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10.1 Introduction

Over the last several years, graph mining has emerged as a new field within con-
temporary data mining. One of the central tasks is the search for subgraphs, called
patterns, that occur frequently in either a collection of graphs (e.g., databases of
molecules [6], game positions [15], scene descriptions) or in a single large graph
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(e.g., the Internet, citation networks [16], social networks [12], protein interaction
networks [10]). In the literature, the terms frequency and support have been used
interchangeably to denote the measure to quantify the prevalence of a pattern. In the
single-graph setting, however, the notion of frequency is not at all straightforward to
define. For example, the obvious definition of taking the number of instances of a
pattern as its frequency has the undesirable property that extending the pattern (i.e.,
making it more restrictive) may actually increase its frequency. Indeed, consider for
instance, the unlabeled k-clique Kk as the single graph in which we want to find pat-
terns. There are

(k
2

)
different embeddings under subgraph isomorphism of the unla-

beled path of length 1 in Kk, whereas there are 3
(k

3

)
embeddings of the path of length

2 in Kk. In fact, the number of different embeddings may increase exponentially in
the size of the pattern. Hence, as pointed out by Vanetik et al. [17], a good frequency
measure must be such that the frequency of a superpattern is always at most as high as
that of a subpattern. This property is called the antimonotonicity. Also, for reasons of
efficiency, antimonotonicity of the frequency measure is highly desirable, as it allows
for pruning large parts of the search space in a general-to-specific exploration. The
efficiency and correctness of most existing graph pattern miners relies critically on
the antimonotonicity of the frequency measure being used.

In this chapter, we give an overview of measures that have been defined in the
literature for assessing the frequency of graph patterns in one large graph. We divide
the measures into two groups: the ones that are based on the notion of the so-called
overlap graph and those that are not. An overlap graph of a pattern graph in a single
data graph is itself a graph again that expresses how the different occurrences of the
pattern are connected to each other in the data graph. Every node in the overlap graph
denotes an occurrence of the pattern and two nodes are connected by an edge if the
corresponding occurrences of the pattern graph have an overlap. In Figure 10.1, two
examples of the overlap graph of a pattern in another graph have been given.

In Section 10.2, we formally define important notions such as embedding, over-
lap graphs, and antimonotonic support measures. Then, for reasons of completeness,

AQ1

we start our discussion of graph-support measures with nonoverlap-graph-based mea-

Pattern graph H Database graph G Overlap graph of  H in G
(a) (b) (c)

FIGURE 10.1: Two examples of an overlap graph of H in G.
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sures in Section 10.3, although in the rest of the chapter, we will mainly concentrate on
the class of overlap-graph-based measures. This important class of graph measures is
then introduced in Section 10.4. In this section, we survey important results connect-
ing the antimonotonicity of the support-graph-based measure directly to properties of
the overlap graph itself.

In Section 10.5, the results are extended to overlap hypergraphs that are able
to express the way instances or embeddings overlap in a much more subtle and
exact way. The alternative characterization and bounding theorems of the overlap-
graph-based support measures are extended to this more fine-grained setting.

Section 10.6 describes an important application of the study of support measures:
statistical analysis on graph datasets. Statistical theory often assumes that the objects
over which summary statistics are computed are drawn independently. In networked
data, however, different occurrences of subgraphs in the single-graph settings are
dependent. Therefore, in Section 10.6, we relate the statistical power of a set of obser-
vations to its s-measure. In particular, if a pattern has a number of overlapping embed-
dings in a database graph and every embedding has some properties, one can estimate
the distribution of these properties from a sample. We are interested in bounding the
variance of such estimates.

Finally, Section 10.7 concludes the chapter.

10.2 Preliminaries

In this section, we introduce important graph-related notions such as graph iso-
morphisms and embeddings as well as antimonotonicity of graph-support measures.
We assume that the reader is familiar with basic graph theoretic notions and with
computational complexity. Textbooks in these areas, such as [7] and [14], supply the
necessary background.

10.2.1 Graphs

A graph G = (V , E) is a pair in which V is a (nonempty) set of vertices or nodes
and E is either a set of edges E ⊆ {{v, w} | v, w ∈ V , v �= w} or a set of arcs
E ⊆ {(v, w) | v, w ∈ V , v �= w}. In the latter case, we call the graph directed. A
labeled graph with labels from � is a triple G = (V , E, λ), with (V , E) a graph, and
λ a function V → � assigning labels to the vertices. We will use the notation V(G),
E(G), and λG to refer to the set of vertices, the set of arcs (edges), and the labeling
function of a graph G, respectively. Unless explicitly stated otherwise, we will assume
to be working over undirected labeled graphs in this chapter. By Gλ and G, we denote,
respectively, the set of all labeled graphs and the set of all unlabeled graphs.

A graph G = (V , E, λ) is said to be a subgraph of graph H = (VH , EH , λH), denoted
G ⊆ H, if V ⊆ VH , E ⊆ EH , and λ = λH|V .

For G ∈ Gλ,

G := (V(G), {{v, w} | v, w ∈ V} \ E(G), λG)
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denotes the complement graph of G. By Kk ∈ G, we denote the complete graph on k
vertices, that is,

Kk := ({v1, . . . , vk}, {{vi, vj} | 1 ≤ i �= j ≤ k}).

A subgraph K ⊆ G on k vertices for which all vertices are adjacent to all other vertices
is called a k-clique. A cycle of length k is a connected subgraph on k vertices each of
which is incident with exactly two edges.

