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Abstract. The multiaxial plastic deformation behavior of a cold rolled interstitial-free steel sheet with 
a thickness of 0.65 mm was measured using a servo-controlled multiaxial tube expansion testing 
machine for the range of strain from initial yield to fracture. Tubular specimens were fabricated from 
the sheet sample by roller bending and laser welding. Many linear stress paths in the first quadrant of 
stress space were applied to the tubular specimens to measure the contours of plastic work in stress 
space up to an equivalent plastic strain of 0.289 along with the directions of plastic strain rates. The 
test material exhibited differential hardening (DWH). A material modeling method for reproducing 
the DWH in a finite element simulation has been developed. Hydraulic bulge forming simulation 
results based on the DWH model had a closer agreement with the experimental results than those 
calculated using the isotropic hardening models with selected yield functions. 

Introduction 

In sheet metal forming simulations the effect of yield functions on the predictive accuracy of 

material deformation behavior is significant [1, 2]. One of the authors developed a biaxial tensile 

testing method for sheet metals using a cruciform specimen [3, 4] and demonstrated that it is 

necessary to select appropriate yield functions for the sheet samples to obtain accurate finite element 

analysis (FEA) results for hole expansion [5, 6], shallow shell drawing of an automotive body panel 

[7] and hydraulic bulge forming [8].  

One of the authors investigated the work hardening behavior of pure titanium sheet using biaxial 

tensile tests using cruciform specimens and tubular specimens [9]. Tubular specimens were fabricated 

by bending the sheet sample into a constant curvature and welding the sheet edges together, and 

combined internal pressure and axial load were applied to the tubular specimens using a 

servo-controlled multiaxial tube expansion testing machine [10]; henceforth, we refer to this testing 

method as Multiaxial Tube Expansion Testing method (MTET). Consequently, contours of plastic 

work in a principal stress space were successfully measured up to a work equivalent plastic strain, p

0 , 

of 0.085, while p

0  was only 0.002 for the biaxial tensile tests using cruciform specimens. More 

recently, the MTET was applied to a precipitation hardening steel sheet with a tensile strength of 590 

MPa, and contours of plastic work were successfully measured for a strain range of p

0  0.16 [11]. 

In these MTET experiments the tests had to be interrupted several times to change strain gauges. In 

order to overcome this problem, the author's research group has developed a new strain measurement 

apparatus using extensometers for tubular specimens [12]. Many linear stress paths in the first 

quadrant of stress space were applied to the tubular specimens made of a ultralow carbon steel sheet, 

and the forming limit curve (FLC) and forming limit stress curve (FLSC) were successfully measured. 

In this study, the MTET is applied to a cold rolled interstitial-free steel sheet. A material model for 

reproducing the differential work hardening (DWH) of the test sample in a finite element analysis 

(FEA) has been developed. In addition, hydraulic bulge forming experiments and simulations has been 

performed to investigate the effects of material models on the accuracy of the forming simulation results. 



 

Experimental Methods 

Test Material. The test material used in this study was a cold rolled interstitial-free steel sheet 

(SPCD in JIS) with a thickness of 0.65 mm. The work hardening characteristics and r-values at 0, 

45 and 90 (transverse direction; TD) to the rolling direction (RD) are listed in Table 1. The RD, TD 

and the thickness directions of the material are defined as the x-, y- and z-axes, respectively. 

 

Table 1 Mechanical properties of the test material (SPCD) 

Tensile direction [] 0.2  [MPa] c* [MPa] n* * r-value** 

0 (x) 158 541 0.249 0.0036 1.34 

45 162 550 0.262 0.0053 1.13 

90 (y) 159 535 0.260 0.0051 1.50 
*Parameters for Swift’s hardening law, p( )nc    , for a strain range of 0.002 p  0.248(0°), 0.254(45°), 

0.259(90°). 
**Measured at nominal strain N   0.10. 

 

Specimens for Biaxial Tensile Tests. Two types of biaxial tensile tests were performed to 

measure the plastic deformation behavior of the test material from initial yield up to fracture. Fig. 1 

(a) shows a schematic of the cruciform specimen used for the biaxial tensile test of the as-received 

sheet sample. The geometry of the specimen was the same as that used in [3]. The specimen arms 

were parallel to the RD and TD of the material. The slits were fabricated by laser cutting. 

