

The importance of including short-term dynamics in planning models for electricity systems with high shares of intermittent renewables

Kris Poncelet EnergyVille/KU Leuven kris.poncelet@vito.be

- Low-carbon energy system:
 - Large contribution of RES predicted, especially in the electricity sector
- Increasing share intermittent RES:
 - Variability supply > variability demand => increased need of flexibility (of conventional power plants)
 - Wind, PV: Seasonal and intra-daily patterns + large deviations
 ⇒ Electricity demand

Research Question

- What is the impact of:
 - A) TS Division/Temporal resolution
 - B) Limited technical detail

Model Description

- Methodological analysis with a small TIMES model based on the Belgian electricity system
 - Single Region, No Import/export (Island operation)
 - No grid
 - Limited set of technologies
 - Base year + 4*10-year period
 - RES targets imposed (50% in 2050)
 - 5% Capacity margin (peaking equation)
 - Linearly increasing CO₂-tax

Model Description

• 4 TS divisions considered:

	TS 1	TS 1b	TS 2	TS 3
SEASON	4 Seasons	4 Seasons	4 Seasons	52 weeks
WEEKLY		Day, Night, Peak	WD, Sat, Sun	7 days/week
DAYNITE	Day, Night, Peak	High Wind, Med Wind, Low Wind	24 h/day	24h/day
# TS	12	36	288	8736

Model Results - Capacity

Model Results – System Cost

Re-evaluate Dispatch

- Re-evaluate dispatch decisions
- MILP market model:
 - Capacity variables TIMES = input data
 - Market model:
 - Hourly resolution (8736 periods)
 - dispatch at power plant level, includes operational constraints (ramping rates, minimal generation level, minimal up and down time, etc.)
 - No operational reserves, no grids

Re-evaluate Dispatch – TS 1

Re-evaluate Dispatch – TS 2

Re-evaluate Dispatch – TS 1b

Re-evaluate Dispatch – TS 3

2014: 1.5 GW Wind, 2.5 GW PV

2020: 4.0 GW Wind, 1.9 GW PV

2030: 11.0 GW Wind, 0.9 GW PV

2040: 20.0 GW Wind, 0 GW PV

2050: 26.9 GW Wind, 8.8 GW PV

System Cost

System Cost - Corrected

Re-evaluate Dispatch – TS 3

Impact Operational Constraints

Conclusions

- 1) Use Time Slices:
 - classical division of TS based on seasonal, daily or intra-daily fluctuations can not be justified
- 2) Operational Constraints of power plants:
 - Can have a significant impact (dependent on power system)

Questions?

Kris Poncelet kris.poncelet@vito.be +32/472 70 16 39

Model Results - Generation

