
Accepted Manuscript

Modelling scale-dependent runoff generation in a small semi-arid watershed
accounting for rainfall intensity and water depth

Christoph Langhans, Gerard Govers, Jan Diels, Jeffry J. Stone, Mark A. Nearing

PII: S0309-1708(14)00056-6
DOI: http://dx.doi.org/10.1016/j.advwatres.2014.03.005
Reference: ADWR 2176

To appear in: Advances in Water Resources

Received Date: 19 October 2012
Revised Date: 31 January 2014
Accepted Date: 24 March 2014

Please cite this article as: Langhans, C., Govers, G., Diels, J., Stone, J.J., Nearing, M.A., Modelling scale-dependent
runoff generation in a small semi-arid watershed accounting for rainfall intensity and water depth, Advances in
Water Resources (2014), doi: http://dx.doi.org/10.1016/j.advwatres.2014.03.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.advwatres.2014.03.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.advwatres.2014.03.005


  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1 

Title: Modelling scale-dependent runoff generation in a small semi-arid 1 

watershed accounting for rainfall intensity and water depth 2 

Corresponding Author: Christoph Langhans
1,2

 3 

Co-Author: Gerard Govers
1
 4 

Co-Author: Jan Diels
1 

5 

Co-Author: Jeffry J. Stone
3
 6 

Co-Author: Mark A. Nearing
3
 7 

Affiliations:  8 

1 
Department of Earth and Environmental Sciences, KULeuven, Celestijnenlaan 200 E, 9 

3001 Heverlee, Belgium 10 

2
Currently at: Forest and Water Group, Department of Forest and Ecosystem Science, 11 

Melbourne School of Land and Environment, University of Melbourne, 221 Bouverie St, 12 

3010 Parkville, Victoria, Australia 13 

 3
 Southwest Watershed Research Center, USDA-ARS, 2000 E. Allen Rd, 85719 Tucson, 14 

AZ, USA 15 

  16 

http://ees.elsevier.com/adwr/download.aspx?id=140775&guid=825890fc-c839-4412-904b-f6bd81a63529&scheme=1
http://ees.elsevier.com/adwr/viewRCResults.aspx?pdf=1&docID=3851&rev=1&fileID=140775&msid={1F0BE81B-9A09-4630-A473-93A5CB1ACAC7}


  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

2 

 

Abstract: 17 

Observed scale effects of runoff on hillslopes and small watersheds derive from complex 18 

interactions of time-varying rainfall rates with runoff, infiltration and macro- and 19 

microtopographic structures. A little studied aspect of scale effects is the concept of water 20 

depth-dependent infiltration. For semi-arid rangeland it has been demonstrated that mounds 21 

underneath shrubs have a high infiltrability and lower lying compacted or stony inter-shrub 22 

areas have a lower infiltrability. It is hypothesized that runoff accumulation further downslope 23 

leads to increased water depth, inundating high infiltrability areas, which increases the area-24 

averaged infiltration rate. A model was developed that combines the concepts of water depth-25 

dependent infiltration, partial contributing area under variable rainfall intensity, and the 26 

Green-Ampt theory for point-scale infiltration. The model was applied to rainfall simulation 27 

data and natural rainfall – runoff data from a small sub-watershed (0.4 ha) of the Walnut 28 

Gulch Experimental Watershed in the semi-arid US Southwest. Its performance to reproduce 29 

observed hydrographs was compared to that of a conventional Green-Ampt model assuming 30 

complete inundation sheet flow, with runon infiltration, which is infiltration of runoff onto 31 

pervious downstream areas. Parameters were derived from rainfall simulations and from 32 

watershed-scale calibration directly from the rainfall – runoff events. The performance of the 33 

water depth-dependent model was better than that of the conventional model on the scale of a 34 

rainfall simulator plot, but on the scale of a small watershed the performance of both model 35 

types was similar. We believe that the proposed model contributes to a less scale-dependent 36 

way of modelling runoff and erosion on the hillslope-scale. 37 

Keywords: 38 

Runoff, runon, infiltration, Green-Ampt, Walnut Gulch, modelling, water depth 39 

40 
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1 Introduction 41 

The scale-dependency of runoff and infiltration has been recognized widely. In studies 42 

that compare runoff at different scales of a hillslope, scale effects appear as reduced runoff 43 

coefficients with increasing scale [1-7]. Models that try to reduce scale-dependency in the 44 

calculation of runoff generation have concentrated on various effects. Among the 45 

explanations for scale effects, variability and duration of a rainstorm are probably the most 46 

uncontroversial ones: even on a perfectly homogeneous surface runoff coefficients can be 47 

expected to decrease with slope length (or area) due to the infiltration of runoff water in 48 

pervious downstream areas (runon infiltration) during periods of low rainfall intensity and/or 49 

after the rainfall event. Stomph et al. [8] have quantified the effect of storm duration and slope 50 

length on artificial slopes in the laboratory, finding that shorter rainfall durations and longer 51 

slopes produce the largest scale effects. Wainwright and Parsons [9] simulated runoff 52 

coefficients with a simple storage model, allowing runon infiltration, which is defined as 53 

infiltration of water produced by rainfall excess further upslope [10]. They found that the 54 

average rainfall intensity and variability of rainfall strongly influenced runoff coefficients, 55 

while the reduction in runoff coefficients with slope length of the simulated hillslope was 56 

dependent on slope gradient and the hydraulic roughness coefficient. The effect of spatial 57 

variation in infiltration capacity on scale effects is more controversial than the temporal 58 

effect. Modelling studies have created randomly distributed hydraulic variables, very often 59 

saturated hydraulic conductivities (Ks), with or without spatial correlation, and have computed 60 

the sensitivity of runoff production to the coefficient of variance and/or the spatial structure of 61 

the variance [10-12]. If runon infiltration is allowed, which means that runoff produced 62 

upstream infiltrates if it flows over unsaturated areas, substantial scale effects appear [13-15]. 63 
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It has been suggested that heterogeneity in the context of runon infiltration increases scale 64 

effects, because the likelihood that runoff flows onto areas of very high infiltration capacity is 65 

increased with increasing scale, thereby  reducing runoff connectivity [7, 16]. However, the 66 

effect is dependent on rainfall intensity and duration, the pattern of runoff concentration and 67 

typical scale of heterogeneities [17], and it has not been quantified yet. 68 

Runon infiltration is usually modelled as sheet flow entering unsaturated modelling units 69 

(cells or pixels), supplying water for infiltration in the same way as rainfall on the whole 70 

surface of the modelling unit [e.g. 13]. In such a conceptualization a constant hydraulic 71 

conductivity for the whole modelling unit is assumed. Runon infiltration has also been 72 

modelled to increase with inundation of a microtopography, albeit without a systematic 73 

variation of hydraulic conductivity within the microtopography [10]. However, in 74 

environments with a clear microtopographical pattern, the local distribution of hydraulic 75 

conductivities is not completely random nor constant, but dependent on the relative elevation 76 

within the microtopography. Lyford and Qashu [18] found hydraulic conductivities to be 2.6 77 

times higher under creosote bushes (Larrea tridentata) and Palo Verde (Cercidium 78 

microphyllum), compared to the lower lying inter-shrub area. Similarly, Johnson and Gordon 79 

