

A tabu search heuristic for
building aircraft
maintenance personnel
rosters
De Bruecker P, Van den Bergh J, Beliën J,
Demeulemeester E.

KBI_1409

A Tabu Search heuristic for building aircraft
maintenance personnel rosters

Philippe De Bruecker1, Jorne Van den Bergh2,3, Jeroen Beliën2,3, Erik

Demeulemeester1

1 KU Leuven, Research Center for Operations Management, Leuven (Belgium),

philippe.debruecker@kuleuven.be, erik.demeulemeester@kuleuven.be
2 HUBrussel, Center for Informatics, Modeling and Simulation, Brussels (Belgium),

jorne.vandenbergh@kuleuven.be, jeroen.belien@kuleuven.be
3 Affiliated researcher KU Leuven, Research Center for Operations Management,

Leuven (Belgium)

mailto:philippe.debruecker@kuleuven.be
mailto:erik.demeulemeester@kuleuven.be
mailto:jorne.vandenbergh@kuleuven.be
mailto:jeroen.belien@kuleuven.be

Abstract

This paper presents a fast heuristic approach to optimize staffing and schedul-

ing of the workforce at an aircraft maintenance company. Two linked Tabu Search

algorithms are proposed to minimize the labour costs and to maximize employee

satisfaction. To enhance the performance of the algorithm, strategic oscillation and

pattern creation are used. We illustrate the performance of the algorithms with a

computational experiment based on real life data from Sabena Technics, a large air-

craft maintenance company located at Brussels Airport in Belgium. We analyze the

results in different scenarios and compare them to a mixed integer linear program-

ming model. The experiments demonstrate that Tabu Search can deliver acceptable

solutions faster than the integer programming technique for small instances and out-

performs the integer programming model for larger and more realistic problem sizes.

Keywords: Tabu Search, staffing, scheduling, aircraft line maintenance, strategic

oscillation, pattern creation

1 Introduction

This paper presents a fast heuristic algorithm to optimize the staffing and scheduling

of aircraft maintenance. Staffing and scheduling problems impose a huge challenge

for corporate planners, especially when the scale of the problem is very large. First,

information is required on the demand for service. This information must contain the

timing and the amount of workload that is needed to satisfy the demand. For most

workforce planning problems, the required work at each period is known in advance.

Aircraft maintenance on the other hand can take place at multiple time intervals between

the STA (Scheduled Time of Arrival) and the STD (Scheduled Time of Departure) of a

flight.

Our model assumes information of all flights during a certain cycle period, e.g., a week

(see Table 1). Next to the time interval during which the maintenance should take place,

the estimated workload in man-hours is given. In the example of Table 1, 310 flights

must be maintained every week.

Table 1: Example of the provided input information

Flight Company STA STD Workload (man-hours)

1 BA Monday 22:05 Tuesday 07:15 4

...

111 AA Thursday 07:30 Thursday 10:40 6

...

310 SN33 Sunday 05:30 Sunday 08:45 4.25

1

Given this recurring workload for each flight during one week and its STA and STD,

we have to find the optimal workforce configuration in terms of the lowest total labour

costs. We first explain how a workforce configuration is defined.

We assume that the maintenance personnel works in teams of a certain team size. Each

team can only work one shift per day or have a day off. There are four possible shift

types with overlapping working hours: a morning shift, a day shift, an evening shift and

a night shift. This results in a certain sequence of shift types and days off assigned to

a certain team for a certain week. An example of such a sequence is shown in Figure 1

where N represents a Night shift, D a Day shift, M a Morning shift and E an Evening

shift.

Figure 1: Example of a single sequence

mo tu we th fr sa su

N D E

Figure 2: Example of two cycles

mo tu we th fr sa su

N N N N

(a) Cycle 1

mo tu we th fr sa su

N D E

M M D N E

M E E

M E N N N

(b) Cycle 2

Because one cycle can contain multiple weeks, a team is not always assigned to the

same sequence as the week before. Instead, a cyclic pattern is used in which the number

of teams assigned to a cycle equals the number of weeks in the cycle. An example is

presented in Figure 2(a) and 2(b).

In the first cycle, there is only one week. Therefore, there is only one team that is

scheduled every week to work a night shift from Tuesday till Friday. In the second

cycle, there are four teams scheduled. In the first week, the first team works a night

shift on Monday, a day shift on Thursday and an evening shift on Friday. The second

team works a morning shift on Monday and Tuesday and so on. In the second week,

the first team will work the shifts in the second row of the cycle, the second team the

shifts of the third row and so on. To complete the cycle, the fourth team will then work

the shifts of the first row.

Finding a workforce configuration implies that we have to decide on the number of

cycles, the number of weeks (= the number of teams) in each cycle, the composition of

the shift sequences, the start and end times of every shift type in each cycle and the

team size in each cycle. An example of such a workforce configuration with three cycles

can be found in Figure 3, which shows an output example of the optimization algorithm.

2

Figure 3: Output example of the optimization algorithm

Team size: 3 Team size: 7

Morning: 05:30 - 15:00 Night: 22:30 - 08:00 Morning: 05:30 - 15:00 Night: 21:30 - 06:30

Evening: 12:45 - 22:15 Day: 07:00 - 16:30 Evening: 13:15 - 22:45 Day: 08:00 - 17:30

mo tu we th fr sa su mo tu we th fr sa su mo tu we th fr sa su

N N N N N D E E E D M D M

M M D N E M M M E E

M E E E E E

M E N N N M E

Team size: 2

Morning: 05:00 - 14:00 Night: 21:30 - 07:00

Evening: 12:45 - 21:45 Day: 07:00 - 17:00

A feasible workforce configuration must cover the demand for services at any time. This

is referred to as the coverage constraints. Real life staffing and scheduling problems

are not limited to finding the lowest possible costs while satisfying the demand for the

services. They must also follow strict union regulations. These regulations cover average

working times, working in the weekend, break times, etc. They add extra constraints

to the optimization problem. Both the coverage constraints and the union constraints

can never be violated and are therefore called “hard” constraints. Furthermore, the em-

ployees might have specific preferences about the number and type of consecutive shifts.

These preferences are translated into the optimization model as “soft” constraints. This

means that as many as possible of these preferences should be satisfied, but it is not

mandatory to satisfy all of them.

In the literature review in Section 2, we discuss the motivation and validity of this

research. Section 3 presents the formal problem definition and Section 4 describes the

methodology we used to solve the problem at Sabena Technics. Finally, the results are

discussed in Section 5 followed by the conclusion in Section 6.

2 Literature review

Efficient employee scheduling has been the subject of many management science research

papers. Each one has its own method to minimize overcapacity, costs, needed employees

and has its unique set of constraints. Most research has been conducted on nurse

scheduling at hospitals (Burke, De Causmaecker, Vanden Berghe & Van Landeghem,

2004). They deal with the planning of personnel working in shifts. The way of scheduling

employees in different types of shifts (for example night, day, evening and morning shifts)

is also a key ingredient for this research.

In a first effort to solve the problem at Sabena Technics, Beliën, Demeulemeester, De

Bruecker, Van den Bergh and Cardoen (2013) proposed an iterative Mixed Integer Linear

Programming (MILP) technique. MILP is a popular method that combines Integer

Programming (IP) and Linear Programming (LP). The method describes a problem

in a formal mathematical way which is then solved by specialized computer software.

