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ABSTRACT  

Background: Cardiac allograft vasculopathy (CAV) is a limiting factor for the long-term 

survival of heart transplant recipients. Clinical decisions and care may be improved by the 

development of prediction models based on circulating biomarkers. The endothelium may 

play a central pathogenetic role in the development of CAV. We evaluated the hypothesis that 

endothelium-enriched microRNAs (miRNAs) discriminate between patients with CAV and 

patients without CAV. 

Methods: Fifty-two patients undergoing coronary angiography between 5 and 15 years after 

heart transplantation were recruited in this cross-sectional study. Circulating levels of 

endothelium-enriched miRNAs (miR-21-5p, miR-92a-3p, miR-92a-1-5p, miR-126-3p, miR-

126-5p) were quantified by real-time RT-PCR. The discriminative ability of logistic 

regression models was evaluated using the concordance statistic (c-statistic).  

Results: Median plasma levels of miR-21-5p, miR-92a-3p, miR-126-3p, and miR-126-5p 

were 1.82-fold (p=NS), 1.87-fold (p<0.05), 1.94-fold (p=0.074), and 1.59-fold (p=0.060) 

higher, in patients with CAV than in patients without CAV. Recipient age (c-statistic 0.689 

(95% CI 0.537-0.842)), serum creatinine (c-statistic 0.703 (95% CI 0.552-0.854)), levels of 

miR-92a-3p (c-statistic 0.682 (95% CI 0.533-0.831)), and levels of miR-126-5p (c-statistic 

0.655 (95% CI 0.502-0.807)) predicted CAV-status in univariable models. In multivariable 

logistic regression models with recipient age and creatinine as covariates, miR-126-5p 

(χ²=4.37; df=1; p=0.037), miR-92a-3p (χ²=6.01; df=1; p=0.014), and the combination of 

miR-126-5p and miR-92a-3p (χ²=8.16; df=2; p=0.017) added significant information. The 

model with age, creatinine, miR-126-5p, and miR-92a-3p as covariables conferred good 

discrimination between patients without CAV and patients with CAV (c-statistic 0.800 (95% 

CI 0.674-0.926)). 

Conclusion: Endothelium-enriched miRNAs have diagnostic ability for CAV beyond clinical 

predictors. 
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INTRODUCTION 

Cardiac allograft vasculopathy (CAV) is a limiting factor for the long-term survival of heart 

transplant recipients1, 2. CAV is characterized by the development of diffuse concentric 

fibromuscular intimal hyperplasia lesions in epicardial and smaller intramyocardial arteries 

along with focal, eccentric atherosclerotic plaques in the larger epicardial arteries3, 4. The 

development of these lesions may lead to the progressive narrowing of the lumen5. According 

to the response to injury hypothesis of CAV, these lesions are the result of cumulative 

endothelial injury induced by alloimmune responses as well as non-immunological risk 

factors such as ischemia-reperfusion injury, viral infections, and metabolic disorders3, 6.  

Early diagnosis of CAV is essential to implement appropriate prevention and treatment 

measures. Metabolic parameters like triglycerides to HDL cholesterol ratio7, 8 and plasma 

insulin level9 may discriminate between CAV-positive and CAV-negative patients. 

Immunological and inflammatory biomarkers of CAV include donor-specific anti-HLA 

antibodies10, antibodies against heterogeneous nuclear ribonucleoprotein K11, C-reactive 

protein (CRP)8, 12-14,	
   vascular cell adhesion molecule-115, and circulating C-X-C motif 

chemokine 12 (CXCL12) levels16. However, the discriminative ability and the incremental 

value of these biomarkers beyond clinical risk factors have not been robustly established. 

Candidate-based approaches using biomarkers of endothelial homeostasis may constitute a 

solid foundation for the development of prediction models of CAV. The angiogenesis-related 

proteins vascular endothelial growth factor (VEGF)-C, VEGF-A and platelet factor-4 have 

been identified as independent biomarkers of CAV17.  In a recent cross-sectional study18, we 

demonstrated that a logistic regression model containing apoptotic circulating endothelial 

cells (CECs) and apoptotic circulating endothelial microparticles (CEMPs) as independent 

predictors provided high discrimination between CAV-positive and CAV-negative patients 

