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Abstract

This paper explores the use of claim specific characteristics, so–called claim markers, for
loss reserving with individual claims. Starting from the approach of Rosenlund (2012) we
develop a stochastic Reserve by Detailed Conditioning (‘RDC’) method which is applicable
to a micro–level data set with detailed information on individual claims. We use historical
simulation to construct the predictive distribution of the outstanding loss reserve by simu-
lating payments of a claim, given its claim markers. We explore how to incorporate different
types of claim specific information when simulating outstanding loss reserves, and evaluate
the impact of the set of markers and their specification on the predictive distribution of the
outstanding reserve. We demonstrate the performance of the method on a portfolio of general
liability insurance policies for private individuals from a European insurance company.

Keywords: claims reserving, micro-level loss reserving, claim characteristics, historical simula-
tion.

1 Introduction

To be able to fulfill future liabilities, insurance companies set reserves for incurred claims which
are not finalized at the moment of evaluation. Traditional reserving methods compress large data
sets with information on the development of individual claims into small sample designs, the
so–called run–off triangles (see England and Verrall (2002) and Wüthrich and Merz (2008)). As
such, triangular reserving methods ignore detailed information on the policyholder, the claim and
its development so far. Recently, the necessity and appropriateness of the use of run–off triangles
has been challenged. Building upon the fundamental work by Norberg (1993), Haastrup and
Arjas (1996) and Norberg (1999), Antonio and Plat (2014) model the development of individual
claims in continuous time. Drieskens et al. (2012), Rosenlund (2012) and Pigeon et al. (2013)
work in discrete time and aggregate payments per development time period (e.g. a development
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year), while keeping the claim specific run–off viewpoint. Verrall et al. (2010), Mart́ınez Miranda
et al. (2011) and Mart́ınez Miranda et al. (2012) extend the traditional chain–ladder framework
towards the use of extra data sources.

Starting point of this paper is the ‘Reserve by Detailed Conditioning’ (RDC) method, as intro-
duced by Rosenlund in 2012, see Rosenlund (2012). RDC - in its original specification - is a
deterministic reserving method, designed for individual claims in discrete time. A remarkable
and innovative aspect of the method is its ability to condition on claim characteristics (here
called ‘claim markers’ ), which are used for identification or clustering of similar claims. Con-
ditional on a specific set of claim markers, a best estimate for the reserve attached to an open
claim is obtained from the observed, historical development of claims from the same cluster,
hence with similar characteristics.

We develop our own stochastic version of the RDC approach, starting from the Rosenlund (2012)
paper. Moreover, while Rosenlund (2012) only considers simulated data, we evaluate the perfor-
mance of the stochastic RDC through an extensive case–study. The stochastic RDC simulates
the future development of outstanding liabilities, conditional upon a selection of claim markers.
Examples of such markers are the observed reporting delay and the censored observations of cu-
mulative payment and settlement delay. It offers a flexible, generic framework, which can easily
be adjusted or extended to - for example - other types of claim markers, like case estimates.
We use the technique of historical simulation to obtain a predictive distribution of the reserve.
Historical simulation is used in finance e.g. to estimate the Value-at-Risk of a portfolio (see Hull
(2012), Chapter 14, pages 303–322). In the context of claims reserving, Drieskens et al. (2012)
apply historical simulation in reserving with individual, large claims. Our paper integrates the
approach of Drieskens et al. (2012) with the conditioning idea from Rosenlund (2012).

We demonstrate the performance of the original, deterministic RDC as well as our extensions
on a portfolio of general liability insurance policies for private individuals from a European
insurance company. Antonio and Plat (2014) and Pigeon et al. (2013) use the same data set. A
back test illustrates the predictive power of the technique.

The paper is organized as follows. In section 2 we describe the structure of our data and
the claim markers used in the paper. Section 3 describes the historical simulation approach.
Section 4 presents the results of applying the stochastic RDC method to a general liability data
set, including a sensitivity analysis. We end in section 5 with a conclusion and an outline of
future work.

2 A micro-level data set with information on claim markers

2.1 Structure of the data

2.1.1 An individual claim in discrete time

Starting point is a data set with the development of individual claims in continuous time. We
discretize the available information and work with discrete time periods. The occurrence period
of claim k is i(k) ∈ {1, · · · , n}. j ∈ {1, · · · , n} denotes the development period, where the first
development period coincides with the period of occurrence. We denote the reporting delay for
claim k with W (k), which is the development period during which reporting is registered (or, the
waiting-for-reporting period). Analogously, we denote the finalization period with F (k). The
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sum of all payments made in development period j is Y (k, j), where j = 1, . . . , F (k). Using this
notation we summarize claim k as (Rosenlund, 2012)

{i(k),W (k), F (k), Y (k, 1), · · · , Y (k, F (k))}. (1)

A claim reported in its period of occurrence has W (k) = 1. If the claim also closes in the same
period, its finalization period, F (k), is also 1. The information in (1) is fully observed for a
settled (or: closed) claim, but is censored for open claims.

