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Abstract 

We study a production/inventory system with one manufacturing plant and multiple retailers. Production lead 
times at the plant are stochastic and endogenously determined by the orders placed by the different retailers. 
Assuming stochastic (phase-type distributed) production and setup times, we make use of matrix analytic 
techniques to develop a queuing model that is capable to compute the distribution of the time orders spend in the 
production facility, depending on the retailer’s lot sizing decisions. The time orders spend in the production 
facility influences holding and backlogging costs at the retailers. Given the distribution of the time spent in the 
production facility, the distribution of inventory levels at each retailer can be computed. The goal is to compute 
total costs given the inventory parameters for every retailer, taking the endogeneity of their order policy on 
production lead times into account. Thanks to this procedure we will be able to analyse the interactions between 
the order policies of the retailers. 
 
Keywords: Production/inventory system with multiple retailers, lot sizing, joint replenishment, can order policy.

 
1. Introduction 

Supply chains tend to be composed of several firms, where the outcome of the decisions of 
one firm depends on the other firm’s decisions. Many researchers took up the challenge to 
incorporate this dependency in their models, for example, by analyzing a multi-retailer system 
instead of a single-retailer system (Dror et al. 2012; Timmer et al. 2013). Note that studying a 
multi-retailer system is not only a more realistic, but unfortunately also a more difficult 
problem. 
 
In this paper, we study a production/inventory system with multiple retailers and one 
manufacturing plant. We assume that the orders placed by the retailers are sent to the 
manufacturing plant, which produces on order. After the endogenously determined production 
lead times, the finished order is sent to the retailer and its inventory is replenished. 
 
In the inventory management literature, the lot size of the replenishment orders is usually 
determined by the retailer to balance the fixed cost per order against the holding costs, 
whereby lead times are treated exogenously with respect to the inventory policy. It is justified 
to treat lead times as exogenous variables when transportation lead times are significantly 
longer than production times, when the manufacturer guarantees fixed delivery data, or when 
the manufacturer produces on stock (Benjaafar et al. 2005). However, in many settings, these 
conditions do not hold. We consider an integrated production/inventory supply chain, where 
the lot size of the replenishment policy determines the lead times of the production facility. 
When, for instance, a setup time per lot size exists, placing very small orders increases the 
number of setup times, the utilization rate at the production facility, and long waiting times 
and queues will follow. At the same time, when there is a production time per unit, placing 
very large orders also causes an increase in production lead times (Karmarkar 1987). In this 
paper, we take the impact of the order sizes on production lead times into account. Higher 
lead times impact holding and backlogging costs, and will therefore also determine the cost 
minimizing parameters of the inventory policy. In a setting with multiple retailers, the order 
process of each retailer also influences the utilization rate of the manufacturing plant, and 
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therefore it also influences the production lead time of the orders placed by other retailers. We 
expect that if one retailer ignores the impact of the ordering policies of the other retailers on 
the utilization rate (and the resulting lead times) at the production facility, this retailer might 
have significantly higher costs compared to the situation where he opts for the best ordering 
policy while taking the impact of the other retailers into account. 
 
We assume that a fixed order cost and a fixed setup time at the production facility exist. 
Therefore, we will assume that each individual retailer uses a continuous review  policy 
to manage his inventory. The  inventory policy, in which an order point  and an order-
up-to level  are established, was first introduced by Arrow et al. (1951): a replenishment 
order is made as soon as the inventory position reaches the order point , at that moment an 
order is placed to restore the inventory position to the level . 
 
In a setting with multiple retailers, the ordering cost and the lead times can be reduced by 
placing joint orders. This means that if two retailers place an order simultaneously, the fixed 
order cost and the major setup time are charged only once, whereas, if both retailers place an 
order at a different moment, the fixed order cost and the major setup time are charged twice 
(i.e., once for every retailer). To avoid this, a “can order” policy can be adopted by the 
retailers. This order policy was first introduced by Balintfy (1964). A  can order 
inventory policy has three parameters: the order point , the can order level , and the order-
up-to level . If the inventory of one of the retailers reaches its order point, the inventory 
positions of all other retailers are evaluated. Every retailer whose inventory position is at or 
below the can order level places an order. Order quantities are such that the inventory position 
of every retailer who placed an order is raised to the order-up-to level. A disadvantage of the 
can order policy is the size of the optimisation problem: for a setting with only two retailers, 
one needs to optimize six parameters (Özkaya, Gürler, and Berk 2006). 
 