[19] have found 2 – 2.5 times higher infiltration rates under sagebrush (Artemisia tridentata) 80 

as compared to the inter-shrub areas. For the Mediterranean semi-arid rangeland 81 

environments it has been described how increased infiltration rates occur closer to plants as a 82 

consequence of mound build-up and improvement of the physical and chemical soil properties 83 

around the plant [e.g. 20, 21]. Dunne et al. [22] have proposed a model for steady state 84 

infiltration that accounts for these systematic patterns. In their model infiltration per unit area 85 

increased with increasing runoff water depth towards the foot of a slope. This increase is 86 

achieved by inundation of parts of an elevation-dependent distribution of hydraulic 87 

conductivities, where higher conductivities are associated with higher elevation of the 88 
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microtopography. The typical distance between mounded plants may influence runoff 89 

thresholds and  scale effects [23]. Dunne et al. [22] combined the concept of water depth-90 

dependent infiltration with the concept of partial contributing area for runoff production in 91 

order to explain the convex shape of shrub-covered hillslopes in Kenya. However, they did 92 

not account for temporal variations in rainfall intensity and/or infiltration capacity. Also in 93 

agricultural environments the spatial variation in infiltration capacity shows clear structure, 94 

leading to water depth dependent infiltration rates. Bresson and Valentin [24] showed that on 95 

tilled fields a sedimentary crust with a low hydraulic conductivity builds up in the micro-96 

valleys while the micro-slopes and ridges are covered by a structural crust with much higher 97 

conductivity. Fox et al. [25] have subsequently shown in a laboratory study that this 98 

phenomenon can lead to a fourfold increase in average hydraulic conductivity with increasing 99 

water depth.  Langhans et al. [26-28] have shown that under varying inflow and rainfall 100 

intensity rates on small rainfall simulation plots infiltration rates increase as inflow, rainfall 101 

intensity, water depth and inundated area increase. They have accounted for these effects in a 102 

water-depth dependent infiltration model based on Green-Ampt [27]. Clearly,  if runon 103 

infiltration is water depth-dependent this may produce scale effects as, generally, water depths 104 

can be expected to increase with increasing contributing area. While both temporal variation 105 

in rainfall (and infiltration) and the depth-dependency of infiltration may cause scale effects, a 106 

modelling framework integrating both effects has not yet been empirically tested on both the 107 

rainfall simulation plot-scale and the hillslope or small catchment-scale under natural rainfall 108 

conditions.  109 

The model first described in Langhans et al. [27] for a steady state case, integrates 110 

temporal, water depth and rainfall intensity effects and enables the exploration of the relative 111 

importance of these effects on scale effects. In the present study, behaviour and performance 112 

are compared to a similar baseline model without water depth-dependency and with a sheet 113 
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flow assumption. Data for testing the models were rainfall simulations on plots, and small 114 

catchment runoff measurements, constituting two typical scales where we would expect 115 

runoff generation rates to decrease from plot- to catchments-scale. We chose to form 116 

infiltration expressions with parameters that are effective at the local scale (resolution) of 117 

approximately 1 m² [29]. The actual resolution of a model unit in a distributed model should 118 

be similar to the typical scale length of microtopography to be able to capture the full process 119 

of interaction between runoff and microtopography. The typical scale length therefore 120 

depends on land use: in agricultural systems, tillage implements determine the width of the 121 

microtopography (~0.3 m), while in semi-arid rangeland of the study area shrubs on mounds 122 

are organized in intervals of ~1.5 m. An advantage of conceptualizing processes at the local 123 

scale is that effective parameters can be readily found by parameterizing the model with 124 

rainfall simulation data, because the scale of modelling units and experimental plots are 125 

similar and it can be assumed that processes within the experimental plot resemble those of 126 

the modelling unit. 127 

In this study we seek to answer the following questions: (1) can we observe scale effects 128 

in a data set of rainfall simulations and runoff data from small catchments? (2) Can both 129 

watershed-scale infiltration models be successfully calibrated using rainfall simulation data or 130 

is calibration from watershed-scale runoff data necessary? (3) Does the incorporation of the 131 

water depth-dependency and runon infiltration into a Green-Ampt based model improve 132 

performance? 133 

 134 
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2 Methods 135 

This section describes the site and the rainfall simulation data that were used to parameterize 136 

the baseline model and the new model to be tested. Further, this section describes the natural 137 

rainfall data that were used to validate the models’ results when parameterized with rainfall 138 

simulation data and to obtain model parameters by calibration and validation against runoff 139 

hydrographs. The parameterization is described in detail in section 3.4. 140 

2.1 Site description 141 

The Walnut Gulch Experimental Watershed (WGEW) of the United States Department of 142 

Agriculture (USDA) is a semi-arid watershed located in Southeast Arizona, southwest United 143 

States in the transition zone between the Sonoran and Chihuahua desert (Figure 1). Runoff 144 

occurs mainly in the summer months during and shortly after major convective storms. 145 

Storms of lower intensity during winter months rarely produce runoff. Within the WGEW, the 146 

Lucky Hills Site is a 0.4 ha sub-watershed (LH- 106) with an average slope of 7.6 %, and 147 

equipped with an H-flume [30]. Figure 2 is a contour map of the watershed, under-laid with a 148 

panchromatic satellite image from 7 July 2010 (Quickbird, 0.6 m resolution). The darker gray 149 

areas represent single shrubs or agglomerations of a few shrubs (1 to 2 m in diameter), within 150 

a network of gravely soil or scattered forbs and grasses, mostly with a stony upper soil layer 151 

(light grey areas). The soil is classified as very gravely sandy loam without a topsoil [31]. 152 

Dominant shrubs species within the watershed include Creosote (Larrea tridentata) and 153 

Whitethorn (Acacia constricta) on mounds of looser, mulched soil with fewer stones (Figure 154 

3).  155 

 156 

[location of Figure 1, 2 and 3] 157 
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 158 

2.2 Rainfall simulations and runoff measurements 159 

Rainfall simulations with rainfall intensities between 25 and 216 mm h
-1

 were conducted 160 

between 2004 and 2008 during summer months about 100 meters south of the outlet of LH-161 

106. Rainfall simulations were conducted with a central oscillating boom rainfall simulator 162 

with four nozzles (Veejet 80100) attached at 1.52 m intervals, mounted 3 m above ground, 163 

while the plot was protected with a wind shield [32]. Details on the experimental procedure 164 

are given in Stone et al. [33]. A dry run at initial soil moisture was followed 45 minutes later 165 

by a wet or very wet run. The experiments chosen as the calibration set were wet and very wet 166 

runs from 2007 and 2008 on 6 large plots (LP) of 6.1 by 2 m, with apparent steady state 167 

runoff reached after application of at least 5 minutes of rainfall. These experiments were 168 

chosen as the calibration set, because orthogonal photos of the plot during experiments and 169 

dye velocity measurements (u, LT
-1

) existed for them which were required for the 170 

parameterization of the model (Table 1). The photos covered the lower 3 m of the runoff plot, 171 

and on three transects along the plot width, wp (L), at lengths of approximately 3.75, 4.5 and 172 