We illustrate this notation in Table 1. Starting point of the first occurrence period is 01/01/1997
and one year periods are considered. The claim in Table 1 occurs in 1997, thus i(k) = 1.
Reporting takes place in 1998, thus W (k) = 2, and the claim settles in 2002, thus F (k) =
2002− 1997 + 1 = 6.

Event Date Our Notation

Accident 05/17/1997 i = 1

Reporting 02/02/1998 W (k) = 2

Cash flow e200 11/24/1998 Y (k, 2) = 200

e150 02/08/1999
Y (k, 3) = 250

e100 05/11/1999

Y (k, 4) = 0

e50 02/23/2001 Y (k, 5) = 50

Y (k, 6) = 0

Closing 03/13/2002 F (k) = 6

Table 1: Illustration of occurrence, reporting, claim payments and settlement as registered in continuous
time for individual claims (first three columns). In column 4 we demonstrate the discrete time
notation used in this paper. This is a fictional claim.

2.1.2 A micro-level data set in discrete time

At portfolio level the data structure from Section 2.1.1 creates the design in Table 2. This table
is a loss ‘triangle’ at micro–level and replaces the traditional run-off triangles. Each row in the
table corresponds to a claim reported in the data set.

We denote the number of fully observed occurrence periods in the data set by n. The moment of
evaluation of the portfolio is at the end of the nth occurrence period and the start of occurrence
period n+1. For claim k the maximum number of observed development periods is n− i(k)+1.

2.2 Claim markers

Following Rosenlund (2012) we determine reserves by conditioning on claim specific informa-
tion, i.e. so-called claim markers. These markers summarize information registered during the
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i Claim ID Development period j

1 2 3 · · · n− 1 n

1
c1,1 Y (c1,1, 1) Y (c1,1, 2) Y (c1,1, 3) · · · Y (c1,1, n− 1) Y (c1,1, n)

c1,2 Y (c1,2, 1) Y (c1,2, 2) Y (c1,2, 3) · · · Y (c1,2, n− 1) Y (c1,2, n)
...

...

2 c2,1 Y (c2,1, 1) Y (c2,1, 2) Y (c2,1, 3) · · · Y (c2,1, n− 1)

c2,2 Y (c2,2, 1) Y (c2,2, 2) Y (c2,2, 3) · · · Y (c2,2, n− 1)
...

...
...

...
...

...
...

...

n cn,1 Y (cn,1, 1)

cn,2 Y (cn,1, 1)
...

...

Table 2: Micro–level data set.

development of a claim. They allow for the identification of similar claims. In this work we
consider the (bounded) claim length, the last observed (binned) cumulative payment and the
(bounded) reporting delay as claim markers.

2.2.1 Claim length

As in Rosenlund (2012), we denote the length of claim k by L(k) and define

L(k) = F (k)−W (k) + 1. (2)

We measure the length of a claim as the number of periods starting from and including the period
of reporting until the closure of the claim. For the example in Table 1, L = 2002−1998 + 1 = 5.
Three types of claims can be identified using the combined information on reporting delay (i.e.
W (k)) and claim length (i.e. L(k)):

� for a reported and closed claim (closed)

W (k) 6 n− i(k) + 1 and L(k) 6 n− i(k)−W (k) + 2,

� for a reported, but not settled claim (RBNS)

W (k) 6 n− i(k) + 1 and L(k) > n− i(k)−W (k) + 2,

� for an incurred, but not reported claim (IBNR)

W (k) > n− i(k) + 1.
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The length of an RBNS claim is not observed, but censored at the moment of evaluation. An
open claim from occurrence period i(k), reported in period W (k), has a claim length that is
right censored at n− i(k)−W (k) + 2. We identify

Lmin(k) = n− i(k)−W (k) + 2 (3)

as the length observed at the time of censoring.

In this paper we do not consider the development of a claim beyond the triangle boundary. It
is however straightforward to incorporate a tail factor in our reserving method.