An undirected unlabeled hypergraph is a pair (V , E) where V is a set of vertices
and E ⊆ 2V is a set of (hyper)edges, each of which is a subset of the set of vertices.
We denote the set of all (undirected, unlabeled) hypergraphs with H.

10.2.2 Isomorphisms

The following concepts introduced in terms ofGλ are also valid for directed and/or
unlabeled graphs by adding the direction of the edges and/or dropping the labels of
the vertices. For a complete set of definitions of all cases, we refer the interested
reader to [4].

A homomorphism π from H = (VH , EH , λH) to G = (V , E, λ) is a mapping from
VH → V , such that ∀{v, w} ∈ EH : {π(v),π(w)} ∈ E. We say that H is homomor-
phic to G.

An isomorphism from H to G is a bijective homomorphism π from H to G. In that
case, we say that H is isomorphic to G and write H ∼= G. We use H ⊆ G to denote
that H ∼= g, for some subgraph g of G.

By an instance of P in G, we refer to a subgraph g of G such that P and g are iso-
morphic. Any isomorphism π between P and one of its instances g is called an embed-
ding. We denote the set of all instances of a pattern P in the graph G by Img(P, G), and
the set of all embeddings by Emb(P, G). Notice that the number of instances does not
necessarily equal the number of embeddings of P into G, as some embeddings may
have the same image.

Example 10.2.1 Consider the following datagraph G and pattern graph P. The sub-
scripts in the labels have been added for ease of reference only. For instance, the
nodes with label a have been annotated a1, a2, . . .

Datagraph G Pattern P
a1

��
��
��
�

��
��

��
�

b1 b2

a2

��������

��������

a3

��
��
��
�

��
��

��
�

b3 b4
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In this example, P has two instances in G (λ denotes the labeling function of G):
({a1, b1, b2} , {{a1, b1} , {a1, b2} , {b1, b2}} , λ|{a1,b1,b2}

)
and

({a3, b1, b2} , {{a3, b1} , {a3, b2} , {b1, b2}} , λ|{a3,b1,b2}
)

but the number of embeddings of P in G is 4:
{

a3 	→ a1
b3 	→ b1
b4 	→ b2

{
a3 	→ a2
b3 	→ b1
b4 	→ b2

{
a3 	→ a1
b3 	→ b2
b4 	→ b1

{
a3 	→ a2
b3 	→ b2
b4 	→ b1

For a more complete treatment including homeomorphisms and the extension of
the notion of an instance to all morphism types, unlabeled, and directed graphs, we
refer the reader to [4].

10.2.3 Support Measures

One of the key elements in a graph mining algorithm is the support measure; that
is, a measure expressing the prevalence of a pattern graph in a larger database graph:

Definition 10.2.1 A support measure on G is a function f : G × G → N that maps
(P, G) to f (P, G) where P is called the pattern, G is called the database graph, and
f (P, G) is called the support of P in G.

For efficiency reasons, most graph mining algorithms use a level-wise or depth-
first approach to generate frequent patterns, expanding smaller patterns to larger ones.
Such an approach requires the support measure being antimonotonic in order to prune
efficiently:

Definition 10.2.2 A support measure f on is antimonotonic if for all patterns p and
P and database graph G it holds that if p ⊆ P, then f (P, G) ≤ f (p, G). That is, the
support in a graph G does not increase from a subpattern p to a superpattern P.

In the two next sections, we will see multiple examples of graph-support mea-
sures, many of which are antimonotone.

10.3 Nonoverlap-Graph-Based Measures

The first type of single-graph-support measures we consider are those that are not
based upon the overlap graph. The advantage of these measures is that they do not
require the costly step of building up the overlap graph. All results have been stated
in function of isomorphisms but can be extended easily to other morphism types.

10.3.1 Key-Based Support Measures

One approach that is commonly used is to select a fixed key pattern K consisting
of a number of isolated vertices and to consider as pattern language the space of all

Dehmer/Quantitative Graph Theory K19041_C010 Pageproof Page 307 2014-6-7



308 Quantitative Graph Theory: Mathematical Foundations and Applications

superpatterns of K. This support measure is one of the first ones that was considered
in relational learning and is related to the learning from entailment setting in the field
of inductive logic programming [5]. The K-support of a pattern P in graph G is only
defined if K is a subpattern of P and is defined as

keycountE(P, G) = |{π|K | π ∈ Emb(P, G)}|
where π|K is the restriction of the mapping to K. Clearly, keycount is antimonotonic.
Indeed, if p ⊆ P and π ∈ Emb(P, G), then π|p ∈ Emb(p, G). Furthermore, if π1,π2 ∈
Emb(P, G), and π1|p = π2|p, then also π1|K = π2|K . Therefore, keycountE(P, G) ≤
keycountE(p, G).

The same holds for the image-based version of this support measure:

keycountI(P, G) = |{π(K) | π ∈ Emb(P, G)}|

10.3.2 Minimal Image Count Support Measure

In [3], the authors proposed an antimonotonic support measure named min-image-
based support. For notational consistency, we give a slightly alternative definition.

minImage(P, G) = min
v∈V(P)

|{π(v) | π ∈ Emb(P, G)}| (10.1)

This support counts for every vertex, the number of nodes in the data graph to which
the vertex can be mapped in an embedding. The measure is the minimum of this
number over all vertices of the pattern graph. The antimonotonicity of this support is
obvious, and it can be computed very efficiently. It has, however, several drawbacks
as we demonstrate next.

First, from a statistical point of view, minImage overestimates the evidence. In
particular, as Figure 10.2 shows, a vertex can be counted arbitrarily many times.

