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Abstract. The history of the axiomatic approach to the ranking of infinite
streams starts with Koopmans’ (1960) characterization of the discounted util-
itarian rule. This rule, however, meets Chichilnisky’s axiom of dictatorship of
the present and puts future generations offside. Recently, Lauwers (2010a) and
Zame (2007) have uncovered the impossibility to combine in a constructible
way the requirements of equal treatment, sensitivity, and completeness.

This contribution presents and discusses different axioms proposed to guide the
ranking of infinite streams and the criteria they imply. The literature covered
in this overview definitely points towards a set of meaningful alternatives to
discounted utilitarianism.

JEL Classification Number: D71, D81.

1 Introduction

Global environmental issues—like biodiversity conservation or climate change—are in re-
ality long term issues that are not properly taken into account with traditional models
that incorporate the impatience axiom manifested in fixed discount factors and in the use
of present discounted utility criteria.

This social impatience conflicts with the utilitarian tradition of moral philosophy where
it is recommended to treat different generations equally. As Sidgwick (1907, p414) writes:
“the time at which a man exists cannot affect the value of his happiness from a universal
point of view; and [...] the interests of posterity must concern a utilitarian as much as those
of his contemporaries.” Ramsey (1928), in one of the first formal studies on the evaluation
of social welfare in an intertemporal framework, strongly endorses this view. Despite this
position, he nevertheless introduces a rate of discount in some of the investigations. Simply
because undiscounted utilitarianism provides no unique answer in case the maximum total
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welfare is infinite and this infinite value is achieved by many feasible paths. Later on, the
same doubt on the sustainability of the equal treatment principle occurs when Koopmans
(1960) characterizes the discounted utilitarian rule on the basis of five appealing axioms.
Section 3 recalls this result of Koopmans.

It is only recently (Lauwers 2010a, Zame 2007) that the deep cause of the conflict
as experienced by Ramsey and Koopmans was exposed: it is not possible to define in
a “constructive” way a complete ranking on the set of infinite consumption paths that
combines anonymity (an axiom that captures equal treatment) and Pareto (or sensitivity).1

Since the question of how to evaluate policies that involve the distant future is normative,
it should by no means be answered through “non-constructive” mathematics such as the
Axiom of Choice or Szpilrajn’s Lemma.2 Only constructible and well defined criteria can
take part in the discussions. The inevitable implication, then, is that at most two of
the three requirements—completeness, anonymity, and Pareto—are compatible. Either
one has to drop the requirement of completeness, or one has to weaken the requirement
of anonymity and/or Pareto. Anyway, one cannot but accept the above incompatibility
and temper the ambition to find a representable ordering (as encapsulated in Koopmans’
postulates). Incompleteness of the criterion should be interpreted as a consequence of an
unbiased position in the discussion. In order to leave as many options open, the primitive
should be a partial ordering. Section 4 starts with the introduction of Diamond’s axiom of
equal treatment and closes with the statement and the interpretation of the Lauwers-Zame
impossibility theorem.

Sections 5 and 6 show two different routes to extend in a constructive way a sequence of
finite dimensional orderings towards a partial ordering on the set of infinite streams. If the
finite dimensional orderings all satisfy anonymity and Pareto, then the resulting infinite
dimensional partial ordering inherits both these properties.

Section 7 drops the Pareto principle, strengthens anonymity, imposes completeness and
a restricted form of monotonicity, and discusses rules in the Rawlsian spirit such as the
infimum rule and the limit inferior. Also, the rank-discounted utilitarian rule (Zuber and
Asheim 2012) is discussed. Although each of these rules violates the weakest form of
Pareto, they may be extremely useful in a two step procedure as proposed by Ferejohn and
Page (1978, p274):

Our result suggests that the search for a fair rate of discount is a vain one. In-
stead of searching for the right number, i.e. ‘the’ social rate of discount, we must
look to broader principles of social choice to incorporate ideas of intertemporal
equity. Once found, these principles might be used as side conditions in a dis-
counting procedure to rule out gross inequities that can arise with discounting,
even with a low discount rate

1In his review on intergenerational equity, Asheim (2010, section 3.2) coins this result as the Lauwers-
Zame impossibility theorem.

2I want to mention already here that the combination of continuity with respect to the sup-topology
and representability does not guarantee that the ranking rule is constructible. The other way around, the
representation of a non-constructible ordering, is in itself a non-constructible object.

2



A strongly anonymous welfare function might indeed be used as a first step. As a strongly
anonymous welfare function typically has thick levels sets, a second step can further inves-
tigate the set of optimal paths obtained in the first.

Sections 8 and 9 return to social welfare functions. At the center of the sustainable
discounted utilitarian rule (Asheim and Mitra 2010) is the axiom of Hammond equity
for the future, according to which a sustained improvement at the cost of the present
generation is considered an improvement only in case this first generation is ex post still the
better off. They succeed in modifying the axioms of Koopmans towards a characterization.
Finally, Chichilnisky (1996, 1997) introduces the axioms of non-dictatorship of the present
and non-dictatorship of the future. She proposes a convex combination of the discounted
utilitarian rule and a map that captures the limiting behavior of an infinite stream. The
discounted rule prevents the future from dictatorship, the limit-part prevents the present
from dictatorship. She coins those social welfare functions as sustainable preferences.

This overview is organized as follows. Section 2 introduces notation and describes the
problem. The next sections unfold as described above. As the focus is on the axiomatic
approach, we recall and discuss different appealing properties or axioms. William Thomson
(2001, p349) motivates as follows:

The objective of the axiomatic program is to give as detailed as possible a
description of the implications of properties of interest, singly or in combination,
and in particular to trace out the boundary that separates combinations of
properties that are compatible from combinations of properties that are not.

Applied to the ranking of infinite streams, one investigates on what ethical conditions
various ranking criteria are based and proceeds to evaluate the normative appeal of these
conditions. Although not included in this overview, the alternative approach that confronts
the criteria with different technological environments and compares the properties of the
intergenerational well-being streams that are generated, is undoubtedly a necessary route
in the debate.3

2 Notation

We consider a model with successive generations, each generation living exactly one period.
Time is discrete and starts with period 1. Let N = {1, 2, . . . , t, . . .} be the set of natural
numbers, R the set of real numbers, and let Y be a subset of R. Let X be the infinite
cartesian product Y N. A sequence x = (x1, x2, . . . , xt, . . .) in X is said to be an infinite
stream of generational well-being, for each t in N the real number xt indicates the average
well-being of generation t. The indicator of well-being is assumed to be at least ordinally
measurable and level comparable across generations. Also, for each generation, the distri-
bution of resources among the individuals of a same generation is neglected. Furthermore,
the population size is assumed to be given and constant over time.

3Section 3 provides a simple example to indicate that paths optimal with respect to a sustainable-
equitable approach might differ substantially from optima generated by the discounted utilitarian rule.
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For each n in N and for each x in X, we write x = (x−n, x+n) with x−n = (x1, x2, . . . , xn)
and x+n = (xn+1, xn+2, . . .). Note that x−1 = (x1). For each x and y in X, we write

• x ≥ y if xt ≥ yt for each t in N,

• x > y if x ≥ y and x ̸= y,

• x ≫ y if xt > yt for each t in N,

• ds(x, y) = supt in N |xt − yt|.