2.2.2 Cumulative payments

Following Rosenlund (2012) we define a time index t with values in {0, 1, · · · , n}. t expresses the
number of periods evolved, starting from and including the period of reporting. t = 1 corresponds
to the period of reporting itself and t = 0 indicates that no history is available, that is the claim
is not reported yet. H(k, t) is the cumulative paid amount for claim k, up to and including
period t since reporting. That is

H(k, t) =
t∑

h=1

Y (k, h+W (k)− 1). (4)

When t = L(k), H(k, L(k)) is the ultimate loss for claim k, which is only observed for closed
claims. At the moment of evaluation t = n − i(k) −W (k) + 2 for an observed claim k. For an
RBNS claim H(k, n− i(k)−W (k) + 2) is the last observed cumulative payment at the moment
of evaluation. For an IBNR claim t = 0 at the moment of evaluation and H(k, 0) = 0. For the
example in Table 1

H(k, 1) = 200, H(k, 2) = 450, H(k, 3) = 450, H(k, 4) = 500, H(k, 5) = 500. (5)

X X
h0 h1 h2 h3 h4

1 2 3 4

Figure 1: Quantile binning

Quantile binning. As in Rosenlund (2012) we use
quantile binning to discretize a claim’s information flow
on cumulative payments. The number of quantiles q0
in the binning is fixed beforehand and independent of
the period since reporting t. At t we consider the
set of cumulative payments H(·, t) for all claims still
open at t, thus with L > t. This set of cumulative
payments is binned in q0 intervals with the empiri-

cal
{

1
q0
, 2
q0
, · · · , q0q0

}
· 100% quantiles of the distribu-

tion of H(·, t) as borders. We denote these boundaries
as {ht,1, ht,2, · · · , ht,q0}, and create the following bins:
[0, ht,1], · · · , (ht,q0−1, ht,q0 ]. The claim marker express-
ing the cumulative paid amount for claim k at t is a
label, say Qt(k), indicating the interval to which H(k, t) belongs. That is

Qt(k) = quantile interval number of H(k, t) with L(k) > t, (6)

Qt(k) ∈ {1, · · · , q0}.
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for t > 0. When t = 0 the claim has not been reported yet, thus there is no information on
the cumulative payments. Consequently, Q0(k) = 1. Quantile binning is illustrated in Figure 1,
where the empirical pdf of H(., t) (for given t) is split into intervals [0, ht,1], (ht,1, ht,2], (ht,2, ht,3]
and (ht,3, ht,4]. The claim marker associated with an observed h(k, t) is then qt(k) such that
ht,qt(k)−1 < h(k, t) 6 ht,qt(k).

Zero payments. In the presence of many observed zero cumulative payments some of the
boundaries in {ht,1, ht,2, · · · , ht,q0} can coincide at 0. When this happens, our approach creates
a separate label for all cumulative payments equal to zero. For example, say q0 = 4 and
boundaries are {h2,1, h2,2, h2,3, h2,4} where h2,1 = h2,2 = 0. We then create the bins: [0, 0],
(0, h2,3] and (h2,3, h2,4], with labels respectively ‘1’, ‘2’ and ‘3’.

2.2.3 Late payments, long reporting delay and long development

To avoid the construction of very small, almost empty, clusters we identify upper bounds ω0, τ0
and λ0 and define

• as in Rosenlund (2012): claims with ‘long reporting delay’, as claims with W (k) > ω0;

• ‘long developing’ claims as claims for which L(k) > λ0;

• ‘late payments’ as payments taking place in period t since reporting where t > τ0.

This changes our claim markers in the following way:

� the bounded reporting delay Wb(k) = min{W (k), ω0};

� the bounded claim length Lb(k) = min{L(k), λ0};

� in the historical simulation method, for claims with the same markers, we consider the
payments at time t since reporting Y (·, t+W − 1) for t > τ0 as a single group.

3 Stochastic Reserving by Detailed Conditioning using histori-
cal simulation

We use claim specific information in the reserving process, through the creation of claim markers
as discussed in Section 2.2. However, in contrast to the deterministic approach in Rosenlund
(2012), our approach is stochastic and uses historical simulation. We do not repeat the determin-
istic RDC approach here, but interested readers should consult Rosenlund (2012) (Appendix,
pages 22–29).

3.1 Simulating claim length

In this subsection we suppress index k for ease of notation. At period t since reporting the
distribution of claim length L|L > t, conditional on markers Qt and Wb, is given by

p(λ; q, w, t) := P (L = λ|L > t,Qt = q,Wb = w) (7)
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for
0 6 t 6 n− w t+ 1 6 λ 6 n− w + 1.