LP techniques have been used a lot in the past to solve employee scheduling problems

(Ernst, Jiang, Krishnamoorthy & Sier, 2004). But even with very fast computers it

3

takes quite some time before one reaches the optimal solution. To overcome the large

computation time, heuristic approaches are often used.

Metaheuristic algorithms such as Tabu Search, Genetic Algorithms and Simulated An-

nealing have been used in some cases to solve real life employee scheduling problems

(Ernst et al., 2004). These techniques make it possible to overcome the large computa-

tion time of MILP models and deliver comparable results. It has even been proven that

heuristic techniques often outperform techniques such as MILP for workforce scheduling

problems of realistic dimensions (Beliën, 2006; Burke et al., 2004). Glover and McMillan

(1986), for example, used Tabu Search to solve the general employee scheduling prob-

lem, a problem that strongly relates to the problem in this paper. Tabu Search (TS)

is a local search combinatorial optimization technique developed by Glover and Laguna

(1997). The technique has proven to deliver a performance and an adaptability that is

superior to the ordinary LP techniques (El-Amin, Duffuaa & Abbas, 2000; Ernst et al.,

2004).

The application of TS to solve this workforce problem presents a new way of incorpo-

rating scheduling and staffing for aircraft maintenance as we intend to solve the staffing

(i.e., deciding on the team sizes) and scheduling problem (i.e., deciding on the tim-

ing of the shifts) at the same moment. This creates more flexibility and increases the

possibility of finding better solutions.

3 Problem definition

Our model minimizes the labour costs of the maintenance workforce without neglecting

the employee satisfaction. Hence, besides the cost minimization, maximizing employee

satisfaction is a second goal. These two goals are defined as the objective functions

of two separate optimization models. The only link between these models is that the

second model (the satisfaction model) uses the output from the first model (the cost

model) as its input. The formal problem definitions are presented below.

3.1 The cost model

Indices and sets:

t ∈ T : shift types {M,D,E,N}
c ∈ C : cycles in the schedule

d ∈ {1, 2, ..., 7} : days in the week

p ∈ P : time periods in one week

4

p ∈ Pf : time periods during which flight f can be serviced. I.e.; Pf = {p|STAf ≤
p ≤ STDf} with STAf (STDf) the scheduled time of arrival (departure)

of flight f

f ∈ F : flights to be serviced

Parameters:

Lf : the workload (in quarters of an hour) of flight f

W u : the maximum number of weeks (=teams) in a cycle

H l : the minimum duration of a shift (in quarters)

Hu : the maximum duration of a shift (in quarters)

Hbreak : the duration of a lunch break (in quarters)

Λlt : the earliest start time (in quarters) of shift type t

Λut : the latest start time (in quarters) of shift type t

S : the minimum average number of working quarters per week

U : the maximum average number of working quarters per week

Ktd : the cost for one worker to work one quarter when assigned to a shift of

type t on day d

Decision variables (all of them have integer values):

mc ∈ {2, 3, ...} : team size in cycle c

htc ∈ {H l, H l + 2, H l + 4, ...,Hu} : duration of shifts of type t (in quarters) in cycle

c

λtc ∈ {Λlt,Λlt + 2,Λlt + 4, ...,Λut } : start time of shifts of type t (in quarters) in cycle

c

xtdc ∈ {0, 1, ...,W u} : number of shifts of type t scheduled on day d in

cycle c

Derived variables:

nc : the number of weeks (= teams) in cycle c

W l
c : the lower bound of the number of weeks (= teams) in cycle c

Btc : the fraction of workers available to work when assigned to a shift of type t

in cycle c (< 1 due to break/lunch time)

qp : the available capacity in period p

gfp ≥ 0: the number of workers assigned to maintain flight f during time period p

5

e+
tdc ∈ {0, 1, ...,W

u} : the number of extra weeks needed in cycle c for day d caused

by shifts of type t (with t ∈ {E,N}) on the preceding day.

e−Ndc ∈ {0, 1, ...,W
u} : the number of extra weeks needed in cycle c for day d caused

by E shifts that can be compensated by an excess in N shifts

on the preceding day.

In contrast to the decision variables, the derived variables are not directly altered by

the combinatorial optimization model (i.e., the TS algorithm) since their value depends

on that of other decision variables. The value of derived variables can be directly

calculated (without solving an optimization problem) and is mainly used to evaluate

certain constraints during the optimization procedure.

The optimization model:

Minimize:
∑
c∈C

∑
t∈T

7∑
d=1

Ktdmchtcxtdc (1)

The objective of the cost optimization model is to minimize the total labour costs during

one week. We therefore multiply the unit cost of each shift of a certain type on a certain

day with the team size of the cycle in which that shift can be planned. We then multiply

this by the duration of that shift type in that particular cycle and multiply this again

by the number of shifts that are actually planned. Note that the objective function (1)

is not linear because it multiplies three different decision variables.

Subject to:

Coverage constraints:

qp ≥
∑
f∈F

gfp, ∀p ∈ P (2)

∑
p∈Pf

gfp = Lf , ∀f ∈ F (3)

qp > 0, ∀p ∈ P (4)

The first three constraints (2 to 4) are the coverage constraints. They ensure the ability

to cover the demand for aircraft maintenance at every time interval during the planning

horizon. Constraints (2) and (3) make sure that the demand for maintenance for each

6

flight can be met by the available capacity. This means that there should be sufficient

workers available between the STA and STD of each flight to perform the required

maintenance in time. The available capacity qp in constraint (2) is determined by the

scheduling of the shifts (xtdc). Constraint (4) makes sure that there is at least one team

available during each period in order to take care of clients with a disrupted schedule.

Algorithm 1 Derivation of qp and gfp
//Derivation of qp

for all p ∈ P do

qp = 0;

end for

for (t = M,D,E,N) do

for (d = 1,...,7) do

for (c = 1,...,C) do

for (p = λtc,...,λtc + htc) do

qp = qp + mc × xtdc × Btc;

end for

end for

end for

end for

//Derivation of gfp

Sort all fights f ∈ F by increasing STDf ;

for all p ∈ P do

RemainingCapacityp = qp;

end for

for all f ∈ F do

p = STAf ;

gfp = min {RemainingCapacityp, Lf};
RemainingCapacityp = RemainingCapacityp − Lf ;

for (p = STAf + 1, ..., STDf) do

if (RemainingCapacityp−1 ≤ 0) then

gfp = min {RemainingCapacityp, −RemainingCapacityp−1};
RemainingCapacityp = RemainingCapacityp +RemainingCapacityp−1;

RemainingCapacityp−1 = 0;

else

gfp = 0;

end if

if (p = STDf) and (RemainingCapacityp < 0) then

RemainingCapacityp = 0;

//↪→ Coverage constraint (3) will fail!

end if

end for

end for

Because we allow for a certain flexibility regarding the exact timing of the maintenance

of a flight between its STA and STD, the timing of the workload is an extra decision

incorporated by the variable gfp. gfp is the number of workers assigned to maintain flight

f during time period p and depends on the assignment rule that is used. An assignment

rule specifies how the available capacity should be assigned to each flight. As we assume

maintenance intervals of 15 minutes, the entire planning horizon of one week is divided

7

into 672 smaller periods (|P | = 672). Hence, the assignment rule determines the amount

of maintenance work assigned to each aircraft during each quarter between the STA and

STD of the flight. We use a first leave - first serve assignment rule such that flights that

leave first receive the highest priority and are maintained first. This assignment rule is

the best way to avoid delays in departure times.

