Serbia (Marković et al., 2005ś Zech et al., 2009, 2013). 19 

The relatively sparse quantitative climatic reconstructions from loess subprovinces north 20 

of the Carpathians and in the middle Danube Basin generally suggest that the Carpathians 21 

significantly modified last glacial climatic gradients. Based on the spatial distribution of ice 22 

wedge casts recorded in last glacial loess, Jary (2009) suggested that in the central and E parts 23 

of Poland and W Ukraine, permafrost developed twice; in the latest part of early last glacial 24 

(potentially equivalent to Heinrich Event (HE) 6) and the late last glacial (approximately from 25 

HE2 to YD). Mean annual air temperature (MAAT) has been estimated as between -2 and -6 °C 26 
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during the older phase (Vandenberghe et al., 1998; Renssen and Vandenberghe, 2003; 1 

Vandenberghe et al., 2004), while the common occurrence and large size of the younger phase 2 

of cryogenic structures indicates continuous areas of permafrost existed in the central and E 3 

parts of Poland and W Ukraine. Assuming this interpretation is correct, the MAAT of the coldest 4 

phase of the late last glacial was most likely 10 to 15 °C lower than present. Similar 5 

environmental conditions are suggested from loess in the N parts of the Ukrainian and Russian 6 

lowlands (Little et al., 2002). However, significantly drier and warmer conditions are indicated by 7 

the general absence of cryo features (Marković et al., 2008) and the relatively high July 8 

palaeotemperatures reconstructed from malacofauna (Sümegi and Krolopp, 2002ś Marković et 9 

al., 2007; Molnár et al., 2010) in the Danubian loess south of the Carpathian Basin, reinforcing 10 

the suggestion of diverse climates found in this region. Cold spells related to Heinrich Events, 11 

the LGM and YD were inferred from a biomarker record from the NW Black Sea region (40-9 12 

ka), but the amplitude of these cold phases was apparently smaller than lake temperature 13 

records in the region or other records from central Europe would suggest (Sanchi et al., 2014). 14 

Dansgaard-Oeschger variability was not detected in this record. 15 

 16 

3.1.2. Speleothem records 17 

The deposition of speleothems in caves of CEE during this time span is discontinuous, 18 

showing intervals (with variable length) of enhanced and decreased (or even ceased) growth. 19 

Such periods are traditionally associated with either warm or cold intervals, respectively. The 20 

cumulative growth frequency record of 62 U/Th-dated speleothems from different karst regions 21 

in NW Romania situated between 450 and 1150 m asl, show more continuous growth during the 22 

past 60 ka yrs (Onac, 1996, 2001; Onac and Lauritzen, 1996; Lauritzen and Onac, 1999) 23 

compared to those at higher latitudes, although the Scandinavian Ice Sheet was only 500 km 24 

away (Ehlers et al., 2011). This confirms that NW Romania was neither covered by alpine 25 

glaciers nor experienced enough severe permafrost conditions to suppress water percolation 26 
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into the caves and hence speleothem growth. Further, the growth of a stalagmite in NW 1 

Romania between 59 and 46 ka indicates a warm/wet period (Tămaş and Causse, 2001). In 2 

contrast, the palaeoclimate records from alpine caves in Central and Western Europe are 3 

sparse over this time period (Spötl et al., 2006) are sparse over this time period because the 4 

presence of ice caps caused a significant temperature drop, prompting permafrost development, 5 

thus preventing the continuous growth of speleothems.  6 

An almost continuous isotope record covering the period between 60 and 8 ka was 7 

documented by Constantin et al. (2007) from a cave in SW Romania (stalagmite PP10 in Poleva 8 

Cave). Its δ18O isotopic values show an increase from 60 to 57 ka when they reach a maximum 9 

of -7.7 ‰. This interval was interpreted as representing warming at the onset of Marine Isotope 10 

Stage 3 (MIS 3). After this event, the oxygen isotopic profile suggests an overall cooling trend 11 

emphasized by the gradual δ18O decrease to -9.0 ‰ at ~42 ka when the stalagmite ceased to 12 

grow for a short period of time. Beyond this hiatus, the δ18O values decrease abruptly to -10.5 13 

‰ indicating an extreme cold phase between 38 and 35 ka. The gradual increase of δ18O 14 

values by ca. 2 ‰ after 38 ka and until 25 ka points toward a moderate warming, which was 15 

followed by rapid cooling at the beginning of the Last Glacial Maximum when the speleothem 16 

ceased to grow until the end of the Younger Dryas (Constantin et al., 2007). The cold interval 17 

recorded in the PP10 stalagmite between 38 and 35 ka was also documented from central 18 

Romania, where archaeological findings in Gura Cheii – Râșnov Cave suggest a cold phase 19 

prior to 40 and until at least 34 ka cal BP (Cârciumaru et al., 2012). 20 

A new study by Dragusin et al. (2014) demonstrates that δ18O record does not show 21 

significant variations (-9.2±0.3 ‰) across the 8.2 ka event in the POM2 stalagmite (Ascunsa 22 

Cave, SW Romania). The low isotopic variability during the 8.2 ka event apparently reflect only 23 

temperature variations, but hydrologic conditions such as relatively more summer vs. winter 24 

rainfall cannot be ruled out. One clear indication that environmental conditions changed is the 25 

growth rate, which increased 8 times during this event compared to the rest of the Holocene. 26 
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 1 

3.2. GI-1e  2 

The beginning of GI-1 in the Greenland Ice Core record is centred at 14,692 b2k and 3 

shows a temperature amplitude increase of 10 °C over just a few years (Blockley et al., 2012b). 4 

A warming trend was noticed throughout CEE about the same time (Table 2); however, the 5 

timing and magnitude of this warming can only be roughly estimated (Fig. 2). For example in 6 

Slovenia, the δ18O on bulk carbonates from lake sediments indicates a sharp increase in 7 

summer temperatures at 14.8 ka cal BP, followed by relatively stable conditions (Andrič et al., 8 

2009). Similarly, a rapid warming phase initiated at ~14.8 ka cal BP is revealed by the δ18O 9 

values of a speleothem from NW Romania (Tămaş et al., 2005) and was also inferred from the 10 

growth intervals of another speleothem in Scărişoara Ice Cave (Onac, 2001). Żor the same 11 

region, Feurdean et al. (2008) used pollen to document a 2 °C increase (from 2 to 4 °C) in 12 

annual temperatures that correlate well with the timing of the GS-2/GI-1e transition in 13 

Greenland, increase generated by winter temperatures only (summer temperatures remained 14 

unchanged). A chironomid-based reconstruction of summer temperatures in the S Romanian 15 

Carpathians indicates an increase of ~2.8 °C in summer air temperature during the same 16 

transition, reaching a maximum of ~8.1 °C (Tóth et al., 2012). Further to the NE during the same 17 

period, July temperatures fluctuated between 12 and 16 °C in central Poland (Ralska-18 

Jasiewiczowa et al., 1998, pollen data), 13-16.5 °C at ĩabieniec bog, central Poland (Płóciennik 19 

et al., 2011, chironomid assemblages) and 15.5-16.5 °C at Lake Okunin, in NW Ukraine 20 

