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Abstract Identifying underlying structures in combinatorial optimisation prob-
lems leads to a better understanding of a problem and, consequently, to ef-
ficient solution methodologies. The present paper introduces a new network
flow formulation for a large class of nurse rostering problems. By solving an
integer minimum cost flow problem in a carefully constructed network, nurses’
shift schedules can be constructed in polynomial time. The performance of the
new formulation is compared with a state of the art algorithm on a benchmark
dataset. Computational experiments show that the new formulation performs
best both in terms of solution quality and computation time. By identifying
inherent combinatorial structures which can be efficiently exploited, insight
is gained into the problem’s complexity, thereby laying the foundations for a
theory of nurse rostering.
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1 Introduction

Scheduling nurses is a critical process in health care due to the high costs
associated with these scarce resources. Nearly sixty years of research has been
devoted to solving different variants of this problem, resulting in an equally
large variety of solution techniques (Burke et al, 2004; Van den Bergh et al,
2013). Many nurse rostering problems addressed in the literature are complex
in nature, dealing with a large variety of organisational and legal constraints
(Brucker et al, 2010; Smet et al, 2013). Complex search algorithms have been
proposed for dealing with such problems (Burke and Curtois, 2014; Valouxis
et al, 2012). However, attention has also been paid to more straightforward,
simplified variants of the problem which make abstraction of a large part of the
operational complexity arising in practice. Studying the underlying structure
of such problems can lead to valuable insights, resulting in improved method-
ologies for both simplified and complex nurse rostering problems. We revisit
problems presented in the literature, and investigate whether they exhibit a
combinatorial structure that can be efficiently exploited.

An example of such a combinatorial structure which has been given at-
tention in personnel scheduling research is the use of network flow techniques
(Ahuja et al, 1993). A common application of network flows is found in col-
umn generation approaches for personnel rostering, where the pricing problem
is often modeled as a resource constrained shortest path problem (Jaumard
et al, 1998). Networks have also been described to address more general prob-
lems: to calculate the size of a workforce (Koop, 1988), to reconstruct nurse
rosters from a schedule with disruptions (Moz and Pato, 2004) or to allocate
shift types to a fixed days-on roster (Dowsland and Thompson, 2000). Brucker
et al (2011) discuss networks for various (sub)problems related to personnel
scheduling. Millar and Kiragu (1998) present a mathematical model with an
underlying network structure to represent both a cyclic and non-cyclic nurse
scheduling problem. Constraints regarding staffing demands and weekends are
modelled as side constraints external to the network.

These network flow formulations make a strong abstraction of reality by
e.g. assuming equal staffing requirements on all days or full staff availability,
considering single shift scenarios and ignoring skill requirements. Furthermore,
the number of contractual workforce constraints included in these formulations
is typically limited to e.g. only restricting certain shift successions or only
limiting the maximum number of consecutive assignments. The present paper
fills the existing void by presenting a network flow model incorporating various
practical and important nurse rostering constraints. Since there are no side
constraints, the underlying structure of network flow problems is kept intact.
Thereby, a solution methodology is established for efficiently solving a large
class of nurse rostering problems.

The paper is organised as follows. Section 2 presents a detailed classification
scheme for nurse rostering problems. Section 3 introduces a new network flow
formulation for nurse rostering, along with several extensions. A computational
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evaluation of the new formulation is presented in Section 4. Finally, Section 5
concludes the paper and identifies areas for future research.

2 A classification scheme for nurse rostering problems

De Causmaecker and Vanden Berghe (2011) present an α|β|γ classification
scheme for practical nurse rostering problems (Table 1). The presented nota-
tion allows a wide variety of problem characteristics to be described. In this
section, we introduce an extension to this classification scheme which allows
detailed elements of nurse rostering problems to be described.

Personnel constraints Skill interactions

α Personnel environment

A Availability 2, 3, ... Fixed number
S Sequences N Variable number
B Balance I Individual skill definitions
C Chaperoning
Coverage constraints Shift type

β Work characteristics
R Range 2, 3, ... Fixed number
T Time intervals N Variable number
V Fluctuating O Overlapping
Objective Mode

γ Optimisation objective

P Personnel constraints M Multi-objective
L Coverage constraints
X Number of personnel
R Robustness
G General

Table 1 Classification of nurse rostering problems (De Causmaecker and Vanden Berghe,
2011).