The different inequalities will be used to formulate axioms of monotonicity, the distance
function ds generates the sup-topology and is used to formulate an axiom of continuity.

The object we look for is a partial social welfare ordering, denoted by %, on the set X
of infinite streams. That is, % is a relation in X, and x % y means that the infinite stream
x is at least as good as y. The relation % is assumed to be (i) transitive, for each x, y,
and z in X, we have that x % y and y % z implies x % z, and (ii) reflexive, for each x in
X, we have that x % x. The symmetric and the asymmetric parts of % are denoted by ∼
and ≻. The partial ordering %e is said to extend the partial ordering %, or % is said to
be a subrelation to %e, in case, for each x and y in X, x ≻ y implies x ≻e y and x ∼ y
implies x ∼e y.

The term social welfare order refers to a partial social welfare ordering % that is com-
plete, i.e. for each x and y in X, we have x % y or y % x. The term social welfare function
refers to a map f : X → R that represents some social welfare order %: for each x and y
in X, we have f(x) ≥ f(y) if and only if x % y. Recall that in view of the Lauwers-Zame
impossibility result, completeness (or representability) is not a neutral requirement as it
already excludes the combination of the axioms of anonymity and Pareto.

3 Discounted utilitarianism

Tjalling Charles Koopmans (1972b)4 considers a social welfare order % on the set of al
bounded consumption streams, i.e. infinite streams for which the supremum and the infi-
mum are both finite,5 and investigates the next five postulates.

Continuity. The relation % is continuous with respect to the sup-topology, i.e. the topol-
ogy generated by the distance function ds.

Sensitivity. There exist infinite streams x and y = (y1, x+1) such that x ≻ y.

The next axiom appeals to the following rankings generated by % and some fixed
reference stream z = (z1, z2, z3, . . . , zt, . . .). The orderings %z+1 on Y , %z+2 on Y 2, and
%z−1 on X are defined by

4See also Koopmans (1960, 1965, 1972a) and Koopmans et al (1964).
5For simplicity, Y = R, xt is the consumption of generation t, and the set ℓ∞ of bounded streams takes

the role of X.
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• for each x and y in Y , we write x %z+1 y if (x, z+1) % (y, z+1),

• for each (x1, x2) and (y1, y2) in Y 2,
we write (x1, x2) %z+2 (y1, y2) if (x1, x2, z+2) % (y1, y2, z+2), and

• for each x and y in X, we write x+1 %z−1 y+1 if (z1, x+1) % (z1, y+1).

Independence. The three orderings, %z+1 on Y , %z+2 on Y 2, and %z−1 on X, do not
depend on the reference stream z.

Stationarity0. There exists an x∗
1 in Y such that

(x∗
1, x2, x3, . . . , xt, . . .) % (x∗

1, y2, y3, . . . , yt, . . .)

if and only if
(x2, x3, . . . , xt, . . .) % (y2, y3, . . . , yt, . . .).

Monotonicity.6 Let x and y in Y satisfy xt ≥ yt for each t in N. Then, x % y.

We briefly discuss these five axioms. Koopmans (1972a) motivates the continuity ax-
iom: a small change in a prospect cannot drastically change the position of that prospect in
the ranking of all other prospects. Continuity in combination with a monotonicity axiom
that imposes x ≻ y in case x > y and x % y in case x ≥ y implies that the ranking % is
representable by a real valued function (Diamond 1965, Lauwers 1997a).7 The usefulness
of a representation by a continuous function lies primarily in the availability of stronger
mathematical techniques.8 Sensitivity excludes the ordering % from being trivial in the
sense that all infinite streams are equally good. This axiom also prohibits dictatorship
of the future (see section 9): the ranking of infinite streams is not solely based upon the
limiting behavior of the infinite streams. Independence removes all complementarity be-
tween the well-being of different (subsequent) generations, cannot be regarded as a realistic
assumption, and should be looked upon as a way to facilitate the investigations (Koop-
mans 1972b, p83).9 Independence implies that the particular value x∗ in the axiom of
stationarity0 can be replaced with any value in Y . In case the axiom of independence is
imposed upon the ranking %, stationarity0 strengthens to the next axiom.

Stationarity. For each x∗
1 in Y we have

(x∗
1, x2, x3, . . . , xt, . . .) % (x∗

1, y2, y3, . . . , yt, . . .)

6Koopmans considers infinite streams of vectors instead of scalars. The axiom of monotonicity is a
one-dimensional version of Koopmans’ axiom.

7Diamond (1965) follows Gérard Debreu (1954) to prove this result.
8This motivation, however, is wrong in case the continuous social welfare function represents a non-

constructible order.
9See also Fleurbaey and Michel (2003, Section 3.4).
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if and only if
(x2, x3, . . . , xt, . . .) % (y2, y3, . . . , yt, . . .).

Stationarity compares infinite streams with a common first period value in the same
way as the infinite streams that are obtained by deleting these first period values and
advancing the timing of all subsequent values by one period. Repeated use of stationarity
results in comparing two streams (x−t, x+t) and (x−t, y+t) with the common head x−t in
the same way as the infinite tails x+t and y+t. In other words, if the first t generations are
not affected the ranking is made as if the present time (date 1) actually was in time t. The
passage of time has no effect on preferences. Stationarity also implies that the ranking
of two infinite streams is not altered if both streams are postponed by one unit of time
and identical values are plugged in at time period 1. Monotonicity demands that if each
generation is at least as good off in x than in y, the infinite stream x should be considered
at least as good as y.

These five postulates characterize the discounted utilitarian rule.

Theorem 1 (Koopmans 1972b).10 Let the social welfare ordering % on the set of bounded
streams satisfy continuity with respect to the sup-topology, sensitivity, independence,
stationarity0, and monotonicity. Then, the ordering % is represented by a continuous
function

D : (x1, x2, . . . , xt, . . .) 7−→ (1− α)
∞∑
t=1

αt−1u(xt),

with u nowhere decreasing and continuous and with α in the open interval (0, 1).11

A first step towards this result investigates the representation of % restricted to the
subset of infinite streams with a fixed tail, say z+t. Next, the domain of infinite streams
with a constant tail is considered. The partial results are then generalized towards the full
domain of bounded streams. Discounted utilitarianism satisfies a recursive relation:

D(x1, x2, . . . , xt, . . .) = (1− α)u(x1) + αD(x2, x3, . . . , xt+1, . . .),

for each infinite stream x. The map D attaches the weight 1−α to the utility allocated to
the present period and the complementary weight α to the aggregated utility of all future
periods.

Although (Koopmans 1965, Section 6) holds an ethical preference for neutrality, he
provides an argument for the discounted utilitarian rule:

We admit to an ethical preference for neutrality as between the welfare of
different generations. ... A previous investigation has shown that there does

10Different axiomatizations are obtained by Lauwers (1997c), Bleichrodt et al (2008), and Asheim et al
(2012).