(Dobrowolski et al., 2001, ostracod assemblages). In the eastern Baltic area, July temperatures 21 

below 12 °C (Kirilova et al., 2011 - chironomid data; Veski et al., 2012, pollen data) were 22 

characteristic during the early phase of the Lateglacial (roughly overlapping with GI-1e in 23 

Greenland). 24 

 25 

3.3. G1-1d through GI-1a  26 
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The climatic conditions during this time interval are seen as relatively stable in most of 1 

the records, with only two small-leaved decline in annual temperatures, that could be tentatively 2 

correlated with GI-1d and GI-1b in Greenland (Fig. 2). Based on the δ18O record, Tămaş et al. 3 

(2005) report a decline (~1 ‰ in the δ18O values) in mean annual temperatures, punctuated by 4 

rapid and strongly expressed cooling events that could correlate with GI-1d and GI-1b. 5 

Chironomid-based July temperatures in S Romania (Tóth et al., 2012) and central Poland 6 

(Płóciennik et al., 2011) were relatively stable with values slightly lower than those during żI-1e 7 

(e.g., a weak increase to 8.1-8.6 °C between 13,700 and 11,480 cal BP in Romania). Instead, 8 

pollen-based quantitative reconstructions from NW Romania (Feurdean et al., 2008a) indicate 9 

that between 13,800 and 12,700 cal BP (i.e., during GI-1a-c in Greenland), summer 10 

temperatures rose close to modern values (13 to 17 °C), whereas winter (ca. -6 to -12 °C) and 11 

annual temperatures (0.5 to 6 °C) as well as precipitation (550 to 700 mm) were still lower (Fig. 12 

2), indicating stronger inter-seasonal variability and enhanced continental conditions compared 13 

to the present-day climate. The δ18O based climate reconstruction at Lake Bled (Slovenia) 14 

shows warmer conditions after 13,800 cal BP (Andrič et al., 2009ś Lane et al., 2011), whereas 15 

the chironomid assemblages indicate a lowering of the lake level connected to warmer and drier 16 

environment (Andrič et al., 2009). Another line of evidence for warmer summer temperatures 17 

comes from fire activity, which increased between 13,800 and 12,700 cal BP in the Carpathian 18 

Mountains and lowlands of Hungary and Slovenia (Willis et al., 1997ś Andrič et al., 2009; 19 

Feurdean et al., 2012a). 20 

 21 

3.4. GS-1 22 

A decline in average temperatures occurred throughout the region after 12,800 cal BP, 23 

correlating, within dating uncertainties, with the onset of GS-1 in Greenland. July temperatures 24 

registered a decline of 1 °C in Poland and S Romania (chironomids-basedś Płóciennik et al., 25 

2011; Tóth et al., 2012), and 2 °C in NW Romania (pollen estimate; Feurdean et al., 2008a). 26 
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However, pollen-based estimated winter temperatures drop ~ 9 °C (Feurdean et al., 2008a), 1 

whereas precipitation declines by ca. 250 mm (Fig. 2). Similarly, diatom inferred winter ice cover 2 

in the southern Carpathians suggests that cooling associated to the GS-1 was mainly expressed 3 

during winter (Buczkó et al. 2012). Drier and cooler conditions for the stadial are indicated by 4 

δ13C and δ18O in speleothems from Romania (Tămaş et al., 2005, Romania)ś δ13O (Lane et al., 5 

2011), chironomid assemblages and lake level in a lacustrine sequence from Slovenia (Andrič 6 

et al., 2009), and ostracod assemblages from Poland (Dobrowolski et al., 2001). A drop in 7 

precipitation at the onset of GS-1 is also shown by the decreased fluvial activity from Poland 8 

(Starkel et al., 2013). Although the GS-1 was generally dry, the record from Northern Poland 9 

shows that the onset of lacustrine sedimentation occurred during this period, but was most 10 

intensive during the first half of the GS-1 (Michczyńska et al. 2013). Further, Goslar et al. (1995) 11 

have ascribed rapid fluctuations in δ18O of authigenic carbonates in Lake żoĞcia  Ī (central 12 

Poland) to changes in air temperature, synchronous (within dating uncertainiy) with those seen 13 

in the Greenland ice cores. The rapid (within 170 years) cooling at the onset of the Younger 14 

Dryas was foolowed by an even rapid warming (at 11,440 cal BP), seen as a 2 ‰ increase in 15 

δ18O values within ~70 years. 16 

Summarizing the records above, it appears that the decline in temperatures between 17 

12,800 and 11,700 cal BP (corresponding to GS-1) in CEE was more pronounced for winter 18 

than for summer, which, along with evidence for a marked drop in precipitation, indicates a 19 

progression transition towards more continental, arid or seasonally variable climatic conditions 20 

(Table 2). 21 

 22 

3.5. Early Holocene 23 

Independent palaeoclimatological evidence from CEE suggests that transition to 24 

markedly warmer and drier conditions (summers) occurred at 40-50 °N approximately between 25 

11.7 and 8 ka cal BP. In the northern part of Central Europe (above 47 °N), the temperature 26 
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increase was significantly slower and with smaller magnitudes compared to more southern 1 

locations (Table 2). Higher (by 1 - 1.5 ºC) than today summer temperatures have been both 2 

reconstructed (Seppä and Poska, 2004; Feurdean et al., 2008b; Seppä et al., 2009) and 3 

modelled (Renssen et al., 2009) for the region during the Early Holocene. Higher summer 4 

temperature and lower moisture availability is also demonstrated by the increase in fire activity 5 

over large areas and elevations of Cźź (Andrič et al., 2008ś 2009ś Magyari et al., 2010ś 6 

Feurdean et al., 2012; 2013; Connor et al., 2013; Hájková et al., 2013). Climate simulation of 7 

the early Holocene for the lowlands of NW Romania (Transylvania) shows, higher summer 8 

temperatures (by about 4 °C) and lower precipitation values (by about ~33%) but only 9 

moderately higher annual temperatures compared to present-day values (Feurdean et al., 10 

2013). In the southern part of the region (Poleva Cave in SW Romania), the steady increase of 11 

the δ18O values (up to 2‰) in speleothems PP 9 and 10 indicates a gradual warming trend from 12 

~11.5 ka, continuing well into the Holocene (Constantin et al., 2007), with similar warming 13 

trends seen west (Slovenia, Andrič et al, 2009) and north (Romania, Tămaş et al., 2005) of this 14 

site, while more northern regions experienced a less pronounced warming. There is also 15 

evidence for a decrease in peat surface moisture and lake levels in NW and E Romania at the 16 

beginning of the Holocene (Magyari et al., 2009; Buzcko et al., 2012; Feurdean et al., 2013) and 17 

in northeastern Polish lakes (żałka and Tobolski, 2013ś żałka et al., 2014ś żałka and Sznel, 18 

2013), while rivers in NW Romania changed their behaviour from braided to meandering, 19 

indicating lower discharge and related lower amounts of precipitation (Perşoiu, 2010). 20 

Simultaneously, kettle hole peatland in N Poland reveals a fen-bog transition, suggesting a 21 

decrease in the ground water table, likely related to the complete disappearance of permafrost 22 