α: Personnel environment

The scheme of De Causmaecker and Vanden Berghe (2011) describes time-
related (horizontal) constraints by α : A and α : S for counters and series,
respectively. We present the following extensions to these constraint categories:

– A ∈ {a, a, a, a, s, s, s, s} Type of counter constraint. When A = a there
is a constraint on the number of days worked, and when A = s there is a
constraint on the number of assignments of a particular shift type. The lines
above and under each entry indicate the type of threshold. For example,
a means that an exact number of days needs to be worked, a means that
only an upper bound is specified, a refers to only a lower bound, finally, a
means that a range is defined.

– S ∈ {as, as, as, as, cs, cs, cs, cs, ss} Type of series constraint. When S = as
there is a constraint on the number of consecutive days worked, when
S = ss there is a constraint on particular shift successions, and when
S = cs there is constraint on the number of consecutive assignments of a
particular shift type. The threshold for this type of constraint is defined as
in category α : A.
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β: Work characteristics

To detail the type of coverage constraint in a nurse rostering problem, the
category β : R is extended with the following elements:

– R ∈
{
d, d, d, d

}
Type of coverage constraint. The threshold for this type of

constraint corresponds to the threshold definition in category α : A.

γ: Optimisation objective

Several objectives can be described in the γ category. We present an extension
to the category γ : P to differentiate between different types of personnel
related objectives:

– P ∈ {
∑
wc,

∑
px} Objective function. P =

∑
wc denotes a weighted sum

of soft constraint violations. When P =
∑
px, the employee preferences

are optimised.

While most common time-related constraints for nurse rostering are presented
in the extended classification scheme, the use of the α|β|γ notation presents a
flexible framework allowing for future extensions.

3 Network flow models for nurse rostering

3.1 Problem description

The scheduling period T is a set of t days T = {1, ..., t}. There is a set S of s
shift types S = {1, ..., s}. On each day j and for each shift type k, arbitrary
minimum and maximum staffing demands 0 ≤ dljk ≤ dujk are specified. The
workforce N is a heterogeneous set of n nurses N = {1, ..., n}. Each nurse i
has to work exactly ai days in T . Finally, each nurse i has a preference for
working shift type k on day j, expressed as an inversely proportional cost cijk.

Let P denote the problem of assigning shifts to nurses such that the staffing
requirements are satisfied. Each nurse must work exactly the number of spec-
ified days and can be assigned to at most one shift per day. The objective is
to minimise the costs cijk.

P can be formulated as an integer linear program (ILP) with one set of
decision variables

xijk =

{
1 if nurse i works shift k on day j
0 otherwise
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P : min
∑
i∈N

∑
j∈T

∑
k∈S

cijkxijk (1)

s.t.
∑
k∈S

xijk ≤ 1 ∀ i ∈ N, j ∈ T (2)

dljk ≤
∑
i∈N

xijk ≤ dujk ∀ j ∈ T, k ∈ S (3)∑
j∈T

∑
k∈S

xijk = ai ∀ i ∈ N (4)

xijk ∈ {0, 1} ∀ i ∈ N, j ∈ T, k ∈ S (5)

The objective function 1 minimises the sum of costs incurred by the shift
assignments. Constraints 2 ensure that at most one shift is assigned per day,
per nurse. Constraints 3 model the minimum and maximum staffing demands.
Constraints 4 restrict the number of days each nurse should work in the plan-
ning period. Finally, constraints 5 bound the decision variables.

Following the extended α|β|γ notation presented in Section 2, the class of
problems we address is in A(a)NI |R( d)VN |P(

∑
px).

3.2 Network flow formulation

Problem P can be reformulated as an integer minimum cost network flow
problem in a directed network G = (V,E), with V the set of nodes and E the
set of arcs. The set V consists of four subsets of nodes.

Shift nodes For each day j ∈ T and each shift type k ∈ S, a node is created
representing the demand on day j for shift type k.

Time nodes For each nurse i ∈ N and each day j ∈ T , a node is created
representing a day on which a nurse can work.

Nurse nodes For each nurse i ∈ N , one node is created.
Other nodes There is one source node s and one sink node f .