11The factor (1 − α) in the definition of D ensures that D(x, x, . . . , x, . . .) = u(x). Hence, the weights
with which the u(xt) are multiplied add up to 1.
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not exist a utility function of all consumptions paths, which at the same time
exhibits timing neutrality and satisfies other reasonable postulates which all
utility functions used sofar have agreed with.

The mathematical conflict between neutrality and the five postulates overrules the ethical
preference for neutrality. In his 1975 Nobel Memorial Lecture, Koopmans (1977) returns
to the issue of a positive discount factor:

Thus, the impatience expressed by a positive discount rate merely denies to un-
counted distant generations a permanently higher level of consumption because
that would necessitate a substantially smaller present consumption. Perhaps a
pity, but not a sin.

Kenneth Joseph Arrow (1999) considers a world in which an investment by the first
generation generates a perpetual stream of benefits. The undiscounted total gain exceeds
the finite loss to the first generation, and the optimal path would almost sacrifice the
first generation. He concludes “that the strong ethical requirement that all generations be
treated alike, itself reasonable, contradicts a very strong intuition that it is not morally
acceptable to demand excessively high saving rates of any one generation, or even every
generation.” This argument, however, assumes a non-decreasing path and leaves open the
case where a period of economic growth is followed by a period of economic regression.
Then, the ‘small sin’ might take problematic proportions.

The set of five axioms leads to the ‘class’ of discounted utilitarian rules. The axioms,
however, do not pass any judgment about the value of α and the particular form of u. Let
us illustrate the effect of a change in α. The next table (Fleurbaey and Zuber 2012, Table
1) considers α equal to 0.9862 and 0.9737 and shows the minimum return a one dollar
investment for the future should have to be considered better than consuming it now.

α = 0.9862 α = 0.9737 ratio
time period 50 2.00 3.79 1.89
time period 100 4.02 14.36 3.57
time period 200 16.13 206.11 12.78
time period 1000 1 091 327.24 371 914 916 666.52 340 791.38

The minimal return sufficient to defend a one dollar investment today.

The value r = (1/α)−1 has the interpretation of a discount rate, α = 0.9862 (resp. 0.9737)
corresponds to r = 1.4% (resp. 2.7%). The final column has the following alternative
interpretation. When the discount rate r jumps from 1.4 to 2.7 percent the minimal return
that is sufficient to defend a one dollar investment at year 1 at the benefit of year 200
becomes 12.78 times larger. The huge ratios in the final column show the impact of a
change in the discount rate.

We close this section with a simple example illustrating the shortsightedness of the
time-discounted utilitarian approach (Lauwers 2012). Consider an economy in which trees
are a necessary input to production or consumption. The dynamics of tree reproduction
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are as follows. If n out of 2n subsequent generations cut the forest at a maximal rate,
the species become extinct after the 2n’th generation, in which case there is zero utility at
every period from then on. Assume this strategy results in utility streams of the form un =
(0.1, 0.1, . . . , 0.1; 1, 1, . . . , 1; 0, 0, . . .) with the first (resp. last) 1 at the n + 1 (resp. 2n)’th
place, in which generations n + 1, . . . , 2n cut at a full capacity and exhaust the forest.
When the consumption of the forest is delayed and n becomes larger, the forest slightly
expands and more generations can benefit. Alternatively, generations can invest in the
forest and only cut at an equilibrium rate which allows the forest to survive. This strategy
results in the utility stream u∞ = (.25, .25, . . . , .25, . . .) in which each generation reaches
the same utility level. Optimization with respect to a discounted utilitarian rule leads
to the elimination of the forest.12 If the long term future is considered important, the
constant stream u∞ should be ranked strictly above a stream where within a finite horizon
the forest is consumed.

As already mentioned, it is a natural step in the axiomatic approach to confront the
rule characterized through a set of axioms with the consequences is generates in specific
environments outcome. In case a set of desirable axioms leads to undesirable consequences,
there is always the invitation to reconsider the axioms. This iterative process between
moral principles and their examination in particular models is supported by, for example,
Atkinson (2001). Dasgupta and Heal (1979) state

... it is legitimate to revise or criticize ethical norms in the light of their impli-
cations.

As such, the above example motivates the search for alternatives to the discounted utili-
tarian rule.

4 Finite anonymity

Peter Arthur Diamond (1965) continues the axiomatic approach initiated by Koopmans.
He considers infinite utility streams: xt is the one period utility level associated with
consumption in period t and Y is the closed interval [0, 1]. In order to investigate whether
or not impatience is unavoidable when ranking infinite streams, he introduces the next
axiom. Let % be a partial order on the set X.

Finite anonymity. For each x = (x1, x2, . . . , xt, . . .) in X and for each t in N, we have

x ∼ xt = (xt, x2, . . . , xt−1, x1, xt+1, . . .).

The infinite stream xt is obtained from x by switching the coordinates x1 and xt. Due to
the transitivity of %, a finitely anonymous evaluation is indifferent between two infinite
streams that are equal up to a finite number switches in the coordinates. A ranking% which

12The map x 7→ (1− β)(x1 + β x2 + · · ·+ βt−1xt + · · · ) obtains a maximal value, equal to .3025, in one
of the streams of type tn; while the stream u∞ obtains a lower value of .25.
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treats all generations equally should satisfies this condition. Diamond keeps the axiom of
continuity with respect to the sup-topology and imposes the following strengthening of the
axiom of sensitivity.

Strong Pareto. For each x and y in X, we have x ≻ y as soon x > y.

The imposition of strong Pareto requires that the welfare ordering judges a utility
stream superior to another as soon at least one period obtains a higher utility while all
other periods obtain at least the same utility. This ability to detect an improvement in a
single period makes strong Pareto a very demanding axiom in the study of infinite streams.
The combination of finite anonymity and strong Pareto generates a partial social welfare
ordering: the Suppes-Sen grading principle considers the infinite stream x at least as good
as y in case it is possible to obtain from x by means of a finite number of switches a
stream x′ that Pareto dominates y, i.e. x′ ≥ y. Hence, each partial social welfare ordering
that satisfies finite anonymity and strong Pareto extends the Suppes-Sen grading principle.
Furthermore, recall that a complete, strongly Paretian, and continuous (with respect to
the sup-topology) social welfare relation is representable by a continuous real valued map.

The following theorem, a result that Diamond attributes to Yaari, reveals a fundamental
conflict.

Theorem 2 (Diamond 1965). There does not exist a social welfare order % on the set X
that satisfies continuity, strong Pareto, and finite anonymity.

This impossibility result has been the starting point of an extensive literature on its
robustness. The axiom of continuity with respect to the sup-topology is, in contrast to
strong Pareto and finite anonymity, a rather technical condition. Furthermore, as dif-
ferent distance functions generate different notions of continuity, the axiom of continuity
is manipulable. For example, with respect to the discrete topology on X, each ordering
% becomes continuous and continuity becomes an empty concept. Therefore, axioms of
continuity in the infinite dimensional framework are considered as controversial. Svens-
son (1980) shows the existence of a complete and transitive relation that combines strong
Pareto, finite anonymity, and a very weak continuity requirement. Basu and Mitra (2003)
insist on representability by a real valued function, drop continuity, and obtain again an
impossibility result. Fleurbaey and Michel (2003) consider the following Pareto axiom.