Therefore, with probability p(λ; q, w, t) the claim length is λ, given that the claim is open since
t periods (starting from and including reporting), the last observed cumulative payment is in
the qth interval and the bounded reporting delay equals w. We define the one-step variant of
p(λ; q, w, t) as

r(λ; q, w, t) := P (L = λ|L > λ,Qt = q,Wb = w) , (8)

such that (see Rosenlund, 2012)

p(λ; q, w, t) =

(
λ−1∏

m=t+1

[1− r(m; q, w, t)]

)
· r(λ; q, w, t). (9)

We estimate the probabilities defined by (8) using maximum likelihood. The corresponding
likelihood function is

r(λ; q, w, t)I
F (λ;q,w,t) · (1− r(λ; q, w, t))J(λ;q,w,t)−I

F (λ;q,w,t), (10)

where

IF (λ; q, w, t) = number of finalized claims with L = λ given Qt = q and Wb = w

J(λ; q, w, t) = number of reported claims with L > λ given Qt = q and Wb = w.

Consequently, we set

{
r̂(n− w + 1; q, w, t) = 1

r̂(λ; q, w, t) = IF (λ;q,w,t)
J(λ;q,w,t) if λ < n− w + 1.

(11)

where the claim length is restricted to the triangle boundary.

The probabilities p (see (7)) allow simulation of the length of an open claim, conditional on its
observed claim markers. We denote the simulated claim length for claim k by Ls(k). For an
RBNS claim k we use t = n − i(k) −W (k) + 2 = Lmin(k), i.e. the latest period observed. We
(obviously) condition on the claim’s most recent information when simulating the length. Thus,
we use the probabilities

p̂
(
λ;QLmin(k)(k),Wb(k), Lmin(k)

)
.

No information is available for an IBNR claim, and therefore t = 0. Drieskens et al. (2012) use
r instead of p probabilities and do not condition on claim characteristics.

3.2 Simulating claim development

Consider an open claim k with latest period observed t = n − i(k) −W (k) + 2 and simulated
claim length Ls(k). To simulate the development of this claim (until closing) we define a set of
historical claims with the same characteristics. We identify the claims which have

� the same bounded (simulated) claim length Lsb(k) = min{Ls(k), λ0};



3 Stochastic Reserving by Detailed Conditioning using historical simulation 8

� the same bounded reporting delay Wb(k);

� the same quantile number Qn−i(k)−W (k)+2(k), at the same time period since reporting.

The claim markers are used as static information. Therefore, we do not adjust them throughout
the simulation process. The selected group of claims contains open as well as closed claims at
the date of evaluation. From this group (or: cluster of claims), we simulate the future, unknown
payments of claim k, i.e. the Y (k,W + t − 1)’s with t ∈ {Lmin(k) + 1, · · · , Ls(k)}. Within
the cluster we assume independent and identically distributed payments Y (·,W + t− 1). When
t < τ0 we simulate a future payment for claim k, say Y (k,W +t−1), from all observed payments
in the cluster, paid t periods since reporting. If t > τ0 we simulate from all observed payments
paid τ0 periods since reporting, or later.

3.3 Simulating the future development of RBNS and IBNR claims

3.3.1 RBNS claims

The outstanding loss for an RBNS claim k is

H(k, L(k))−H(k, n− i(k)−W (k) + 2) =

L(k)∑
h=n−i(k)−W (k)+3

Y (k, h+W (k)− 1). (12)

Let KRBNS denote the number of RBNS claims in the data set. The corresponding RBNS reserve
is

RRBNS =

KRBNS∑
k=1

H(k, L(k))−H(k, n− i(k)−W (k) + 2), (13)

where the index k runs over all RBNS claims in the data set. Using historical simulation the
predictive distribution of this reserve is obtained from the following steps:

1. conditional on the claim markers (i.e. Qn−i(k)−W (k)+2, Wb(k)), simulate the claim length
Ls(k) for an open claim k using the distribution specified in Section 3.1;

2. for every RBNS claim k simulate the remaining payments until triangle boundary

Yn−i(k)−W (k)+3, · · · , Ymin(Ls(k),n−W (k)+1),

conditional on the claim markers, namely the bounded simulated claim length Lsb(k),
the bounded reporting period Wb(k) and the latest observed quantile interval number
Qn−i(k)−W (k)+2(k);

3. repeat steps 1. to 2. to obtain a distribution of the RBNS reserve.
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3.3.2 IBNR claims

Number of IBNR claims. We follow the approach from Pigeon et al. (2013) to simulate the
number of IBNR claims per occurrence year i and reporting delay W (with values in {n − i +
2, · · · , n} for i > 2). The number of claims from occurrence period i is Poisson distributed with
parameter θ · w(i), where w(i) is an exposure measure for occurrence year i. Following Pigeon
et al. (2013), we estimate the reporting delay using a geometric distribution with a degenerate
component. We thin the Poisson process by taking the reporting delay into account. For further
details we refer to Pigeon et al. (2013).