Normal strain components ( , )x y   were measured using uniaxial strain gauges (YFLA-2, Tokyo 
Sokki Kenkyujo Co.) mounted at 21 mm from the center along the maximum loading direction. 
According to the FEA of the cruciform specimen with the strain measurement position shown in Fig. 
1(a), the stress measurement error was estimated to be less than 2% [13][14]. Details of the biaxial 
testing apparatus and test method are given in [3]. 

Fig. 1(b) schematically shows the tubular specimen used for the multiaxial tube expansion tests. 
The specimens were fabricated by bending the sheet sample into a cylindrical shape with an inner 
diameter of 54 mm and laser-welding the sheet edges together. Two types of tubular specimens were 
fabricated; type I specimen had the RD in the axial direction and type II specimen had the RD in the 
circumferential direction. Type I specimens were used for tests with x y   and type II for tests with 

x y  ; the maximum principal stress direction was always taken to be in the circumferential 
direction. 

Experimental Apparatus for Multiaxial Tube Expansion Test. Fig. 2 (left) shows a schematic 

diagram of the servo-controlled tension-internal pressure testing machine developed by the author's 

research group. An axial load T and internal pressure P are applied to a tubular specimen by a 

hydraulic cylinder and a pressure booster, respectively, and the circumferential and axial strains,   
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Fig. 1 Specimens used for the biaxial tensile tests (dimensions in mm): (a) cruciform specimen and 

(b) tubular specimen.   indicates the RD of the original sheet sample. 



 

and  , at the mid-section of the bulging specimen and the radius of axial curvature R  are measured 

simultaneously. The axial and circumferential stresses,   and  , at the mid-section of the bulging 

specimen can be calculated as the values at the mid wall using the following equations based on the 

equilibrium requirements at the center of the specimen: 
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Fig. 2 (right) shows schematic diagrams of the experimental apparatus for measuring the 
circumferential strain  , the radius of axial curvature R  at the bulging area, and the axial strain   at 
the mid-section of the bulging specimen to enable continuous measurement of the biaxial stress-strain 
curves,  -   and  -  , of a tubular specimen for a large strain range. The details of the feedback 
circuit for controlling the true stress paths can be found in [12]. 

Measurement of Contours of Plastic Work. Both cruciform and tubular specimens were 
subjected to proportional loading with true stress ratios :x y   4:1, 2:1, 4:3, 1:1, 3:4, 1:2 and 1:4. A 
standard uniaxial tensile specimen (JIS 13 B-type) was used for the uniaxial tensile tests with 

:x y   1:0 and 0:1. True stress increments were controlled and applied to the specimens so that the 
von Mises equivalent plastic strain rate became approximately constant at 5 10

-4
 s

-1
 for all stress 

paths. Two specimens were used for each stress ratio. 
The concept of the contour of plastic work in stress space [15, 16] was introduced in order to 

evaluate the work hardening behavior of the test material under biaxial tension. The stress-strain 
curve obtained from a uniaxial tensile test along RD was selected as a reference datum for work 
hardening; the uniaxial true stresses 0  and the plastic work per unit volume W0 corresponding to 
particular values of offset true plastic strains p

0  were determined. The uniaxial true stress 90  
obtained from a tensile test in TD and the biaxial true stress components  ,x y   obtained from 
biaxial tensile tests were then determined at the same plastic work as W0. The stress points  0 ,0 , 

 900,  and  ,x y   thus plotted in the principal stress space comprise a contour of plastic work 
corresponding to a particular value of p

0 . 

The stress-strain curves measured from the biaxial tensile tests of the tubular specimens were offset 

and smoothly connected to those measured using the cruciform specimens to compensate the effect of 

prestrain caused by bending, using the same method as described in [12]. 
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Fig. 2 (Left) A schematic diagram of the servo-controlled tension-internal pressure testing machine 

used for multiaxial tube expansion test. (Right) Schematic diagram of the strain measurement 

apparatus used for the multiaxial tube expansion test method [12]. Sensors for measuring (a) 

circumferential strain  , (b) the radius of curvature R  in the axial direction, and (c) axial strain  . 