5.25 m from the upper plot border, the width fraction of inundation was measured by visual 173 

interpretation. Usually, it could easily be seen which parts were covered by water or not, 174 

however, stone pavements protruding through a layer of water occasionally created 175 

uncertainty in the visual interpretation. Runoff alternated between more concentrated faster 176 

flow around vegetated mounds and broader sheetflow in between. Water often flowed along 177 

the lateral plot borders. A trend towards more inundation at the lower end of the plot was not 178 

present. Consequently, all three transect measurements were averaged to form a single 179 

inundated area fraction (Ai), representative for the plot. Mean flow velocity was computed 180 

using the centroid of the electrical resistivity curve measured at the outlet of the plot [34]. 181 
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Rainfall simulations on large plots from 2004 (four plots), where no photos were taken, and 182 

small plots (SP, 0.75 m
2
, 3 plots) from 2008, were used as validation (Table 1). 183 

Natural rainfall – runoff events were selected from a continuous period of runoff and 184 

rainfall measurements from 2001 to 2010. Rainfall depth was digitally recorded at 1 min 185 

increments during periods of rainfall at a gage about 100 m from the outlet of LH-106.   The 186 

runoff hydrograph was measured also as breakpoint data at the H-Flume (Figure 2). During 187 

this period 718 rainfall events were recorded of which 60 resulted in runoff. All runoff events 188 

except for one (23.07.2008) had incident rainfall totals of more than 4.5 mm. Thus, this value 189 

was chosen as a minimum threshold for the selection of a dataset of rainfall events to be 190 

analysed. Volumetric soil moisture content at 5 cm depth was measured at a meteorological 191 

station 270 meters north of LH-106. The maximum value was taken as the effective saturated 192 

soil moisture content or effective porosity, ηe (L
3
L

-3
) = 0.29. To obtain a relevant estimate of 193 

initial soil moisture content, θi (L
3
L

-3
) a value just before rainfall started was selected for each 194 

event. Five rainfall events, of which one was producing runoff (07.07.2001), had no soil 195 

moisture measurements. The deletion of these events and the use of the rainfall threshold 196 

resulted in a total of 147 rainfall events with 58 producing runoff (Table 1). Selecting rainfall 197 

events with a threshold rather than selecting only runoff events reflects the fact that in a 198 

rainfall – runoff model rainfall is an independent variable while runoff is the quantity to be 199 

predicted. 200 

 201 

[location of Table 1] 202 
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3 Model descriptions 203 

Two contrasting models for the calculation of infiltration and runoff hydraulics at the 204 

local scale of a modelling unit are presented. Both were applied in a distributed model for the 205 

calculation of runoff at the small watershed-scale. 206 

 207 

3.1 Conventional Green-Ampt model with sheet flow (CON) 208 

The model to which the new proposed model is compared is termed conventional, 209 

because it uses equations that are commonly used to model runoff on hillslopes. Infiltrability 210 

(ft) at the point-scale, assuming piston-type flow is given by the Green-Ampt Equation [35] 211 

[e.g. Equation 5.4.1 in 36]: 212 

 213 












 1

t

st
F

Kf


        (1) 214 

 215 

where Ks is the point-scale hydraulic conductivity (LT
-1

), ψ (L) is the suction across the 216 

wetting front and Δθ (L
3
L

-3
) is the difference between ηe and θi. Ft is the cumulative 217 

infiltration at the end of a time step, which is given by Equation 5.4.2 in Chow et al. [36]: 218 

 219 























tt

t
sttt

F

F
tKFF ln     (2) 220 

 221 

The use of Equations 1 and 2 for the application to variable intensity rainstorms has been 222 

described by Chu [37]. Under the assumption of zero heterogeneity, point-scale Ks equals the 223 
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effective hydraulic conductivity Ke (LT
-1

). When the surface becomes saturated at ponding 224 

time, infiltration is assumed to occur below a thin continuous water layer covering the whole 225 

modelling unit. Equally, runon that enters a modelling unit is effectively distributed over the 226 

whole surface area and is added to rainfall to form a common water influx. 227 

For modelling runoff on a hillslope, a roughness coefficient is required for the estimation 228 

of flow depth. We chose to use Manning’s n, as it can be assumed that flow either becomes 229 

turbulent as it concentrates downslope, or it is laminar or intermediate, but much disturbed by 230 

roughness elements such as stones or litter. The average flow depth D (L) of the whole 231 

modelling unit is calculated as: 232 

 233 

m

eq
S

n
D 










2/1         (3) 234 

 235 

where qe (L
2
T

-1
) is the effective or average unit width discharge of a modelling unit, S is 236 

the gradient of the water surface, assumed to be equal to the slope gradient, and m is an 237 

exponent which is 0.6 for turbulent flow [38]. 238 

At its core, the CON model contains Chu’s variable rainfall intensity Green and Ampt 239 

infiltration model [37], with the main addition of the possibility of runon infiltration (rin) 240 

(Figure 4) 241 

 242 

[location of Figure 4] 243 

 244 
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3.2 Water depth-dependent Green-Ampt model with partial inundation 245 

(WDD) 246 

Contrary to the sheetflow assumption, the WDD model acknowledges that there is 247 

microtopography. This means that for every level of inundation within the microtopography, 248 

there is an average water depth positively correlated to the inundation fraction Ai. The type of 249 

this relationship will depend on the microtopography. As a first approximation we used a 250 

linear relationship between the inundation fraction and water depth.  251 

 252 

bDAi           (4) 253 

 254 

with b an empirical constant. Equation 4 does not imply that there is a single channel per 255 

modelling unit; it is purely empirical and can contain any amount of micro-channels that can 256 

take a tortuous route. These surface and flow characteristics (e.g. flow through protruding 257 

stones in this study) are accounted for by Manning’s n. As there are inundated and not 258 

inundated areas, qe in Equation 3 should apply for the inundated area only. The average 259 

effective plot unit runoff re (LT
-1

) is computed by averaging the inflow rin (LT
-1

) from upslope 260 

area and the outflow rout (LT
-1

) from a modelling unit: 261 

 262 

2/)( outine rrr          (5) 263 

 264 

Unit width discharge in the WDD model is for width of the inundated area only, so it is 265 

defined in relation to re as: 266 

 267 
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1
 iepe Arlq          (6) 268 

 269 

where lp (L) is the length of the modelling unit. The depth-discharge relationship can now 270 

be adapted for the WDD model, by substituting Equation 4 into Equation 6, which was then 271 

substituted into Equation 3: 272 

 273 

m

m

ep
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
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1

2/1         (7) 274 

 275 

Hydraulic conductivities in the WDD model are assumed to have an exponential 276 

distribution, an assumption that has been successfully tested elsewhere [33, 39, 40]: 277 