Figure 1 shows the structure of the network G. Each shift node has one
incoming arc from the source node. Its outgoing arcs are directed towards the
time nodes corresponding to the day for which the shift node is defined. Each
nurse node only has incoming arcs from time nodes associated with the nurse.
Finally, each nurse node has one outgoing arc to the sink node.

Lemma 1 The number of nodes in G is equal to t(s+ n) + n+ 2.

Proof The network contains ts shift nodes, nt time nodes, n nurse nodes and
two other nodes. ut

Lemma 2 The number of arcs in G is equal to t(s+ n(s+ 1)) + n.
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s f

Shift nodes Time nodes

<j,k> <i,j> i

j = 1,...,t k = 1,...,s i = 1,...,n j = 1,...,t i = 1,...,n

Nurse nodes

..
..

..
..

..
..

0 ≤ x ≤ 1 x = ai

cijk

dl
jk ≤ x ≤  du

jk 0 ≤ x ≤ 1

Fig. 1 Network G for problem P. x denotes the flow through an arc.

Proof There are ts arcs going from the source node to the shift nodes. Each
shift node has n arcs to time nodes. There are ts shift nodes, so in total tsn
arcs go from shift nodes to time nodes. Each time node has one outgoing arc
to a nurse node. With nt time nodes, nt arcs exist between the time nodes
and the nurse nodes. Finally, there are n arcs between the nurse nodes and
the sink node. ut

Flow costs are only defined on the arcs between the shift nodes and the
time nodes, representing the cost cijk of assigning a nurse i to shift type k on
day j. All nodes, except the source and sink nodes, are transshipment nodes.
The supply in the source node is

∑
i∈N ai, corresponding to the total number

of days the nurses can work according to their contracts. The supply in the
sink node is equal to

∑
i∈N −ai.

Lower and upper bounds on the capacity of the arcs are appropriately de-
fined to correctly represent problem P. The arcs between the source node and
the shift nodes have a lower (upper) bound equal to the minimum (maximum)
staffing demand. Arcs between the nurse nodes and sink node have a lower
and upper bound equal to the required number of days worked. All other arcs
require a flow of either 0 or 1.

Theorem 1 An optimal integer minimum cost flow in the network G corre-
sponds to an optimal solution for problem P.

Proof Due to the construction of network G, a minimum cost solution respect-
ing the capacity and demand constraints can be converted to a solution for
problem P. A flow on an arc between a time node defined for nurse i, day j
and a nurse node defined for nurse i, corresponds to a working day for nurse i.
By forcing a flow of ai in the arc between the nurse node i and the sink node,
nurse i will work exactly ai days. Shift assignments are determined by flows
in the arcs between the shift nodes and the time nodes. A flow from the shift
node associated with day j, shift k to the time node associated with day j,
nurse i, corresponds to nurse i working shift k on day j, thereby incurring cost
cijk. The flow conservation constraints ensure that at least dljk, and at most
dujk units of flow will be divided among the arcs leaving the associated shift
node, thereby fulfilling the staffing demands. Since there is an upper bound
of one on the arcs between the shift nodes and time nodes, a nurse cannot be
assigned more than one shift per day. ut
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3.3 Extensions

Several elements can be added to the definition of problem P, which can also
be included in the network formulation.

3.3.1 Unavailabilities

A shift unavailability prevents the assignment of shift type k on day j. A set
of shift unavailabilities S̄ij ⊆ S can be defined, containing the shifts for which
nurse i is unavailable on day j. This is enforced by adding constraints (6) in
the ILP model. ∑

k∈S̄ij

xijk = 0,∀ i ∈ N, j ∈ T (6)

Shift unavailabilities can be modeled in network G by setting the capacity
upper bound to zero on the arcs going from the shift node associated with
each shift in S̄ij to the corresponding time nodes.

This type of unavailability can also be used to include qualification re-
quirements for particular shifts. For example, when one head nurse is required
during the day shift, a dedicated head nurse-day shift can be created. The ca-
pacity upper bound on the arcs going from the associated shift nodes should be
zero, except for the arcs to the time nodes defined for the actual head nurses.