Algorithm 1 shows how qp and gfp are derived and how the first leave - first serve

assignment rule is applied. First, the available capacity qp is derived from the scheduling

of the shifts (xtdc), the team sizes (mc) and the availability fractions (Btc). The derived

variable Btc has a value between zero and one to indicate a decrease in available capacity

which can be calculated from equation (5). This capacity reduction is necessary because

workers want to have a lunch break during each of their shifts. We assume that each

worker can take this break at different times, thus the capacity reduction is spread over

the whole length of a shift. Next, the available capacity is assigned to each flight that

requires maintenance. When there is insufficient capacity to maintain a certain flight in

time, the algorithm will enter the last if statement and the coverage constraints will be

violated.

Shift constraints:

htcBtc = htc −Hbreak, ∀t ∈ T, ∀c ∈ C (5)

H l ≤ htc ≤ Hu, ∀t ∈ T, ∀c ∈ C (6)

Λlt ≤ λtc ≤ Λut , ∀t ∈ T, ∀c ∈ C (7)

Constraints (6) and (7) impose restrictions on the duration and the start time of a shift.

We assume that the duration and start time for shifts are defined per cycle. This means

that within one cycle, each M (D, E, N) shift has the same hours, but between different

cycles, shift hours may differ.

Union constraints:

Snc ≤
∑
t∈T

7∑
d=1

htcxtdc ≤ Unc, ∀c ∈ C (8)

W l
c ≤ nc ≤W u, ∀c ∈ C (9)

W l
c = max {Γc, Πc, Ωc}, ∀c ∈ C (10)

Γc = max
d = 1,...,7

{
∑
t∈T

xtdc + e+
Ndc + e+

Edc}, ∀c ∈ C (11)

Πc = 2×
∑
t∈T

xt6c, ∀c ∈ C (12)

Ωc = 2× (
∑
t∈T

xt7c + e+
N7c + e+

E7c), ∀c ∈ C (13)

8

e+
N(d+1)c = max {xNdc − xN(d+1)c, 0}, ∀d ∈ {1, ..., 6}, ∀c ∈ C (14)

e+
E(d+1)c = max {xEdc − xE(d+1)c − e−N(d+1)c, 0}, ∀d ∈ {1, ..., 6}, ∀c ∈ C (15)

e−N(d+1)c = max {xN(d+1)c − xNdc, 0}, ∀d ∈ {1, ..., 6},∀c ∈ C (16)

e+
N1c = max {xN7c − xN1c, 0}, ∀c ∈ C (17)

e+
E1c = max {xE7c − xE1c − e−N1c, 0}, ∀c ∈ C (18)

e−N1c = max {xN1c − xN7c, 0}, ∀c ∈ C (19)

Constraints (8) to (19) define the union constraints. The compliance of these rules has

a huge impact on the satisfaction of the workforce and, therefore, on the quality of

the service. Constraint (8) is inserted to comply with the regulations concerning the

minimal and maximal average working hours. Constraint (9) ensures that the number

of weeks nc (= the number of teams) in cycle c lies between the two extrema W l
c and

W u
c . W u

c is the maximum number of weeks in a cycle (and hence the maximum number

of teams) that is considered to be manageable. W l
c is determined by the succession and

weekend constraints (see constraints (10) to (19)).

The union constraints also include succession and weekend constraints. The succession

constraints entail that a night shift can only be followed by another night shift (or no

shift) and an evening shift can only be followed by another evening shift or a night

shift (or no shift). There is no limitation to shifts succeeding a morning or a day shift.

Because a team can only work one shift a day, these succession constraints ensure that

there is at least 12 hours between two shifts for each team. The weekend constraints

state that workers can only be scheduled to work maximum one out of two weekends.

This means that a team that is scheduled for a shift on Saturday and/or Sunday in one

(two, three, etc.) weeks of the cycle, must have the whole weekend off in at least one

(two, three, etc.) other weeks of the cycle.

To satisfy the succession constraints and the weekend constraint, each cycle must have

at least a certain number of weeks. The minimal number of weeks required to satisfy

both the succession and weekend constraints is called W l
c . Constraint (10) calculates the

derived variable W l
c by taking the maximum of Γc, Πc and Ωc. W

l
c can now be used in

constraint (9) to define the set of possible values for the derived variable nc. Next, this

set of values can be compared to the set of possible values for nc defined by constraint

(8). When the intersection of those two sets is not empty, the union constraints are

satisfied. These two sets of possible values for nc will be used in Section 4.4.3 to guide

the optimization search to a feasible solution.

9

Domains of the decision variables:

xtdc ∈ {0, 1, ...,W u}, ∀t ∈ T, ∀d ∈ {1, ..., 7},∀c ∈ C (20)

e+
tdc ∈ {0, 1, ...,W

u}, ∀t ∈ {E,N}, ∀d ∈ {1, ..., 7},∀c ∈ C (21)

e−Ndc ∈ {0, 1, ...,W
u}, ∀d ∈ {1, ..., 7},∀c ∈ C (22)

gfp ≥ 0, ∀f ∈ F,∀p ∈ P (23)

htc ∈ {H l, H l + 2, H l + 4, ...,Hu}, ∀t ∈ T, ∀c ∈ C (24)

λtc ∈ {Λlt,Λlt + 2,Λlt + 4, ...,Λut }, ∀t ∈ T, ∀c ∈ C (25)

nc ∈ {W l,W l + 1, ...,W u}, ∀c ∈ C (26)

qp ≥ 0, ∀p ∈ P (27)

mc ∈ {2, 3, ...}, ∀c ∈ C (28)

3.2 The satisfaction model

The cost model results in feasible decisions about the team size, durations, the start

times and the number of shifts of a certain type on a particular day in a certain cycle.

It does, however, not specify how these shifts should be distributed over the different

weeks in the cycle. Cycle A in Figure 4 shows an example of the output of the cost

model for one cycle. While it is known with certainty that this workforce configuration

can lead to a feasible cycle in terms of coverage, shift and union constraints, it is not

specified how to achieve this feasible cycle. It is for example not feasible to have a day

shift following a night shift as is the case on Friday in the first week of cycle A. The

satisfaction optimization model will therefore make Cycle A feasible and transform it

into Cycle A’.

Figure 4: Cycle A and Cycle A’

Team size: 3 Team size: 3

Morning: 05:30 - 15:00 Night: 22:30 - 08:00 Morning: 05:30 - 15:00 Night: 22:30 - 08:00

Evening: 12:45 - 22:15 Day: 07:00 - 16:30 Evening: 12:45 - 22:15 Day: 07:00 - 16:30

mo tu we th fr sa su mo tu we th fr sa su

D N N N D D N N N D D N

D D D D D D D

D D D D N

The objective of the satisfaction optimization model is not only to create a feasible

cycle, but also to maximize employee satisfaction. Workers might have some specific

preferences of their own that are not imposed by the management or labour unions.

These preferences are modeled as soft constraints because they can be violated in a

feasible solution. Because the shift and union constraints can never be violated in a

feasible solution, these constraints are modeled as hard constraints.

10

In order to maximize the employee satisfaction, the satisfaction model maximizes the ex-

tent to which the soft constraints are satisfied. Working with this “degree” of constraint

satisfaction allows the violation of some constraints in the final solution. Satisfying these

soft constraints is encouraged by rewards. Violating the hard constraints is discouraged

by very large penalties. The formal model is described below.