(Lamentowicz et al., 2008ś Słowiński, 2010). The Lake żoĞciąĪ record, a lacustrine sequence 23 

with the highest temporal resolution in the region (1-4 yr/cm), shows an overall warming and 24 

drying trend at the Lateglacial/Holocene transition, but with three sub-phases: a phase of dry 25 

winter conditions (11.55-11.52 cal BP); a second phase with warm, moist summer conditions 26 



 18 

(11.52-11.46 cal BP) and a third phase with dry summers (11.46-11.39 cal BP), which caused a 1 

lowering of the lake level. In central Poland, only a small (if any) summer temperature increase 2 

is observed in chironomid assemblages during the Early Holocene, compared to the late GS-1 3 

(Płóciennik et al., 2011). 4 

 5 

4. Biotic response  6 

4.1. Vegetation response to climatic oscillations from 60-20 ka  7 

Unlike in S Europe (Fletcher et al., 2010), continuous last glacial lake or mire sediments 8 

are very rare and the chronology uncertain in Cźź (Ńercelj, 1966). Nonetheless, several shorter 9 

middle last glacial (60-27 ka) loess and solifluction clay sediments have been studied for pollen 10 

and plant macrofossils in this region. This, together with the numerous macrocharcoal studies 11 

from archaeological sites (ĝrodoń, 1968, 1987ś Willis and van Andel, 2004ś Jankovská and 12 

Pokorný, 2008; Komar et al., 2009; Nádor et al., 2011), allow us a general characterisation of 13 

the MIS 3 and 2 vegetation in CEE, and a preliminary interpretation of region-wide vegetation 14 

responses to rapid climate change events.  15 

In the western Carpathians, pollen and plant macrofossil analyses on peat deposits of 16 

MIS 3 provide evidence for a dense taiga forest cover until the onset of the last glacial maximum 17 

(Jankovská et al., 2002; Jankovská and Pokorný, 2008ś Kuneń et al., 2008). The record of 18 

Ńafárka (Żig. 3) starts at ~52 ka, ends at around 16 ka cal BP and shows a forest succession 19 

from Larix decidua to dense Picea abies taiga. Both Picea abies and Larix decidua macrofossils 20 

were abundant at the site and Jankovská et al. (2002) inferred the local presence of several 21 

other mainly boreal trees like Betula, Alnus, Pinus cembra and P. sylvestris. Pollen of temperate 22 

deciduous trees (Corylus, Ulmus, Quercus, Tilia, Fagus and Carpinus) was also recorded and 23 

the regional presence of these tree taxa was inferred in the Western Carpathians.  24 

Solifluction clay deposits in the northern piedmont zone of the Carpathians (e.g., Dobra, 25 

Sowliny) indicate that members of herb communities, typical alpine grasslands (Callianthemum 26 
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coriandrifolium, Dianthus speciosus, Helianthemum alpestre, Leontodon pseudotaraxaci, Linum 1 

extraaxillare, Minuartia sedoides, M. verna, Polygonum viviparum, Potentilla aurea, Selaginella 2 

selaginoides, Soldanella carpathica), snowbed and scree communities (Arabis alpina, 3 

Doronicum stiriacum, Cerastium lapponicum, Ranunculus montanus) were found at altitudes of 4 

300-640 m between 40 and 29 ka cal BP (MIS 3ś ĝrodoń 1987). Lowland steppe plants were 5 

also present (e.g., Alyssum, Artemisia, Aster alpinus, Potentilla heptaphylla, Chenopodiaceae, 6 

Festuca, Filipendula, Helianthemum). Macrofossil evidence shows that these were 7 

accompanied by cold temperate and boreal trees and tundra dwarf shrubs: Alnus incana, Betula 8 

nana, B. pubescens, Larix, Picea excelsa, Pinus cembra, Pinus sylvestris, Populus and Salix, 9 

altogether forming a non-analogue steppe-tundra vegetation in association with boreal forest 10 

communities. The woody component of these communities was very similar to the Ńafárka flora 11 

suggesting both, open and closed boreal forests in the Western Carpathians. Loess pollen 12 

studies in S Poland and S Ukraine furthermore demonstrate that lowland areas north and east 13 

of the Carpathian Mountains hosted a vegetation mosaic of steppe tundra and boreal parkland 14 

forests, dominated by Pinus sylvestris, Pinus cembra, Betula, Larix, Picea abies, Abies alba and 15 

various shrubs (Komar et al., 2009). Open woodlands reached well into middle Poland during 16 

the MIS 3 (Mamakowa and Latałowa, 2003ś Szczepanek et al., 2007).  17 

Vegetation in the lowland and hill zone W, E and S of the Carpathian Mountains over the 18 

same period is mainly recorded by macrocharcoal and pollen studies of archaeological sites or 19 

loess exposures (e.g., Urban, 1984; Svoboda and Svobodová, 1985; Opravil, 1994; Culiberg 20 

and Ńercelj, 1995ś Haesaerts et al., 1996, 2010ś Damblon, 1997ś Damblon and Haesaerts, 21 

1997; Rudner and Sümegi 2001; Musil, 2003). These studies demonstrate that during the MIS 3 22 

a wide spectrum of tree species e.g., Abies alba, Alnus, Betula nana, B. pubescens, B. pendula, 23 

Carpinus betulus, Corylus, Fagus sylvatica, Fraxinus, Juniperus communis, Larix, Pinus 24 

sylvestris, P. mugo, P. cembra, Picea abies, P. excelsa, Populus, Quercus, Salix, Sorbus 25 

aucuparia, Ulmus were present in the lowland and hill zones of E Austria, the Czech Republic 26 
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(Moravia, Bohemia), Slovakia, Hungary, Romania and Slovenia. The most diverse woody 1 

assemblages were dated to between 35 – 30 ka cal BP (Willis and van Andel, 2004), these also 2 

include the oceanic Taxus baccata that likely grew in association with Fagus sylvatica in 3 

Moravia (Mason et al., 1994). Notable is that Moravia in the Czech Republic showed 4 

exceptional tree diversity with several temperate deciduous tree taxa. In comparison, the 5 

lowlands of the Carpathian Basin were dominated by boreal trees such as Picea abies, Larix, 6 

Betula and Pinus sylvestris (Rudner and Sümegi, 2001), whereas temperate deciduous tree 7 

macrocharcoal fragments (Carpinus betulus) are rare in these sequences, suggesting their 8 

scarcity in the loess accumulation zone. A greater extent of forest cover (Pinus-dominated) 9 

during the early part of MIS 3 (55-38 ka) compared to the period after 38 ka was very recently 10 

identified in a pollen record from lowlands of Transylvania (Feurdean et al., sub). This difference 11 

in the two areas may potentially be explained by the more varied topography of the Czech 12 

Republic and its less continental climate. The response of vegetation to climate change during 13 

the MIS 3 has been studied in the eastern Hungarian Plain by Nádor et al. (2011), who found 14 

Pinus, Picea and Ulmus dominance between 40–30 ka, along with sporadic regional occurrence 15 

of Tilia, Carpinus betulus, Fagus sylvatica, Quercus, and Corylus avellana, but no increases in 16 

arboreal pollen between 40 and 30 ka. This pollen record complements the macrocharcoal 17 

record in that it suggests the dominance of mixed deciduous-coniferous forests.  18 

Moving to the southeast, a mid to late last glacial (MIS 3) vegetation record from 19 