 278 
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


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K

s

K
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1
)(        (8) 279 

 280 

where g(Ks) is the probability distribution of hydraulic conductivities on the scale of the 281 

microtopography, within a modelling unit, with μK (LT
-1

) their mean, which is assumed 282 

constant. We did not assume a random distribution but one that is monotonically increasing 283 

with relative elevation of the microtopography, which is in line with field observations (see 284 

introduction). This assumption has been made before, but not in conjunction with the 285 

exponential distribution [22, 25]. Hawkins [39] formalized the partial contributing area 286 

approach: at any rainfall intensity (i, LT
-1

), there is always some area where rainfall intensity 287 

is limiting infiltration and some area where the soil’s infiltration capacity is limiting 288 

infiltration, the latter termed runoff contributing area fraction (Ac). In the small-scale context 289 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

14 

 

of the microtopography, Ac can be interpreted as the area where water flows erratically, 290 

depending on actual raindrop impact towards an inundated area (Figure 5a). When rainfall 291 

starts, Ac is infinitely small, but once soil suction decreases and rainfall intensity increases, a 292 

substantial area fraction can contribute to runoff production (Figure 5a). When water 293 

accumulates and concentrates further downstream, or when there is a sudden decrease in 294 

rainfall intensity during or at the end of a storm, the accumulated water can inundate an area 295 

bigger than Ac (Figure 5b). In this case runon infiltration will occur on the inundated area. 296 

Figure 5a and b depict a single channel for clarity of the illustration, but the generalized 297 

model (Equation 4) does not require a specific microtopography form. 298 

 299 

[location of Figure 5a and 5b] 300 

 301 

In the case of an exponential distribution with a single mean parameter, and when ψ and 302 

Δθ are spatially constant, the mean infiltration capacity μf (LT
-1

) is proportional to μK, just like 303 

ft is proportional to Ks (Equation 1) on the point-scale: 304 

 305 












 1

t

Kf
F


         (9) 306 

 307 

Equation 9 assumes that there is sufficient horizontal redistribution of infiltrated water to 308 

form a single infiltration front. It has been shown that an average Green-Ampt infiltration 309 

front produced results close to a three-dimensional finite difference solution [41]. Ft, the 310 

cumulative infiltration of the time step is not known when it is required in Equation 9, so the 311 

cumulative infiltration of the previous time step Ft-Δt (with Δt being the time interval) is used 312 
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as an initial guess (Figure 6). During subsequent iterations within the time step the value of Ft 313 

is updated. 314 

 315 

[location of Figure 6] 316 

 317 

Equation 9 yields μf which is necessary for the calculation of Ac. As Ac is defined as the 318 

area fraction where the infiltration capacity is less than the rainfall intensity i, it is obtained by 319 

integrating the exponential distribution of infiltration capacities g(f) from 0 to i which yields: 320 

 321 
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              (10) 322 

 323 

where g(f) is the same as g(Ks) in Equation 8, only that μK is substituted with μf. Like Ac, Ai is 324 

also a function of the exponential distribution: 325 

 326 
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             (11) 327 

 328 

where Ks(Ai) is the hydraulic conductivity at the edge of the water level of inundation. 329 

Similarly, Ks(Ac) is the hydraulic conductivity at the edge of the runoff contributing area.  330 

 331 

Kicics AAK )1ln()(          (12) 332 

 333 
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Where Ac|i is either Ac or Ai. The average hydraulic conductivity of the runoff 334 

contributing area Kc and the average hydraulic conductivity of the inundated are Ki are 335 

obtained by integrating hydraulic conductivities from the exponential distribution g(Ks) from 336 

0 to  Ks(Ac|i), which yields: 337 

 338 
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   ,            (13) 339 

 340 

Where Kc|i  is either Kc or Ki. Ft can now be calculated as: 341 

 342 
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.  344 

with Ac|i = Ai and Kc|i  = Ki if Ai > Ac (case Figure 5b), and else Ac|i  = Ac and Kc|i  = Kc (case 345 

Figure 5a). Equation 14 is derived from Equation 2, splitting the cumulative infiltration into a 346 

part where rainfall infiltrates directly (the second term) and a part where infiltration during a 347 

time step under Ai or Ac is limited by the soil (the third term). The resulting value of Ft is still 348 

an approximation and the calculation of Equations 9 to 14 are repeated until Ft used in 349 

Equation 9 differs from the outcome in Equation 15 by less than a very small threshold value. 350 

The effective infiltration rate fe (LT
-1

) of the modelling unit is now given by: 351 

 352 
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The first term is infiltration equal to rainfall intensity on the non-inundated and no runoff 355 

producing part of the soil and the second term describes infiltration according to the Green-356 

Ampt equation on the remaining inundated or runoff producing area. 357 

 358 

3.3 2D distributed Model 359 

Both infiltration models are implemented in MCST [47], a spatially distributed runoff-erosion 360 

model that originally used a modified curve number approach. The model routes runoff using 361 

the kinematic wave equation in conjunction with a flux decomposition algorithm [43] [48].  362 

A digital elevation model of the watershed with a 1 m horizontal resolution from a RTK 363 

GPS survey with 426 elevation points was used [42]. Infiltration and runoff calculation was 364 

changed so that runon infiltration could be accounted for in each grid cell and at each time 365 

step. Following the logic of the linear scheme of the kinematic wave algorithm, re in Equation 366 

5 was calculated with rin as inflow into a modelling unit during the present time step and rout 367 

as the outflow calculated on the same modelling unit during the previous time step. In the 368 

CON model the estimate of re was added to the rainfall intensity to calculate the amount of 369 

water which was available for infiltration on the whole surface of the modelling unit in 370 

accordance with the sheet flow assumption. In the WDD model, re was used to calculate D 371 

(Equation 7) and Ai (Equation 4) and then infiltration as described above. For a given set of 372 

parameter values controlling infiltration the WDD model will always predict lower runon 373 

infiltration for the same runon amount, unless there is full inundation. Once infiltration is 374 

calculated in both models, an estimate for the net lateral inflow into a modelling unit during a 375 

time step, Δr (LT
-1

), is obtained, which can become negative during runon infiltration, and is 376 

given by the difference between rainfall intensity and infiltration. It relates to the kinematic 377 

wave equation as: 378 
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 381 

Equation 17 was solved using a discrete non-linear scheme [36]. So for each time step 382 

and modelling unit, runoff, infiltration, water depth, and in the case of the WDD model, 383 

inundated area fraction are estimated. For a single rainfall event, three main output quantities 384 

were calculated that could be compared to measured quantities: the total discharge, Qt (L
3
), 385 

which is the sum of discharge of all time steps at the modelling unit (cell) that represents the 386 

outlet of the watershed. The steady state effective discharge, Qe (L
3
T

-1
), is a quantity that is 387 

used in erosion modelling, also in the MCST model, and is given by [43]: 388 

 389 
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 391 

where Q (L
3
T

-1
) is the discharge during one time step t, with t1 the first and tn the last 392 

time step of an event. The third quantity is peak discharge, Qp, (L
3
T

-1
). All three quantities 393 

can be modelled and also derived from observational hydrographs, measured at the H-flume 394 

at the watershed outlet. 395 

 396 
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3.4 Model parameterization and evaluation 397 