2. Model assumptions and notations 

In this paper we study a continuous review production/inventory system. We assume that two 
retailers hold inventory of a single item. At each retailer , a compound Poisson demand 
arrives (with arrival rate ), which is independent of the demand arrival rate of the other 
retailer. Demand sizes per arrival are independent and identically distributed and follow a 

general discrete, finite distribution with maximum demand size . Let  denote the 
probability of a demand of size  at retailer . Retailers place orders at a manufacturing plant, 
which produces on order. The manufacturing plant is a finite capacity production system, 
where orders are produced on a first-come-first-served basis on one processor which produces 
the units sequentially. Every order undergoes a phase-type distributed major setup time, all 
units of the order undergo one by one a phase-type distributed production time. If an order 
was placed by two retailers, an additional phase-type distributed minor setup/change-over 
time is needed (see Figure 1). 
 

 
Figure 1: Sequence of events at the production facility. 

 

366

Vol 1 2 3 4



 
 

The major setup time is assumed to have an order  phase-type representation , 

where  is the  subgenerator matrix, and  is the  vector with its entries 

equal to the initial probabilities to start in any of the  to  states. If two retailers place an 
order at the same time, the additional minor setup/change-over time at the manufacturing 

plant before production starts has a phase-type distribution  of order . The 
production time of one unit has an order  phase-type representation with parameters . 
 
Only when the last unit of the order is produced, the order is replenished in the retailers’ 
inventory. If two retailers place a joint order, the order is only delivered at the retailers as 
soon as the production of the joint order is completed. As clustering orders of several retailers 
together reduces fixed order costs and setup times, a coordination strategy such as a  
can order policy can be considered by the retailers. (Note that if , the can order policy 

reduces to an  policy.) We define  as the maximum order quantity placed by 
retailer : . If inventory is not sufficient to fulfil demand, unmet demand is 
backlogged. We assume that a fixed cost per order is charged (independent of whether the 
order was placed by one or multiple retailers), called the major setup cost , and a fixed cost 
per retailer is charged, called the minor setup cost , as this is commonly the case in joint 
replenishment problems (e.g., if only retailer  places an order, the resulting fixed ordering 
cost equals , whereas, if both retailers place a joint order, the resulting fixed order cost 
equals ). Furthermore, a holding  (resp. backlogging ) cost per unit that 
retailer  has in inventory (resp. backlog) per unit of time is charged. We denote the 
probability of having  units on hand as . 
 
In this paper, we compute the expected total cost per time unit of retailer 1 denoted as 

, as the sum of major and minor fixed order costs, holding costs, and backlogging 
costs: 

, (1) 
 
where  refers to the expected number of units in inventory at retailer 1, and  
denotes the expected number of units backlogged at retailer 1 at a random point in time. We 
define  as the expected number of orders per time unit which were only placed by 
retailer 1 only and  as the expected number of joint orders per time unit which were 
triggered by retailer  (with ). 
The major difficulty in the computation of the expected total cost per time unit is to find 

 and . We show the derivation of the inventory level distribution at retailer 1 in 
Section 5. 
Remark that the can order policy  causes the order arrival process at the 
manufacturing plant to have stochastic order quantities and a stochastic time between orders. 
We want to point out that the order quantities and the time between orders can be correlated 
(depending on the demand size distribution). Therefore, no standard queuing formulas can be 
applied. In the next section, we define a Markov process which characterizes the queuing 
model. Thanks to this Markov process, we are able to derive the joint probability that the 
inventory position of retailer 1 was equal to  at the moment when the order (which is 
currently in production) was placed and this order has spent a time  in the system (Section 
3.2), we can compute the utilization rate of the production facility (Section 4), and in the end, 
we are able to compute the inventory level distribution and the expected total costs per time 
unit (Section 5). 
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3. Characterization of the queuing model as a Markov process 

We set up a model to determine the expected total cost for each retailer independently (in the 
paper we focus on retailer 1). If we would set up a model to compute the expected total cost 
for both retailers simultaneously, the number of states would be much larger, and so does the 
computation time. Note that, although we only focus on the performance measures of one 
retailer, obviously we do include the impact of the orders of both retailers in our model. 
 