Straldzha Mire in the Thracian Plain, Bulgaria shows the dominance of cold steppe vegetation 20 

with herbs until MIS 2 (Artemisia, Poaceae, Polygonum aviculare type, Chenopodiaceae) 21 

(Connor et al., 2013). Notably, the pollen record shows no sign of millennial-scale vegetation 22 

fluctuation. On the basis of the pollen data, Connor et al. (2013) inferred the small-scale 23 

presence of xeric woodland with Quercus, Juniperus and Rosaceae trees/shrubs in the 24 

Artemisia-steppe dominated landscape during the period. Comparable vegetation likely 25 

prevailed in the south-easternmost part of the Carpathian region, in Serbia (Marković et al., 26 
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2007, 2008; Zech et al., 2013). In Slovenia, the middle last glacial-associated pollen spectra 1 

from Ljubljana Moor show fluctuations between mixed coniferous-deciduous woodland 2 

comprising Abies, Betula, Alnus, Corylus, Quercus, Tilia, Ulmus, Acer, Salix and Juglans and 3 

periods of predominantly steppe-dominated landscape with Pinus and Picea (Ńercelj, 1966). 4 

The MIS 3 - 2 transitional sections of the pollen records of the Carpathians and lowlands 5 

in E Hungary show: i) a predominance of needle-leaved and cold temperate tree vegetation in 6 

the W Carpathians (at Jablunka and Safarka); ii) increased representation of steppe herbs in the 7 

more continental E Carpathians (Lake St Anne) and lowlands of W Romania (Lake Stiucii); and 8 

iii) recurring fluctuations in AP values in the Carpathians Basin (Fehér Lake, Nagymohos; 9 

Rudner and Sümegi 2001; Sümegi et al., 2013; Fig. 3). The last glacial maximum part of these 10 

pollen records suggests that some woody cover was maintained in these regions during the 11 

maximum northern hemisphere ice extent (between 26.5 and 19 ka cal BP). This picture is 12 

similar to the Thracian Plain (42° N) vegetation response in that it shows no large amplitude 13 

vegetation change during the last glacial maximum, although cold steppe dominates at this 14 

more southerly latitude, pointing to increased continentality towards the south (Connor et al., 15 

2013). Temperate deciduous tree pollen is recorded in the Carpathian area, but macrofossils or 16 

charcoal of these taxa have not been reported from the last glacial maximum. 17 

 18 

4.2. Spatial vegetation response to the climate conditions at the end of GS-2 (20-14.7 ka 19 

cal BP).  20 

A few of the selected high-resolution pollen records in CEE stretch back to the end of 21 

GS-2 (20-14.7 ka cal BP). Arranged on a S to N transect, these pollen records reveal three 22 

features of the vegetation during this period: i) that the vegetation assemblages were marked by 23 

a high proportion of non-arboreal pollen, principally Artemisia, Chenopodiaceae and Poaceae; 24 

ii) there is an increase in steppe and grasslands along a north (20%) to south (90%) transect, 25 

with sites located south of 45 °N (Rila Mountains and the Thracian Plain in Bulgaria) showing 26 
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the strongest continental conditions; iii) the persistence of open woodlands /parkland forest in 1 

CEE (Figs. 4, 5). There is some spatial distinctiveness in the tree species composition and 2 

proportion in CEE: i) regions north of 55 °N and east of 20 °E (Latvia, Lithuania, Belarus) 3 

contain more abundant pioneer species of the tundra and boreal zone (Betula nana, Betula, 4 

Pinus); ii) in the Carpathian region (55 °N and 15-25 °E Czech Republic, Slovakia, Hungary, 5 

Romania), Pinus was abundant with a comparatively lower proportion of cold deciduous taxa 6 

(Betula, Alnus, Salix); iii) in Slovenia (46 °N) Pinus dominated the record entirely; iv) in the 7 

Balkans there is also a high proportion of needle-leaved taxa (Figs. 4, 5). Pollen of temperate 8 

deciduous taxa (Quercus, Ulmus, Tilia, Carpinus and Fagus) was also recorded in Hungary, 9 

Romania and Slovenia (Żigs. 4, 5ś Żărcaş and TanĠău, 2012). Plant macrofossil remains of trees 10 

are virtually absent in all these sequences. However, woody plant macrofossils of conifers dated 11 

to the end of GS-2 are known from loess deposits (see Willis and Andel, 2004), and from fluvial 12 

sediments in the lowlands of Transylvania (Lascu, 2003). Pollen records covering the end part 13 

of GS-2 reinforce the idea that most of the CEE landscapes supported open forest principally 14 

needle-leaved and cold deciduous trees, and a small population of temperate deciduous trees 15 

during the late GS-2, whereas more compact temperate deciduous populations were confined to 16 

latitudes south of 46 °N. Although pollen of long-distance transported or reworked origin could 17 

have increased the proportion of arboreal taxa during the glacial period, the prevalence of harsh 18 

climatic conditions for growth and reproduction could have reduced pollen production.  19 

 20 

4.3 Spatial vegetation response during GI-1e  21 

Fossil pollen and plant macrofossil sequences from the continental records of CEE 22 

indicate that there was a large-scale reduction in dry steppe vegetation and a northern 23 

latitudinal expansion of boreal forest vegetation around 14.7 ka cal BP, that correlate 24 

approximately to the onset of GI-1 e in Greenland. However, the CEE pollen records also show 25 

that the magnitude of vegetational response was not uniform; i) regions from Baltic area (north 26 
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of 55 °N and 25 °E), previously covered or closer to the ice sheets and permafrost (Estonia, 1 

Latvia, Lithuania) show abundant pollen of pioneer taxa such as Betula nana (Amon et al., 2 

2010; Amon et al., 2012; Veski et al., 2012), while more eastern records from Belarus (south of 3 

54 °N and east of 24 °E) contain a higher proportion of pollen of Pinus (up to 90% Zernitskaya, 4 

2005; Makhnach et al., 2009). In addition, plant macrofossil records from the Baltic region 5 

suggest that a tundra biome (Betula nana) with patchy occurrences of tree birch including 6 

Betula sect. Albae (Stančikaitė et al., 2008) occupied the newly deglaciated areas, while boreal 7 

tree taxa (Betula and Pinus) expanded from 13.4 ka cal BP in Estonia (Amon et al., 2012), at ca. 8 

14.4 ka cal BP in Latvia and Estonia (Heikkila et al., 2009; Veski et al., 2012), and at ~ 14 ka cal 9 

BP in south-eastern Lithuania (Stančikaitė et al., 2008) and the northern part of Poland (żałka 10 

et al., 2013). 11 

In the central part of CEE, including the Carpathians region (46-50 °N; 15-22 °E), there 12 

was a considerable increase in biomass and an expansion of boreal forests around 14.7 ka cal 13 

BP (Figs. 4, 5). Nevertheless, significant elevational distinctiveness in the vegetation existed in 14 

this region. For example, pollen records from sites in the lowlands (Kis Mohos in Hungary, Avrig 15 

in Romania) indicate the presence of more fragmented or more open forests of needle-leaved 16 

(Larix, Pinus), and cold deciduous taxa (Betula, Alnus and Salix); whilst sites in the uplands 17 