Weak Pareto. For each x and y in X, we have (i) x % y as soon x ≥ y and (ii) x ≻ y as
soon x ≫ y.

Weak Pareto strengthens monotonicity: a utility stream is considered at least as good
as another as soon each period obtains at least the same utility. Furthermore, according
to weak Pareto a utility stream is superior to another as soon each period obtains a higher
utility. A ranking that satisfies strong Pareto also satisfies weak Pareto. Fleurbaey and
Michel (2003) strengthen Diamond’s theorem: a social welfare ordering cannot simulta-
neously satisfy continuity with respect to the sup-topology, finite anonymity, and weak
Pareto.
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A deep result in this track of research was conjectured by Fleurbaey and Michel (2003)
and confirmed by Lauwers (2010a) and Zame (2007). We present the discrete version with
Y = {0, 1}. A discrete version of the Pareto principle is needed.

Intermediate Pareto. For each x and y in X, we have (i) x % y as soon x ≥ y and (ii)
x ≻ y as soon xi > yi for infinitely many i in N.

Theorem 3 (Lauwers 2010a). A partial order on the set X = {0, 1}N of infinite utility
streams made up of zeros and ones that satisfies intermediate Pareto and finite anonymity
either is incomplete, or is a non-constructive object (and hence has no explicit description).

This theorem considers only two levels of utility. Then, intermediate Pareto is the
weakest version of Pareto that is non-trivial. In this limited framework a partial order is
unable to combine (in a constructive way) completeness, intermediate Pareto, and finite
anonymity.

With respect to the change from a continuous towards a discrete setting, one might
argue that there exists a smallest unit (or quantum) of utility and that a discrete level
set Y is natural. In such a framework, intermediate Pareto seems appropriate. If the
set Y of utility levels is equal to N, then the map X → R : x 7→ mint x (and the map
x 7→ lim inf x as well) defines a complete, finitely anonymous, and weakly Paretian order
on X that violates intermediate Pareto. If, however, the set Y is the unit interval [0, 1],
the minimum of an infinite stream is not well defined while the map x 7→ inft x violates
weak Pareto. Indeed, the streams

x = (1, 1/2, . . . , 1/n, . . .) and y = (0, 0, . . . , 0, . . .)

dominate each other (x ≫ y) while they have the same infimum (and the same limit
inferior). This kind of situations do not occur in a discrete setting.13 Intermediate Pareto
and minimum should be seen as the discrete analogue to weak Pareto and infimum.

The above theorem appeals to the concept of constructibility. In order to explain
this, consider Brouwer’s fixed theorem: each continuous function from a convex compact
subset of a Euclidean space to itself has a fixed point. A well known proof of this result
is based on algebraic topology and is not constructive: the proof shows the existence of
a fixed point but does not specify where it is located. Only later on constructive proofs,
algorithms to detect the location of a fixed point, were provided. Theorem 3 is in the
same spirit. Svensson (1980) already showed the existence of a complete and transitive
relation that combines strong Pareto and finite anonymity. Svensson’s proof, however, uses
the Axiom of Choice, which is within the axiomatic setup of set theory in mathematics
a non-constructive axiom. Theorem 3 shows the impossibility to provide a constructive
proof of Svensson’s result. The use of a non-constructive axiom (in the spirit of the Axiom
of Choice) cannot be avoided to obtain Svensson’s result. As a consequence, Svensson’s
existence proof contributes almost nothing to the discussion on how exactly infinite streams
should be ordered.

13Dubey (2011) and Dubey and Mitra (2011) investigate the role of the set Y of possible utility levels
and refine the results of Lauwers (2010a) and Zame (2007).
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5 Pareto dominating tails

The framework with an infinite number of periods generates incompatibilities that are
easy to reconcile in a finite work. This section explains how to construct, starting from
an infinite sequence of finite dimensional partial orderings, a partial ordering on X that
combines finite anonymity and strong Pareto. The following idea is at the basis of the
construction. If the infinite stream x Pareto dominates y, all generations unanimously
(and independently) agree to rank x above y. If, for some T , the infinite tail x+T Pareto
dominates y+T , then from T + 1 onwards each generation agrees to rank x above y. The
problem, in this case, reduces to check whether the anonymous aggregative decision of
the finite horizon society {1, 2, . . . , T} agrees with the unanimous decision of generations
T + 1, T + 2, . . . , T + k, . . ..

Before we explain the construction, let us list four well documented ranking relations on
the finite dimensional Euclidean space Rn: the Suppes-Sen grading principle %S

n, the util-
itarian ordering %U

n , the leximin ordering %L
n , and the generalized Lorenz partial ordering

%G
n .

14

We need some extra notation. For each n-tuple a in Rn let a+ be a rearrangement of
a that satisfies a[1] ≤ a[2] ≤ · · · ≤ a[n]. Let ≥L

n denote the lexicographic ordering on the
set of non-decreasing n-tuples: a+ ≥L

n b+ if (a[1], a[2], · · · , a[k−1]) = (b[1], b[2], . . . , b[k−1]) and
a[k] ≥ b[k] for some k = 1, 2, . . . , n.

For each a and b in Rn we have

a %S
n b if a+ ≥ b+,

a %U
n b if a1 + a2 + · · ·+ an ≥ b1 + b2 + · · ·+ bn,

a %L
n b if a+ ≥L

n b+,

a %G
n b if a[1] + a[2] + · · ·+ a[k] ≥ b[1] + b[2] + · · ·+ b[k], k = 1, 2, . . . , n,

All four ranking rules combine (finite) anonymity and strong Pareto. As a matter of fact,
the Suppes-Sen grading principle %S

n is a subrelation to each partial ordering on Rn that
satisfies anonymity and strong Pareto. Next, the rankings %U

n and %L
n are both complete.

The utilitarian rule orders vectors according to the sum of the utilities. The Suppes-Sen
grading principle, the leximin rule, and the generalized Lorenz criterion make decisions
after rewriting the n-tuples in increasing order. The leximin rule judges the n-tuple with
the highest lowest utility level as being better; if these lowest levels are the same for the
two n-tuples, then the ranking is based on the second lowest utilities; and so forth. The
generalized Lorenz criterion is incomplete, e.g. it is unable to compare the vectors (0, 3)
and (1, 1). All these finite dimensional relations are easy to extend towards the framework
of infinite streams. We will explain how this can be done by means of an arbitrary sequence
of orderings.

14We refer to Suppes (1966), Sen (1971), Hammond (1976), d’Aspremont and Gevers (1977), and
Shorrocks (1983). Bossert and Weymark (2004) provide an excellent overview.
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Consider a sequence %1,%2, . . . ,%n, . . . of (partial) rankings the subscript of which
reflects the dimension or length of the vectors it compares, i.e. for each n, the relation %n

is defined on Rn. A first method to construct a relation %∞ on the set X is as follows:

x %∞ y if there exists a T in N such that x−T %T y−T and x+T ≥ y+T .