3.1 Defining the Markov process 

We start by setting up a continuous-time Markov process  that observes the system 
whenever the server at the manufacturer is busy, where  is the time the order has spent in 
service at time  at the production facility . We define  as the state of the order 
which is in service at time , which tracks the following information: 

Did retailer 1 initiate the order? 
o If so, what was the inventory position of retailer 1 when the order (that is currently 

in service) was placed? The inventory position before placing an order may range 
from  to , so that  possibilities exist. Note that this information is 
relevant when we want to compute the expected total cost of retailer 1. To be able 
to do so, we need to derive the joint probability  that the inventory position of 
retailer 1 was equal to  at the moment when the order was placed, and that 
during the time the current order has spent in the production facility,  customers 
have arrived at retailer 1 (we will derive this in Section 5). 

o Is the order a joint order? 
What is the current phase of the unit in service? We assume that the major 

setup time per order has a phase-type distribution with rang , the minor 

change-over time has a phase-type distribution with rang , and the 
production time per unit has a phase-type distribution with rang . How many 
units still need to start/complete production? Notice that the number of units 

which needs to be produced may range from zero to  
(which is equivalent to the maximum size of a joint order). The number of 
units which still need to start/complete production can attain the value zero, 
because the Markov process is defined such that it performs the setup phase 
(and the change-over phase) after producing the units of an order (whether we 
perform the setup and the change-over phase first or last has no impact on the 
performance measures of interest). 

o Is the order not a joint order? 
What is the current phase (which can be a phase of the major setup time or of 
the unit production time) of the unit in service? No states refer to a minor 
change-over time, as the order is not a joint order. How many units still need to 
start/complete production? Notice that the maximum number of units now 

equals . 
What was the inventory position of retailer 2 at the moment when retailer 1 
placed the order? We need to keep track of this information to determine the 
future orders of retailer 2. In our Markov process, if future demand arrivals 
occur at retailer 2, his inventory position is depleted from this position onwards 
(Note that if retailer 2 also placed an order (i.e., the order is a joint order), we 
do not need to track this information as we know that the inventory position 
then increases to ). 

Did retailer 2 trigger the order? 
o Is the order a joint order? 
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What was the inventory position of retailer 1 when the order was placed? As 
the joint order was initiated by retailer 2,  possible values for the 
inventory position of retailer 1 exist: . Although retailer 2 placed 
the order, we focus on the performance measures of retailer 1. Therefore, we 
need to know how much the inventory position of retailer 1 has depleted since 
the production facility has been busy producing the current order (placed by 
retailer 2). Thanks to this information, we are able to compute the inventory 
level distribution of retailer 1 in Section 5. 
What is the current phase (which can be a phase of the major setup time, of the 
minor change-over time or of the unit production time) of the unit in service? 
How many units still need to be produced? Notice that the maximum number 

of units which need to be produced equals . 
o Is the order not a joint order? 

What was the inventory position of retailer 1 when the order was placed? As 
the order is not a joint order, the inventory position of retailer 1 at the moment 
when retailer 2 placed the order was between and , which implies that 
one should account for  possible values. Like before, thanks to this 
information, we are able to compute the inventory level distribution of retailer 
1 in Section 5. 
What is the current phase (which can be a phase of the major setup time or of 
the unit production time) of the unit in service? How many units still need to be 

produced? Notice that the maximum number of units equals . 
 
Based on this information, we define the state space of the Markov process  as 

, where  and  are the state space when the order is triggered by retailer 
1 and retailer 2, respectively. We define  as: 

, (2) 

with , (3) 

and . (4) 

 
Remark that Eq. (3) is related to orders which are only placed by retailer 1, whereas Eq. (4) is 
related to joint orders triggered by retailer 1.(2)  
 
Analogously, if the order was triggered by retailer  we define  as: 

, (5) 

with , (6) 

and . (7) 

 
Eq. (6) refers to individual orders placed by retailer 2. Eq. (7), on the other hand, refers to 
joint orders which were triggered by retailer 2. 
 