Second, minImage is not additive. Given a subgraph pattern P, if a database
graph G has n (n ≥ 2) connected components, that is, G =

⋃
1≤i≤n Gi, then

minImage(P, G) ≥ ∑
1≤i≤n minImage(P, Gi). For many realistic database graphs,

strict inequality holds. In this case, it is unclear how much a connected component
contributes to the whole support. Figure 10.3 shows an example.

10.4 Overlap-Graph-Based Measures

In this section, we give an overview of the most important results class of the
single-graph-support measures that are the key focus of this chapter: the overlap-
graph-based measures. First, we introduce the notion of an overlap graph. Then
different measures based on the overlap graph and the important characterization of
the monotone overlap-graph-based measures by Vanetik et al. [17] and its extension
by Calders et al. [4] are discussed. After that, we extend to overlap-hypergraph mea-
sures that capture more subtle differences in how instances overlap than plain over-
lap graphs.
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a b

a b

a b

a b a b
G P

(a) (b)

FIGURE 10.2: (a) Database graph G contains two independent images of (b) the
subgraph pattern P. However, minImage(P, G) = 4 (and we can make this value arbi-
trarily large by adding more vertices with label b (resp. a) and link them to the top-left
vertex with label a (resp. bottom-right vertex with label b). As a consequence, if we
remove just a single vertex (the top-left or bottom-right one) the support of the pattern
in the network can suddenly drop to one.

G2

aa

a

a b

b

bb
G1

G P(a) (b)

FIGURE 10.3: A database graph G has two connected components G1 and G2.
minImage(P, G1) = minImage(P, G2) = 1, but minImage(P, G) = 3 > minImage
(P, G1) + minImage(P, G2).

10.4.1 Pairwise Overlap Graph

An important class of antimonotonic measures are the ones that are based on the

AQ2

AQ3

notion of an overlap graph GP [11,17].∗ An overlap graph summarizes not only the
images of the pattern in the database graph but also how they overlap:

Definition 10.4.1 Let G ∈ G be a database graph, P a pattern, and g1, g2 ∈
Img(P, G) be two instances of P. g1 and g2 of G have a vertex overlap if V(g1) ∩
V(g2) �= ∅ and an edge overlap if E(g1) ∩ E(g2) �= ∅.

For clarity of presentation, we will restrict ourselves to vertex overlap and iso-
morphic embeddings in this survey, but as shown in [4], all notions and results can
be extended to other graph classes and overlap and morphism types.

∗ Vanetik et al. [17] uses the term instance graph instead of overlap graph. The term instance suggests the
use of isomorphisms, and we consider support measures based on any kind of morphism. Therefore, we
follow the terminology of [11] to avoid confusion.
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Database graph G
a1 a3

a5 b1 a2 b2 a4

Pattern P Overlap graph GP
a

a b

1

2 3

4

a

a b

3 6

1 9

4 7

2 10

5 8

a

b

1 5

2 3 4 6

FIGURE 10.4: Database graph G, and three patterns, with their corresponding
pairwise overlap graphs GP.

Definition 10.4.2 The pairwise overlap graph (POG) GP of a pattern P in the
database graph G is an undirected, unlabeled graph in which each vertex corresponds
to an instance of the pattern P. Two vertices are adjacent in GP if the corresponding
embeddings overlap.

Figure 10.4 gives examples of POGs.

10.4.2 Overlap-Graph-Based Support Measure

We are now ready to define a POG-based support measure.

Definition 10.4.3 A support measure f on graphs is a pairwise overlap graph-based
support measure if there exists a graph measure f̂ such that ∀P, G ∈ G : f (P, G) =
f̂ (GP).

Informally, a POG-based support measure is a support measure that only depends
on the POG. Consider, for example, the following measure based on the maximal
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independent set (MIS) of the POG. An independent set of a graph G is a subset
I of V(G) such that ∀v, w ∈ I : {v, w} /∈ E(G). A MIS of G is an independent
set of maximal cardinality and its size is notated as mis(G). The MIS-based POG
support measure assigns to every pattern P the size of the MIS [17] of its POG GP:

MIS(P, G) := mis(GP).

Notice that MIS(P, G) can intuitively be interpreted as the maximal number of
instances that fit in G without overlap. This measure is antimonotonic.

Example 10.4.1 Consider the example given in Figure 10.4. The POG of the trian-
gular pattern in the data graph G consists in one path of length 3. The MISs in the
POG in Figure 10.4 are {2, 3} and {1, 4}. Hence, MIS(P, G) = 2.

10.4.3 Alternative Characterization for Antimonotonicity

Vanetik et al. [17] have shown an alternative characterization of antimonotone
POG-based measures. They consider three operations on the overlap graph GP: clique
contraction, edge removal, and vertex addition, as defined in the following.

Definition 10.4.4 Let K ⊆ G be a clique in G = (V , E). The clique contraction
CC(G, K) yields a new graph G′ = (V ′, E′) in which the subgraph K ⊆ G is replaced
by a new vertex k /∈ V adjacent to {w | ∀v ∈ V(K) : {v, w} ∈ E}:

V ′ = V \ V(K) ∪ {k}
E′ = E \ {{v, w} | {v, w} ∩ V(K) �= ∅} ∪ {{k, w} | ∀v′ ∈ V(K) : {v′, w} ∈ E}.

The edge removal ER(G, e) of the edge e = {v, w} in the graph G = (V , E) yields a
new graph G′ = (V , E \ {{v, w}}).

The vertex addition VA(G, v) of the vertex v /∈ V in the graph G = (V , E) yields a
new graph G′ = (V ∪ {v}, E ∪ {{v, w} | w ∈ V}).