(c-statistic 0.812; 95% CI 0.692-0.932). In several logistic regression models including 

clinical and biochemical covariates, the introduction of apoptotic CECs and apoptotic CEMPs 

consistently resulted in added value, indicating that these biomarkers are robust independent 

predictors.  
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In line with previous studies demonstrating the ability of biomarkers related to endothelial 

homeostasis for non-invasive diagnosis of CAV, the aim of this study was to analyze the 

potential of endothelium-enriched microRNAs (miRNAs) as putative biomarkers for 

prevalent CAV. MiRNAs are small, non-coding, single-stranded RNA sequences that regulate 

gene expression at the post-transcriptional level. Because miRNAs circulate in remarkably 

stable forms in blood19, 20, they have a significant potential as biomarkers. Several reports 

indicate that miRNAs may play a role in endothelial homeostasis21, 22. In the current cross-

sectional study, a candidate-based approach using circulating levels of endothelium-enriched 

miRNAs (miR-21-5p, miR-92a-3p, miR-92a-1-5p, miR-126-3p, miR-126-5p) for non-

invasive diagnosis of CAV was investigated. 
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METHODS 

Study design 

Fifty-two clinically stable patients undergoing coronary angiography between 5 and 15 years 

after heart transplantation and eighty patients with clinically stable native coronary artery 

disease (CAD) were included in this cross-sectional study. Stable native CAD patients were 

defined by the presence of at least one stenosis of 50% or more demonstrated by diagnostic 

coronary angiography. CAV was graded according to the International Society for Heart and 

Lung Transplantation working formulation of a standardized nomenclature for CAV-201023. 

Patients with CAV1, CAV2, and CAV3 were pooled and constituted the CAV-positive group. 

The CAV-negative group comprised patients with CAV0, defined as no detectable 

angiographic lesion. The clinical characteristics of CAV-negative and CAV-positive patients 

have been described in a previous report18. Heart transplant patients with prior congenital 

heart disease and re-transplanted patients were excluded. The study was approved by the 

Ethics Committee of the University Hospital Gasthuisberg and written informed consent was 

obtained from all participating subjects. The reference control group included 25 healthy 

control subjects (12 males and 13 females) with an average age of 43.2 ± 2.0 years13. 

 

Quantification of circulating levels of endothelium-enriched miRNAs (miR-21, miR-92a, 

miR-126) in plasma samples 

This study was not preceded by a screening phase evaluating a large pool of miRNAs for 

association with CAV-status. The endothelium-enriched miRNAs (miR-21, miR-92a, miR-

126) investigated in this study were a priori selected based on an analysis of the literature and 

no other miRNAs were quantified. Peripheral blood was drawn by venipuncture using 

Vacutainer® collection tubes (BD Diagnostics, Franklin Lakes, NJ, USA). Plasma derived 

from EDTA anticoagulated peripheral blood was centrifuged within one hour after collection 

at 1900 g for 10 min followed by a second centrifugation at 1900 g for 20 min to generate 

platelet-poor plasma (PPP) that was used for miRNA quantification by real-time PCR. RNA 

was isolated from 400µl plasma using the Ambion mirVANA RNA extraction kit (AM1560, 
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Applied Biosciences, Austin, Texas, USA). Subsequently, 300 nanogram of RNA was 

reverse-transcribed to cDNA using the miScript-II RT PCR kit (218061, Qiagen Benelux NV, 

Venlo, The Netherlands). Real-­‐time PCR was performed on an ABI-Prism cycler (Applied 

Biosystems, Life Technologies, Carlsbad, CA, USA) using LNATM-based miRNA primers 

(Exiqon A/S, Vedbaek, Denmark) and SYBR Green (Life Technologies, Carlsbad, CA, USA). 

U6 non-coding small nuclear RNA (snRNA) expression was measured as an endogenous 

control for data normalization. U6 primers were designed by Eurogentec (Eurogentec, 

Seraing, Belgium). MiRNA expression levels were compared using the relative threshold 

cycle (Ct) method (2–∆∆Ct). 

 

Quantification of apoptotic CECs and of apoptotic CEMPS by flow cytometry 

Apoptotic CECs and apoptotic CEMPs were defined as Annexin V+ CD45- CD31bright 

VEGFR-2+ mononuclear cells and Annexin V+ CD144+ CD42a- microparticles. Details of the 

gating strategy and of the flow cytometry analysis have been described before18.  