Consider the bivariate Markov process , with  and  (with 

). The process evolves as follows: the time  an order spent in the system at time 
 increases linearly unless a downward jump in  occurs when production of the order is 

completed. Assume that one starts in , which means that the order currently in 
production has spent a time  in the production facility and its state equals  (from this state 
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we can obtain all the necessary information, which was described above). Three types of 
jumps can occur from : 

1. A transition to  with rate  (for ) when a unit of the order completes 
production or when the production or setup phase changes (the same order is still in 
production), 

2. A jump in the interval , for , with a rate , where we 
denote  as its density function. Production completion occurred. The next 
order is now in production. This new order in production was already ordered before 
the production completion occurred, therefore, the new order has spent some time in 
the queue. If the inter-arrival time between the replenished and the subsequent order is 
at most , we know that the subsequent order spent at least  time units waiting in 
queue (which is illustrated in Figure 2). 

3. A jump to  with rate  when the order is replenished and the queue is 

empty (which occurs if the inter-arrival time with the next order is larger than the lead 
time of the replenished order). 

 

 
Figure 2. New order spent at least  time units in queue. 

 

Finally, define the (negative) diagonal entries of  such that  and 

assume that  is irreducible. 

From Sengupta (1989), we know that the Markov process  has a matrix exponential 
distribution. In other words, there exists a  matrix  such that the vector , for , 
which contains the steady-state density of the states  to  for any time  spent in 
the production facility (if and only if the utilization rate of the production facility ), can 
be written as: 

 (8) 
 
where  is the smallest non-negative solution to 

 
(9) 

 
and , where  is the unique invariant vector of , i.e., the non-zero vector  
such that . Remark that we need the vector  for any  in order to derive the 
inventory level distribution. 
To derive the distribution of the time  an order has spent in the production facility at a 
random point in time, we need to define matrix , which is based on matrix  and  
(Eq. (9)). 
 
Matrix  is the rate matrix as long as the order is in service and no production completion 

occurred. We define this rate matrix as , with 
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. (10) 

 

 is a  matrix giving the transition rates in the production system when retailer 1 
triggered an order. If only retailer 1 placed an order, one can observe that the upper left part of 
the matrix keeps track of the inventory position at retailer 2 (  is the identity matrix of 
size ). Because we want to compute the performance measures of retailer 1, we need 
to keep track of the inventory position of retailer 1 at the moment when the order was placed 
(as is indicated by the identity matrix  of size ). Furthermore, we define , 

, and  the unit vector. 

The matrix  gives the transition rates in the production system when retailer 2 reached his 

order point. Matrix  is defined as follows: 

. (11) 

 

 is a  matrix with  the identity matrix of size ,  the identity 
matrix of size , , , and  the unit vector. Note  and  
because we want to compute the inventory level distribution at retailer 1. 
 
As we explained before, the computation of matrix  is also based on .  is the 
density function of matrix , with  the rate matrix to go from one state (immediately 
before production completion) to another state which observes the start of production of the 
subsequent order which was ordered at most  time units after the previous order.  is 
defined as: 

 (12) 
 
Define  as the following  matrix (with its states 
referring to the inventory positions of retailer 1 and retailer 2: 

): 
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. (13) 

 
The matrix  gives the transition rates of changes in the inventory positions due to arriving 
demands before the order point of one of both retailers is reached. 
 
Define  as the  matrix which gives the rates of arriving demands 

which trigger an order:  with  a  matrix which 
contains the rates of arriving demands at retailer 1 which reduce the inventory position of 
retailer 1 to the order point  or below, such that retailer 1 places an order. The matrix is 
defined as follows: 

, (14) 

 

with  a  matrix with all its entries equal to zero, except for the entries 

ranging from  to 

 for , and from  to 

 for  with 

. These entries equal the  initial vector  which gives the 

probabilities to start in the  different states of the phase-type production time. Matrix  
keeps track of the state in which production starts if the size of the order placed by retailer 1 
equals  and if the inventory position of retailer 2 was equal to  at the 
moment when retailer 1 triggered an order. If only retailer 1 placed an order (or equivalently, 

if ), matrix  also keeps track of the inventory position at retailer 2 at 
the moment when the order was placed. Note that for , the zero-entries of 

matrix  correspond to: 

the states of the remaining  units of the order that need to be produced 
and the  phases, 

the  phases of the major setup time, 
the states of the order sizes different from , 
the states of orders placed by retailer 1 when retailer 2 had an inventory position 
different from  (for ). 