 

Experimental Results of Biaxial Stress Tests 

Fig. 3 shows the measured stress points forming contours of plastic work for different levels of p

0 ; 

in Fig. 3(b) the stress values are normalized by 0  associated with the specific value of p

0 . For 

:  x y 1:1, fracture occurred at a weld line of the tubular specimens; therefore, a hydraulic bulge 

test was performed to measure the work hardening behavior for the strain range of p

0  0.13. Also 

depicted in the figures are the theoretical yield loci based on the von Mises, Hill’s quadratic (Hill ’48) 

[16], and the Yld2000-2d yield function with exponents of M [17]. The work contours normalized by 

0  show a tendency of expansion in the direction of :x y  1:1 with the increase of p

0  for p

0  0.20, 

while the shapes are almost similar (isotropic hardening) for p

0  0.15. 

Fig. 4 shows the variation of the material parameters i  and exponent M of the Yld2000-2d yield 

function with p

0 . The values of i  and M show a relatively large variation for p

0  0.03, while they 

are almost constant (isotropic hardening) for p

0  0.03. 

Hydraulic Bulge Forming Experiment and Finite Element Simulation 

Hydraulic bulge tests were performed to quantitatively evaluate the effect of the material models on 

the predictive accuracy of sheet metal forming simulations. Fig. 5(a) shows the experimental 
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Fig. 3 (a) Measured stress points forming contours of plastic work for different levels of p

0 , and (b) 

those normalized by the uniaxial tensile flow stress 0  associated with p

0 . 
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Fig. 4  Variation of the material parameters i  and an exponent M of the Yld2000-2d yield function 
with p

0 . 



 

apparatus used for the hydraulic bulge forming. The diameter of the die opening was 150 mm, the die 

profile radius was 8 mm, and the blank diameter was 220 mm. The material flow-in was fixed at zero 

along the boundary of a 190 mm diameter using a triangular draw-bead. No lubricant was used at the 

interface between the blank and die surface. 

Using IVIEW which is an application software attached to ARAMIS®, measured data can be 

incorporated into the feedback control circuit. In ARAMIS®,  nominal strains for each direction are 

calculated using the distance between the two facets, whose initial distance (gauge length) is about 15 

mm. The hydraulic pressure P was controlled so that the equivalent plastic strain rate was kept 

approximately constant, 10
-4

 s
-1

). 

FEA simulations of the hydraulic bulge forming were carried out using Abaqus/Standard 

Ver.6.12-3. One quarter of a circular blank was analyzed due to the orthotropic symmetry of the 

material. The blank diameter was 190 mm and the nodal displacement along the periphery of the 

blank was fixed to zero, because the radial position of the draw-bead in the die used in the experiment 

was 95 mm. 4-node shell elements, S4R, were used. A surface-to-surface contact condition of the 

blank to the die was selected with a blank holding force of 60 kN and a friction coefficient of 0.3. 

The yield functions used in the FEA were the von Mises and Hill’s quadratic [16] yield functions 

shown in Fig. 3 (a), and the Yld2000-2d yield function [17] approximating the work contour for 
p

0  0.289 with isotropic hardening assumption and the Yld2000-2d yield function taking account for 

the DWH of the test sample, see Fig. 4. Work hardening was described by Swift’s hardening law (see 

Table 1) fitted to the available pre-necking data obtained from a standard tensile test in the rolling 

direction. 

Results and discussion 

Fig. 5 (b) shows the measured true thickness strain-pressure curve with the FEA results. The von 

Mises and Hill ’48 yield functions underestimate the maximum pressure, while the Yld2000-2d yield 

function with DWH shows the closest agreement with the measurement. The difference of the 

calculated curves between the Iso and DWH models for the Yld2000-2d yield function is small. This 

result is consistent with the fact that the test material exhibits isotropic hardening for p

0  0.03, as 

shown in Fig. 4. 

 The Yld2000-2d yield function slightly underestimates the pressure for a strain range of 0.6 z . 

This is possibly due to the fact that the work hardening equation used in the FEA was determined for a 

strain range of 0.002 p  0.248 (see Table 1), which is quite smaller than the total plastic strain, 
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Fig. 5 (a) A schematic view of the hydraulic bulge test using a digital image correlation system for 

strain measurement. (b) The measured true thickness strain-pressure curve with the FEA results. 



 

0.6 z , applied to the sheet sample in the bulge forming experiment. An accurate modeling of the 

DWH of the test material for a strain range of 0.25 p  0.6 would be necessary to obtain more 

accurate FEA results. Work along these lines is currently conducted [18]. 
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