(Steregoiu, Romania, Lapysky, Slovakia) contained more extensive boreal forests (Figs. 4, 5; 18 

Willis et al., 1998; Wohlfarth et al., 2001ś Björkman et al., 2002ś Pokorný, 2002ś Kuneń et al., 19 

2008ś Pokorný et al., 2010ś TanĠău et al., 2006ś 2014ś Żeurdean et al., 2007ś 2012b). Plant 20 

macrofossil records from this area support the inference of the local abundance of Pinus 21 

sylvestris, Pinus cembra, P. mugo, Betula and Salix in Romania already at 14,500 ka cal BP 22 

(Wohlfarth et al., 2001; Feurdean et al., 2012b) and around 13.2 ka cal BP in the Czech 23 

Republic (Jankovská, 1984). Further south (south of 46 °N) in Slovenia and Bulgaria, GI-1e is 24 

marked by a greater diversity of tree taxa that include needle-leaved taxa such as Larix decidua 25 

(only dominant in Slovenia), Pinus diploxylon-type, P. peuce, Juniperus), xerophytic shrubs 26 
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(Ephedra distachya, E. fragilis-type), cold deciduous (Betula, Salix, Alnus), as well as temperate 1 

deciduous taxa (Quercus, Corylus, Acer) (Tonkov et al., 2006ś Andrič et al., 2009ś Connor et al., 2 

2013). The latter group is also locally documented by sub-fossil wood remains of Quercus, 3 

Ulmus and Rosaceae (Magyari et al., 2008). The lowlands of SE Bulgaria, close to the Black 4 

Sea, however, remained predominantly covered by steppe vegetation (Magyari et al., 2008, 5 

Connor et al., 2013).  6 

Summarizing our pollen and plant macrofossil data-sets for the onset of the Lateglacial, 7 

there is evidence: i) for a northward expansion of boreal forest into CEE; ii) that extensive boreal 8 

forests (needle-leaved) as well as small areas of temperate deciduous forests developed in 9 

latitudes stretching between 45 and 55 °N; iii) that regions south of 45 °N also included 10 

fragmented temperate deciduous forests.  11 

 12 

4.4 Spatial vegetation response during GI 1a-c 13 

High-resolution pollen and plant macrofossil records from CEE indicate a further 14 

northerly development of boreal forests containing Betula sect. Albae, Betula humilis, Pinus 15 

sylvestris, Populus tremula, Picea abies, Juniperus communis and Alnus into the Baltic region 16 

between 13.8 and 12.7 ka cal BP, which may correspond to the GI-1a-c warming in Greenland 17 

(Stančikaitė et al., 2008, 2009ś Heikilla et al., 2009ś Amon et al., 2010ś 2012ś żaidamavičius et 18 

al., 2011; Veski et al., 2012), whereas the expansion of Picea abies in Belarus the was dated ca 19 

13.2 ka cal. BP (Zernitskaya et al., 2005; Makhnach et al., 2009). The northern treeline became 20 

located in central Estonia at ~58.5°N (Figs. 4, 5). In the Carpathian region (45-50 °N), forest 21 

assemblages changed from those dominated by Pinus (Pinus spp., P. sylvestris, P. cembra, P. 22 

mugo) and Betula to mixed Pinus, Picea abies and Betula (B. pubescens, B. pendula). 23 

Generally, there is an increased proportion and diversity of cold deciduous taxa (Salix, 24 

Sambucus, Alnus, Populus tremula, Prunus padus) but also of temperate tree species such as 25 

Ulmus, Quercus, Tilia, Fraxinus excelsior and Corylus avellana at most sites in this region (Figs. 26 
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4, 5). The plant macro-remains support the inference of more extensive, dense, and diverse 1 

forest cover during this time interval (Wohlfarth et al., 2001; Pokorný et al., 2002; Ampel, 2004; 2 

Kuneń et al., 2008ś Latalowa et al., 2006ś Żeurdean et al., 2012bś Magyari et al., 2012).  3 

Sites located south of 46 °N (Slovenia) contained almost pure needle-leaved forests 4 

(90%), with only minor contributions of cold deciduous (Alnus, Betula, Salix) and warm 5 

temperate deciduous taxa (Quercus, Tilia, Fraxinus excelsior, Acer, Corylus avellana) (Figs. 4, 6 

5). Sites from Bulgaria (Rila Mountains; Tonkov et al., 2008, 2011), on the other hand, 7 

witnessed only modest forest expansion, composed of a mixture of needle-leaved, cold 8 

deciduous (primarily at higher elevations) and most notably of warm temperate deciduous taxa 9 

(mid-low elevations), whereas no forest expansion is visible in the Thracian Plain (Figs. 4, 5).  10 

The response of vegetation to the GI-1a-c warming can be summarized as exhibiting: i) 11 

the greatest spatial expansion of forest cover, forest density, and diversity during the 12 

Lateglacial; ii) a more consistent spread of warmth-demanding temperate tree taxa; iii) the 13 

expansion of more moisture-demanding trees (Picea abies) in the Carpathians Mountains; iv) 14 

limited forest development in lowlands of SE Balkans (Figs. 4, 5).  15 

 16 

4.5 Spatial vegetation response during GS-1  17 

Significant, region-wide changes in terrestrial vegetation composition occurred in CEE 18 

around 12,700 cal yr BP, which may correlate with the onset of cold GS-1 event in Greenland. 19 

These largely included i) a decrease in plant biomass; ii) fragmentation of the boreal forest and 20 

a more southerly displacement of temperate forest; and iii) a re-expansion of steppe and 21 

grassland vegetation (Figs. 4, 5). Superimposed on this large-scale pattern of vegetation 22 

changes during GS-1 there is considerable north to south distinctiveness in the vegetation 23 

composition. In the north-eastern Baltic area (N of 55 N and 25E) there was a stronger re-24 

expansion of tundra communities (Betula nana, Salix polaris), whereas trees disappeared 25 

(Amon et al., 2012); ii) in the southern Baltic regions (Latvia, Lithuania, N Poland), small 26 
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populations of boreal tree species (Pinus, Betula, Picea) survived the cold GS-1 (Stančikaitė et 1 

al., 2008, 2009ś żaidamavičius et al., 2011ś Veski et al., 2012), iii) in Belarus, a tundra-forest 2 

(Picea) landscape developed N of 54 °N and E of 24 °E, and boreal forest S of 54 °N 3 

(Zernitskaya, 2008; Makhnach et al., 2009). Sites in the Carpathian region (45-50 °N) show 4 

fragmentation of the boreal forests and reduced diversity, but also a replacement of large tracts 5 

of dry-adapted needle-leaved taxa (Pinus and Larix) and Betula by Picea abies Alnus, Ulmus, 6 

Quercus (Żărcaş et al., 1999ś TanĠău et al., 2006ś Żeurdean et al., 2007). In Slovenia, a smaller-7 

scale contraction in the forest cover occurred with needle-leaved taxa (Pinus and Larix) 8 

remaining the dominant vegetation type but also preserving temperate deciduous forest 9 

composed of Quercus, Corylus, Tilia, Ulmus (Andric et al., 2009; Figs. 4, 5). Pollen sequences 10 

at sites further south in the Balkans show either a contraction of forest cover (in the Rila 11 