Indices and sets:

c ∈ C : cycles in the schedule

l ∈ L : possible block lengths

s ∈ S : shifts that must be planned according to the output of the cost model

The index s refers to one particular shift that must be assigned to a certain week. For

example: consider the following value for the decision variable from the cost model:

x(t=M)(d=Monday)(c=1) = 3

This means that three morning shifts should be planned on Monday in the first cycle.

These three shifts are then added to the set S because we now have to decide during

which weeks these shifts should be scheduled.

The soft constraints:

Soft constraints can be violated in the final solution. They apply to a special case of shift

succession and to block lengths. First, employees prefer to work only one type of shift

within a block. A block is defined as a sequence of consecutive days with active working

shifts (not interrupted by a day off). The block length is defined as the number of

days in this sequence. Second, this length is preferably between 5 and 8 shifts. Hence,

blocks with a length between those two values are given the highest reward. Blocks

with a length smaller than 5 but greater than 1, are given a reward proportional to their

length l in order to avoid too small block lengths. Blocks with a length greater than 8

do not receive a reward. These two preferences are modeled as soft constraints in the

satisfaction model.

The hard constraints:

Hard constraints can never be violated in a final solution. There are two hard constraints

in this model that are also present in the cost model. The first hard constraint is given

by the shift succession constraints: a night shift can only be followed by another night

shift and an evening shift can only be followed by another evening shift or a night shift.

The second hard constraint applies to the weekend constraint: a team is only allowed

to work one out of two weekends. Because the timing (the start time and duration)

and the daily number of shifts for each shift type found by the cost model cannot be

changed by the satisfaction model, the other constraints of the cost model will always

continue to be satisfied during the satisfaction model. Therefore, it is not needed to

include them in the satisfaction model.

11

Note that the satisfaction model theoretically allows for the violation of the hard con-

straints. But since it is known with certainty that the initial solution supplied by the

cost model can lead to feasible cycles, it is only during the search of the optimal solution

that some hard constraints will be violated. To avoid an infeasible final solution, the

violation of the hard constraints is awarded a very large penalty. This penalty was set

to be a value 100 times larger than the rewards given for the soft constraints.

Decision variable (integer values):

ws : index number of the week that is assigned to shift s

Derived variables (all of them have integer values):

Xα
c : number of times a shift is followed by a shift of the same type in cycle c

Xβ
lc : number of times there is a block length l in cycle c

Xχ
c : number of times a shift in cycle c is succeeded by a shift of a certain type that

is not allowed to succeed that previous shift

Xδ
c : = 1 if the weekend constraint is violated in cycle c, = 0 otherwise

These derived variables are of course not directly altered by the optimization model,

but they depend on the value of ws. We used several small algorithms to calculate the

values for these variables in practice.

Parameters:

Rα : reward given for a shift that is followed by a shift of the same type

Rβl : reward given for a block length l

Pχ : penalty for violating a succession constraint

P δ : penalty for violating the weekend constraint

The objective function:

Maximize
∑
c∈C

(Xα
c ×Rα +

∑
l∈L

(Xβ
lc ×R

β
l)−Xχ

c × Pχ −Xδ
c × P δ) (29)

Figure 4 gives an example of how the rewards and penalties for the soft and hard

constraints in Function (29) lead to cycle A’, which satisfies all hard constraints and

outperforms cycle A in terms of employee satisfaction.

12

4 Methodology

4.1 Algorithm layout

We present two Tabu Search (TS) algorithms. Each TS tries to optimize the objective

function of its respective optimization model defined in the problem definition in Section

3. The first Tabu Seach is therefore called the cost Tabu Search and the second the

satisfaction Tabu Search. The cost TS is the most important step in the optimization

process. Its goal is to produce basic workforce configurations that will be enhanced

during the satisfaction TS. The satisfaction algorithm does not alter any of the decisions

made in the cost TS, but assigns shifts to weeks in a particular cycle in a certain way

to maximize employee satisfaction.

4.2 Search space

The search space for the cost TS contains the number and type of shifts on each day in

each cycle, the start time and duration of every type of shift for each cycle and the team

size in each cycle. In the satisfaction TS these variables have fixed values and constitute

the initial solution. The search space of the satisfaction TS therefore only consists of

the possible assignments of shifts in the workforce configuration to a specific week in its

respective cycle.

Each search space can be divided into a feasible and infeasible space. The feasible search

space is the search space for which all the variables have values satisfying all constraints.

The infeasible search space contains variable values outside the bounds specified by the

constraints. Although this search space is called infeasible, the search can still move

through it. The search cannot, however, accept a solution found in the infeasible space

as a global solution to the problem. It can only make use of these intermediate solutions

to find its way to a better solution in the feasible search space. The use of such a feasible

and infeasible search space will be exploited in the proposed algorithm. Therefore, it is

important to identify these search spaces for both Tabu Searches.

The feasible search space of the cost TS consists of the combination of all possible values

of its decision variables for which the coverage, the shift and the union constraints are

satisfied. The infeasible space is equal to the feasible one, except that it does allow for

the relaxation of the union constraints. This means that during the cost TS, the search

can never enter a situation where the coverage constraints are violated. Solutions where

the coverage constraints are not met are not part of any search space. Only the union

constraints can be relaxed during the cost TS.

The search space of the satisfaction TS consists of all possible assignments of the shifts

to the different weeks in each cycle. This satisfaction search does also have an infeasible

13

and feasible search space. In the feasible search space, the search can only move through

solutions where the hard constraints are met. In the infeasible search space, the hard

constraints are violated. The soft constraints can be satisfied or violated in both search

spaces.

4.3 Initial solution

The cost TS uses an initial solution based on a fastest descent procedure. In a fastest

descent method, the search selects the first move that improves the solution and then

stops exploring the neighborhood instead of looking for a better option. In our case,

a fastest descent algorithm was provided with an initial solution having the following

characteristics:

mc = 3, ∀c ∈ C

htc = random number between (8.5× 4) periods

and (9.5× 4) periods, ∀t ∈ T, ∀c ∈ C

xtdc = 3, ∀t ∈ T, ∀d ∈ 1, ..., 7, ∀c ∈ C

λtc = random number between Λlt and Λut , ∀t ∈ T, ∀c ∈ C

he fastest descent algorithm randomly lowers the value of xtdc ∀t ∈ T , ∀d ∈ {1, ..., 7},
∀c ∈ C as long as the resulting solution can cover the demand for maintenance. The

algorithm is allowed to continue in this way for 1000 iterations after which the final

(=best) solution is saved. This procedure is repeated 15 times and results in 15 (possibly)

different solutions. Then the best solution found over these repetitions is used as the

initial solution for the cost TS. Note that during the search of the initial solution it is

allowed to violate the union constraints.

The initial solution for the satisfaction TS is arbitrarily constructed based on the output

of the cost TS. When the cost TS results in a solution in which for example

x(t=M)(d=Monday)(c=1) = 3,

then three morning shifts are created on Monday of cycle 1: the first shift in the first

week, the second shift in the second week and so on.

14

4.4 The cost Tabu Search algorithm

4.4.1 Neighborhood

The different types of moves that the search can use to create a neighborhood of a

current solution are listed below. Musliu, Schaerf and Slany (2004) use similar moves

in their local search for shift design. The first six moves are considered basic moves

because they can only change one decision variable in the model.

Basic moves:

1.RemoveShift move: tries to remove a certain shift on a certain day in one of the

cycles. Because the search wants to create promising workforce configurations, it favors

the removal of shifts on peak moments (moments with high capacity). This way the

available man-hours can be made smoother.