In accordance with the second objective, the model was parameterized using the 398 

calibration set of rainfall simulations to find values for Ke and μK for the CON and the WDD 399 

model, respectively, and values of Manning’s n and the parameter b, the latter for the WDD 400 

model. Secondly, Ke, μK, ψ and n were calibrated for natural rainfall-runoff events by 401 

optimizing an objective function consisting of the Nash-Sutcliffe model efficiency (ME) and 402 

the coefficient of determination (R²) of predictions of Qt, Qe and Qp, where R² was defined as: 403 

 404 
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             (18) 405 

 406 

where X is the quantity of interest. When equation 19 is used to calculate ME, X is the 407 

instantaneous runoff rate during a time step. All parameters were assumed to be constant 408 

within the catchment.  409 

 410 

3.4.1 Parameterization using rainfall simulations 411 

An estimate of average plot width flow depth on the rainfall simulation plots (assuming 412 

sheet flow) was obtained for the CON model using measured average velocities: 413 

 414 
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where re was calculated from Equation 5 with measured rout and zero rin. This allowed to 417 

find a value for Manning’s n that minimized the square of the residuals between predicted and 418 

measured D, using observed D, re and S data (least squares method) (Equation 3). 419 

For the WDD model, D is defined for the inundated area only, so Equation 20 becomes: 420 

 421 
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pe
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                 (20) 422 

 423 

Ai values were measured as described in section 2.2. D in Equation 21 was substituted 424 

with Ai/b (Equation 4) and then b was optimized with the least squares method for predicted 425 

and measured rout. Similarly to the CON model, Manning’s n could now be found with the 426 

least squares method (Equation 7). 427 

As Ke was assumed to approximately equal measured final infiltration rates during the 428 

(wet run) rainfall experiments, for the CON model an estimate of average Ke is simply derived 429 

by averaging final infiltration rates of the calibration dataset. For the WDD model, μK was 430 

optimized as described and depicted in Figure 9, dashed area, in Langhans et al. [27] for the 431 

steady state case of the rainfall simulation plots. 432 

 433 

3.4.2 Calibration on multiple rainfall events 434 

The dataset of 147 rainfall events (Table1) was randomly split into a calibration set of 74 435 

events and a validation set of 73 events. In accordance with objective 3, optimized parameter 436 

sets were found for the CON and the WDD model from the calibration set to assess the water 437 

depth-dependency effect, and for both models parameter sets were found that assess the effect 438 
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of runon infiltration. For the CON model this was done by forcing rin to be zero during 439 

infiltration calculation, and for WDD this was done by forcing Ai to be zero during infiltration 440 

calculation. The objective function (OBJ) was defined as: 441 

 442 

                                                                                     (21) 443 

 444 

In words, during optimization, the mean R² of the predictions of total, effective, and peak 445 

discharge was given equal weight as ME. For CON, ψ, Ke and Manning’s n, and for WDD ψ, 446 

μK and Manning’s n were simultaneously optimized using the following simple set search 447 

method. Starting values within realistic bounds were chosen, and parameter combinations 448 

were added that were half the starting value’s step in each direction of the parameter space 449 

(with three calibration parameters, this results in a 3D grid, when visualized). For each 450 

parameter combination in the set, OBJ was calculated, and the combination with the largest 451 

value was chosen. This combination was used as a new starting point for another set search, 452 

but with half a step size compared to the previous iteration. The number of iteration was 453 

limited by computation time but usually exceeded 4. It was ensured that OBJ were indeed 454 

maximized within the search space by plotting OBJ. The accuracy was between 1-5 mm for 455 

ψ, 0.5 mm/h for Ke and μK, and 0.002 for Manning’s n. 456 

 457 

4 Results 458 

4.1 Rainfall simulations 459 

Water depth of the inundated area show has a clear positive relationship with effective 460 

discharge (WDD, Figure 7), with little scatter for the year 2007. Also, 2007 water depth 461 
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values are much higher than values of plots from 2008, while the latter level off at 0.002-462 

0.003 m at high flow rates. The D – re relationship under the sheet flow assumption (CON, 463 

Figure 7) shows more scatter and lower depth estimates at higher flow rates, as can be 464 

expected, because flow is spread over the whole plot. The relationship of Ai – re (not shown) 465 

gives the same picture as WDD depths in Figure 7, because Ai and D are related only with the 466 

proportionality parameter b. The range of measured inundation fractions was 0.1 to 0.7. 467 

Values for Manning’s n were 0.26 and 0.57 for CON and WDD, respectively.  468 

 469 

[location of Figure 7] 470 

 471 

Final infiltration rates (Ke) in the years 2007 and 2008 were much higher than they were 472 

in 2004, which were used as validation data (Figure 8). Ke on the small plots in 2008 were 473 

more closely in the range of the infiltration values on the long plots. Moreover, Ke showed a 474 

stronger dependency on rainfall intensity in 2007 and 2008 than in 2004.  Average Ke, used in 475 

the CON model is a constant at 57.2 mm h
-1

, while μK (WDD) was optimized at 62.4 mm h
-1

 476 

(Table 2). In order to clarify the models’ behaviour on the rainfall simulation plot-scale, final 477 

infiltration rates were modelled for a range of rainfall intensities for the 6 m plot, with an 478 

average slope of 0.14. The WDD model predicts that the inundation effect (infiltration in area 479 

where Ai exceeds Ac) is strongest around the mean of the distribution on the 6 m plot (solid 480 

line departing from dash-dotted line in Figure 8). For the 1 m plots the curve for the average 481 

predicted Ke lies much closer to the curve of the dashed line, because, relatively, less runon 482 

infiltration occurs on a shorter slope (line not shown). Calculated complete inundation at 483 

higher rainfall intensities is a bias produced by the assumption of a linear relationship 484 
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between average water depth and inundation. Actually, there are always some parts of the 485 

plot, such as mounds under creosote bushes that remain un-inundated. 486 

 487 

[location of Figure 8] [location of Table 2] 488 

 489 

Final infiltration rates on long plots were much lower during 2004 (validation), and both 490 

models had negative R². For the small plots (2008), however, the WDD model yielded better 491 

predictions (R² = 0.86) compared to the CON model (R² = 0.10).  492 

 493 

4.2 Calibration with rainfall-runoff events 494 

Parameter values derived from rainfall simulations were used to model runoff 495 

hydrographs of all 147 rainfall events. With hardly any runoff predicted, both models 496 

performed poorly, with negative R² (Equation 19) (results not shown). Calibration on multiple 497 

events at field-scale yielded much lower optimized values for Ke and μK, both for model runs 498 

with and without runon infiltration (Table 2). Also, Manning’s n values were much smaller 499 

than the rainfall experiments suggested. Optimized ψ values were much higher for the WDD 500 

than the CON model. The optimization process during calibration yielded clearly defined 501 

maxima and smooth contours for OBJ in the parameter space for both models (Figure 9). 502 