Mountains) that consisted of Pinus, Betula and Quercus and a corresponding marked expansion 12 

of xeric herb communities, grasses and other cold-resistant heliophilous herbs (Tonkov et al., 13 

2013), or the persistence (in the lowlands) of xeric steppe, semi-desert vegetation, in the area 14 

near Black Sea (Connor et al., 2013).  15 

Overall, apart of the general trend of contraction of the forest cover over the CEE during 16 

GS-1, there is also an increase in the steppe communities and therefore enhanced 17 

continentallity along a N to S latitudinal transect in this region. 18 

 19 

4.6. Other short-term fluctuations  20 

High-resolution pollen records from CEE also document smaller vegetation changes 21 

occurring around 13.9 ka cal BP (GI1-d), 13.6 ka (GI-c2) and 13.2 ka cal BP (GI-1b) (Fig. 5). 22 

This indicates that short-lived climate fluctuations have also produced some response in the 23 

vegetation composition in continental areas (TanĠău et al., 2006ś 2014ś Żeurdean et al., 2007, 24 

2012ś Stančikaitė et al., 2008ś Ammon et al., 2012ś Magyari et al., 2012ś Veski et al., 2012).  25 

 26 
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4.7. Onset of the Holocene and early Holocene (11.7-8 ka cal BP) 1 

Pollen and plant macrofossil records indicate that, from about 11.7 ka, there was a 2 

significant increase in biomass production, a retraction of cold- and dry-adapted taxa and a 3 

general northward advance of many tree species into areas that were covered by permafrost 4 

during the GS-1 (Figs. 4, 5). The species range shift was not uniform over the whole CEE. In the 5 

Baltic region (northern Poland, Lithuania, Belarus, Latvia and Estonia), both pollen and plant 6 

macrofossil data suggest the establishment of Pinus–Betula forest, enriched by Picea at ca. 7 

11.7 ka cal BP (Zernitskaya et al., 2005; Heikkilä et al., 2009; Veski et al., 2012), but temperate 8 

deciduous forests (Ulmus, Quercus, Fraxinus) were largely absent from this region until about 9 

10.5-10 ka cal BP (Stančikaitė et al., 2008, 2009ś żaidamavičius et al., 2011ś żryguc et al., 10 

2014; Figs. 4, 5). At low and middle elevations in the Carpathian region (including Hungary, 11 

Czech Republic, Slovakia), there was an initial increase in open woodlands of cold deciduous 12 

temperate taxa (Alnus, Betula, Salix) at around 11.7 ka cal BP. This was then followed rapidly 13 

(11.3 ka cal BP) by a large-scale increase in temperate forests dominated by Ulmus, Quercus, 14 

Tilia, Acer, Fraxinus excelsior, Corylus avellana, though the forests preserved a more open 15 

character in lowlands (Willis et al., 1998ś TanĠău et al., 2006, 2009ś Magyari et al., 2010ś 16 

Feurdean et al., 2012; 2013). This forest composition was preserved at least until 8 ka and 17 

represented a larger extension of temperate forest than today. Plant macrofossil analysis at 18 

these sites also indicates that Larix was a significant component of the very early Holocene 19 

forests likely as a response to continental conditions (Feurdean et al., 2007; Magyari et al., 20 

2012b). A rapid expansion of Pinus and temperate deciduous taxa was documented in Slovenia 21 

(Andrič et al. 2008, 2009). In the Balkans (Rila Mts., Bulgaria) the rapid climate warming 22 

initiated a widespread of pioneer Betula forests with P. sylvestris/mugo, P. peuce for the time 23 

interval 11.6-9.8 ka at mid-higher elevations altitudes, which shaped the tree-line for nearly 24 

4000 years after the onset of the Holocene. The fossil pollen record also revealed the beginning 25 

of a wide distribution of mixed Quercus forests with Tilia, Ulmus, Fraxinus excelsior, Acer below 26 
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the birch zone. These forests reached their maximal distribution ca. 10000-9800 cal. ВР 1 

(Tonkov et al., 2013). Lowlands in SE Bulgaria recorded a delayed forest expansion due to the 2 

prevalence of drier climatic conditions (Connor et al., 2013).  3 

 4 

5. Key findings 5 

i) Analysis of loess deposits suggests more pronounced phases of coarse-grain 6 

deposition, associated with drier and probably colder climate, during the MIS 3 than during the 7 

last glacial maximum. This is likely to be a consequence of changes in general atmospheric 8 

circulation due to initial ice sheet growth, as well as changes in depositional regime of the 9 

Danube fluvial system. During the MIS 2, enlarged northern European ice masses may have 10 

partially blocked penetration of the Atlantic air to the east, with strong anticyclonal circulation 11 

over the Fennoscandian Ice Sheet during the peak of the last glacial phase. The inference of 12 

warmer condition during MIS 3 is also supported by a more continuous growth of Romanian 13 

speleothems through this period.  14 

ii) Loess-covered lowland areas in Serbia, SE Hungary, Romania and Bulgaria that are 15 

characterised by warm/dry macroclimate today were dominated during the MIS 3 by warm 16 

steppe vegetation, often with Artemisia. By contrast, similar loess covered areas but with more 17 

humid climatic conditions supported predominant parkland boreal forests accompanied by some 18 

temperate deciduous trees (Picea abies, Pinus sylvestris, P. cembra, Larix decidua, Ulmus, 19 

Salix and Alnus). Despite the high-resolution studies of dry loess steppe areas south of 45 °N, 20 

millennial-scale vegetation fluctuations have not been recognized. This suggests that 21 

temperature and precipitation fluctuations during the MIS-3 were of relatively low magnitude, 22 

failing to trigger major shifts in biomes or that the changes were of significant magnitude but did 23 

not cross critical thresholds for biome shift. On the other hand, a few available records from 24 

lowlands and moutaines areas between 45 and 48 °N suggest recurring fluctuations between 25 

boreal forest-steppe and steppe vegetation. This suggests that millennial-scale climatic 26 
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oscillations drove a stronger vegetation response in these more humid macroclimate areas, 1 

interstadials were characterised by boreal and temperate tree advances lasting for 200-300 2 

years.  3 

iii) Most records from the continental CEE cover the period 14.7 and 8 ka cal BP and 4 

show that this region experienced climate changes more or less synchronous (within centennial-5 

scale age errors) with those around the North Atlantic region. However, the magnitude of these 6 

climatic shifts appears to be less dramatic in the continental part of Europe than in more oceanic 7 

Western Europe. Thus, whereas the onset of GI-1e in Greenland was marked by a 10°C 8 

increase in annual temperature, the corresponding warming in CEE is only of about 2.8 – 3°C. 9 

Similarly, the cooling associated with the onset of GS-1 in Greenland was of about 1-2 °C for 10 

MAT. The climate records from CEE show that temperature changes were more pronounced in 11 

winter than in summer during both cold and warm periods of the Lateglacial indicating enhanced 12 

seasonality. Precipitation dropped markedly at the onset of cold periods, suggesting increased 13 

continentality. In contrast, early Holocene seasonality was driven by high summer insolation and 14 

therefore increased summer temperature.  15 

iv) The consequence of lower amplitude cooling in CEE compared to Western Europe 16 

implies that vegetation was less drastically impacted and allowed for the persistence of open 17 

boreal forests at latitudes below 55 °N even during the coldest intervals of the last glacial. 18 