 

Statistical analysis 

Clinical and biochemical parameters and endothelial biomarkers were compared using Instat 

3 (Graphpad software, San Diego, CA, USA). Continuous variables were summarized by 

means, standard error of the mean, and sample size, and were compared by Student t-test 

between CAV-negative and CAV-positive patients and between CAV-positive patients and 

stable native CAD patients. When data were not normally distributed, data are presented as 

medians and interquartile range (IQR), and were compared by a Mann-Whitney Test. Logistic 

regression analysis was performed by SAS software, version 9.2 (SAS Institute Inc., Cary, 

NC, USA). Since the distribution of the concentration of CECs and of CRP is heavily right-

skewed, a natural logarithm transformation of the data of these two parameters was applied 

for logistic regression analysis. The discriminative ability was quantified using the 

concordance statistic (c-statistic), which is equal to the area under the receiver operating 

characteristic curve. Evaluation of added value of predictors in multivariable logistic 
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regression models was based on likelihood-ratio tests comparing two nested models. A p-

value of less than 0.05 was considered statistically significant. 
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RESULTS 

Characteristics of heart transplant recipients without and with CAV and of patients 

with stable native CAD 

The clinical characteristics of heart transplant recipients without CAV (n=22) and with CAV 

(n=30), and of patients with stable native CAD (n=80) are shown in Supplemental Table 1. 

Patients with CAV were 8.6 years (p<0.05) older than patients without CAV and 4.7 years 

(p<0.05) younger than patients with stable native CAD at the time of inclusion in the study. 

Patients with stable native CAD had a lower prevalence of hypertension (p<0.0001) and a 

higher body mass index (p<0.05) compared to patients with CAV. No significant difference 

of these two parameters was observed between patients without CAV and patients with CAV. 

Lipoprotein levels were similar among the three patient groups except LDL cholesterol, 

which was 15.9% (p<0.05) lower in patients with CAV than in patients without CAV. 

Creatinine levels were significantly higher in patients with CAV than in patients without 

CAV (p<0.05) as well as in patients with stable native CAD (p<0.0001).  

 

Circulating endothelium-enriched miRNA levels are higher in patients with CAV 

compared to patients without CAV 

All miRNA levels (Figure 1, Figure 2) were normalized against U6 snRNA level. Levels of 

miR-21-3p were consistently below detection limit (data not shown). As shown in Figure 1A, 

median plasma miR-21-5p level was 2.34-fold (p<0.05) increased in patients with CAV 

compared to healthy controls whereas no increase was observed in CAV-negative patients. 

Median plasma miR-21-5p level was 1.82-fold (p=NS) higher in CAV-positive patients 

compared to CAV-negative patients (Figure 1A). Median plasma miR-92a-3p in patients with 

CAV was 3.08-fold (p<0.01) and 1.87-fold (p<0.05) higher, respectively, compared to 

healthy controls and patients without CAV (Figure 1B). As shown in Figure 1C, median 

plasma miR-92a-1-5p was 2.11-fold increased (p=0.075) in patients with CAV compared to 

healthy controls but no significant difference was observed between CAV-negative and CAV-
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positive patients. Median plasma miR-126-3p in CAV-positive patients was 2.80-fold 

(p<0.01) and 1.94-fold (p=0.074) higher, respectively, compared to healthy controls and 

CAV-negative patients. Finally, median plasma miR-126-5p in patients with CAV was 2.02-

fold (p<0.05) and 1.59-fold (p=0.060) increased, respectively, compared to healthy controls 

and patients without CAV. Taken together, these results demonstrate that levels of several 

circulating endothelium-enriched miRNAs are increased in patients with CAV compared to 

patients without CAV. 

 

Circulating levels of miR-92a-3p and miR-92a-1-5p differ in patients with CAV and in 

patients with stable native CAD 

Median plasma levels of miR-21-5p, miR-92a-3p, miR-92a-1-5p, miR-126-3p, and miR-126-

5p were 2.38-fold (p<0.01), 1.98-fold (p<0.01), 3.16-fold (p<0.0001), 3.10-fold (p<0.0001), 

and 1.90-fold (p<0.0001) higher, respectively, in patients with stable native CAD (Figure 2) 

than in healthy controls (Figure 1). Whereas all of these 5 endothelium-enriched miRNAs 

were elevated in both CAV and native CAD, two distinctions in miRNA levels were observed 

between these two types of arteriosclerosis. Median plasma level of miR-92a-3p was elevated 

1.56-fold (p=0.051) in CAV-positive patients compared to patients with stable native CAD 

(Figure 2B). In contrast, median plasma level of miR-92a-1-5p was 1.50-fold (p=0.089) 

higher in patients with native CAD compared to patients with CAV (Figure 2C).  