The rationale behind these operations is that the overlap graph of a pattern P
can be transformed into the overlap graph of a subpattern p of P by means of these
operations.

Property 10.4.1 (Vanetik, Shimony, and Gudes). Let G be a database graph, p ⊆ P
two patterns. GP can be transformed into Gp with a sequence of CC, VA, and ER
operations.

Example 10.4.2 In the POGs in Figure 10.1, we can transform the overlap graph of
the third pattern (consisting of one edge between a node labeled a and a node labeled
b) to the POG of the second pattern by a series on node additions and edge removals.
These two operations together make it possible to transform a graph into any of its
supergraphs. From the second overlap graph to the first, we need a series of clique
contractions. We could contract subsequently {1, 2}, {3, 4, 5}, {6, 7, 8}, and {9, 10}.
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312 Quantitative Graph Theory: Mathematical Foundations and Applications

A direct result of this property is the following theorem of Vanetik et al. [17] that
restates the antimonotonicity of f in function of f̂ being nondecreasing in function of
the three operations specified earlier.

Theorem 10.4.1 (Vanetik, Shimony, and Gudes). Any overlap-graph-based support
measure f is antimonotonic if and only if the associated graph measure f̂ is nonde-
creasing under clique contraction, edge removal, and vertex addition.

The proof of sufficiency, that is, that any overlap support measure f is anti-
monotonic if the associated graph measure f̂ is nondecreasing under CC, VA, and
ER follows immediately from the fact that GP can be transformed into Gp by these
operations.

To prove necessity, Vanetik, Shimony, and Gudes construct for every unlabeled
graph H and every operation o a triple (P, p, G), where P is a superpattern, p a sub-
pattern, and G a database graph such that GP

∼= H and Gp
∼= o(H). Henceforth, if f

would be increasing under some o ∈ {CC, ER, VA}, then there would be a H such that
f (H) > f (o(H)) and one could construct a G, P, and p such that f (G, P) > f (G, p),
which would mean that f is not antimonotonic.

10.4.4 Bounding Theorem

The result of Vanetik et al. [17] was later extended by Calders et al. [4] to all
combinations of iso-, homo-, and homeomorphisms; edge/vertex-overlap graphs;
directed/undirected; and labeled/unlabeled graphs. An important consequence of the
alternative characterization of the antimonotonicity of f in terms of f̂ being nonde-
creasing is the bounding theorem proven by Calders et al. [4]. This theorem states that
the different antimonotone measures are bounded by a natural minimal and maximal
support measure; every normalized overlap support measure will always be between
these two extremes. A normalized support measure is defined as follows.

Definition 10.4.5 Let G be an undirected graph and Kk the graph composed of k
isolated vertices.

We call an overlap support measure f normalized if it is antimonotonic and
assigns the frequency k to k nonoverlapping images, that is, f̂ (Kk) = k.

Before we state the bounding theorem, we first introduce the minimum clique
partition (MCP) measure.

10.4.4.1 MCP Measure

The first antimonotonic, normalized overlap-graph-based support measure was
the MIS measure MIS. The MIS measure is defined as the size of the MIS of the
overlap graph and was introduced and proven to be antimonotonic in [17]. A more
compact proof of the antimonotonicity can be found in [8]. This measure was shown
to be a lower bound on all normalized, antimonotonic overlap-graph-based mea-
sures. Later on, Calders et al. [4] introduced two more normalized antimonotone
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overlap-graph-based measures, being MCP and the Schrijver measure. We will review
the Schrijver measure in Section 10.4.5.

The MCP measure is inspired by the CC-operation:

Definition 10.4.6 A clique partition of an undirected graph G is a partitioning of
V(G) into {V1, . . . , Vk} such that each Vi induces a complete graph in G. A MCP is a
clique partition of minimum cardinality. Its cardinality is denoted mcp(G).

The MCP measure is defined by MCP(P, G) : (P, G) 	→ mcp(GP).

Theorem 10.4.2 [4] The MCP measure is an antimonotonic and normalized.

It is interesting to compare MCP with MIS. Let χ(G) be the chromatic number of
G, that is, the minimal number of colors needed to color the vertices of G such that
no two vertices with the same color are adjacent, and let ω(G) be the clique number,
the size of the largest clique in G.

First, it is known that mcp(G) = χ(G) and mis(G) = ω(G) (see, e.g., [9], Section
5.5.1). Consequently, mcp(G) ≥ mis(G), for all undirected graphs G, since the size
of a maximum clique is a lower bound for the chromatic number.

Informally, it is easy to see why this is so: let {V1, . . . , Vk} be an MCP and I a MIS
for G. We know that I contains at most one vertex vi of each Vi, 1 ≤ i ≤ k. In other
words, to decide whether we can include a image of Vi, MIS forces us to choose either
no image or exactly one image vi, which must be independent of all chosen vj ∈ Vj.
MCP, however, allows us to count a image in Vi as soon as there is a image in Vi,
which does not overlap with a image in Vj. That is, we can make another choice for
each (Vi, Vj) pair.