A day unavailability forbids the assignment of any shift on day j. Again, for
each nurse i, a set of day unavailabilities T̄i ⊆ T can be defined. Constraints
(7) model these unavailabilities in the ILP model.∑

k∈S

xijk = 0,∀ i ∈ N, j ∈ T̄i (7)

In the networkG, day unavailabilities are enforced by changing the capacity
upper bound to zero on the arcs going from the relevant time nodes to the
corresponding nurse nodes.

3.3.2 Hard preferences

Hard preferences, either for working days or for particular shifts, can be mod-
eled in a similar way as the unavailabilities. An assignment of shift k on day
j for nurse i can be fixed by adding constraint (8) to the ILP model.

xijk = 1 (8)

For a fixed day-on assignment on day j to nurse i, constraint (9) should
be added to the ILP model. ∑

k∈S

xijk = 1 (9)
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In network G, instead of setting the capacity upper bound on selected arcs
to zero, the capacity lower bound is set to one, thereby forcing a flow through
the arcs and consequently ensuring a working day or shift.

3.3.3 Daily employment cost

There exist cases in which a cost ci is incurred for each day nurse i works in
the planning period. The objective function in the ILP includes an additional
term to represent these costs (expression (10)).∑

i∈N

∑
j∈T

∑
k∈S

cijkxijk +
∑
i∈N

∑
j∈T

ci
∑
k∈S

xijk (10)

This extension can be modeled in network G by adding a flow cost equal
to ci on the arcs from the nurse nodes to the sink node. Since each unit of
flow through these arcs represents one day of labour, a flow cost corresponds
to the cost ci.

3.3.4 Ranged constraint

Problem P requires nurse i to work exactly ai days. This constraint can be
relaxed such that nurse i works between ali and aui days. In the ILP, constraints
(4) are replaced by constraints (11).

ali ≤
∑
j∈T

∑
k∈S

xijk ≤ aui ,∀ i ∈ N (11)

This relaxation is included in the network flow model by transforming the
network G to a circulation network G′ by adding one arc from the sink node
to the source node. There is no cost associated with this arc, and the capacity
is only bounded below by zero. All nodes become transshipment nodes. Ac-
cording to Theorem 1, an integer minimum flow in G′ again corresponds to an
optimal solution for problem P with constraints (11).

3.3.5 Weighted constraint

Consider the modification of problem P such that for each nurse i ∈ N only
an upper bound ai on the number of days worked is imposed, which can be
violated at the cost of a penalty wi per additional day worked. This is modelled
by replacing constraints (4) with constraints (12) in the ILP.∑

j∈T

∑
k∈S

xijk ≤ ai + pi,∀ i ∈ N (12)

The variable pi represents the number of days nurse i works over the allowed
maximum. Violations of this constraint are minimised by optimising objective
function (13).
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∑
i∈N

∑
j∈T

∑
k∈S

cijkxijk +
∑
i∈N

wipi (13)

In the network flow formulation, one additional transshipment node is cre-
ated for each nurse: a constraint node. Each of these new nodes is connected
with the nurse node of the corresponding nurse, and the sink node. Both arcs
have positive infinite capacity. By adding a flow cost equal to wi on the arcs
between the nurse nodes and the constraint nodes, the penalty for additional
days worked is counted. Figure 2 shows the modified network.

s f

Shift nodes Time nodes

<j,k> <i,j> i

j = 1,...,t k = 1,...,s i = 1,...,n j = 1,...,t i = 1,...,n

Nurse nodes

..
..

..
..

..
..

0 ≤ x ≤ 1

x ≤ ai

cijk

0 ≤ x ≤ 1

Constraint nodes

i

i = 1,...,n

x ≥ 0 x ≥ 0

wi

..
..

dl
jk ≤ x ≤  du

jk

Fig. 2 Network G for problem P with weighted constraint violation. x denotes the flow
through an arc.

To construct a solution for this extended problem description, the network
G depicted in Figure 2 is first transformed to a circulation network G′, such
that all nodes become transshipment nodes. According to Theorem 1, an inte-
ger minimum flow in G′ again corresponds to an optimal solution for problem
P with the weighted constraint.

4 Computational analysis

4.1 Applying the network flow model

The effectiveness of the new network flow formulation is evaluated by analysing
a series of computational experiments on the NSPLib benchmark dataset (Van-
houcke and Maenhout, 2007). The dataset consists of different constraint sets
that can be combined with any of the 29,160 problem instances. By omitting
the constraint on forbidden shift sequences from the NPSLib problem de-
scription, a subset of instances (case 1 constraint set for the 7-day instances)
corresponds to problem P.