Two infinite streams x and y for which the infinite tail x+T dominates y+T are comparable
if, according to %T , the head x−T is not worse than y−T . In order to decide whether the
infinite stream x is at least as good as y it is necessary that (i) from some generation T +1
onwards each individual generation t prefers x to y on the basis that the level xt is at
least as good as yt and (ii) the finite horizon society {1, 2, . . . , T} considers x−T at least as
good as y−T on the basis of the relation %T . In other words, a finite society judges on the
basis of the finite social welfare relation and all future generations unanimously concur this
judgement. If the relation %∞ is able to rank two infinite streams, then Pareto dominance
applies to their tails. The relation %∞ is a partial ranking. The following transfer of
properties from %t towards %∞ is obvious: in case each %t satisfies anonymity or strong
Pareto, then the infinite version %∞ also meets the axiom.

To illustrate the relations %U
∞, %L

∞, %S
∞, and %G

∞ we consider the streams

x = (.3, .3, . . . , .3︸ ︷︷ ︸
3001 times

, .5, .5, . . . , .5, . . .),

y = (.2, .2, . . . , .2︸ ︷︷ ︸
2000 times

, .5, .5, . . . , .5, . . .),

z = (.1, .1, . . . , .1︸ ︷︷ ︸
1000 times

, .3, .3, . . . , .3︸ ︷︷ ︸
1000 times

, .5, .5, . . . , .5, . . .).

The infinite horizon utilitarian rule %U
∞ considers y and z equally good, and strictly better

than x. The infinite horizon leximin rule %L
∞ ranks x strictly above y, and y strictly above

z. The rule %G
∞ ranks y strictly above z and is unable to compare x and y, and x and

z. The infinite Suppes-Sen grading principle %S
∞ is a subrelation to each ranking criterion

that satisfies finite anonymity and strong Pareto. The Suppes-Sen grading principle is
unable to compare any pair of the streams x, y, and z. Characterizations were obtained
by means of the following axioms.

Partial translation scale invariance (Basu and Mitra 2007). For each x and y in X
and for each α in RN, if x % y, x+T = y+T , and x + α and y + α belong to X, then
x+ α % y + α.

The axiom requires that preferences are invariant to changes in the origins of the utility
indices used in the various periods and should be interpreted as an infinite version of unit
interpersonal comparability (Sen 1977, d’Aspremont and Gevers 1977).

Hammond equity (Hammond 1976, Asheim and Tungodden 2004). For each x and y in
X, for each i and j in N, if xt = yt for each t different from i and j, and yj > xj > xi > yi,
then x % y.
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Start from an infinite stream y. Bring a better-off generation j and a worse-off gener-
ation i closer to each other. The resulting infinite stream x is not worse than the original
stream y.

Strict transfer principle (Hara et al 2008, Bossert et al 2007). For each x and y in X,
for each i and j in N, if xt = yt for each t different from i and j, yj > xj ≥ xi > yi, and
xi + xj = yi + yj, then x % y.

Start from an infinite stream y. Execute a Pigou-Dalton transfer, i.e. a transfer of a
positive amount from a better-off to a worse-off generation so that the relative ranking
of the two agents does not change. The resulting infinite stream x is not worse than the
original stream y.

The next theorem characterizes the four partial orderings.

Theorem 4. A partial ordering % on the setX satisfies strong Pareto and finite anonymity
if and only if %S

∞ is a subrelation to %. A partial ordering % on the set X satisfies strong
Pareto, finite anonymity, and partial translation scale invariance (resp. Hammond equity,
or the strict transfer principle) if and only if %U

∞ (resp. %L
∞, or %G

∞) is a subrelation to %.

For the characterization of the infinite horizon Suppes-Sen grading principle %S
∞ we

refer to Banerjee (2006b) and Mitra and Basu (2007). Basu and Mitra (2007) introduce
and characterize the infinite horizon utilitarian rule %U

∞. The transfer-sensitive infinite
horizon rule %G

∞ and the infinite horizon leximin rule %L
∞ are introduced and characterized

by Bossert et al (2007).

6 Decisive sets of horizons

Again we start from an infinite sequence %1,%2, . . . ,%n, . . . of finite dimensional criteria.
Let x and y be two infinite streams. For each t let the finite horizon society {1, 2, . . . , t}
decide, on the basis of %t, whether or not x−t should be considered at least as good as y−t.
Consider the set

N(x, y) = {t in N |x−t %t y−t}.

The set N(x, y) collects all finite time horizons t for which the truncated vector x−t is at
least as good as y−t. In this section, the problem of ranking x not below y is reduced to
the question of whether or not the set N(x, y) is large enough. In case N(x, y) is equal to
N up to a finite set, one can argue that the infinite stream x should not be ranked below
y. Indeed, for each t larger than some T , the aggregative judgement (on the basis of %t)
of the finite horizon society {1, 2, . . . , t} considers x not worse than y.

Let F denote the collection of all subsets of N that are equal to N up to a finite set.
Then, we can define the following relation on the set X of infinite streams:

x %F y if N(x, y) ∈ F .
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An element of the collection F is a subset of N and can be interpreted as a decisive set. If
the set N(x, y) belongs to F , then N(x, y) is decisive and the stream x is judged to be at
least as good as y. If, in addition, also N(y, x) belongs to F , then x and y are considered
equally good. If, however, N(y, x) does not belong to F , then x is strictly preferred to y.15

Let us list the relevant properties of F . The empty set does not belong to F , the empty
set is never decisive. The collection F is closed for intersection, i.e. for each A and B in F ,
the intersection A ∩B also belongs to F . As a consequence, the relation %F is transitive.
Furthermore, the collection F is closed for supersets, i.e. if A belongs to F , then a superset
B ⊃ A also belongs to F . A superset of a decisive coalition is in its turn decisive. These
three properties turn the collection F into a filter.

To illustrate the approach, start from the sequence %U
n of utilitarian orderings and

consider the infinite streams

u = (.2, 0, .1, 0, .1, 0, .1, 0, . . .) and v = (0, .1, 0, .1, 0, .1, 0, .1, . . .).

The odd-indexed generations prefer u to v, while the even-indexed generations prefer v
to u.16 Hence, the tails do not dominate each other and the almost-unanimity-approach,
discussed in the previous section and denoted by %U

∞, is unable to rank these streams. On
the other hand, the set N(u, v) coincides with N and N(v, u) is empty, each finite horizon
society has an aggregative strict preference for u. We obtain

N(u, v) ∈ F and N(v, u) /∈ F , hence u ≻U
F v.

Whatever the horizon t, the finite horizon society {1, 2, . . . , t} when equipped with the
utilitarian rule %U

t considers—as a group—the stream u better than v.
The relation ≻U

F is known as the utilitarian overtaking criterion (Atsumi 1965, von
Weizsäcker 1965). Fleurbaey and Michel (2003) study different versions and extensions of
this overtaking criterion and introduce the method of decisive horizons. We refer to Brock
(1970), Asheim and Tungodden (2004), Basu and Mitra (2007), and Asheim and Baner-
jee (2010) for the axiomatizations of the utilitarian and the leximin overtaking rule and
their catching-up versions. Starting from the axiomatizations in Theorem 4, an additional
consistency demand is sufficient.