2.CreateShift move: creates a shift of a certain type on a certain day in one of the cycles.

As with the RemoveShift moves, the search favors the creation of shifts on moments with

the least available man-hours in order to smooth the capacity.

3.ChangeLength move: changes the end time of a certain shift type in one of the cycles

and consequently changes the length or the duration of the shift.

4.ChangeStart move: changes the start time of a certain shift type in one of the cycles.

5.IncreaseTeamsize move: increases the team size in one of the cycles by one.

6.DecreaseTeamsize move: decreases the team size in one of the cycles by one.

Recall that the coverage constraints can never be violated during the search. This fact

can create barriers in the search space that prevent the search from visiting some solu-

tions. This decreases the reachability and limits the performance of the TS. Therefore,

some extra moves, called complex moves, are added on top of the basic moves. Musliu

et al. (2004) refer to these moves as the composite moves because they are composed of

two or more basic moves.

The same problem arises with the union constraints. The fact that the search is not

allowed to violate the union constraints also decreases the reachability and, hence, de-

creases the performance of the algorithm. Also with respect to the union constraints,

special moves are added on top of the other moves. Dowsland (1998) refers to this

as ejection chains because they allow to bridge many unimproving or infeasible moves

which would not have been made naturally. Glover and Laguna (1997) call this method

“pattern creation”.

15

Complex moves:

7.SwapShiftBetweenCycle move: deletes a shift in a certain cycle and creates one in

another cycle. The shift is swapped between two cycles. In an effort to smooth the

capacity, the search favors the deletion of a shift on a day with a peak in the available

man-hours. It also tries to lower the number of weekend shifts in each cycle.

8.SwapShiftInCycle move: swaps a shift between two days in the same cycle. This move

is useful to decrease the number of shifts on weekend days and to smooth the available

capacity if there are shifts that were only added to comply with the union rules.

9.SwapNightAndMorningShiftInAndBetweenCycle move: changes a night shift on that

day in a morning shift on the next day, or a morning shift on that day in a night shift on

the previous day. This move also facilitates the satisfaction of the weekend constraint.

It can also decrease costs because a morning shift is less expensive than a night shift.

10.CollectiveShiftRemoval move: removes as many shifts as possible at the same time

while the final result is still feasible in terms of union constraints (and of course of

coverage constraints).

11.MoveBorders move: changes both the start and end time of a certain shift type in

one of the cycles.

Move 5 and 6 (IncreaseTeamsize and DecreaseTeamsize) are not used in their basic form.

They are joined by a series of other moves to form an ejection chain:

12.IncreaseTeamSize move: increases the team size by a certain amount. Because an

increase in team size will cause more capacity and consequently more costs, a sequence

of moves is added that tries to remove as many shifts as possible starting with shifts

during the highest capacity day in order to find a better solution that still satisfies the

union constraints. This way the IncreaseTeamSize move is able to decrease the costs in

some situations.

13.DecreaseTeamSize move: decreases the team size by a certain amount. Because this

leads to a decrease in capacity, it is possible that the coverage constraints will be violated.

Therefore, a sequence of moves is added that adds shifts in order to cover the demand

in the least expensive way without violating union constraints.

4.4.2 Strategic oscillation

Besides the use of complex moves to increase reachability, we implement a special tech-

nique called strategic oscillation. Strategic oscillation allows the search to relax one of

the constraints and to make a transition from the feasible to the infeasible search space

(Dowsland, 1998). After moving around in the infeasible search space for a certain

number of iterations, the search can then reenter the feasible search space at a differ-

ent place and explore different areas hopefully leading to a better solution. There are

two advantages associated with this technique. First, it allows the search to jump over

some of the barriers created by the union constraints. Second, it creates a possibility

16

to diversify the search. This technique is also called diversification (Glover & Laguna,

1997). The idea of using and implementing strategic oscillation in this research is based

on Dowsland (1998).

The three phases that constitute the strategic oscillation method are schematically rep-

resented in Appendix A. These three phases represent the stages of (1) reentering the

feasible search space, (2) moving around in the feasible search space and (3) moving

around in the infeasible space.

4.4.3 Phase 1

In the first phase, the algorithm tries to bring the search back to the feasible search

space. There can be two reasons for the infeasibility at the start of the first phase. First,

infeasibility can be caused by the fastest descent algorithm, because it was allowed to

violate the union constraints during the construction of the initial solution. Second,

infeasibility can be caused by the relaxation of the union constraints during the third

phase of the strategic oscillation. To model this first phase as an optimization problem

that can be solved with TS, the degree of infeasibility is used as a temporary objective

function. The search tries to minimize the degree of infeasibility by making moves such

that the union constraints are no longer violated.

The degree of infeasibility is calculated by a continuous distance function which indicates

the relative distance to the nearest feasible solution with an upper bound equal to one.

This upper bound, indicating total infeasibility, does not lead to plateau move problems

but facilitates the calculations. For each of the cycles in the workforce configuration,

the degree of infeasibility can be defined as in Function (30).

Let Ic be the set of all integer values of nc for which Constraint (8) holds. Then:

Iminc = Smallest value in Ic

Imaxc = Largest value in Ic

Degree of infeasibilityc =

= 1 if there is infeasibility

of type 1

= 0 if there is no infeasibility

of type 1 and 2

= 1− Imax
c

W l
c

if there is only infeasibility

of type 2

(30)

17

Infeasibility of type 1: exists when it is impossible to comply with the average work-

ing hours constraint. That is when there is no possible integer value of nc for which

Constraint (8) holds. The set Ic is empty in this case.

Infeasibility of type 2: exists when Expression (31) holds.

Imaxc < W l
c (31)

Expression (31) is deduced from Expression (32) by setting W u to ∞. Recall from

section 3.1 that we only want to consider solutions where there are at most W u
c weeks in

a cycle. We assume that the maximum number of manageable weeks in one cycle is 8.

Setting W u to ∞ instead of 8 increases the reachability and the performance of the TS,

but can result in cycles with too many weeks. Therefore, the algorithm is only allowed

to accept a solution as a final solution to the problem when each cycle contains at most

8 weeks. Solutions with at most 8 weeks are called promising to distinguish them from

solutions with more than 8 weeks per cycle. Observe that a larger team size requires

less weeks in a cycle and vice versa. Therefore, as the team size is restricted by a lower

bound in Constraint (28), the number of weeks is rarely too high. Because we set the

parameters of constraint (8) as S = 36 hours × 4 = 144 quarters and U = 38 hours × 4

= 152 quarters, Iminc will equal Imaxc when constraint (8) is satisfied. Therefore, when

the degree of infeasibility is zero, Iminc will equal Imaxc because constraint (8) is satisfied

(cfr. supra) and the value of the derived variable nc is set to Iminc (= Imaxc).[
Iminc , Imaxc

]
∩
[
W l
c , W

u
]

= Ø (32)

In phase 1, the degree of infeasibility is minimized in each cycle c. The search starts

exploring the neighborhood of the current solution by trying all possible moves of the

move types described above. The move that leads to the solution that lowers the degree

of infeasibility the most is then selected and the process continues. When the degree of

infeasibility equals zero for all cycles, the search exits phase 1 and enters phase 2 of the

algorithm.

4.4.4 Phase 2

In the second phase, the search has just reentered the feasible search space. Because

phase 1 is only concerned with finding a feasible solution in terms of union constraints,

it neglects the minimization of the total labour costs. Therefore, the labour costs tend

to be relatively high at the beginning of phase 2. Thanks to the aggressive approach of

phase 1, the search is very likely to reenter the feasible search space in an unexplored

area providing the search with the opportunity to find a new better solution.