Example 10.4.3 Let us look at an example: consider pattern P and the graph G as
shown in Figure 10.5. The 5 images of P are the induced subgraphs of the database
with, respectively, the nodes {a, b, c, d, e}, {i, f , d, k, l}, {i, f , g, k, l}, {e, h, j, m, l}, and
{g, h, j, m, l}. The POG GP of P in G is shown on the right in Figure 10.5 and is iso-
morphic to a pentagon. The white vertices mark the MIS {2, 5} and the dashed ellipses

Pattern Database graph POG
1 2

5

3 4

b

a c

d e

f g h

i j

k l m

1

2 5
3 4

(a) (b) (c)

FIGURE 10.5: (a) A pattern P and (b) a graph G. (c) Overlap graph GP with a MCP
(dashed ellipses) and a MIS (white vertices).
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mark a MCP consisting of the three cliques {1}, {2, 3}, and {4, 5} of GP. Hence, if we
count image 2 with MIS, we can only take image 4 or image 5 as second independent
image, because 1 and 3 overlap, leading to a MIS support of 2. This is a bit unnatu-
ral, because each of the 3 images of the triangle can be extended to a image of P in a
way that they do not overlap with each other, which would lead to a support of 3 of P.

This more natural notion of counting independent images is exactly what MCP
support allows us to do: we do not count individual images, but groups of images of
P sharing a image of a subpattern p (a triangle), and allow to “switch” images to
decide whether a group is independent of another. In this example, the group {1} is
independent of the groups {2, 3} and {4, 5}, because it does not overlap with image 3
(respectively image 4) and the group {2, 3} is independent of the group {4, 5} because,
for instance, image 2 and image 5 do not overlap.

10.4.4.2 Theorem

Interestingly, MIS and MCP turn out to be the minimal and the maximal possible
normalized overlap measures. The following theorem is one of our main results:

Theorem 10.4.3 For every normalized overlap measure f , and every pattern P and
database graph G, it holds that

MIS(P, G) ≤ f (P, G) ≤ MCP(P, G).

This bounding theorem still leaves a lot of room to define support measures, as there
can be an arbitrarily large gap between MIS and MCP [2]. The Lovász and Schrijver
measures that will be discussed in Section 10.4.5 is one such measure.

Example 10.4.4 Consider again the example given in Figure 10.5. mis(GP) = 2 and
mcp(GP) = 3. Hence, every antimonotonic normalized overlap support measure must
assign a value between 2 and 3 for P in G. Indeed, as illustrated in Figure 10.6, K2
can be transformed into GP and GP can on its turn be transformed into K3.

10.4.5 Lovász and Schrijver Graph Measures as Support Measures

The first function that was shown to be a normalized antimonotonic POG-based
support measure computable in polynomial time was the Lovász ϑ value of the over-
lap graph [4]. A similar argument can be used for the Schrijver measure [18]. Both
measures are studied in depth in the graph theory literature and often also relations
to the size of the maximum independent set (MIS) and other important measures are

VA×3 ER×4 CC CC

FIGURE 10.6: Illustration of a sequence of operations to move from a MIS to the
overlap graph of Figure 10.5 to the minimal clique partition.
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considered. We believe that it may be valuable for the data mining community to fur-
ther explore this literature. Here, we briefly defined both measures. Interested readers
can consult [4,18].

Let G be a graph. In the following, we will assume that V(G) = {1, . . . , n} so that
we can use a vertex as an index of a vector or matrix, for example, we will denote
cell i of a vector x by xi. A Lovász feasible matrix A for G is a symmetric positive
semidefinite matrix with (i) Au,v = 0 for all u and v such that {u, v} ∈ E(G) and
(ii) Tr(A) = 1.

Given a graph G, the Lovász ϑ value of G is

ϑ(G) = max

⎧
⎨

⎩

∑

i, j

Ai, j | A is a Lovász feasible matrix of G

⎫
⎬

⎭
.

The Schrijver graph measure of G is

SGM(G) = max

⎧
⎨

⎩

∑

i, j

Ai, j

∣∣
∣∣∣∣

A is a Lovász feasible matrix of G
and ∀i, j : Ai, j ≥ 0

⎫
⎬

⎭
.

The Schrijver graph measure has nearly the same computational complexity as the
Lovász ϑ value but is closer to the MIS support measure. The latter can be an advan-
tage for certain statistical tasks in which we want to stay as close as possible to an
independent set of images.

10.5 Object-Specific Overlap Hypergraphs

The overlap-based measures we discussed up to now viewed overlap as a binary
property: two instances either overlap or not. In this section, we extend this idea fur-
ther with support measures taking into account how instances overlap. We call this
object-specific overlap and will represent the overlap relationships with a hypergraph
instead of a simple graph [18].

As earlier, several types of overlap exist. First, we should select the objects of
overlap. These can be vertices, edges, or both. For a database graph G, we define

Objvertex(G) = V(G)

Objedge(G) = E(G)

Objev(G) = V(G) ∪ E(G)

These objects induce cliques in the pairwise overlap graph GP. For instance, when
considering vertex overlap of instances (as we did in the previous sections), all
instances containing a vertex v of G will form a clique in GP.

Definition 10.5.1 (Overlap hypergraph) Let γ ∈ {vertex, edge, ev}. The γ-ins-
overlap hypergraph of P in G, denoted by HG,ins

P,γ or more briefly HG
P if the rest is
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clear from the context, is a hypergraph whose vertices are the instances Img(G, P)

and for each object x ∈ Objγ(G), there is a hyperedge ex ∈ E
(
HG

P

)
such that

ex = {g ∈ V
(
HG

P

) | x ∈ Objγ(g)}.
The γ-emb-overlap hypergraph of P in G, denoted by HG,emb

P,γ or more briefly HG
P if

the rest is clear from the context, is a hypergraph whose vertices are the embeddings
Emb(G, P) and for each object x ∈ Objγ(G) and object y ∈ Objγ(P), there is a
hyperedge ex ∈ E(HG