 503 

[location of Figure 9 a-d] 504 

 505 

For the calibration set 37% of rainfall-runoff events for both, CON and WDD, had ME 506 

values above 0.75 (Table 3). The WDD model however had a higher proportion of events 507 

above 0.75 for the validation set. Coefficients of determination for Qt, Qp, and Qe were good 508 
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for all models and OBJ values were slightly higher for the WDD model than the CON model. 509 

The CON model performed slightly better in validation with runon infiltration than without 510 

runon infiltration. Comparing observed vs. predicted Qt revealed that CON had too many 511 

events predicting no runoff where there was runoff observed, and, conversely, the WDD 512 

model always predicted some runoff, leading to slight overestimation at low runoff rates 513 

(figure not shown).  514 

 515 

[location of Table 3] 516 

 517 

4.3 Model behaviour 518 

Model behaviour was further studied by comparing predictions of hydrographs with 519 

actually observed hydrographs, and by exploring the effects of water depth-dependency and 520 

runon infiltration through calculating infiltration under a steady rain (Figure 10). For a 40 mm 521 

h
-1

 synthetic rainstorm of 30 minutes, the average watershed-scale infiltration rate for the 522 

CON model was equal to rainfall intensity for the first 10 minutes, after which it dropped to 523 

below 23 mm h
-1

 at 30 minutes. When allowing runon infiltration, substantial runon 524 

infiltration occurred with the CON model between 30 and 40 minutes. For the WDD model 525 

infiltration rates dropped immediately after onset of rainfall to below 20 mm h
-1

 at 30 526 

minutes. When accounting for runon infiltration, infiltration rates of WDD are only less than 527 

0.5 mm h
-1

 larger from minute 8 onwards compared to WDD without runon infiltration, and 528 

after 30 minutes runon infiltration drops immediately to 1.5 mm h
-1

 only. Water depth-529 

dependent infiltration under such a scenario is thus negligible, whereas runon infiltration in 530 

the CON model is important. 531 

 532 
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[location of Figure 10] 533 

 534 

For qualitative analysis of the goodness of hydrograph prediction with the watershed-535 

scale calibration parameters, six events were chosen and displayed: The 90
th

, 50
th

, and 10
th

 536 

percentile event, based on descending ranking of ME, both for CON and WDD, with runon 537 

(Figure 11). 538 

 539 

[location of Figure 11] 540 

 541 

For the 90
th

 percentile events, the timing of the peak and peak discharge were better 542 

predicted for CON than WDD (Figure 11 a and b). For the 50
th

 percentile events, peak 543 

discharge was predicted better with the WDD model (Figure 11, c and d), but timing was 544 

either worse (Figure 11 c) or better (Figure 10 d) than CON. For the 10
th

 percentile, WDD had 545 

a stronger over estimation of peak discharge than CON (Figure 11 e and f), and timing was 546 

not apparently wrong. Regarding the form of the hydrographs, WDD generally has a steeper 547 

rise than CON, and follows rainfall intensity more closely. CON hydrographs are usually 548 

slightly better timed. Generally, however, over- or under-predictions of total or peak 549 

discharge not systematic, except, perhaps a tendency of WDD to over-predict during small 550 

events and under-predict during larger events. 551 

 552 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

26 

 

5 Discussion 553 

5.1 The role of rainfall simulations in watershed-scale models 554 

Rainfall simulation is a widely used tool to infer local scale infiltration parameters and 555 

characteristics. Orthogonal photos are an excellent way to gather additional information about 556 

runoff characteristics, like inundation and flow paths relative to microtopography. The 557 

method of deriving inundated area fractions is particularly useful, because they can be directly 558 

linked to depth-discharge relationships (Equations 4 and 7). Despite some inter year 559 

variability, calculated depths and effective runoff show a clear relationship (Figure 7). The 560 

range of average depth values (< 1 – 7 mm) lies within the range that Abrahams and Parsons 561 

[44] measured at a similar site on the WGEW. Direct, high precision measurements of runoff 562 

water depth [45] or combined inundation and microtopographical measurements for the 563 

calculation of water depth are surely superior to inference from flow velocity. However, even 564 

in the absence of more direct depth measurements, taking inundation into account will yield 565 

more realistic average water depths than the sheet flow assumption, because flow on a small 566 

scale hardly ever covers the whole surface where microtopography is present [46]. 567 

Values of Manning’s n calibrated from the natural rainfall-runoff events were lower with 568 

a factor of 3 for the CON model and 19 for the WDD model compared to values derived from 569 

rainfall simulations, and Ke and μK were four to five times lower (Table 2). There are several 570 

possible explanations for this discrepancy, but none taken on its own is sufficient. Regarding 571 

hydraulic roughness, it was observed from the orthogonal photos that plot borders impeded 572 

flow around mounds of creosote bushes. This must have led to more inundation and higher 573 

water depths than would occur in a natural setting without plot borders, where flow can 574 

follow unimpeded low lying channels between mounds. This means that on the plot average 575 

flow velocities were lower and Manning’s n higher than in a natural setting. Certainly, the 576 
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plot borders increase ponding and with it final infiltration rates during rainfall simulations, but 577 

it is unlikely that the effect can explain a four to five -fold difference. Runoff experiments in 578 

2004 still had roughly 2.5 times higher final infiltration rates than the calibrated values. 579 

Higher infiltration rates are a common observation for rotating or oscillating boom rainfall 580 

simulators. Risse et al. [47] and Nearing et al. [48] have reported 2-4 times higher Ke for 581 

rainfall simulations than calibrated values from runoff measurements on larger scale for 582 

humid environments. Burns [49] reported for the WGEW site 3-6 times higher rainfall 583 

simulation derived Ke than were calibrated for the small watershed-scale. The source of this 584 

discrepancy has not been reported. Beside the plot border effect, we can briefly point out three 585 

areas of explanation that can contribute to the difference. First, the oscillating boom rainfall 586 

simulator has intermittent, very high rainfall intensities with no rainfall in between. According 587 

to the partial area response concept, during the high rainfall intensity bursts, high infiltration 588 

rates can be achieved, while only time-averaged rainfall intensity is reported that would lead 589 

to a much lower infiltration rate. Secondly, there could be a bias during rainfall simulation 590 

site selection towards higher infiltration ‘interrill’ areas. Finally, during rainfall simulations 591 

air can escape laterally, which is not possible under natural rainfall which covers the whole 592 

area. 593 

As infiltration was higher on the small rainfall simulation-scale, scale effects were the 594 

inverse of what one would expect from runon-infiltration theory. But given the above-595 

mentioned differences between rainfall simulations and watershed-scale natural rainfall runoff 596 

measurements that can possibly affect infiltration rates, it can be concluded that the two types 597 

are incomparable for the purpose of scale enquiry, at least under the studied conditions and 598 

environment. This implies that rainfall simulations cannot simply be used for the 599 

parameterization of any of the two predictive models, which is confirmed by their bad 600 

performance when parameterized with rainfall simulation data in this study. Nevertheless, 601 
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rainfall simulations can be a valuable tool to study depth-discharge relationships, and relative 602 

differences of infiltration between sites and environments, or indeed to study any sub-603 

processes of infiltration in more detail. 604 

 605 

5.2 Importance of water depth-dependency and runon infiltration 606 

Both models can predict hydrographs satisfactorily when calibrated on the watershed-607 

scale (Table 3). The water depth-dependent model (WDD) performs slightly better than the 608 

conventional sheet flow model (CON), but this improvement is not related to the inundation 609 

effect, as the effect is probably very small when parameterized with a relatively low 610 