In phase 2, the objective is to minimize the cost function as described in Function (1).

18

The TS starts exploring the neighborhood based on all moves described above. During

this phase, the search can only make moves where both coverage and union constraints

are satisfied. This means that the search is restricted to the feasible search space. It is

during this phase that promising solutions are produced. A solution is called promising

when it satisfies all constraints of the cost model (Constraints (2) to (28)). This also

means that each promising solution has no more than 8 weeks in each cycle. When such

a promising solution has a cost equal to or lower than the previously saved promising

solution, it is added to the initial solution list of the satisfaction TS algorithm.

When the search is unable to find a better solution for a certain number of iterations, the

search leaves phase 2 and enters phase 3. One iteration is defined as the investigation of

the current neighborhood and the execution of the best move. Preliminary test showed

that after 700 iterations, the search is unlikely to find a better result. When the best

solution found in phase 2 is better than the current global solution (i.e., the best solution

found since the start of the algorithm), the global solution is updated.

4.4.5 Phase 3

As mentioned above, phase 3 starts with the last visited solution in phase 2. The search

is then allowed to relax the union constraints. It aggressively tries to lower the costs

by exploring the neighborhood. While doing so, the search will most likely make the

transition to the infeasible search space.

Because of this aggressive approach, the overall algorithm performance is quite sensitive

to the number of iterations in phase 3. Preliminary computational tests have indicated

that the use of too many phase 3 iterations results in a situation where it is impossible

to make the solution feasible again in phase 1. On the other hand, in case of too few

phase 3 iterations, the algorithm converges too slowly. Instead of using a fixed number

of iterations for this purpose, we have opted for a random approach. Using a little

randomness makes the TS algorithm less susceptible to cycling. Cycling arises when

the search gets stuck in an infinite loop over the same solutions. When this happens,

the TS will not find a better global solution anymore. We use a uniform distribution

between 1 and 10 to decide on the number of iterations in phase 3 every time the TS

enters the third phase.

When the search exits phase 3, the best solution obtained during that phase is set as

the initial solution of phase 1. The algorithm ends immediately after phase 3 when the

allowed computation time has passed.

19

4.4.6 Oscillating tenure strategy

We use 35 as the standard tabu list length. This value was empirically found to yield

good results. When the search does not find a new better solution after a certain (large)

number of iterations, it could be stuck in a difficult local optimum. When the search

is unable to escape from the local optimum on its own (i.e., with the use of strategic

oscillation, the standard tabu list length and the basic and complex moves), we intervene

by doubling the tabu list length. After a number of iterations with the doubled tabu list

length, the search is hopefully far enough from the local optimum so that the standard

length of 35 can be used again.

Because this oscillating tenure strategy can force the search to look somewhere else, it

is a diversification strategy. Although the effects of this strategy can theoretically also

be obtained with a larger static tabu list, it is more effective to increase the tabu list

length only when necessary.

4.5 The satisfaction Tabu Search algorithm

4.5.1 Neighborhood

The neighborhood of the satisfaction TS is rather small compared to the neighborhood

of the cost TS. It is constructed by only one type of move: the SwapShift move. This

move swaps a shift between two weeks on the same day of the cycle. Figure 5 gives

an example of three such moves in a cycle. Figure 5 also shows the final objective of

the satisfaction TS, that is to achieve a cycle where the employee satisfaction defined in

Function (29) is maximized.

Figure 5: Example of three SwapShift moves to reach the final objective

Team size: 3 Team size: 3

Morning: 05:30 - 15:00 Night: 22:30 - 08:00 Morning: 05:30 - 15:00 Night: 22:30 - 08:00

Evening: 12:45 - 22:15 Day: 07:00 - 16:30 Evening: 12:45 - 22:15 Day: 07:00 - 16:30

mo tu we th fr sa su mo tu we th fr sa su

D N N N D D N N N D D N

D D D D D D D

D D D D N

4.5.2 Mechanism

Although the search space of the satisfaction TS also consists of an infeasible and a

feasible space, the optimization process does not run in phases. There is no specific

phase to help the search return to the feasible space after it has entered the infeasible

space.

20

Finding a feasible solution that does not violate any hard constraints is assured by

two mechanisms. First, the very high penalty of violating the hard constraints is a

major incentive for the search to avoid violating these constraints. Second, it is known

with certainty that there exists a feasible solution. This is true because the cost TS is

subjected to the same hard constraints and the satisfaction model only uses the output

from the cost model as an input.

Besides finding a feasible solution, the satisfaction TS wants to maximize the employee

satisfaction (i.e., maximizing the degree of soft constraints satisfaction). The search

therefore starts to explore its neighborhood by swapping the shifts. The stopping crite-

rion for the satisfaction TS is met when 400 iterations have passed. This appears to be

enough in order to obtain a good and feasible solution. Appendix B gives a graphical

representation of the satisfaction TS.

4.6 Visualization

The graphs in Figure 6 give a graphical representation of the optimization progress

during the cost TS algorithm. The progress of the labour costs is represented by the

upper graph in gray and the progress of the degree of infeasibility is represented by

the lower graph in black. These graphs can help to understand the use of strategic

oscillation. Each time a black peak emerges, the search enters phase 3. The black graph

will in most cases climb as long as the search stays in this phase. This is because the

union constraints are then relaxed allowing the degree of infeasibility to increase. When

the black peak starts to decrease again, the search enters phase 1. When the peak

disappears, the search is located in phase 2. It is in this phase that promising solutions

are found and saved in the initial solution list of the satisfaction TS. A similar evolution

of the costs and the degree of infeasibility is also observed by Dowsland (1998) during

the optimization process.

Figure 6: An example of the progress of the costs and the degree of infeasibility

The gray graph represents the costs (vertical axis) and the black graph represents

the degree of infeasibility (vertical axis) at each iteration during the optimization

procedure (horizontal axis).

21

5 Results and discussion

5.1 Computational results

The TS heuristic has been applied to a test set containing 40 instances created randomly

based on real-life data dimensions from Sabena Technics. Sabena Technics is a large

aircraft maintenance company located at Brussels Airport in Belgium. The company

faces a weekly, cyclic demand pattern which changes only twice a year. The goal is to

build the cheapest workforce configuration in order to maintain all flights in time.

The entire test set can be divided into 8 groups of 5 instances. Each group has its own

specific characteristics. The first 20 instances (called 1 * * *) contain only 100 flights,

while the next 20 instances (2 * * *) contain 300 flights. Another difference between the

8 groups is the distribution of the workload. This is the amount of work that each flight

requires. Half of the groups are assigned workloads drawn from a uniform distribution

between 0 and 10 hours (* 1 * *), while the other half is assigned workloads drawn from

an exponential distribution with an average of 3.5 hours (* 2 * *). The last difference

between the 8 groups is the way how the flight arrivals are chosen. Half of the groups

is assigned peak arrivals (* * 1 *), while the other half is assigned uniform arrivals

(* * 2 *). In the case of peak arrivals, more flights require maintenance either in the

morning or the afternoon, while the demand for maintenance is uniformly distributed

over the entire day in the case of uniform arrivals. Finally, 5 random instances are

generated (* * * 1, * * * 2, * * * 3, * * * 4 and * * * 5) for each of the above cases

resulting in 2x2x2x5 = 40 instances.