 

Strong correlation between plasma levels of four miRNAs in heart transplant recipients 

Table 1 shows the Spearman’s rank correlation matrix of endothelium-enriched miRNAs and 

apoptotic CECs and apoptotic CEMPs. With the exception of miR-92a-3p, endothelium-

enriched miRNAs were strongly correlated (Spearman’s rank correlation coefficient higher 

than 0.8). Plasma levels of miR-21-5p, miR-92a-1-5p, miR-126-3p, and miR-126-5p were 

weakly correlated with apoptotic CECs whereas the level of miR-92a-3p was weakly 

correlated with apoptotic CEMPs. Plasma miRNA levels were not related to clinical 

parameters (data not shown). 
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Logistic regression models for discrimination between CAV-positive and CAV-negative 

transplant recipients  

Table 2 summarizes the odds ratio per standard deviation increase and the c-statistic values of 

univariable logistic regression models for clinical and biochemical parameters and endothelial 

biomarkers. Plasma levels of miR-126-5p and of miR-92a-3p predicted CAV-status 

significantly better than chance (Table 3). Since the levels of these two miRNAs were only 

weakly correlated, miR-126-5p and miR-92a-3p were further analyzed in multivariable 

logistic regression models. Discrimination between CAV-negative and CAV-positive 

transplant recipients based on multivariable logistic regression models is shown in Table 3. 

Data in relation to the previously published model with age, creatinine, apoptotic CECs, and 

apoptotic CEMPs as predictors18 are shown as reference values. The model with age, 

creatinine, miR-126-5p, and miR-92a-3p as covariables conferred good discrimination 

between patients without CAV and patients with CAV (c-statistic 0.800 (95% CI 0.674-

0.926)). In a logistic regression model with recipient age and creatinine as covariates, miR-

126-5p (χ²=4.37; df=1; p=0.037), miR-92a-3p (χ²=6.01; df=1; p=0.014), and the 

combination of miR-126-5p and miR-92a-3p (χ²=8.162; df=2; p=0.017) added significant 

information. In addition, miR-92a-3p (χ²=5.45; df=1; p=0.0195) and not miR-126-5p (chi-

square=2.04; df=1; p=0.15) added value in a model with apoptotic CECs and apoptotic 

CEMPs as predictors. The receiver operating characteristic curve for the logistic regression 

model with apoptotic CECs, apoptotic CEMPs, and miR-92a-3p as predictors is shown in 

Figure 3.  
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DISCUSSION 

The salient findings of the present study are that 1) plasma levels of miR-126-5p and of miR-

92a-3p predict prevalent CAV in univariable models; and 2) these endothelium-enriched 

miRNAs have diagnostic ability for CAV beyond clinical predictors or other endothelial 

biomarkers. 

Biomarkers that capture key processes in the pathogenesis of CAV, e.g. biomarkers related to 

endothelial homeostasis18, may be the cornerstone for adequate prediction models. The five 

miRNAs analysed in this study (miR-21-5p, miR-92a-3p, miR-92a-1-5p, miR-126-3p, and 

miR-126-5p) are endothelium-enriched miRNAs and have been shown to play a role in 

endothelial homeostasis21, 24. MiR-21 negatively modulates angiogenesis by targeting RhoB 

expression25. The precursor miRNA miR-21 gives rise to two mature miRNAs: miR-21-3p 

and miR-21-5p. MiR-21-5p is an important regulator of neointimal hyperplasia development 

after balloon injury26, 27. MiR-92a represses angiogenesis28,	
   29 and promotes endothelial 

activation30. MiR-92a-3p and miR-92a-1-5p are two distinct mature miRs produced from the 

same precursor miRNA pre-miR-92a-1. Finally, miR-126 is one of the most abundant 

miRNAs in endothelial cells and is involved in the regulation of vascular integrity and 

angiogenesis31. MiR-126-3p and miR-126-5p are two distinct mature miRNAs arising from 

the same precursor pre-miR-126. MiR-126-3p has been shown to confer anti-inflammatory 

effects by inhibiting expression of vascular cell adhesion molecule 1 and sprouty-related 

protein 132, 33. MiR-126-5p enhances endothelial proliferation via inhibition of the Notch1 

inhibitor delta-like 1 homolog (Dlk1)34. Thus, the two miR-126 strands play a role in 

endothelial repair mechanisms in response to continuous endothelial inflammation and 

apoptosis resulting in endothelial damage. Taken together, the specific functions of the 

different miRNAs investigated in the current study may be biologically relevant for the 

development of CAV. However, the focus of the current study is the development of 

diagnostic models for prevalent disease. Therefore, a potential causal role of any of these 

miRNAs is not under consideration in this report. Interestingly, all investigated miRNAs were 
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increased both in heart transplants recipients with CAV and in patients with native CAD 

compared to healthy controls. Nevertheless, whereas plasma levels of miR-92a-3p were 

elevated in CAV-positive patients compared to patients with stable native CAD, the opposite 

pattern was observed for miR-92a-1-5p. This distinction in endothelial biology between these 

two types of arteriosclerosis is also reflected by our previous report demonstrating that 

markers of endothelial injury are distinct in patients with stable native CAD and with CAV35. 