Let us return to the sequence %1,%2, . . . ,%n, . . . and the filter F . It is obvious that
the relation %F is not complete, even in case each %n is complete. In order to reduce the
incompleteness of %F it is sufficient to enlarge the collection F of decisive sets. The more
decisive sets, the more pairs of streams can be ranked.

A strengthening of the finite anonymity axiom can be used to extend the partial order
%F . Let us introduce some further notation. A permutation is a bijective map π : N → N.
For each infinite stream x, the composition x ◦π is a map from N to Y and can be written
as

x ◦ π = (xπ(1), xπ(2), . . . , xπ(t), . . .).

15Note the similarity with the decisive sets in Arrow’s impossibility theorem. See also Fleurbaey and
Michel (2003).

16Basu and Mitra (2007) discuss this example.
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A permutation is said to be finite if for some T in N we have π(t) = t for each t ≥
T . A permutation is said to be fixed step if there exists a natural number k, such that
π({1, 2, . . . , kn}) = {1, 2, . . . , kn} for each n in N. The permutation σ that switches the
numbers 2j − 1 and 2j for each j is a fixed step permutation with k = 2. Applied to the
stream y = (0, .1, 0, .1, 0, .1, 0, .1, . . .) we obtain

y ◦ σ = (.1, 0, .1, 0, .1, 0, .1, 0, . . .).

Note that a finite permutation is fixed step. We now formulate an anonymity axiom that
is stronger than finite anonymity.

Fixed step anonymity (Lauwers 1997b). Let x be an infinite stream and let π be a fixed
step permutation. Then, x ◦ π and x are equally good.

The imposition of fixed step anonymity forces indifference between the utility streams

v = (0, .1, 0, .1, 0, .1, 0, .1, . . .) and z = v ◦ σ = (.1, 0, .1, 0, .1, 0, .1, 0, . . .).

A preference for z above v indeed reveals some form of impatience. Fixed step anonymity
is compatible with strong Pareto (Lauwers 1997b). Moreover, the combination of fixed
step anonymity and Pareto dominance ranks rank u = (.2, 0, .1, 0, .1, 0, .1, 0, . . .) above v.

In contrast to finite anonymity, however, the imposition of fixed step anonymity conflicts
with the combination of strong Pareto and stationarity. Indeed, a fixed step anonymous
rule considers the streams

a = (1, 0, 1, 0, . . . , 1, 0, . . .), b = (0, 1, 1, 0, . . . , 1, 0, . . .), and c = (0, 1, 0, 1, . . . , 0, 1, . . .)

equally valuable. Stream b is equal to a up to the switch in the first two coordinates, and
stream c is obtained from a after switching the odd and even coordinates. Stationarity
implies indifference between b+1 and c+1. Since c+1 coincides with a, we have indifference
between c+1 and c. Because of strong Pareto, the stream b+1 is strictly preferred to c.
Thus, the incompatibility is established.17

Let G be the collection of sets that are up to a finite set equal to kN = {k, 2k, . . . , nk, . . .}
for some k. The collection G is a filter. If the finite dimensional relations%n are anonymous,
then the relation%G is fixed step anonymous and extends the relation%F . Lauwers (1997b),
Fleurbaey and Michel (2003), Kamaga and Kojima (2009, 2010), Asheim and Banerjee
(2010), and Sakai (2010) discuss and axiomatize fixed step anonymous criteria.

In order to extend the partial ordering %G to a complete ordering, the relations %n need
to be complete and the collection U of decisive sets should meet the following requirement:

for each A ⊂ N, either A ∈ U or N− A ∈ U ,

the either-or being exclusive. Indeed, if the collection U satisfies this demand, then for
an arbitrary pair x and y, either the set N(x, y), or N(y, x), or both belong to U and the
infinite streams x and y are comparable. The following definition and lemma summarizes.

Definition (ultrafilter). A collection U of subsets of N is said to be an ultrafilter, if

17Demichelis et al (2010) study axioms of anonymity in combination with strong Pareto and stationarity.
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• the empty set ∅ does not belong to U ,

• for each A and B in U , the intersection A ∩B belongs to U ,

• for each A ⊂ N either A ∈ U or its complement N− A ∈ U .

An ultrafilter U that includes F is said to be free and satisfies ∩UA = ∅. A finite subset
of N does not belong to a free ultrafilter. The existence of a free ultrafilter follows from
the Axiom of Choice (formulated as Zorn’s Lemma). Free ultrafilters are non-constructible
objects. As a consequence, the next lemma (Fleurbaey and Michel 2003, Lauwers 2010a)
provides a way to obtain non-constructive existence results. In contrast, the filter G and
the relation is %G are well defined.

Lemma. Let %t be a relation on Y t for each t in N and let U be a free ultrafilter on N.
Define the relation %U on X = Y N by

x %U y if N(x, y) ∈ U .

If each relation %t satisfies the axiom of transitivity, completeness, finite anonymity, strong
Pareto, Hammond equity, or the strict transfer principle, then the relation %U satisfies the
same axioms.

While the relation %U is not relevant from a practical point of view, the subrelation
%G will be incomplete, but is still defined in a constructive way. On the other hand, the
above lemma cannot be used to conclude that a certain set of axioms necessarily leads to
a ranking rule that is non-constructible. The proof of Theorem 3, for example, appeals to
the concept of non-Ramsey sets and shows how the existence of an ordering that combines
intermediate Pareto and finite anonymity implies the existence of such a non-constructible
object.18

7 Strong anonymity

The principles of finite anonymity and fixed step anonymity are concepts of procedural
equity: the action of a permutation upon an infinite stream does not change the distribution
of the levels in the infinite stream. In contrast equity principles as Hammond’s equity and
the Pigou-Dalton transfer principle are called consequentialist equity concepts: they judge
the effect of a change in the distribution in the levels. This section discusses the strongest
form of procedural equity, labeled strong anonymity.

18A non-Ramsey set is a subset N of the collection N∞ of all infinite subsets of N such that for each
element J in N the collection of infinite subsets of J intersects both N and its complement N∞ − N .
The technique developed in Lauwers (2010a) to define non-Ramsey sets has been used by Dubey and
Mitra (2013) to show that a complete ranking that combines strong Pareto and Hammond equity (or the
strict transfer principle) is non-constructible. See also Dubey (2011), Dubey and Mitra (2011, 2012), and
Banerjee and Dubey (2013).
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Strong anonymity. For each infinite stream x in X and each permutation π : N → N,
we have x ∼ x ◦ π.

This axiom conflicts with weak Pareto (Fleurbaey and Michel 2003). We present two
examples. The first one comes from Fleurbeay and Michel (2003):

t (. . . , 9, 7, 5, 3, 1, 2, 4, 6, 8, . . .),

x = (. . . , 1
9
, 1

7
, 1

5
, 1

3
, 1, 2-1

2
, 2-1

4
, 2-1

6
, 2-1

8
, . . .),

y = (. . . , 1
7
, 1

5
, 1

3
, 1, 2-1

2
, 2-1

4
, 2-1

6
, 2-1

8
, 2- 1

10
, . . .).