In Table 2, the TS results are compared with the Mixed Integer Linear Programming

(MILP) model of Beliën et al. (2013) for solving the cost model. We only focus on the

optimization of the cost model since the satisfaction Tabu Search only takes about one

second to solve and resulted in a feasible solution regarding the succession and weekend

constraints for each test instance we considered. Both the TS and the MILP model

were given a computation time of 3600 seconds to solve the cost model. The TS is

programmed in C++ and the MILP model was solved using CPLEX c© 12.2. The table

distinguishes between two scenarios in which the number of cycles was first fixed to

two and then to three. For each scenario, the MILP lower bounds (LB), as well as

the obtained costs and gaps for the two optimization methods are shown. The MILP

lower bound (LB) is the result from applying the MILP procedure and represents the

theoretically best possible objective value. The gap is the relative difference (%) between

the solution value and the MILP lower bound:

gap =
solution value− LB

solution value
· 100

22

Table 2: Results of the Tabu Search and MILP method

Two cycles Three cycles

TS MILP TS MILP

Test Set LB costs gap(%) costs gap(%) LB costs gap(%) costs gap(%)

1 1 1 1 13307 14992 11.24 14624 9.00 13303 14627 9.05 14958 11.06

1 1 1 2 17660 19391 8.93 19136 7.71 17601 19382 9.19 20506 14.17

1 1 1 3 13397 15975 16.14 16367 18.15 13381 15843 15.54 16290 17.86

1 1 1 4 13863 15571 10.97 16314 15.03 13864 15461 10.33 15647 11.40

1 1 1 5 16386 17143 4.41 17077 4.05 16352 17225 5.07 17151 4.66

1 1 2 1 11419 13355 14.50 13277 13.99 11405 13513 15.60 13386 14.80

1 1 2 2 10656 12872 17.21 14070 24.26 10675 12901 17.25 13993 23.71

1 1 2 3 18374 21113 12.97 20411 9.98 18369 21274 13.66 21454 14.38

1 1 2 4 14759 16657 11.39 16255 9.20 14705 16467 10.70 16502 10.89

1 1 2 5 14115 17308 18.45 15447 8.63 14055 17985 21.85 16431 14.46

1 2 1 1 12124 13685 11.40 13578 10.71 12184 13677 10.92 13718 11.19

1 2 1 2 14781 16594 10.92 16195 8.73 14781 16273 9.17 16673 11.35

1 2 1 3 10371 11269 7.97 11210 7.49 10341 11272 8.26 11199 7.66

1 2 1 4 10301 11837 12.98 11820 12.85 10103 11680 13.50 11809 14.44

1 2 1 5 12864 15340 16.14 14821 13.21 12865 15058 14.57 14369 10.47

1 2 2 1 8941 10872 17.76 10043 10.97 8935 10865 17.76 10771 17.04

1 2 2 2 10712 11362 5.72 11338 5.52 10685 11366 5.99 11475 6.89

1 2 2 3 12632 13305 5.06 12977 2.66 12627 13061 3.33 12982 2.73

1 2 2 4 9119 11020 17.25 10913 16.44 9119 10909 16.41 11091 17.78

1 2 2 5 9517 10872 12.46 10762 11.56 9505 10863 12.50 10717 11.31

Avg 100 flights: 12765 14527 12.19 14332 11.01 12743 14485 12.03 14556 12.41

2 1 1 1 31256 36759 14.97 34539 9.50 31245 33858 7.72 36260 13.83

2 1 1 2 29904 32824 8.90 32297 7.41 29828 32946 9.46 34066 12.44

2 1 1 3 32627 37372 12.70 34604 5.71 32625 35412 7.87 34430 5.24

2 1 1 4 30612 33041 7.35 34134 10.32 30609 32703 6.41 37925 19.29

2 1 1 5 30071 34001 11.56 34248 12.20 30068 33799 11.04 36852 18.41

2 1 2 1 28281 31333 9.74 30154 6.21 28153 31556 10.78 29322 3.99

2 1 2 2 35894 50413 28,80 38171 5,96 35708 46507 23,22 41071 13,06

2 1 2 3 27980 31187 10.28 29853 6.27 27972 30341 7.81 29277 4.46

2 1 2 4 27663 32566 15.05 30795 10.17 27663 30886 10.43 32361 14.52

2 1 2 5 27525 29922 8.01 31423 12.41 27521 30924 11.01 32868 16.27

2 2 1 1 17853 19791 9.80 19988 10.68 17852 19865 10.13 22926 22.13

2 2 1 2 16736 19525 14.28 19344 13.48 16736 18546 9.76 21058 20.53

2 2 1 3 19963 23672 15.67 21811 8.47 19949 23540 15.26 21772 8.38

2 2 1 4 17330 21544 19.56 21027 17.58 17330 20974 17.37 22985 24.60

2 2 1 5 18084 20877 13.38 22282 18.84 18083 20879 13.39 21561 16.13

2 2 2 1 15253 17675 13.70 16643 8.35 15251 17197 11.32 16886 9.68

2 2 2 2 16738 18598 10.00 18858 11.24 16738 18753 10.74 23206 27.87

2 2 2 3 18690 21751 14.07 21438 12.82 18688 21629 13.60 20445 8.60

2 2 2 4 19045 23300 18.26 21020 9.40 19045 22077 13.73 21454 11.23

2 2 2 5 20289 23338 13.06 21498 5.62 20272 21763 6.85 21847 7.21

Avg 300 flights: 24090 27974 13,46 26706 10,13 24067 27208 11,40 27929 13,89

Avg total: 18427 21250 12,83 20519 10,57 18405 20846 11,71 21242 13,15

Note: Computation time for each instance is 3600 seconds. The gap is the relative difference to the LB.

23

5.2 Discussion

To analyze the results of the TS, Table 2 is used in combination with Figure 7. While

Table 2 only looks at the final results after 3600 seconds, Figure 7 presents the average

gaps in 4 different scenarios for each five minutes.

Figure 7: Comparison of the evolution of the average gaps in four scenario’s

10.5%

11.0%

11.5%

12.0%

12.5%

13.0%

13.5%

14.0%

14.5%

300 900 1500 2100 2700 3300

(a) 100 flights, two cycles

9.0%

11.0%

13.0%

15.0%

17.0%

19.0%

21.0%

300 900 1500 2100 2700 3300

(b) 100 flights, three cycles

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

20.0%

22.0%

24.0%

300 900 1500 2100 2700 3300

(c) 300 flights, two cycles

9.0%

11.0%

13.0%

15.0%

17.0%

19.0%

21.0%

23.0%

25.0%

27.0%

300 900 1500 2100 2700 3300

(d) 300 flights, three cycles

9.0%

11.0%

13.0%

15.0%

17.0%

19.0%

21.0%

300 900 1500 2100 2700 3300

100f MILP

100f TS

MILP

TS

The gaps (as percentages) are presented on the vertical axes. The computation times (in
seconds) are presented on the horizontal axes.

24

5.2.1 3 cycles versus 2 cycles

We first compare the three cycles scenario with the two cycles scenario. From Table 2

and Figure 7 we can see that the TS is clearly outperformed by the MILP model after

a computation time of 3600 seconds in the scenario with two cycles. It is only during

the first 600 to 900 seconds (depending on the considered number of flights) that the

TS obtains better solutions compared to the MILP model. However, when the number

of cycles is fixed to three, the TS also outperforms the MILP model after 900 seconds

when we look at the average gaps in Figure 7. While the average gap of the TS decreases

with an extra cycle, the average gap of the MILP model increases. Clearly, the addition

of the extra cycle increases the flexibility of the search which is beneficial for the TS as

compared to the MILP model.