Whereas miRNAs have been investigated as non-invasive biomarkers for heart transplant 

rejection36, 37, this is the first report to demonstrate the discriminative ability of miRNAs in 

clinical prediction models of prevalent CAV. A strong correlation of plasma levels of 4 of the 

5 investigated endothelium-enriched miRNAs was observed in heart transplant recipients. 

Therefore, consideration of all miRNAs for multivariable modeling was not meaningful and 

could have led to multicollinearity problems. Moreover, given the number of patients 

included in the current study, the number of predictors in multivariable models had to be 

limited. The model with age, creatinine, miR-126-5p, and miR-92a-3p as covariables 

conferred good discrimination between patients without CAV and patients with CAV and 

both endothelium-enriched miRNAs had diagnostic ability for CAV beyond clinical 

predictors. However, this model does not provide better discrimination compared to the 

previously published model with age, creatinine, apoptotic CECs, and apoptotic CEMPs as 

predictors18. Nevertheless, plasma level of miR-92a-3p added value in a model with apoptotic 

CECs and apoptotic CEMPs as predictors, which may provide a foundation for a model with 

improved discrimination. Since the number of subjects in the current study was limited to 22 

CAV-negative patients and 30 CAV-positive patients, we cannot test whether plasma level of 

miR-92a-3p adds information beyond the previously established model with age, creatinine, 

apoptotic CECs, and apoptotic CEMPs as predictors. Inclusion of too many predictors leads 

to overfitting of the data and C-indices are overestimated38. Specifically, models with more 

than 3 predictors should be interpreted with extreme caution considering the sample size. A 

larger study is required to analyse the discriminative ability of a model including clinical 

predictors, apoptotic CECs, and apoptotic CEMPs, and miR-92a-3p. 
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There is a biological rational why an endothelium-enriched miRNA has diagnostic ability for 

CAV beyond clinical predictors or beyond apoptotic CEMPs and apoptotic CECs. Although 

miRNAs can be released by apoptosis or necrosis, miRNAs can also enter the circulation in 

exosomes. Exosomes are built by inward budding of the limiting cell membrane of the 

multivesicular body, a late endosomal compartment39. The fusion of the multivesicular body 

with the plasma membrane leads to the active secretion of exosomes into the blood circulation. 

Since this active secretion process is fundamentally distinct from apoptosis or necrosis, it is 

not surprising that no strong correlation is observed between different miRNAs and apoptotic 

CECs and apoptotic CEMPs. This lack of a strong correlation is a necessary condition to 

contribute additional information to the prediction of CAV.  

Plasma levels of miR-126-5p and miR-92a-3p added value in models with age and creatinine 

as predictors. The observation that miR-92a-3p has diagnostic ability beyond apoptotic 

CEMPs and apoptotic CECs may lead to the development of diagnostic models with further 

improved performance. This hypothesis should be evaluated in the framework of a validation 

study, which may lead to a clinically applicable tool for improved CAV surveillance. Finally, 

prospective studies are required to evaluate the potential of endothelial biomarkers in 

prognostic models predicting incident CAV. 

In conclusion, the current study enforces the paradigm that endothelial biomarkers constitute 

a solid foundation for diagnostic models of CAV.  
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 LEGENDS TO THE FIGURES 

 
Figure 1. Individual value bar graph illustrating a comparison of plasma level of miR-21-5p 

(panel A), miR-92a-3p (panel B), miR-92a-1-5p (panel C), miR-126-3p (panel D), and miR-

126-5p (panel E) in healthy controls (n=25), patients without CAV (n=22), and patients with 

CAV (n=30). All miRNA levels were normalized against U6 snRNAlevel. Data points show 

the individual values. Medians are shown by the horizontal lines. 

 

Figure 2. Individual value bar graph showing a comparison of plasma level of miR-21-5p 

(panel A), miR-92a-3p (panel B), miR-92a-1-5p (panel C), miR-126-3p (panel D) and miR-

126-5p (panel E) in patients with CAV (n=30) versus patients with stable native CAD (n=80). 

All miRNA levels were normalized against U6 snRNAlevel. Data points show the individual 

values. Medians are shown by the horizontal lines. 

 

Figure 3. Receiver-operating characteristic curve for the logistic regression model with 

apoptotic CECs, apoptotic CEMPs, and miR-92a-3p as predictors. The area under this curve 

is equal to the c-statistic. 

	
  
	
  


