

GQS: Graph query system for patterns under homomorphism and subgraph isomorphism

Thomas Fannes, Ashraf Kibriya, Jan Ramon

Contact: thomas.fannes@cs.kuleuven.be

Motivation

Homomorphism and subgraph isomorphism are NP-complete

Basic complexity: For a network G and a pattern P of bounded treewidth with treewidth(P) \leq fixed parameter w:

- homomorphism: polynomial in V(G) and V(P), exponential in w
- subgraph isomorphism: polynomial in V(G), exponential in w, mildly exponential in $|V(P)| \sim O(2^{|V(P)|})$

GQS building blocks

Query operator:

represents a pattern P
with a target value function T
works on a network G
outputs a stream (e, T(e)):

e is an embedding of P in G ∧ T(e) ≠ 0
can be based on child query operators

Query Plan: Rooted directed acyclic graph of query operators

Query operator categories:

- List operator: list embedding of vertices or edges
- Extend operator: extends a child operator by **adding a new vertex**
- Select operator: Filters the stream of embedding based on a criterium
 Join operator: Joins two child operators on a subset of their pattern vertices

• Project operator: Removes pattern vertices from output stream \rightarrow stream cardinality reduction

A query plan outputs a stream of embeddings of pattern P under homomorphism

GF2 algebra for subgraph isomorphism

homomorphic embeddings of pattern P are represented with polynomial: - each embedding a term

- each network vertex $v \in V(G) \rightarrow X_v$

- pattern can be represented by circuit of size O(|V(G)| |V(P)|)
- non-multilineair term are non-isomorphic

Use $GF(2^l)\mathbb{Z}_2^k$ algebra as target value:

- one embedding ↔ one term
- squares (or higher) are evaluated to zero
- randomized approach:
 - T(e) \neq 0 \rightarrow isomorphic embedding of P in G
 - T(e) = 0 \rightarrow Pr [no isomorphic embedding of P in G] < δ

with $k = |V(P)|, I = 3 + \log_2 k$

[Koutis I, Williams R (2009) Limits and applications of group algebras for parameterized problems]

GQS properties	GQS properties		
- C++ templated system \rightarrow compile your query		Tree	Graph
 preliminary tests on runtime efficiency: Automatic compiled query ≈ manually written query 	homomorphism	default	tree decomposition
In pipeline: - query plan optimizations	Subgraph isomorphism	GF2Algebra	tree decomposition + GF2Algebra
- search query plan space for most efficient query plan	K.U.Leuven		
Declaratieve Talen en Artificiële Intelligentie	Department of Computer Science		