As in problem P, an assignment cost cijk is defined for each nurse, shift,
day combination. Furthermore, NSPLib uses a dummy shift k′ to represent a
day-off. Let cijk′ be the preference cost of nurse i for a day-off on day j. To
correctly incorporate the use of the dummy shift in the network G, the original
costs cijk were transformed to modified costs c′ijk by applying equation 14.

c′ijk = cijk − cijk′ , ∀i ∈ N, j ∈ T, k ∈ S (14)
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It is clear that a problem instance with costs c′ijk has the same optimal
assignments as a problem with costs cijk since the relative differences in pref-
erence remain the same. The only difference is that c′ijk can be less than zero,
which in general does not influence (optimal) choices made by algorithms.
Since after applying equation 14, the costs associated with days-off are zero,
their assignment can be omitted from any shift assignment model. The costs
associated with the other shifts will determine whether a particular shift type
assignment is preferable to a day-off.

4.2 Performance evaluation

We first present a comparison in terms of size for both the ILP formulation and
the network flow formulation (NF). Table 2 shows, for the different instances
in NSPLib, the number of variables and constraints in the ILP model and the
number of nodes and arcs in the network G.

ILP NF
Days Nurses Variables Constraints Nodes Arcs

7

25 700 228 230 928
50 1400 428 430 1828
75 2100 628 630 2728

100 2800 828 830 3628

Table 2 Size comparison of ILP and network flow models.

We performed a series of experiments with the ILP formulation and net-
work flow formulation to solve instances from NSPLib. The experiments were
carried out on an Intel Core i5 CPU at 2.5GHz with 4GB RAM operating on
Windows 7, using a single thread. All algorithms were coded in C++. IBM
ILOG CPLEX 12.5 was used to solve the ILP formulation. The network flow
formulation was solved with the network simplex algorithm in LEMON 1.3.

Table 3 compares the solution costs and computation times in seconds
for the ILP formulation (ILP) and the network flow formulation (NF). These
values are averages over all instances, grouped per number of days and number
of nurses.

ILP NF
Days Nurses Avg. cost Time(s) Avg. cost Time (s)

7

25 245.41 0.0206 245.41 0.0014
50 489.77 0.0324 489.77 0.0031
75 740.11 0.0447 740.11 0.0062

100 1191.19 0.0579 1191.19 0.0102

Table 3 Comparison of the ILP and network flow formulations.
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Both the ILP and network flow formulations obtain optimal solutions for
all instances, while requiring very little computation time. The reported cal-
culation times are plotted in Figure 3 as functions of problem size, determined
by the number of days and nurses. For both approaches, the trend shows that
an increasing problem size, and thus an increasing number of variables, con-
straints or network dimensions, leads to longer calculation times. However,
for the network flow formulation, the required calculation time is up to a
magnitude lower than for the ILP formulation, thereby demonstrating the ad-
vantage of exploiting the problem’s underlying combinatorial structure with
well known efficient algorithms.
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Fig. 3 Required calculation times in function of problem size.

5 Conclusions and future work

By reformulating nurse rostering problems as integer minimum cost flow prob-
lems, we identified a class of problems in A(a)NI |R( d)VN |P(

∑
px) that can

be solved in polynomial time. Within this problem class, several variants are
introduced which can be modeled by making minor modifications to the pre-
sented flow network, while still preserving its combinatorial structure. The
contribution lies in this new formulation by which a large class of problems
can be solved in polynomial time.

Computational experiments demonstrated the effectiveness of the new for-
mulation on a benchmark dataset from the literature. Compared to solving
an ILP formulation with a state of the art mathematical solver, a network
simplex algorithm required almost ten times less computation time for solving
the integer minimum cost flow problem in the presented flow network.

The challenge of identifying efficiently exploitable combinatorial structures
for more complex problems, incorporating other practical constraints, remains
an important research area. Such results lead to establishing a theory of per-
sonnel scheduling which is severely lacking in the academic community. Un-
derstanding various problems’ structure and complexity supports the study of
more complex nurse rostering problems arising in practice.
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