The first line lists the moments in time. The even indexed moments are written in in-
creasing order, the odd indexed moments are written in decreasing order (or reading from
right to left, in increasing order). The second line presents the infinite stream x. The even
indexed values increase an have a limit equal to 2. The odd indexed values decrease (as
time moves forward) and have a limit equal to 0. The third line lists the very same values
in the same order as in the previous line. Each value, however, is shifted one place to the
left. The result is that the stream y is just a permutation of the stream x that strongly
dominates x, i.e. for each t we have yt > xt. Conclude that strong anonymity conflicts
with weak Pareto.

The second example considers a discrete setting. The next two streams shelter an
infinite number of zeroes and an infinite number of ones:

z99 = (1, 1, . . . , 1︸ ︷︷ ︸
99 times

, 0; . . . ; 1, 1, . . . , 1︸ ︷︷ ︸
99 times

, 0; . . .) ∼ z1 = (1, 0, 0, . . . , 0︸ ︷︷ ︸
99 times

; . . . ; 1, 0, 0, . . . , 0︸ ︷︷ ︸
99 times

; . . .).

There is a bijective map (permutation) that transforms z1 into z99. Hence, according
to strong anonymity, the infinite stream z99 with 99 percent of the generations at level
1 is equally good as the stream z1 with 1 percent at level 1. In the discrete setting,
with Y = {0, 1} strong anonymity conflicts with intermediate Pareto (Van Liedekerke and
Lauwers 1997).

Note the difference between the two examples. In the first example, the distribution
of the different levels remains untouched after being permuted (because all the different
levels occur only a finite number of times over the infinite number of different periods). In
contrast, in the second example the volume—and hence the distribution—of zeros changes
from 1 percent to 99 percent when permuting z99 into z1.

The most familiar rules that satisfies strong anonymity are the Rawlsian infimum-rule
and the limit inferior-rule (Rawls 1999). Both these rules satisfy strong anonymity, mono-
tonicity (if x ≥ y, then x % y), continuity with respect to the sup-topology, and Hammond
equity. Characterizations are obtained by Lauwers (1997c) and Chambers (2009).19

We close this section with the rank-discounted utilitarian rule. This rule, introduced
by Zuber and Asheim (2012), also satisfies strong anonymity. First, we discuss two sets,
X+ and X̄, of infinite utility streams for which the axioms of strong Pareto and strong

19Doyen and Martinet (2012) apply the maximin rule in a general dynamic economic model.
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anonymity are not in conflict. The domain X+ collects the nowhere decreasing streams,
i.e. streams x with xt ≤ xt+1 for each t in N. For each stream x in X+, it is impossible
to permute x into y such that y strongly Pareto dominates x. The set X̄ is defined as the
set of infinite streams that can be rewritten as a nowhere decreasing stream. The set X̄ is
closed under all permutations and within the set X̄ the axioms of strong anonymity and
strong Pareto are compatible. In addition, each infinite stream in X̄ has a well defined
lowest level, second lowest level, and so forth. Hence, for each infinite stream x in X̄ a
corresponding non-decreasing stream x[ ] = (x[1], x[2], . . . , x[t], . . .) is defined. Furthermore,
the limit ℓ(x) is well defined for each x in X̄. Indeed, the increasing stream x[ ] associated
to x has a unique point of accumulation. The infinite stream x in X̄ either remains below
ℓ(x) (for each t, xt < ℓ(x)), or reaches ℓ(x) after a finite number of time moments (for each
t big enough, xt = ℓ(x)).

Zuber and Asheim (2012) define the rank-discounted utilitarian rule

R : X̄ −→ R : x 7−→ R(x) = (1− β)
∑

βr−1u(x[r]),

with 0 < β < 1 and u a continuous and increasing map. The factor (1− β) normalizes the
total sum of the weights to 1. In contrast to the time-discounted utilitarian rule, the weight
(1−β)βr−1 corresponds to the rank a particular value xt = x[r] obtains after rewriting x in
increasing order. The highest weight (1−β) is attached to the moment t for which xt is the
lowest level, the second highest weight is attached to the moment with the second lowest
level, and so forth. The lower the valuext, the higher the weight attached to generation t.

The axiomatization of Koopmans’ rule can be used to characterize the rank-discounted
utilitarian rule R when restricted to the domain X+ of increasing streams. Roughly,
the axioms of Koopmans are not imposed upon the whole collection X of infinite streams.
Restricted axioms are imposed to order the setX+. Strong anonymity then extends the rule
R to the set X̄. When applied to the set X̄, the criterion R attaches weights to a generation
on the basis of the rank this generation obtains. Koopmans’ rule uses discounting according
to the position in time, in contrast, the welfare function R uses discounting according to
the rank after rewriting the stream in increasing order.

Finally, Zuber and Asheim (2012) introduce an extended rank-discounted utilitarian
social welfare function on the set X of all infinite streams:

R : X −→ R : x 7−→ R(x) = u(ℓ(x)) + (1− β)

|L(x)|∑
r=1

βr−1
(
u(x[r])− u(ℓ(x))

)
,

with 0 < β < 1, ℓ(x) the limit inferior of x, L(x) ⊂ N the set of indices t for which
xt < ℓ(x), and u a continuous and increasing real valued function. The length of the
discounted sum in R(x) either is finite (if |L(x)| < +∞) or infinite (if |L(x)| = +∞). In
words, take an infinite stream x, let ℓ(x) = lim inf(x) be the limit inferior of x, let L(x)
collect all generations t for which xt < ℓ(x), and apply the rank-discounted utilitarian rule
upon the stream x restricted to L(x) which is, if necessary, supplemented with infinitely
many values ℓ(x).
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For example, the welfare function R attaches value zero to the above infinite streams
z1 and z99. The imposition of strong anonymity (on the set X) implies a cost: the welfare
function R does not satisfy weak Pareto. The infinite stream (1, 1/2, 1/3, . . . , 1/n, . . .) is
equally good as the zero stream. In conclusion, when applied to the set X of all infinite
streams, the criterion R refines the ‘Rawlsian’ limit inferior as it only pays attention to
those generations that obtain a level below or equal to this limit inferior.20

8 Sustainable discounted utilitarianism

The infinite horizon utilitarian rule %U
∞ imposes

x = (x1, z + ε, z + ε, . . . , z + ε, . . .) ≻ y = (y1, z, z, . . . , z, . . .),

for each x1, y1, z, and ε > 0. Whatever the sacrifice y1 − x1 of the first generation,
the infinitely many ε’s bridge the gap and overtake the infinite stream y. The axiom of
Hammond equity for the future modifies the above ranking as follows.

Hammond equity for the future (Asheim and Tungodden 2004). For each x1, y1, z,
and ε > 0, we have

x = (x1, z + ε, z + ε, . . . , z + ε, . . .) ≻ y = (y1, z, z, . . . , z, . . .),

as soon y1 > x1 > z + ε.

Similar to Hammond’s equity axiom, bringing the levels y1 and z closer to each other
(towards x1 and z+ ε) results in a better stream. In contrast to Hammond’s axiom, where
only two generations are involved, now each generation is involved. The transfer from
the better-off first generation leads to a sustained increase in the level of all subsequent
generations while the first generation remains the better of.21 The early generations are
not condemned to starvation in order to maximize the welfare for later generations.