For , the zero-entries of matrix  correspond to: 

the states of the remaining  units of the order that need to be 
produced (and the  phases), 

the  phases of the major setup time, 
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the  phases of the change-over time, 
the states of the order sizes different from , 

the  states referring to an individual order of size . 
 

 is a  matrix, which holds the transition rates of demand arriving 
at retailer 2 which triggers an order of retailer 2. 

, (15) 

 

with  a  matrix with all its entries equal to zero, except for the entries 

ranging from  to 

 for , and from 

 to 

for  

with , which equal the  initial production vector . 

Matrix  describes the transition rates caused by a demand arrival at retailer 2 which 
triggers retailer 2 to place an order. One needs to keep track of the inventory position at 
retailer 1 (because we want to compute the inventory level distribution of retailer 1). 
 
Finally, we define the matrix  which holds the transition rates (after production 
completion) to the inventory positions. The retailer who placed an order starts with an 
inventory position equal to the order-up-to level, the retailer who did not place an order stays 
at the same inventory position which he had at the moment when the other retailer placed an 
order (remember that we had to keep track of the inventory position of retailer 2 when only 

retailer 1 placed an order). Define the  matrix as follows: , 

with  a  matrix and  a  matrix: 

 and , (16) 
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with the  matrix , the  vector  

which is a vector filled with zeros, except for the first  entries which equal , 

and the  vector  which is filled with zeros, except for the first  entries which 

equal . One can observe that  refers to the order completion of an order which 

was originally started by retailer 1. Similarly,  refers to an order which was placed by 
retailer 2. In both matrices, the upper part considers the orders for an inventory position of the 
other retailer larger than the can order level. The lower part of both matrices focuses on the 
order completion of a joint order. As we explained before, our goal is to determine the 
inventory level distribution of retailer 1. Therefore, we need to keep track of the inventory 
position of retailer 1 at the moment when the order was placed, as can be observed in both 
matrices (i.e. the vector , the matrix , and the vector ). Another point which 
was already mentioned earlier, is that one needs to keep the inventory position of retailer 2 in 
mind if only retailer 1 placed an order (this means that retailer 2 does not raise his inventory 
position to the order-up-to level, and therefore one needs to remember the correct inventory 
position), this is taken into account by both matrices by making use of the matrix . 
 
3.2. Derivation of the steady state vector of the fluid queue 

From  and  we can compute matrix  iteratively (starting with ): 

. (17) 

 
Unfortunately, this method is impractical for high loads (as it results in linear convergence). 
Therefore, we construct a fluid queue (Latouche 2006) which results in quadratic convergence. 
We define the fluid as the time the current order in production has spent in the production 
facility. We know that the time spent in the system increases linearly over time as every unit 
is being produced and as the order undergoes a setup time. If a production completion occurs, 
the time spent in the system (which now refers to a new order which is currently in production) 
starts from zero (if the new order did not spend any time waiting in queue) or starts from a 
positive value (which is equal to the time the order already spent waiting in queue). The fluid 
queue is constructed by replacing the immediate downward jumps (after a production 
completion) by intervals of the appropriate length during which the level decreases linearly. 
In other words, we obtain a fluid queue with  phases in which the fluid increases (our original 
 production states) and  phases in which the fluid decreases (the 

 artificial states that are added). Let  and  hold the rates at which 
the phase changes while the fluid increases (i.e. production of the same order continues), from 
an up to a down phase (i.e. production completion occurs), from a down to an up phase (i.e. a 
new order starts production) and while going down (i.e. demand arrives at the retailers, but 
both retailers did not reach their order point yet), respectively. Notice,  defined as 

 is the rate matrix of a continuous-time Markov chain. If we take the expression 

for the steady state of a fluid queue [Latouche 2006] and observe the queue only when the 
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level increases, one finds that its steady state  has a matrix exponential form 
, with  where  is the minimal nonnegative solution to an 

algebraic Riccati equation [Latouche 2006]. Thus, to compute , it suffices to determine . 
The computation of  can be done through the algorithm of Guo et al. [2007]. However, as 
matrix  is a block diagonal matrix, we apply the algorithm of Meini [2013], which is faster 
and requires less memory. 
 

 equals , where  is the stochastic vector solving , with 
. Finally, the vector , holding the steady-state density of the states 

 to  for any time  spent in the production facility (if and only if the utilization 
rate of the production facility ), for , can be computed as [Sengupta 1989]: 

. 