IBNR Reserve. For an IBNR claim k the outstanding loss is

H(k, L(k))−H(k, 0) = H(k, L(k)). (14)

Let KIBNR denote the number of IBNR claims. The corresponding IBNR reserve is

RIBNR =

KIBNR∑
k=1

H(k, L(k))−H(k, 0) =

KIBNR∑
k=1

H(k, L(k)), (15)

where k indicates an IBNR claim. Using historical simulation the predictive distribution of this
reserve is obtained from the following steps:

1. simulate the number of IBNR claims per occurrence year i and reporting delay W (with
values from n− i+ 2 to n).

2. simulate the claim length and the development for every IBNR claim; use the approach
outlined for RBNS claims in Section 3.3.1.

4 Results

The implementation in R of the deterministic RDC method and the stochastic RDC method is
available online 1. We illustrate the stochastic RDC method on a data set from insurance prac-
tice. The data have been used in Antonio and Plat (2014) and Pigeon et al. (2013). We perform
a back test to evaluate the predictive power of the reserving method. A sensitivity analysis
with respect to the chosen claim markers is included. Results obtained with the deterministic
RDC method (as introduced by Rosenlund (2012)) and the Over Dispersed Poisson (‘ODP’)
chain–ladder method are reported as benchmark.

4.1 The data

We consider a portfolio of general liability insurance policies for private individuals, with obser-
vation period January 1997 until August 2009. Data from January 1997 up to and including
December 2004 are used as training set, data observed after 2004 are used as validation set. The
data set contains two types of payments, which we study separately, namely Bodily Injury (BI)
and Material Damage (MD) payments. A claim can have both a BI and an MD component.

1http://www.econ.kuleuven.be/els.godecharle

http://www.econ.kuleuven.be/els.godecharle
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In this case, both components are analyzed separately. The training data set contains 4,483 BI
claims and 224,836 MD claims of which 3,452 and 220,730 claims, respectively, are closed at the
moment of evaluation. Payments in the data set are adjusted for inflation to 01/01/1997 using
the appropriate consumer price index. We assume that all payments, conditional on the claim
markers, are independent and identically distributed.

We discretize the development time line, using one year periods starting from 01/01/1997 and
running until 12/31/2004.

4.2 Descriptive statistics

In Table 3 and 4 we display the incremental run-off triangles for respectively the BI and MD
claims.

Arrival Development year
year 1 2 3 4 5 6 7 8

1997 261 614 359 526 546 137 130 339
1998 202 473 307 336 269 56 179 78
1999 238 569 393 270 249 286 132 97
2000 237 557 429 496 406 365 247 275
2001 389 628 529 559 446 375 147 239
2002 260 570 533 444 132 122 332 1,082
2003 236 743 558 237 217 205 171
2004 248 794 401 236 254 98

Table 3: Incremental run-off triangle for BI (in thousands). The observed aggregate payments from the
validation data set are in bold.

Arrival Development year
year 1 2 3 4 5 6 7 8

1997 4,427 992 89 13 39 27 37 11
1998 4,389 984 60 35 76 24 0.6 16
1999 5,280 1,239 76 110 113 12 0.4 0
2000 5,445 1,164 172 16 6 10 0 10
2001 5,612 1,838 156 127 13 3 0.4 3
2002 6,593 1,592 74 71 17 15 9 9
2003 6,603 1,660 150 52 37 18 3
2004 7,195 1,417 109 86 39 15

Table 4: Incremental run-off triangle for MD (in thousands). The observed aggregate payments from
the validation data set are in bold.

Time dynamics Table 5 shows the empirical distribution of the reporting delay W . The
majority of the claims is reported in the occurrence year or the year after.

Table 6 summarizes the empirical distribution of claim length L. As expected, BI claims need
more time to settle than MD claims. Figure 2 represents this information graphically in a
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W 1 2 3 4 5 6 7 8

BI 4,077 332 46 13 9 6 0 0

MD 216,906 7,764 127 23 9 7 0 0

Table 5: Frequencies of observed W ’s for BI and MD claims.

histogram. In total, 23.00% of the reported BI claims are censored at the date of analysis,
whereas 1.83% of the reported MD claims are censored at the moment of evaluation.