In the three cycles scenario, the TS can obtain better solutions than the MILP model,

but the obtained solutions are on average not better than those of the MILP model

in the scenario with two cycles. It is only for a limited number of instances that the

costs decrease with the addition of the third cycle. Also, the MILP lower bound is

almost the same in both scenarios suggesting that no better solutions can be found by

adding an extra cycle. Regardless of the fact that more cycles will not lead to lower

costs, constructing a workforce configuration with more cycles can be desirable for the

company when taking into consideration the individual employee preferences.

Hence, in situations where the management wants to consider the use of three cycles, or

when the size of the problem requires more than two cycles to obtain a good solution,

TS is a promising alternative.

5.2.2 300 flights versus 100 flights

Figure 7 shows that the addition of more flights to the problem makes it much more

difficult for the MILP model to minimize the costs in the scenario with two cycles during

the first 1200 seconds. The impact of the extra flights remains relatively limited for the

TS. Therefore, the TS finds better solutions than the MILP model during a longer time

in the scenario with 300 flights and two cycles.

In the scenario with three cycles, the addition of 200 extra flights makes the TS clearly

outperform the MILP model. Hence, when a larger number of flights must be maintained

and the complexity of the problem is increased by the addition of an extra cycle, TS

can deliver much better results compared to the MILP model. Moreover, when only

a limited computation time is allowed (i.e., 600 to 900 seconds), TS outperforms the

MILP model. This last property makes the TS algorithm very attractive in case multiple

optimization problems must be solved in limited time.

25

6 Conclusion

This paper presents a heuristic approach for building workforce rosters for an aircraft

line maintenance company. We describe two linked Tabu Search algorithms to minimize

the labour costs and maximize the employee satisfaction. The cost algorithm selects

promising solutions which are used as initial solutions for the satisfaction algorithm. We

successfully implemented strategic oscillation and exploited the application of complex

moves to avoid reachability problems caused by the various constraints.

The performance of the optimization program has been tested on 40 randomly generated

instances based on real life data. We allowed for a total computation time of one hour per

instance and report the results of the Tabu Search after every five minutes. The obtained

solutions by the Tabu Search are then compared with those of a Mixed Integer Linear

Programming (MILP) model. We found that the Tabu Search algorithm outperforms the

MILP model during the first 600 to 900 seconds of computation time. After 900 seconds,

the MILP approach obtains better results. When the complexity increases, i.e., when

an extra cycle is added and when the number of aircraft that have to be maintained

increases, the Tabu Search algorithm performs better than the MILP model. These

observations make that the Tabu Search algorithm should be applied when time is of

the essence and when the problem size and complexity increases.

For future research, the optimization problem can be extended in several ways, increas-

ing the complexity. First, the timing of the lunch breaks can be optimized instead of

spreading the decrease in capacity over the whole shift. In addition, part time workers

or weekend cycles can be included to increase the flexibility of the optimization search.

Second, the optimization model can be extended to create more realistic solutions. In

some cases, the different types of aircraft a worker can maintain are limited by the skills

of the worker. Moreover, aircraft maintenance takes place in a stochastic environment

and one should also take into account the uncertainty in the workload or in the arrival

times of the aircraft.

26

References

Beliën, J. (2006). Exact and heuristic methodologies for scheduling in hospitals: prob-
lems, formulations and algorithms. Leuven: Katholieke Universiteit Leuven.
(Ph.D. dissertation)

Beliën, J., Demeulemeester, E., De Bruecker, P., Van den Bergh, J. & Cardoen, B.
(2013). Integrated staffing and scheduling for an aircraft line maintenance problem.
Computers & Operations Research, 40 (4), 1023–1033.

Burke, E. K., De Causmaecker, P., Vanden Berghe, G. & Van Landeghem, H. (2004).
The state of the art of nurse rostering. Journal of Scheduling , 7 (6), 441–499.

Dowsland, K. (1998). Nurse scheduling with Tabu Search and strategic oscillation.
European Journal of Operational Research, 106 , 393–407.

El-Amin, I., Duffuaa, S. & Abbas, M. (2000). A Tabu Search algorithm for maintenance
scheduling of generating units. Electric Power Systems Research, 54 , 91–99.

Ernst, A. T., Jiang, H., Krishnamoorthy, M. & Sier, D. (2004). Staff scheduling and
rostering: A review of applications, methods and models. European Journal of
Operational Research, 153 , 3–27.

Glover, F. & Laguna, M. (1997). Tabu Search. Boston: Kluwer Academic Publishers.

Glover, F. & McMillan, C. (1986). The general employee scheduling problem: An
integration of MS and AI. Computers and Operations Research, 13 (5), 563–573.

Musliu, N., Schaerf, A. & Slany, W. (2004). Local search for shift design. European
Journal of Operational Research, 153 , 51–64.

27

7 Appendix

A The cost Tabu Search

- Flight info

- Cost info

- Constraints

Cost Tabu Search

Phase1:

Make current

solution feasible

Phase2:

Try to lower the costs

while holding the current

solution feasible

Phase3:

Just try to lower

the costs

If feasible solution found

If not improving after 700 iterations

Update the global best

solution if necessary

Check computation

time

If time passed < allowed computation time

Set initial solution phase1 = best solution phase3

If there is a promising solution found

during phase2 in terms of employee

satisfaction: add that solution to the initial

solution list of the satisfaction Tabu

Search

Stop Tabu Search

else

Initial solution

-Start / end times of the shifts

- Number of shifts and shift types on each day

 - Number of cycles

 - Team sizes

- Planning of the shifts over cycles

- Total costs

For each promising solution found at phase2

28

B The satisfaction Tabu Search

For each promising solution from the cost Tabu Search:

-Start / end times of the shifts

- Number of shifts and shift types on each day

 - Number of cycles

 - Team sizes

- Planning of the shifts over cycles

- Total costs

Satisfaction Tabu Search

Choose a promising

solution from the

cost Tabu Search

Create feasible

cycles and

optimize employee

satisfaction

- Union constraints

- Emloyee preferences

For each optimized solution:

-Start / end times of the shifts

- Number of shifts and shift types on each day

 - Number of cycles

 - Team sizes

- Planning of the shifts over cycles

- Planning of the shifts over weeks

- Total costs

- Workers satisfaction

29

FACULTY OF ECONOMICS AND BUSINESS
Naamsestraat 69 bus 3500

3000 LEUVEN, BELGIË
tel. + 32 16 32 66 12
fax + 32 16 32 67 91

info@econ.kuleuven.be
www.econ.kuleuven.be

	KBI_1409
	TS_DocSem
	Introduction
	Literature review
	Problem definition
	The cost model
	The satisfaction model

	Methodology
	Algorithm layout
	Search space
	Initial solution
	The cost Tabu Search algorithm
	Neighborhood
	Strategic oscillation
	Phase 1
	Phase 2
	Phase 3
	Oscillating tenure strategy

	The satisfaction Tabu Search algorithm
	Neighborhood
	Mechanism

	Visualization

	Results and discussion
	Computational results
	Discussion
	3 cycles versus 2 cycles
	300 flights versus 100 flights

	Conclusion
	References
	Appendix
	The cost Tabu Search
	The satisfaction Tabu Search