4. Defining the utilization rate of the production system 

Based on Section 3, we are able to define the joint probability . However, if one wants to 
compute the inventory level distribution and the expected total cost of retailer 1, one also 
needs to define the utilization rate of the production system: the computation of the inventory 
level distribution will be different if the production system is busy (with a probability ) and 
if the production system is idle (with probability ). Furthermore, for the computation of 
the expected fixed ordering cost (which is part of the cost function), one needs the expected 
number of orders which were only placed by retailer  and the expected number of joint 
orders which were triggered by retailer  (with ). In this Section, we provide a brief 
explanation on the derivation of the utilization rate and the expected number of orders placed 
(for further details on the matrices, we refer to our full working paper; Noblesse et al. 2014). 
 
The utilization rate at the production facility is defined as follows: 

    

 , (18) 
 
with  the expected arrival rate of customers at retailer ,  the expected time to 

produce one unit, and  the expected demand size per customer arriving at retailer . 

 equals the expected major setup time,  the expected minor 
change-over time,  the expected number of orders per time unit which were only placed 
by retailer , and  the expected number of joint orders (per time unit) triggered by 
retailer . 
We define the expected number of orders per time unit which were only placed by retailer  
(  in the equation above) as the inverse of the expected time between two subsequent 
orders which were only placed by retailer . The time between two subsequent orders can be 
described by a phase-type distribution with an initial state vector  and a transition 
matrix , such that the expected time between subsequent orders equals 

. The expected number of joint orders which were triggered by retailer 
 (  in Eq. (18)) can be computed in an analogous way. A detailed definition of the 

matrices , , , and  can be found in the working paper 
Noblesse et al. [2014]. 

5. The probability distribution of inventory levels and the expected total cost 

We define  as the joint probability that the inventory position of retailer 1 was equal to 
 at the moment when the order (which is currently in production) was placed, and that 
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 customers have arrived at retailer  (each of them having a random demand size) since this 
order was placed, given that the server at the manufacturer is busy (which is illustrated in 
Figure 3). The joint probability  is used to compute the probability distribution of 
inventory levels at retailer 1. 

 
Figure 3. Probability of inventory levels if the production facility is busy. 

 
We start by computing the joint probabilities . As the Markov process  has the 
matrix exponential form [Sengupta 1989], we can obtain the joint probability that the 
inventory position of retailer 1 was  when the current order in production was placed 
and that the time this order has spent in the production facility up till now equals . As 
demand arrivals at retailer 1 have a Poisson distribution with arrival rate , the probability 

of  demand arrivals during a time interval  equals . Define the vector 

. Using the matrix exponential form of the steady state of 
, we find 

  

  

   

   

   

    (19) 

 
Next, we compute the probability  that the number of units on hand at retailer 1 equals 

, for , at an arbitrary point in time. With probability , the server will be busy and 
we will compute  from , using the fact that the demand sizes are i.i.d. When the server 
is idle, we can compute the probabilities of having  units on hand, for  to 

 as the steady-state vector  of the fluid queue, given that the amount of fluid is zero. 
This stochastic vector can be computed as . Hence, for  

 
 
(20) 

Where the latter sum corresponds to an -fold convolution of the demand size distribution. 
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Based on the inventory level distribution at retailer 1 (Eq. (20)), the expected number of 
orders per time unit placed by retailer 1, and the expected number of joint orders placed by 
retailer 2 per time unit, we compute the expected total cost of retailer 1 per period: 

  
(21) 

 
7. Conclusion 

In this paper, we study a production/inventory model with one production facility and 
multiple retailers. Applying matrix analytic methods, we are able to compute the distribution 
of the time an order spent in the production facility, the inventory level distributions and the 
resulting expected total cost taking endogenous lead times into account. Some first numerical 
experiments (which we omitted given the page limits) show that taking into account the 
impact of the replenishment policy of other retailers, who place orders at same production 
facility, can decrease the expected total cost of a retailer significantly. If a fixed cost and/or 
setup time per order exists, a can order policy can decrease expected total costs even further 
(compared to a setting with  policies). 
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