0

500

1000

2 4 6 8
L

co
un

t

0

50000

100000

150000

200000

2 4 6 8
L

co
un

t

Figure 2: Histogram of the observed claim lengths for BI (left) and MD (right)

L 1 2 3 4 5 6 7 8 ] observed lengths

BI 1,337 1,392 414 173 81 36 15 4 3,452

29.82% 31.05% 9.23% 3.86% 1.81% 0.80% 0.33% 0.09% 77.00%

MD 198,426 21,091 757 199 77 123 20 37 220,730

88.25% 9.38% 0.34% 0.09% 0.03% 0.05% 0.01% 0.02% 98.17%

Table 6: Number of observed L for BI and MD claims. For example, 1,337 of 4,483 reported BI claims
(i.e. 29.82%)are observed to close with L = 1.

Payments We now consider the empirical distribution of payments at period t since reporting,
Y (·,W + t − 1). Table 7 displays the percentage of zero payments for t = 1, 2,> 3 conditional
on the observed value of reporting delay W .

Table 8 displays a selection of summary statistics on the observed payments per period t since
reporting.
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t W = 1 W = 2 W > 3

1 38.78% 39.76% 50%

2 31.98% 37.11% 53.45%

> 3 48.87% 43.95% 57.14%

(a) BI

t W = 1 W = 2 W > 3

1 25.41% 17.62% 48.80%

2 29.23% 57.76% 75.61%

> 3 85.90% 80.00% 86.11%

(b) MD

Table 7: Percentage of zero payments for different values of reporting delay W .

period t since reporting 1 2 3 > 4

BI payments

] observed 4,483 2,669 1,071 1,046

Minimum 0 0 0 0

Maximum 143,247.9 112,824.8 212,167.4 351,859.6

Mean 575.50 1,787.58 2,346.40 3,533.06

Median 89.06 281.01 99.99 0

95% quantile 2,411.91 8,340.17 10,814.06 18,648.53

% of zero payments 39.04% 32.82% 44.44% 53.06%

MD payments

] observed 224,836 22,872 1,489 1,408

Minimum 0 0 0 0

Maximum 153,816.3 174,387.3 105,113.6 872,32.36

Mean 212.04 328.40 356.17 405.60

Median 81.22 126.33 0 0

95% quantile 801.05 1,115.60 1,197.31 271.86

% of zero payments 25.16% 29.66% 78.71% 93.04%

Table 8: Summary statistics of observed payments.

4.3 Results

4.3.1 Predictive distribution of the reserve

Parameters ω0, q0, τ0 and λ0. We determine the parameters ω0, q0, τ0 and λ0 based on the
descriptive statistics reported in Section 4.2. For ω0 we assume, see Table 5, that (for BI and
MD) a claim is reported late if W > 3. We set ω0 = 3. The second parameter is the number
of quantile intervals q0 used in the quantile binning of the cumulative payments H(·, t). We
distinguish small, moderate and large cumulative payments. Therefore, we choose q0 = 3. From
Table 6 we conclude that BI, respectively MD, claims with length L > 4 and L > 3 have a long
claim development. Therefore we set λ0 = 4 and 3, respectively. We use τ0 6 λ0, such that the
last payments of claims with a long development are also late payments. Based on the statistics
in Table 8 we set τ0 = 3 for both BI and MD claims.
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Simulated distribution We calculate reserves using the stochastic RDC method, the deter-
ministic RDC method by Rosenlund (2012) and the bootstrap Over Dispersed Poisson chain–
ladder method.

Figures 3 and 4 show the IBNR, RBNS and total reserve for BI and MD claims, as obtained from
the stochastic RDC method with parameters ω0, q0, τ0 and λ0 chosen upfront. These reserves
predict the complete lower triangle in Tables 3 and 4. As a benchmark, Figures 3 and 4 display
the outstanding loss reserve calculated from the validation data set (i.e. the numbers in bold
in the run-off triangles in Tables 3 and 4). Recall that our data set contains observations until
August 2009. Thus, we do not observe the complete run-off triangle. As discussed in Antonio
and Plat (2014) and Pigeon et al. (2013) the lower triangle for Bodily Injury (see Table 3) shows
an extreme payment (779,383 euro) in occurrence year 2002, development year 8. The policy
limit of 2.5M Euro is not taken into account in the RDC simulations, though it is straightforward
to incorporate a policy limit in this micro–level approach.
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Figure 3: RBNS (left), IBNR (middle) and total (right) kernel density estimate of the BI reserve dis-
tribution (10,000 simulations). The dotted line in the right plot represents the bootstrap
chain-ladder predictive distribution (10,000 simulations, process distribution: Over Dispersed
Poisson).
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Figure 4: RBNS (left), IBNR (middle) and total (right) kernel density estimate of the MD reserve
distribution (10,000 simulations). The dotted line in the right plot represents the bootstrap
chain-ladder predictive distribution (10,000 simulations, process distribution: Over Dispersed
Poisson).
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Table 9 shows corresponding summary statistics for the stochastic RDC method, the bootstrap
chain-ladder and the deterministic RDC method by Rosenlund (2012). The deterministic RDC
method is using q0 and ω0 as identified for stochastic RDC. The back test developed in this case
study illustrates the good performance of the stochastic RDC method.