Manning’s n of 0.028 (Figure 10). Possibly, the main improvement above CON stems from 611 

the responsiveness of runoff to rainfall, because WDD contains a distribution of hydraulic 612 

conductivities, where low conductivities already respond with runoff production at low 613 

rainfall intensities. For the CON model, the inclusion of runon infiltration improves 614 

performance slightly (Table 3). This supports the theoretical importance of runon infiltration 615 

pointed out already by other researchers [10, 13]. 616 

There are three model structural reasons and one physical reason why water depth-617 

dependent infiltration and runon infiltration does not show up to be important in the WDD 618 

model in this study. First, Langhans et al. [27] have shown in a synthetic study that scale 619 

effects due to the water depth effect can be significant, but they used a relatively high 620 

hydraulic roughness value derived from rainfall simulations. In this study, hydraulic 621 

roughness is relatively low, and significant water depths that cause water depth-dependent 622 

infiltration do not build up. The physical reason, related to this, is that the macrotopography in 623 

the study catchment is very rugged so that runoff concentrates very quickly in channels and 624 

the effective hillslope lengths are very short; water depth cannot build up sufficiently on such 625 
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short slopes. The second model structural reason is that the exponential distribution assumed 626 

here (Equation 8) is such that only at high inundation levels significant infiltration can occur. 627 

If a different distribution had been chosen the water depth effect could have been more 628 

pronounced, such as the log-normal distribution which had been suggested before for 629 

variation of Ksat at larger scales [50-52]. But the analytical solution of the concept described 630 

here (i.e. Equations 8 – 16) is not applicable to all distributions and it would require a more 631 

stochastic, quasi-empirical approach to formulate the model with empirical or more complex 632 

distributions. The third model structural reason is that the assumption that hydraulic 633 

conductivities are strictly monotonously increasing within the microtopography is probably 634 

too strict. Some randomness within a modelling cell, and between would increase the chance 635 

of runon infiltration. A full study of various model structure-related effects, such as the choice 636 

of distribution, cell resolution, or randomness would be desirable but is beyond the scope of 637 

this study, as most would require a significant reformulation of the model. Consequently, and 638 

despite strong theoretical justification of the water depth-dependent infiltration process as 639 

pointed out in the introduction, the evidence for the water depth effect remains inconclusive 640 

from this study. Future research into the water depth effect and runon infiltration should 641 

therefore occur under more controlled field conditions that are tailored to quantify locations 642 

and flow pathways during infiltration. Only then it is reasonable to include these effects into 643 

models for prediction purpose. 644 

 645 

6 Conclusions 646 

The pattern of high infiltrability areas on mounds underneath shrubs and lower lying low 647 

infiltrability areas in the inter-shrub area has previously been demonstrated for semi-arid 648 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

30 

 

rangeland. Within the concept of water depth-dependent infiltration, runoff accumulation 649 

further downslope leads to increased water depth inundating high infiltrability areas, which 650 

increases the area average infiltration rate, one of many explanations for observed scale 651 

effects in runoff and erosion. A model was developed that combines the concepts of water 652 

depth-dependent infiltration, partial contributing area under variable rainfall intensity, and the 653 

Green-Ampt theory for point-scale infiltration. The model was applied to rainfall simulation 654 

data and natural rainfall – runoff data from a small semiarid watershed (0.4 ha) in the US 655 

Southwest. The model performance was compared to the performance of a conventional 656 

Green-Ampt model with the sheet flow assumption. Both models were parameterized with 657 

rainfall simulation data, and by calibration from watershed-scale runoff measurements. 658 

Parameters of hydraulic roughness and conductivity were larger by a high multiple for the 659 

former compared to the latter. This implies that scale effects were the inverse of the 660 

expectation, and rainfall simulation plot-scale data could not be used to successfully predict 661 

hydrographs. Calibrated models both had good performance, with the water depth-dependent 662 

model being slightly better. While runon infiltration was important in improving performance 663 

of the sheet flow assumption model, water depth effect was negligible in the new model. This 664 

was explained with rigid assumptions in the model structure, low hydraulic roughness, and 665 

short hillslopes. The proposed model makes some theoretical advancement towards a less 666 

scale-dependent way of modelling runoff and erosion on the hillslope-scale, but when 667 

calibrated on the watershed-scale, these structural changes bring little predictive gain. 668 

  669 
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Notation 678 

Ac  rainfall excess contributing area fraction, - 679 

Ai  flow inundated area fraction, - 680 

b  empirical factor of the inundation-depth relationship, L
-1

 681 

CON  conventional Green-Ampt model with sheet flow 682 

D  average water depth, L 683 

Δr  unit area net inflow, LT
-1

 684 

Δt  time step, T 685 

Δθ  difference between initial and saturated volumetric moisture content, L
3
 L

-3
 686 

ηe  effective soil porosity, L
3
L

-3
 687 

fe  effective infiltration rate, LT
-1

 688 

ft  potential infiltration rate or infiltrability, LT
-1

 689 

Ft  cumulative infiltration at the end of a time step, L 690 

i  rainfall intensity, LT
-1

 691 

Kc  average hydraulic conductivity of runoff contributing area, LT
-1

 692 

Ke  effective hydraulic conductivity, LT
-1

 693 

Ki  average hydraulic conductivity of inundated area, LT
-1

 694 

Ks  point-scale saturated hydraulic conductivity, LT
-1

 695 

lp  plot length or modelling unit length, L 696 

LP  Large plot 697 

m  exponent of depth-discharge relationship representing turbulence of flow, - 698 

ME  Model efficiency, - 699 

µf  mean of distribution of infiltrabilities, LT
-1 

700 

µK  mean of distribution of Ks, LT
-1 

701 
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n  Manning’s roughness coefficient, - 702 

OBJ  objective function, - 703 

P  total precipitation of an event, L 704 

ψ  suction across the wetting front and Δθ, L 705 

Q  discharge during time step, L
3
T

-1
 706 

qe  unit flow width discharge, plot length–averaged, L
2
T

-1
 707 

Qe  steady state effective discharge, L
3
T

-1
 708 

Qp  peak discharge, L
3
T

-1
 709 

Qt  total discharge, L
3
 710 

R²  Coefficient of determination, - 711 

re  rainfall and runon excess or unit area flow rate, plot-averaged, LT
-1

 712 

rin  unit area inflow rate at upper plot boundary, LT
-1

 713 

ρb  bulk density, ML
-3

 714 

rout  unit area outflow rate at lower plot boundary, LT
-1

 715 

S  slope gradient, - 716 

SP  small plots 717 

t  time,  718 

θi  initial volumetric soil moisture content, before start of rain, L
3
L

-3
 719 

θw  volumetric soil moisture content, L
3
L

-3
 720 

u  average runoff velocity, LT
-1

 721 

WDD  water depth-dependent Green-Ampt model with partial inundation 722 

wp  plot width, L 723 
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Figure captions 866 