However, higher resolution pollen records covering the Lateglacial clearly indicate that 19 

vegetation responded sensitively to these climate shifts, with the most pronounced changes 20 

visible at 14.7 (GI-1e), 13.8 (GI-1c-a), 12.7 (GS-1), and at 11.7 ka cal BP (GS-1/Holocene 21 

transition). This further underscores the impact of climate change on vegetation across a broad 22 

region (Giesecke et al., 2011). 23 

v) Differences exist in the temporal response of vegetation to the climate shifts 24 

compared to the actual climate shifts in the Greenland ice core record. Thus, while vegetation 25 

responded to GI-1e warming, the magnitude of this vegetation response was smaller compared 26 
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to the magnitude of temperature increase suggested by the Greenland oxygen isotope record at 1 

14.7 ka cal BP. Conversely, a strong vegetation shift is visible in most pollen records during 2 

G1c-a, at a time when the NGRIP record indicates a more modest temperature increase.  3 

vi) On a spatial scale, the records from CEE show that the magnitude of the vegetational 4 

response follows a S-N latitudinal and elevation trend. Vegetation at more northern locations 5 

appears more strongly impacted by climate changes between 8 and 60 ka, whereas the more 6 

southern locations appear more stable. There is also a marked N to S increase in steppe 7 

communities, suggesting an increase in continentality following a N-S latitudinal transect. From 8 

the these pollen records it is apparent that besides the influences of the North Atlantic, other 9 

centers of climatic variability (the Mediterranean Sea, NW Russia and the Black Sea) have 10 

created a complex climatic region and vegetation pattern. 11 

 12 

6. Suggestions for the future 13 

The key points above not only highlight the main findings, but also the major gaps and 14 

problems in palaeoclimatic data from CEE for the period covering 60-8 ka, as well as a selection 15 

of future directions for improvement. Numerous records have poor chronological control, mainly 16 

because of too few dates and use of bulk sediment. There is also a subjective tendency towards 17 

wiggle-matching and tuning of time scales, often falsely synchronising the forcing (climate) and 18 

response (vegetation). Searching for (crypto) tephra layers such as the Campanian Ignimbrite 19 

(39,280 ±110 cal yr BP), Vedde Ash (12,007-12,235 b2K cal yr BP), and Laacher See tephra 20 

(12,880±40 varves yr BP), would better constrain chronologies and allow for correct 21 

identification of lags in the response of regional climate systems and vegetation to both external 22 

and internal forcings. In this respect, an important step has been achieved by the identification 23 

of the Laacher See Tephra in the Trzechowskie palaeolake (Wulf et al., 2013) and Węgliny 24 

(Housley et al., 2013). These advances have allowed a precise correlation between pollen and 25 

lithological records in Western and Eastern Europe, showing that the abrupt environmental 26 
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changes and associated impacts on vegetation were synchronous in these regions at the B-1 

A/YD transition. In addition, the use of statistically-secure age-models could improve 2 

chronologies. 3 

Quantitative climate reconstructions in the CEE are extremely rare. Therefore, a major 4 

future research direction is the construction of local calibration sets and transfer functions to 5 

improve the existing, insufficiently quantified biotically-derived paleoclimate reconstructions. The 6 

different present-day climate to that of Western and Northern Europe, where most of the 7 

calibration sets used for CEE originate, adds a strong bias to the quantitative reconstructions. 8 

Except for pollen, there is no single proxy that is investigated in a similar manner in the whole 9 

area making proxy inter-comparison difficult. This calls for a coordinated effort to identify sites 10 

from various climatic settings that need to be investigated in order to obtain a coherent picture 11 

of patterns in past climate changes.  12 

While the application of new proxies or methods could provide a much clearer image of 13 

the region‘s past climate, we believe that a systematic use of the well established, classical 14 

proxies (i.e., accurately dated and quantified) could also result in an improved understanding of 15 

the past climate and environmental changes in the area. 16 

 17 
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Figures caption 21 

Figure 1. Location of sites discussed in the text. Numbers refer to sites listed in Table 1: 1 – 22 

Lake Bled (SI), 2 – ĩabieniec Bog (PL), 3 – Brazi Lake (RO), 4 – V11 Cave (RO), 5 – Lake 23 

Sergeyeyskoe (BY), 6 – Lake Ginkunai (LT), 7 – Jezioro Linówek (PL), 8 – Kobylnica Wołoska 24 

(PL), 9 – Lake Kurjanovas (LV), 10 - Lake Nakri (EE), 11 - Labský důl (CZ), 12 – Ńvarcenberk 25 

(CZ), 13 – Kis Mohos (HU), 14 – Steregoiu and Preluca ğiganului (RO), 15 - Avrig (RO), 16 – 26 



 50 

Straldzha (BG), 17 – Trilistnika (BG), whereas small letters refer to loess sites: a - Dolni 1 

Vestonice (Antoine et al., 2013); b – Katymar (Bokhorst et al., 2011); c – Tokaj (Schatz et al., 2 

2011); d – Zmajevac (Banak et al., 2013); e – Petrovaradin (Marković et al., 2005); f – Irig 3 

(Marković et al., 2007); g – Mońorin (Bokhorst et al., 2011); h – Titel (Bokhorst et al., 2009); i – 4 

Surduk (Antoine et al., 2009); j – Crvenka (Stevens et al., 2011); k – Tyszowice (Jary and 5 

Ciszek, 2011); l – Dubavka (Bokhorst et al., 2011); m – Radymo (Bokhorst et al., 2011); n – 6 

Likkvin (Rutter et al., 2003); o – Korostylievo (Rutter et al., 2003); p - S. Bezradychy (Bokhorst 7 

et al., 2011); q – Sazhijka (Bokhorst et al., 2011); r – Pyroove (Bokhorst et al., 2011); s – Stayky 8 

(Kadereit and Wagner, 2014); t – Korshov (Jary and Ciszek, 2011). Golobovo (loess site in 9 

Russia, not shown). 10 

 11 

Figure 2. Selected palaeoclimate reconstructions from CEE between 15 and 8 ka cal BP plotted 12 

against the NGRIP δ18O curve (Rasmussen et al., 2006) and INTIMATź event stratigraphy of 13 

Blockley et al. (2012b). 14 

 15 

Figure 3. Vegetation changes during mid to late last glacial (MIS 3, 2) in selected terrestrial 16 

pollen records from CEE. The taxa are grouped into a summary percentage diagram where 17 

each pollen type was assigned to a major vegetation type following a simple biome scheme. 18 

 19 

Figure 4. Vegetation changes between 14.7 and 8 ka cal BP in selected high-resolution 20 

terrestrial pollen records from CEE. The taxa are grouped into a summary percentage diagram 21 

where each pollen type was assigned to a major vegetation type following a simple biome 22 

scheme. All records are plotted using the best available chronology for each individual site. 23 