Min. 25% quantile Mean Standard dev. 75% quantile Max.

BI IBNR 222 626 794 237 937 2,041

RBNS 5,352 6,915 7,397 678 7,837 11,389

Total 5,841 7,693 8,191 715 8,650 11,975

Bootstrap ODP CL 5,383 8,246 9,133 1,275 9,938 16,723

Deterministic RDC 9,909 = 1,353 (IBNR) + 8,556 (RBNS)

Observed 7,512 = 255 (IBNR) + 7,256 (RBNS)

MD IBNR 375 518 564 70 594 1,132

RBNS 1,453 1,871 2,006 192 2,128 2,907

Total 1,964 2,424 2,570 205 2,697 3,506

Bootstrap ODP CL 1,465 2,716 3,011 419 3,287 4,714

Deterministic RDC 2,485 = 472 (IBNR) + 2,013 (RBNS)

Observed 2,100 = 349 (IBNR) + 1,751 (RBNS)

Table 9: Predictive results (in thousands) stochastic RDC (first three rows of BI and MD), predic-
tive results bootstrap Over Dispersed Poisson chain-ladder (‘ODP CL’) method (fourth row),
deterministic RDC (fifth row) and the observed reserve until August 2009 (sixth row)

For each payment simulated during the routine we store the size of the corresponding clus-
ter. Table 10 displays summary statistics on the sizes of the groups from which payments are
simulated. The selected parameters ω0, q0, τ0 and λ0 lead to reasonable payment group sizes.

IBNR RBNS Total

Minimum 11 3 3

5% quantile 14 37 19

Mean 46.67 382.2 355.5

Median 35 444 391

Maximum 132 612 612

(a) BI

IBNR RBNS Total

Minimum 9 2 2

5% quantile 12 223 24

Mean 3,947 7,700 6,867

Median 7,445 6,038 6,038

Maximum 7,445 14,840 14,840

(b) MD

Table 10: Summary statistics of group sizes from which payments are simulated.
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4.3.2 Sensitivity analysis
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(a) BI, with fixed values q0 = 3, τ0 = 3, λ0 = 4.
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(b) MD, with fixed values q0 = 3, τ0 = 3, λ0 = 4.

Figure 5: Sensitivity of the total reserve with respect to ω0: fixed q0, τ0 and λ0, and ω0 = 1, 3, 7.

Obs
0e+00

2e−07

4e−07

6e−07

6.0e+06 8.0e+06 1.0e+07 1.2e+07

parameter
q_0 = 1
q_0 = 100
q_0 = 3
q_0 = 8

(a) BI, with fixed values ω0 = 3, τ0 = 3, λ0 = 4.
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(b) MD, with fixed values ω0 = 3, τ0 = 3, λ0 = 3.

Figure 6: Sensitivity of the total reserve with respect to q0: fixed ω0, τ0 and λ0, and q0 = 1, 3, 8, 100.

We investigate the sensitivity of the results in Section 4.3.1 with respect to the choice of param-
eters ω0, q0, τ0 and λ0.
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(a) BI, with parameters (τ0, λ0) = (1,1), (3,4),
(8,8).
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(b) MD, with parameters (τ0, λ0) = (1,1), (3,3),
(8,8).

Figure 7: Sensitivity of the total reserve with respect to τ0 and λ0: fixed ω0 = 3 and q0 = 3.

Effect of ω0 Figure 5 shows the density of the total reserve as obtained with different values
of ω0. ω0 equal to 1 implies that reporting delay is not used as claim marker. The influence
of the choice of ω0 on stochastic RDC reserves is limited. Though, the clear difference between
ω0 = 1 and ω0 = 3 or 7 indicates that reporting delay is a relevant claim marker. Table 11
reports similar conclusions for the deterministic RDC method.