 867 

Figure 1: Location of the study site in the southwest United States 868 

Figure 2: Contour map of watershed LH- 106 in the Lucky Hills Study Area (Figure 1) with a 869 

0.2 m contour interval. The background is a panchromatic Quickbird image from 7. July 870 

2010. Geographic coordinates of the centre of the catchment are 31°44’32’’N, 110°03’14’’W 871 

Figure 3: Creosote bush on mound and stony inter-shrub area. 872 

Figure 4: Flow chart of the CON model and the calibration procedure with multiple rainfall 873 

events. Numbers in brackets refer to Equations. 874 

Figure 5a: Schematic representation of a surface unit during the beginning and middle phase 875 

of a rainstorm, when Ac > Ai. Rainfall excess erratically flows down the microtopographic 876 

slope towards the low conductivity area where inundation starts. 877 

Figure 5b: Schematic representation of a surface unit during the recession or directly after a 878 

rainstorm in an area where runoff concentrates or accumulates, where inundated area (Ai) 879 

dominates infiltration.  880 

Figure 6: Flow chart of the WDD model and the calibration procedure with multiple rainfall 881 

events. Numbers in brackets refer to Equations. 882 

Figure 7: Relationship between average water depth and effective discharge for 2007 and 883 

2008 on the rainfall simulation plots. In the CON model water depth is calculated for the 884 

whole plot width, while in the WDD model it is calculated for the inundated area only. 885 
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Figure 8: Relationship between observed final infiltration rates and rainfall intensity under 886 

simulated rainfall. Lines are modelled averages of the CON model (dotted), the WDD model 887 

without runon infiltration (dashed), and the WDD model with runon infiltration (solid). 888 

Figure 9: Contour plots of the OBJ value in the parameter space: a) Manning’s n vs. Ke for 889 

CON, b) ψ vs. Ke for CON, c) Manning’s n vs. μK for WDD, d) ψ vs. μK for WDD 890 

Figure 10: Catchment average infiltration rate vs. time for a synthetic 30 min storm with 40 891 

mm h-1 rainfall intensity. Infiltration rates of the WDD model with runon infiltration (solid) 892 

and without runon infiltration (dotted), and of the CON model with runon infiltration 893 

(dashed) and without runon infiltration (dash-dotted) are shown. 894 

Figure 11: Modelled and observed hydrographs of the 90
th

 (a: CON, b: WDD) 50
th

 (c: CON, 895 

d: WDD) and 10
th

 (e: CON, f: WDD) percentile events based on descending ranking of ME 896 

for the CON and the WDD models. Observed hydrographs are solid-shaded and modelled 897 

hydrographs are dashed (WDD) and dash-dotted (CON). Rainfall intensity is displayed as 898 

stepped, solid line with an inverted scale on the right. 899 
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Table 1: Basic statistics of the rainfall simulation and rainfall events data set
a
 

a
LP: large plots (6 x 2 m), SP: small plots (1.22 x 0.61 m); P: total precipitation of an event; Max i: maximum 

one minute interval rainfall intensity; θi: pre-storm (initial) volumetric water content of soil. 
b
 Value in brackets 

is number of plots. 
c
 Statistics refer to applied rainfall intensity (mm h

-1
). 

d
Qt: total runoff, Qe, effective 

discharge, Qp: peak discharge; statistics apply to runoff producing events only. 

 Rainfall simulations
c
  Rainfall events 

 

Cal. 

LP 

Val. 

LP 

Val. 

SP 

 

P    

(mm) 

Qt
d  

  

(m³) 

Qe
d
  

(mm h
-1

) 

Qp
d   

(mm h
-1

) 

Max. i 

(mm h
-1

) 

θi          

(-) 

Number
b
 29 (5) 23 (4) 13 (3)  147 58 58 58 147 147 

Mean 125.5 102.7 127.3  11.6 19.0 14.5 25.7 45.0 0.11 

STDV 41.1 45.9 52.3  8.5 22.7 15.6 28.3 41.7 0.04 

Min 61.5 25.4 46.7  4.6 0.4 0.51 0.69 1.9 0.03 

Max 179.5 177.8 216.2  46.4 91.1 55.2 108.6 175.3 0.21 
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Table 2: Optimized parameter values calibrated for the watershed scale from runoff hydrographs for both 

models (CON and WDD), with and without runon infiltration, and parameters optimized for steady state rainfall 

simulation plot infiltration (‘Plot’) 

 CON WDD Plot 

 

With 

runon 

infiltration 

Without 

runon 

infiltration 

With runon 

infiltration 

Without 

runon 

infiltration 

CON WDD 

Ψ (mm) 31 22 139 175 - - 

μK (mm h
-1

) - - 16.5 14.5 - 62.4 

Ke (mm h
-1

) 8 14 - - 57.2 - 

Manning’s n 0.085 0.05 0.028 0.026 0.27 0.57 
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Table 3: Fraction of modelled events with a Nash-Sutcliffe Model Efficiency (ME) in a given class, coefficients 

of determination (R²) for measured vs. modeled Qt, Qe and Qp for all rainfall events, and objective measure 

(OBJ, Equation 21). Parameters were optimized to maximize OBJ, given the CAL dataset and validated with the 

VAL dataset (Table 1). Both models were calibrated with and without runon infiltration. 

  

 CON 

With runon 

CON 

Without runon 

WDD 

With runon 

WDD 

Without runon 

   CAL VAL CAL VAL CAL VAL CAL VAL 

ME 

> 0.75  0.37 0.11 0.37 0.21 0.37 0.32 0.37 0.29 

0.75> x > 0.5  0.1 0.14 0.07 0.11 0.23 0.15 0.23 0.18 

0.5 > x > 0  0.13 0.21 0.16 0.18 0.07 0.07 0.07 0.07 

< 0  0.4 0.54 0.4 0.5 0.33 0.46 0.33 0.46 

R
2
 

Qt  0.82 0.62 0.88 0.76 0.94 0.86 0.94 0.85 

Qp  0.91 0.67 0.94 0.69 0.89 0.72 0.89 0.72 

Qe  0.93 0.78 0.94 0.74 0.93 0.79 0.93 0.79 

OBJ   0.66 0.48 0.66 0.55 0.70 0.59 0.70 0.59 
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Highlights 

 

 Development of new infiltration model based on Green and Ampt 

 Combining water depth-dependent infiltration and partial contributing area concepts 

 Good runoff predictions at rainfall simulator and small catchment scales 

 Runon infiltration on hillslopes is an important process in semi-arid environments 