P ) such that ex = {π ∈ V
(
HG

P

) | x = π( y)}.
In an overlap hypergraph HD,δ

P,γ , we say that a hyperedge e is dominated by another
hyperedge e′ if e ⊂ e′, and a hyperedge e is dominating if it is not dominated by any
other hyperedge. For any D and P, we define the reduced overlap hypergraph H̃D,δ

P,γ

to be the hypergraph for which V
(

H̃D,δ
P,γ

)
= V

(
HD,δ

P,γ

)
and E

(
H̃D,δ

P,γ

)
is the set of all

dominating hyperedges of HD,δ
P,γ . In the sequel, we only refer to H̃D,δ

P,γ , omitting δ and
γ when they are clear from the context. We will abuse terminology and simply call
H̃D

P the overlap hypergraph. See Figure 10.7 for an example.
We henceforth refer to the overlap hypergraph measures, which we denote by

f ′
(

H̃D
P

)
, instead of referring to the induced support measure f (D, P). Such induced

support measures are called overlap-hypergraph-based support measures (OHSM).

10.5.1 Support Measure Based on Relaxed Maximal Independent Set

Given an overlap hypergraph H̃D
P , we can derive the corresponding overlap graph

GD
P by replacing every hyperedge with a clique. Therefore, we can rephrase the defi-

nition of the MIS measure using overlap hypergraphs. Suppose D is a database graph
and P is a subgraph pattern:

MIS(D, P) = MIS
(

H̃D
P

)
= max

∣∣∣
{

I ⊆ V
(

H̃D
P

)
| ∀e ∈ E

(
H̃D

P

)
: |e ∩ I| ≤ 1

}∣∣∣

(10.2)

a

b

c

a

b

c

b

a a

c

HP
D

GP
D

P D
(a) (b) (d)

(c)

FIGURE 10.7: Overlap graph and overlap hypergraph. Given (a) a subgraph pat-
tern P, (b) a database graph D, (c) the overlap graph GD

P and (d) the overlap hypergraph
HD

P are shown on the right. In the overlap hypergraph, the (dominating) hyperedges
are determined by the highlighted vertices in the database graph, and a dominated
hyperedge is given in a dashed ellipse.
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The MIS measure requires that a vertex of an overlap (hyper)graph is either in the
independent set I or not. The s measure [18] we consider in this section is a relax-
ation of the MIS support measure by allowing for counting vertices of an overlap
hypergraph only partially.

Let H̃D
P be an overlap hypergraph. We start by assigning to each vertex v of H̃D

P

a variable xv. We then consider vectors x ∈ R
V

(
H̃D

P

)

of variables where for every

v ∈ V
(

H̃D
P

)
, xv denotes the variable (component of x) corresponding to v. x is feasible

if and only if it satisfies

(i) ∀v ∈ V(H̃D
P ) : 0 ≤ xv

(ii) ∀e ∈ E(H̃D
P ) :

∑
v∈e xv ≤ 1.

(10.3)

We denote the feasible region (the set of all feasible x ∈ R
V

(
H̃D

P

)

) by R

(
H̃D

P

)
, which

is a convex polytope.

Definition 10.5.2 (s support measure) The measure s is defined by

s
(

H̃D
P

)
= max

x∈R
(

H̃D
P

)

∑

v∈V
(

H̃D
P

)
xv (10.4)

Clearly, s is the solution to a linear program.

We will call an element x ∈ R

(
H̃D

P

)
, which makes

∑
v∈V

(
H̃D

P

) xv maximal a

solution to the LP of s.
There are very effective methods for solving LPs, including the simplex method,

which is efficient in practice although its complexity is exponential, and the more
recent interior-point methods [1]. The interior-point method solves an LP in O(n2m)

time, where n (here min{|V
(

H̃D
P

)
|, |E

(
H̃D

P

)
|}) is the number of variables and m

(here |V
(

H̃D
P

)
|+ |E

(
H̃D

P

)
|) is the number of constraints. Usually, subgraph patterns

are not large, so the LPs for computing s are sparse. Almost all LP solvers perform
significantly better for sparse LPs.

10.5.1.1 Conditions for Antimonotonicity

The conditions for antimonotonicity of OHSMs are similar to the ones discussed
earlier based on normal overlap graphs. In particular, we can show that an OHSM is
antimonotonic if and only if it is nondecreasing under three operations on the overlap
hypergraph. We begin by defining these three operations. They are similar to those
on overlap graphs.

Definition 10.5.3 (Hypergraph operators) For H ∈ H, we define

• Vertex addition: A new vertex v is added to every existing hyperedge: VA(H, v)
= (V(H) ∪ {v}, {e ∪ {v} | e ∈ E(H)}).
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• Subset contraction: Let K ⊆ V(H) be a set of vertices of the hypergraph such
that ∃e ∈ E(H) : K ⊆ e. Then, the subset contraction operation contracts K
into a single vertex k, which remains in only those hyperedges that are supersets
of K. Formally, SC(H, K, k) = (V(H)−K∪{k}, E1∪E2) where E1 = {e−K∪{k} |
e ∈ E(H) and K ⊆ e} and E2 = {e − K | e ∈ E(H) and K � e}).

• Hyperedge split: This operation splits a size k hyperedge into k hyperedges of
size (k − 1) each: HS(H, e) = (V(H), E(H) − {e} ∪ {e − {v} | v ∈ e}), where
e ∈ E(H).