The imposition of Hammond equity of the future comes at the cost of weakening strong
Pareto and the axiom of independence. For example, an improvement for the first gener-
ation is not taken into account in case this first generation is better off than the future
generations. Asheim et al (2010, 2012) introduce and characterize the following class of
sustainable discounted utilitarian rules:

S : X −→ R : x 7−→

{
(1− β)U(x1) + βS(x+1) if U(x1) ≤ S(x+1),

S(x+1) if U(x1) > S(x+1),

with β in the open interval (0, 1) and U(x) = S(x, x, . . . , x, . . .). Observe the similarity
with the time-discounted utilitarian rule,

D(x) = (1− α)u(x1) + αD(x+1).

20Asheim and Zuber (2013) study the behavior of the rank-discounted utilitarian rule as β goes to zero
and show the convergence of R towards a strongly anonymous leximin relation.

21Also Banerjee (2006a), Asheim et al (2007), Alcantud and Garćıa-Sanz (2010), Dubey and Mitra
(2013) consider Hammond equity for the future.
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Both social welfare functions are defined in a recursive way. The sustainable discounted
utilitarian rule gives zero weight to those generations that are better off then their future
generations. As a consequence the sustainable discounted utilitarian rule violates weak
Pareto: again, the infinite stream (1, 1/2, 1/3, . . . , 1/n, . . .) and the zero stream are con-
sidered equally good. On the other hand, when restricted to the domain of non-decreasing
streams, the rule coincides with both the time-discounted and the rank-discounted utili-
tarian rule.

The sustainable discounted utilitarian rule satisfies continuity with respect to the sup-
topology, monotonicity, stationarity, and the following weakening of the independence ax-
iom.

Separable future. For each x and y in X and for each t in N,

if x % (x−t, y+t), then (y−t, x+t) % y.

In words, if two infinite streams have the same head up to time T , then the ranking
of these streams does not depend upon this common head. Asheim (2010) provides the
following example to motivate the rejection of the other part of Koopmans’ independence
axiom. Consider the streams

a = (0, .75, 1, 1, . . . , 1, . . .) and b = (.25, .25, 1, 1, . . . , 1, . . .).

Assume that a is preferred to b. Then, it is not obvious to rank the modifications

a∗ = (0, .75, .25, .25, .25, . . . , .25, . . .) and b∗ = (.25, .25, .25, .25, . . . , .25, . . .)

in the same way. The common tails might influence our look upon the conflict between
the couple (0, .75) and (.25, .25). The value .75 is the second worst-off in a, while it is the
best-off in a∗. The sustainable discounted utilitarian rule S treats the same value but at
different ranks in a different way.

9 Chichilnisky’s sustainable preference

Graciela Chichilnisky (1996, 1997) introduces the axioms of non-dictatorship and charac-
terizes a whole class of social welfare orderings that satisfies these axioms in combination
with completeness, continuity, and representability. We recall these axioms.

Dictatorship of the present. For each x, y, v, and w in X, if x ≻ y, then there exists
a T in N such that

(x−(T+k), v+(T+k)) ≻ (y−(T+k), w+(T+k)) for each k in N.

A rule that satisfies this axiom ranks two infinite streams on the basis of their heads
(i.e. the truncated streams). Time-discounted utilitarianism is the prime example that
satisfies this axiom. The time-discounted rule just puts the (very) long run offside.
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Dictatorship of the future. For each x, y, v, and w in X, if x ≻ y, then there exists a
T in N such that

(v−(T+k), x+(T+k)) ≻ (w−(T+k), x+(T+k)) for each k in N.

A rule that satisfies this axiom ranks two infinite streams on the basis of their tails.
The map x 7→ lim inf x is an example. This map looks for the infimum of the set of
accumulation points, and is not sensitive for changes in the head of the infinite stream.
Furthermore, observe the conflict between the axioms of strong Pareto and of dictatorship
of the future.

The axioms of non-dictatorship impose that the axioms of dictatorship do not hold.22

Many rules meet the axioms of non-dictatorship. The Pareto dominating tail rules %S
∞,

%U
∞, %L

∞, and %U
∞; the fixed step anonymous G-rules %S

G , %U
G , %L

G , and %U
G all satisfy non-

dictatorship of the future (as they all satisfy strong Pareto) and non-dictatorship of the
present (the criteria are sensitive for shifts in the tails). None of these criteria, however, is
complete.

Theorem 5 (Chichilnisky 1996). Let the ordering % on the set of bounded streams satisfy
continuity with respect to the sup-topology, independence, non-dictatorship of the present,
and non-dictatorship of the future. Then, the ordering % is represented by a continuous
function

C : x 7−→
∞∑
t=1

λt xt + φ(x),

where the real numbers λt are all positive and add up to a finite number, and φ a purely
finitely additive map.

Chichilnisky uses the term sustainable preferences for the social welfare functions char-
acterized by the previous theorem. The sustainable preference C decomposes into two
parts. The first part, x 7→

∑
λt xt, is countably additive, satisfies strong Pareto, and cap-

tures the short run. The second part, x 7→ φ(x), is purely finitely additive and captures the
long run. This decomposition follows from the representation of a finitely additive measure
on the set N, i.e. a map that (i) assigns to each subset of N a nonnegative number, and
(ii) assigns to the union of two disjoint sets the sum of their numbers.23

A purely finitely additive map is typically obtained by means of Hahn-Banach’s theorem
or by means of a free ultrafilter (e.g. it selects the unique accumulation point the converging
subsequence of which is indexed by a set that belongs to the free ultrafilter). Such a
purely finitely additive map, although it is continuous with respect to the sup-topology
and finitely additive, is a non-constructible object (Lauwers 2009, 2010b). Obviously,
the representability of a non-constructible relation does not change the non-constructible

22Ayong Le Kama et al (2014) study social welfare functions and introduce two axioms related to non-
dictatorship: never-decisiveness of the future and never-decisiveness of the present. Depending upon the
domain, a possibility or an impossibility result is obtained.

23We refer to Yosida and Hewitt (1952), Rao (1958), and Peressini (1967).
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nature of the relation. Here, the map φ provides us an example of a continuous and additive
representation of a non-constructible relation. Representability by means of a continuous,
monotonic, and additive map does not imply constructibility.24

There are, however, at least two ways to circumvent this problem. One can restrict the
domain to, for example, those infinite utility streams which exhibit a well defined—without
recurse to non-constructive mathematics—and finite limiting behavior (Chichilnisky 2009).
Alternatively, one can replace the map φ with, for example, the map lim inf which looks
for the infimum of the set of accumulation points.25

Finally, we mention the similarities and differences between the results of Chichilnisky
and Koopmans. Both social welfare functions satisfy continuity with respect to the sup-
topology, strong Pareto, and independence. Stationarity is violated by Chichilnisky’s crite-
rion but satisfied by discounted utilitarianism. Non-dictatorship of the present is satisfied
by Chichilnisky’s criterion but violated by the discounted utilitarian rule.
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