Effect of q0 While fixing the choice of ω0, τ0 and λ0, we compare the results obtained with q0
equal to 1 (i.e. no conditioning on the last observed cumulative payment), 3 (our initial choice),
8 and a very high value of 100. The results are in Figure 6. Even though the predicted results of
the stochastic RDC method vary more compared to Figure 5, the influence of q0 (when q0 > 1) is
rather limited. Since IBNR claims do not condition on cumulative paid amount (which is zero for
an IBNR claim), the variations are only due to differences in the predicted RBNS reserves (apart
from simulation differences). The differences between the results with q0 = 1 and q1 = 3, 8, 100
illustrate the relevance of using the cumulative paid amount as a claim marker. The influence
of q0 on the deterministic RDC results is illustrated in Table 11. The impact of changing q0 on
the deterministic RDC reserves is larger than its impact on the stochastic RDC reserves.

Effect of τ0 and λ0 We change these parameters simultaneously since our choice of τ0 depends
on the choice of λ0. Figure 7 compares the reserve distributions obtained with the stochastic
RDC method for various choices of (τ0, λ0). Setting τ0 = λ0 = 1 corresponds to no conditioning
on the claim length Ls(k) and no conditioning on the timing of the payment. On the other
hand, τ0 = λ0 = 8 corresponds to full conditioning. We conclude that conditioning on the
length of the claim and the timing of the payment is relevant. However, from the originally
selected parameters onwards, the results are quite stable. The parameters τ0 and λ0 are not
used in the deterministic RDC specification of Rosenlund (2012).
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Conclusion The stochastic RDC method generates stable results, as illustrated in this sen-
sitivity analysis. To avoid overparametrization and - correspondingly - simulation from very
small clusters, we prefer values of the parameters ω0, q0, τ0 and λ0 which are based on careful
descriptive analysis of the data (as in Section 4.2). The back test results for our case study are
reasonable, and in line with the analysis of Pigeon et al. (2013) of the same data. Moreover, for
this particular example the stochastic RDC outperforms the chain-ladder method.

BI MD

IBNR RBNS Total IBNR RBNS Total

q0 = 3, ω0 = 3 1,352,507 8,556,055 9,908,562 472,022 2,012,754 2,484,776

q0 = 3, ω0 = 1 478,623 9,552,550 10,031,173 393,196 2,040,165 2,433,361

q0 = 3, ω0 = 7 1,479,923 8,532,578 10,012,500 489,384 2,011,747 2,501,131

q0 = 1, ω0 = 3 1,352,507 9,413,110 10,765,617 472,023 1,887,870 2,359,893

q0 = 8, ω0 = 3 1,352,507 7,464,929 8,817,436 472,023 2,160,033 2,632,055

q0 = 100, ω0 = 3 1,352,507 5,169,963 6,522,470 472,023 2,066,991 2,539,014

Table 11: Results obtained with the deterministic RDC method introduced in Rosenlund (2012).

5 Conclusions and future work

Starting from the principles of the deterministic Reserving by Detailed Conditioning (‘RDC’)
method in Rosenlund (2012), we develop a stochastic RDC method for micro-level reserving
with detailed individual claim characteristics. More specifically, we use the reporting delay,
claim length and cumulative paid amount. The method generates a predictive distribution for
the outstanding loss reserve using historical simulation. The stochastic RDC method is relatively
easy to understand and comes with a generic framework; other claim markers than those used
in the paper can be incorporated easily. Except for predicting the number of IBNR claims, the
method does not use any parametric distributional assumptions.

We explore the performance of the stochastic RDC method in a case-study with a portfolio
of general liability insurance policies for private individuals. We compare the results obtained
with stochastic RDC to the reserve calculations with deterministic RDC and the Over Dispersed
Poisson bootstrap chain–ladder technique. The stochastic RDC method yields stable results and
outperforms the other techniques in the study. Moroever, starting from a careful descriptive
analysis of the data, we provide guidelines on how to incorporate claim markers in the reserving
process. We illustrate how the reserve distribution reacts to changes in the set of claim markers
used, and their specification. The idea of using claim specific markers in the reserving process
is promising, and our study should be considered as a starting point of this research agenda.

Several directions for future research can be identified. First, the reserving method is currently
limited to the triangle boundary. The introduction of a tail factor should enable the reserving
actuary to project his calculations beyond the triangle boundary. Second, we did not present a
(statistically) optimal way for binning the claim markers in the study. Analyzing these charac-
teristics with a technique like decision trees is a topic for future work. Third, we may explore
parametric distributions as an alternative for the use of empirical distribution functions, includ-
ing the incorporation of parameter uncertainty.
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