For example, suppose H0 is a hypergraph, V(H0) = {v1, v2, v3, v4}, and E(H0) con-
tains two hyperedges {v1, v2, v3} and {v1, v4}. Let H1 = VA(H0, v5), then V(H1) =
{v1, v2, v3, v4, v5} and E(H1) contains hyperedges {v1, v2, v3, v5} and {v1, v4, v5}. Let
H2 = SC(H1, {v1, v3}, v6), then V(H2) = {v2, v4, v5, v6} and E(H2) contains hyper-
edges {v2, v5, v6} and {v4, v5}. Let H3 = HS(H2, {v2, v5, v6}), then V(H3) = V(H2)

and E(H2) contains four hyperedges {v2, v5}, {v2, v6}, {v5, v6}, and {v4, v5}.

10.5.1.2 Sufficient Condition

We present a sufficient condition for support measure antimonotonicity in terms
of the three operations on the overlap hypergraph that we have defined (Figure 10.8).AQ4
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FIGURE 10.8: Patterns and different types of overlap. The highlighted parts show
the ways two images overlap.

Dehmer/Quantitative Graph Theory K19041_C010 Pageproof Page 318 2014-6-7



Single-Graph Support Measures 319

Theorem 10.5.1 Let f ′ : G × G → R be a support measure and f : H → R with

f ′(D, P) = f
(

H̃D
P

)
be the induced OHSM. If f is nondecreasing under VA, SC, and

HS, then f ′ is an antimonotonic support measure.

Theorem 10.5.2 s(D, P) = s(H̃D
P ) is a normalized antimonotonic support measure.

10.5.1.3 Necessary Condition

We show that the condition for antimonotonicity mentioned earlier is not only a
sufficient but also a necessary condition.

Theorem 10.5.3 Let f ′ : G × G → R be a support measure and f : H → R with

f ′(D, P) = f
(

H̃D
P

)
be the induced OHSM. If f ′ is antimonotonic, then f is nonde-

creasing under VA, SC, and HS.

10.5.2 Bounding Theorem

In [4], the authors showed that all normalized antimonotonic OGSMs are bounded
(between the MIS size and the MCP). Similarly, we prove that all normalized anti-
monotonic OHSMs are also bounded. We first introduce another OHSM, MSC, the
size of a minimum set cover of overlap hypergraphs:

MSC(D, P) = MSC
(

H̃D
P

)
= min

∣∣
∣∣∣

{

S ⊆ E
(

H̃D
P

)
|
⋃

e∈S

e = V
(

H̃D
P

)}∣∣
∣∣∣

(10.5)

It is not difficult to verify that MSC is normalized and antimonotonic. Computing
MSC is an NP-hard problem. The MIS size (Equation 10.2) and minimum ver-
tex cover (Equation 10.5) are the minimally and maximally possible normalized
antimonotonic OHSMs.

Theorem 10.5.4 Given a database graph D, and a subgraph pattern P, it holds that
MIS(D, P) ≤ f (D, P) ≤ MSC(D, P) for every normalized antimonotonic OHSM

f (D, P) = f ′
(

H̃D
P

)
.

10.5.3 Relaxation of the OGSM MIS

One may ask whether the s support can be defined by relaxing the OGSM MIS
instead of the OHSM MIS. In other words, is the concept of overlap hypergraphs
really necessary?

Our answer is that the concept of overlap hypergraph is needed for the definition of
the s support measure because it carries additional information on the overlap graph.
In particular, the hyperedges show which overlaps have a common cause. If we did
not have this information, we would not be able to reconstruct it. For instance, if we
see a triangle in an overlap graph, we do not know whether this triangle originates
from one vertex shared by the three images or from three vertices, each shared by two
of the images. This additional information is needed for the definition of s, and for
its mathematical properties.
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10.6 Bounding the Variance of Sample Estimates Using the
s Measure

An important motivation for investigating support measures is the need to per-
form statistical analysis on datasets. Statistical theory often assumes that data points
are drawn independently. In networked data, however, where vertices are connected
with edges, this is not the case anymore. In this section, we relate the statistical
power of a set of observations to its s-measure. In particular, if a pattern has a num-
ber of overlapping embeddings in a database graph and every embedding has some
properties, one can estimate the distribution of these properties (or its mean, vari-
ance, moment) from a sample. We are interested in bounding the variance of such
estimates.

When performing statistics on a particular type of observations, we first have to
define the properties that the observations of interest will need to satisfy, thus creating
a subgraph pattern. For instance, suppose we want to analyze the satisfaction of clients
with their first lawsuit where they are assisted by a pro-deo lawyer, that is, a lawyer
paid by the government or by an association to offer legal aid services to those who
cannot afford a lawyer. Then, the subgraph pattern representing the observation type
of interest would consist of a client node, a lawyer node, a judge node, and a lawsuit
node to which the former three are connected.

Next, let us assume that the occurrence of these observations occurs independently
from the properties that are relevant for our statistical analysis. In our example, in
order to ensure impartiality, the court randomly assigns judges to cases and the lawyer
association randomly assigns pro-deo lawyers to cases. Hence, in order to explore the
relationships between the properties of the case and its outcome, we do not need to
take into account the dependency between occurrences of the subgraph pattern and
its properties.

This simplifying assumption does not imply, however, that we can treat the prop-
erties of the nodes of the embeddings of the pattern as independent, since embeddings
may share nodes. In our example, the same parties, lawyers, or judges may participate
in different lawsuits.

Consider the simple task of estimating the expected value of a function over the
properties of nodes participating in a random embedding. In particular, let f (·) be
a function on embeddings and let μ be its expected value and σ its standard devia-
tion. Consider also a sample, that is, a set of possibly overlapping embeddings, and
the problem of estimating μ as accurately as possible. In our example, f could be
the measurement of client satisfaction with the outcome of the lawsuit depending on
properties of the client, the lawsuit, the lawyer, or the judge.