 24 
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Figures 5. Vegetation changes at selected time slices between 17 and 8 ka cal BP. The time 1 

slices were selected to match significant climatic shifts during the investigated time period. The 2 

taxa are grouped following the same scheme as in Figure 4 and 5. 3 

 4 

Tables 5 

 6 

Table 1. List of compiled records from CEE in the INTIMATE chronological framework, 7 

specifying the dating method used, the climate variable that was reconstructed and the used 8 

proxy. 9 

 10 

Table 2. Summary of inferred climate changes between 14.7 and 8 ka cal BP at individual high- 11 

resolution sites from CEE. 12 

 13 

Table 3. Major vegetation types (megabiomes) in CEE Europe. Each pollen type was assigned 14 

to one of these megabiomes. 15 

 16 

Table 4. Temporal and spatial environmental dynamics over the Eastern European loess belt. 17 

Abbreviations: CP-continuous permafrost; DP-discontinuous permafrost; T-tundra; TA-taiga; 18 

DF-forest; FS-forest steppe; PL-mosaic parkland; MS-modern steppe; CLS-cold loess steppe; 19 

WLS-warm loess steppe; DWLS-dry warm loess steppe. 20 

 21 



 

Nº Archive Country Site 

Chronology 
Reconstructed 

variable 
Quantified proxy References Type of 

dating 

Number of 

dated points 

Mean temporal 

resolution  

1 
Lake 

sediments 

Slovenia Lake Bled 
14C, 

tephra 

2 

3 
69 (isotopes) 

180 (pollen) 
Temperature 

Bulk carbonates δ18O 

Pollen 

Plant macroremains 

Andrič et al., 2009, Lane et 

al., 2011 

2 Poland Żabieniec bog 
14C 5 252 Temperature Chironomids Plociennik et al., 2011 

3 Romania Lake Brazi 
14C 7 124 Temperature Chironomids Toth et al., 2012 

4 Speleothemes Romania V11 Cave U/Th 10 63 Temperature Calcite δ18O Tămaş et al., 2005 

5 

P
o

ll
en

 i
n

 l
ak

e 
se

d
im

en
ts

 /
P

ea
t 

Belarus Lake Sergeyeyskoe 
14C 5 121 Vegetation Pollen Makhnach et al., 2009 

6 Lithuania Lake Ginkunai 
14C 8 56 Vegetation Pollen Stancikaite et al., 2008, 2009 

7 

Poland 

Jezioro Linówek 
14C 

2 200 (pollen)  

40 (lant 

macroremains   

 

Vegetation 

Lake level 

Pollen 

Plant macroremains 
Gałka et al., 2014 

8 Kobylnica Wołoska 
14C 

6 66 (pollen) 

18 (plant 

macroremains 

Vegetation 
Pollen 

Plant macroremains 
Kołaczek et al., in press. 

9 Latvia Lake Kurjanovas 
14C 

6 

66 Vegetation 

Pollen 

Plant macroremains 

LOI 

Heikkilä et al., 2009 

 

10 Estonia Lake Nakri 
14C 

9 
80 (pollen) 

30 (macro) Vegetation 

Pollen 

Plant macroremains 

LOI 

Amon et al., 2012; Veski et 

al., 2012 

11 
Czech 

Republic 

Labský důl 14C 5 165 Vegetation Pollen Engel et al., 2010 

12 Švarcenberk 
14C 

3 60 

 
Vegetation Pollen 

Pokorný, 2002, Pokorný et 

al., 2010 

13 Hungary Kiss Mohos 
14C 8 163 Vegetation Pollen Willis et al., 1998 

14 
Romania 

Preluca Ţiganului 
Steregoiu 

14C 

 

12 

12 

65 

35 

 

Vegetation 

Temperature 

Precipitation 

Lake level 

Pollen 

Plant macroremains 

Zoological remains 

LOI 

Micro-macrocharcoal 

Mineral magnetic measurements 

Björkman et al., 2002; 

Feurdean et al., 2007, 2012b; 

Ampel, 2004 

15 Avrig 
14C 10 104 Vegetation Pollen Tanţău et al., 2006 

16 

Bulgaria 

Atolov Straldzha 
14C 

7 

790 
Vegetation 

Biomes 

Pollen 

Micro-charcoal 

Mineral magnetic susceptibility 

Connor et al., 2013 

17 Trilistnika 
14C 

6 

293 Vegetation Pollen Tonkov et al., 2008; 2012 

 

Table 1

http://hol.sagepub.com/search?author1=Maja+Andri%C4%8D&sortspec=date&submit=Submit


  

 

Chronology  NW Slovenia S Romania W Romania NW Romania Central Poland Baltic region 

Event Age (b2k) Lake carbonates δ18
O Chironomids Speleothem δ18

O Pollen-based Chironomids Pollen and macrofossil -based 

8.2 ka BP 8300 – 8140 Cold   Cold  Cold 

9.3 ka BP 9350 – 9240 Cold  Cold Cold  Cold 

Holocene 11703 Warm Warm Warm Warm  Moderate 

GS-1 12896 - 11703 Cold and dry Moderate Cold and dry Moderate, with very cold winters, dry Mild Cold 

GI-1a 13099 – 12896 Moderate, drying tendency Moderate Warm Slightly warm, wet Warm Moderate 

GI-1b 13311 – 13099 Moderate Moderate Cold and wet Moderate, cold winter Warm Cold 

GI-1c 13954 – 13311 Moderate Moderate Warm Warmest during the LG, warm winter, wet Warm, colder than GI-1e Moderate 

GI-1d 14075 – 13954 Moderate, wetter Cold Cold Cool winters, slightly warm summer Warm Cold 

GI-1e 14692 – 14075 Warm and dry Moderate Very warm Warm and dry Warm Cold 

GS-2a  Very cold Very cold   Very cold Very cold 
 

 

 

 

 

 

 

Table 2



Megabiomes   Characteristic pollen taxa 

Coniferous trees  Picea, Pinus, Abies, Larix, Juniperus 
 
Cold deciduous trees  Alnus, Betula, Salix, Populus     
 
Temperate deciduous trees Ulmus, Quercus (deciduous-type), Tilia, Corylus, Acer, Fraxinus, 

Acer, Carpinus, Hedera, Ilex, Fagus, Viscum, Sambucus, Viburnum, 
Cornus, Frangula, Myrica, Prunus, Sorbus 

 
Warm temperate taxa Quercus (evergreen-type), Olea, Carpinus orientalis/Ostrya, 

Loranthus, Fraxinus ornus-type, Rhamnus/Paliurus, Euonymus, 
Jasminum, Colutea, Cotinus 

 
Grass and shrubs Ericaceae, Calluna, Hippophae, Poaceae, Cyperaceae, other NAP 
 
Xerophythic herbs  Artemisia and Chenopodiaceae/Amaranthaceae 

Table 3



 
Period/Loess subprovinces Early last glacial Middle last glacial Late last glacial  Early Holocene   
Between the Alps and the 
Carpathians 

CLS FS-PL-WLS CLS-T DF-FS-TA 

N of the Carpathian Mts. DP FS-T-TA CD-T-CLS-TA DF-FS-TA 
Middle Danube PL-CLS-DWLS PL-WLS-DWLS CLS-PL FS-PL-MS 
Lower Danube and Northern 
coast of the Black Sea 

DWLS-CLS PL-WLS-DWLS DWLS-CLS FS-PL-MS 

Ukrainian and Russian lowlands DP-CLS FS-WLS-T DP-T-CLS DF-FS-TA-MS 
 
 

Table 4
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