We will now present two approaches for deriving a relation between sample size
and the variance on the estimate obtained.

In a first approach, we take a maximal independent set SMIS of vertices of the
overlap hypergraph HD

p . As we assumed that the embeddings are independent from
the properties of the nodes they connect, all elements in SMIS are independent and
the values f (v) of the observations v in SMIS are distributed independently with
E

[
( f (v) − μ)2

]
= σ2. Consider now the estimator
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μ̂MIS =

∑
u∈SMIS

f (u)

|SMIS| .

As the terms in the sum are independent random variables,

E

[(
μ̂MIS − μ

)2
]

=
σ2

|SMIS| . (10.6)

We will now present a second approach based on our s measure. Suppose that we have

a set V
(

HD
p

)
of observations (embeddings of the pattern p in the database graph D),

whose overlaps are given by the overlap hypergraph HD
p , and a vector x of weights

xv for the v ∈ V
(

HD
p

)
, which is a feasible solution to the s measure related linear

program (10.3). We define the estimator:

μ̂s( f , V
(

HD
p

)
, x) =

∑
v∈V

(
HD

p

) xvf (v)
∑

v∈V
(

HD
p

) xv
(10.7)

We will now prove the following:

Theorem 10.6.1 Let p be a pattern graph with V(p) = {i}k
i=1 and D = ∪k

i=1Di be a
database with k = |V(p)| domains. Let the set of embeddings of p in D be k-partite,
that is, Emb(D, p) ⊆ D1 ×· · ·×Dk. Let the overlap hypergraph HD

p represent this set

of embeddings and their overlaps, that is, two vertices u, v ∈ V
(

HD
p

)
overlap if and

only if u(i) = v(i) for some i ∈ {1 . . . k}. Assume the nodes in D have properties that
are independent of these embeddings. Let x be a vector of weights for the embeddings
satisfying (10.3). Let f be a function on the properties of the nodes participating in an
embedding. Assume that for a randomly chosen embedding u, E

[
( f (u) − μ)2

]
= σ2.

Then,

E

[(
μ̂s( f , V

(
HD

p

)
, x) − μ

)2
]

≤ σ2
∑

v∈V
(

HD
p

) xv

In conclusion, if we choose x such that
∑

v xv = s
(
HD

P

)
, we get

E

[(
μ̂s( f , V

(
HD

p

)
, x) − μ

)2
]

≤ σ2

s
(

HD
p

) .

Because s ≥ |MIS|, the second approach yields a better estimate of μ. Even though
we had to make a number of assumptions, this first result linking s and the statistical
power of a sample suggests that closer analysis of its properties may be a valuable
direction for further research. Note that the assumptions on which the first method
(using a MIS) relies are not necessarily much weaker than those made for the method
using s.
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10.7 Discussion and Conclusion

Next to the types of overlap we considered in this paper, other types of over-
lap may be of interest. For example, the following notions of overlap could also be
considered:

• Two-vertex (edge) overlap: Two images overlap if and only if they share two or
more common vertices (edges).

• Label-specific overlap: Two images overlap if and only if they share a common
vertex (edge), which has a label in a certain set.

• Distance-based overlap: Two images u and v overlap if u has a vertex x and v
has a vertex y such that the distance between x and y is smaller than a specified
constant min_dist.

In each of these cases, small patterns need to be treated with caution, but an anti-
monotonic support measure is obtained for patterns of minimal size.

The choice of overlap notion may be inspired by several factors, one of the
main ones being the statistical assumptions made and the task to be performed. For
instance, in Section 10.6, we presented a derivation for the statistical power of a sam-
ple assuming that the property of interest only depends on the properties of the nodes
participating in the embedding. Suppose now that this assumption does not hold. For
instance, in our lawsuit example, clients belonging to the same family might share
common properties or be influenced by each other and hence might not be inde-
pendent. We could then add family relations to the graph and say that two embed-
dings (client1, lawyer1, judge1, case1) and (client2, lawyer2, judge2, case2) overlap
if client1 and client2 are members of the same family (i.e., have a distance of at most
1 in the family relationship graph). In this way, we can relax our assumptions by
strengthening our notion of overlap.

Frequency is not a perfect indicator of a patterns interestingness. In most cases,
frequent subgraphs are trivial patterns. Therefore, Milo et al. [13] proposed methods
based on statistical hypothesis testing to filter out insignificant patterns. They first
assume a null model that generates networks by preserving the network degree dis-
tribution. Subsequently, every frequent subgraph is checked against the null model
in a randomization test. This approach effectively filters out a lot of trivial frequent
patterns. Importantly, it is computationally demanding because randomization tests
require generation of random samples of the entire network and perform frequency
counting on these large samples.

In this chapter, we studied support measures in the single-graph context. Most of
the results in this chapter concerned the so-called overlap-graph-based support mea-
sures for which alternative characteristics, a bounding theorem, and extensions to
hypergraphs were shown. We also show one example of an application, being bound-
ing the variance of sample estimates.
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AUTHOR QUERIES

[AQ1] Please specify the part labels in figure caption for Figure 10.1,
10.3.

[AQ2] Please confirm the correctness of part labels and captions
inserted in Figure 10.2, 10.5, 10.7.

[AQ3] Please provide closing parenthesis for sentence starting “How-
ever, minImage(P, G) = 4…” in the caption of Figure 10.2.

[AQ4] Please check the inserted citation of Figure 10.8 for correctness.
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