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Abstract 

Forest cover changes have essential implications on a variety of landscape functions and their 

associated ecosystem services. Globally, contrasting forest trends are present: some countries are 

greening, while others are still in a deforestation phase. The detection and mapping of forest 

dynamics is rather challenging since landscapes in the transition phase typically consist of patchy 

structures and often occur in inaccessible areas such as highlands, which impedes mapping 

approaches based on fieldwork. Furthermore, forest cover changes in the turnover phase are 

characterized by subtle up- and downward trends. 

 

Remote sensing techniques seem to be adequate tools for the analysis of forest cover changes in 

mountain areas. Over the past half century, remote sensing imagery has been acquired by a range of 

multispectral and hyperspectral sensors. Many regional long-term vegetation (change) maps have 

been derived from medium to low resolution imagery such as the Landsat sensor with a spatial 

resolution of 30m. Despite recent developments, remote sensing methods for the detection and 

analysis of forest cover dynamics at regional scale still suffer from methodological challenges: (1) 

recorded reflectance values are disturbed by atmospheric effects, (2) differences between 

illuminated and shadowed slopes occur in mountain areas, and (3) regional scale analyses require 

that multiple images are mosaicked to construct homogeneous image composites. During the last 

decades, a range of simple empirical and more advanced physically-based preprocessing techniques 

has been developed to solve these problems. At present, however, it is not clear what the added 

value of these techniques is for the detection of regional scale forest cover change. 

 

The main objective of this PhD research was to evaluate, compare and improve the methods for 

regional scale detection and analysis of forest cover dynamics. The Romanian Carpathians 

Mountains, which are characterized by significant forest cover dynamics related to a land 

decollectivization process were selected as the study area. In order to address the main objective of 

this thesis, the following specific research questions were formulated: 

1. To what extent do available atmospheric and topographic correction techniques improve the 

land surface reflectance values derived from medium resolution imagery in mountain areas? Do 

complex physically-based methods perform better than simplified empirical approaches? 

2. Does image preprocessing improve land cover classification? 

3. Does topographic correction and pixel-based compositing improve large area (change) mapping? 

4. What is the pattern and what are the controlling factors of forest cover changes in the Romanian 

Carpathians? 

 

This first research question was addressed by comparing the results of 15 combinations of 

atmospheric and topographic correction methods. The analyses were performed on a Landsat 

footprint in the Romanian Carpathian mountains. First, results showed a reduction of the differences 

between average illuminated and shaded reflectance values after correction. Significant 

improvements were found for methods with a pixel-based Minnaert (PBM) or a pixel-based C (PBC) 

topographic correction. Secondly, the analysis of the coefficients of variation showed that the 

homogeneity for selected forest pixels increased after correction. Finally, the dependency of 

reflectance values on terrain illumination was reduced after implementation of an atmospheric 

correction combined with a PBM or PBC correction. Considering overall results, this analysis showed 
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that the most advanced correction methods produced the most accurate results, but these methods 

were also the most difficult to automate in a processing chains. Furthermore, the added value of 

advanced topographic methods was found to be high, while the added value of advanced 

atmospheric methods was found to be rather limited. 

 

In order to address the second research question, all preprocessed imageres (15 combinations) were 

used as an input for a Maximum Likelihood (ML) land cover classification. The resulting land cover 

maps, showing e.g. urban area, arable land, grassland, coniferous, broadleaved and mixed forest, 

were validated by comparison with field observations. Validation results showed that the land cover 

maps derived from preprocessed images were more accurate than the land cover maps derived from 

the unpreprocessed images. Furthermore, it was found that class accuracies of especially the 

coniferous and mixed forest classes were enhanced after correction. Moreover, combined correction 

methods appeared to be the most efficient on weakly illuminated slopes (cos β ≤ 0.65). Considering 

all results, the best overall classification results were achieved after the application of the 

combination of an atmospheric correction method based on transmittance functions and a PBM or 

PBC topographic correction. Results of this study also indicated that the topographic component had 

a higher influence on classification accuracy than the atmospheric component. 

 

The third research question was addressed by the application of a pixel-based compositing algorithm 

developed by Griffiths et al. (2013b). Composites were developed with 3 degrees of freedom: (1) the 

classifier (Maximum Likelihood or Support Vector Machine, SVM), (2) number of delineated land 

cover classes (4 or 8), and (3) the topographic correction (uncorrected or corrected). Land cover 

maps were produced for the years 1985, 1995 and 2010. The accuracy of the resulting land cover 

maps was evaluated by comparing the classified land cover with references data collected by field 

observation or visual inspection of very high resolution imagery. The map validation showed that the 

SVM classifier resulted in a more accurate land cover classification than the ML classifier. 

Preprocessing increased the accuracy of the classification even more, but its impact showed to be 

less important than the selection of the classifier. The overall accuracy of the maps depicting 8 land 

cover classes was between 66% and 82% for all years. The classification accuracy was further 

increased by lowering the number of land cover classes. The highest overall accuracies were found 

for the maps with 4 land cover classed based on preprocessed imagery using a SVM classifier: 

respectively 85% (1985), 83% (1995) and 91% (2010). By comparing the maps of 1985, 1995 and 

2010, land cover change could be detected. Both afforestation and deforestation patterns were 

detected but it was concluded that overall the Romanian Carpathians were gradually greening 

between 1985 and 2010 since the first process was dominant. 

 

In a final step, an attempt was done to detect the controlling factors of the forest cover dynamics 

between 1985-1995 and 1995-2010. Therefore, multiple logistic regression models were calibrated in 

which accessibility, demographic evolution, land use policy and biophysical characteristics were 

linked with the observed deforestation and afforestation patterns. The results showed that both 

deforestation and afforestation were more likely to occur at high elevations, but far from nearby 

secondary roads. No significant correlation could be found between population change at the level of 

communes and forest cover dynamics. 
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Samenvatting 

Veranderingen van bosareaal en bossamenstelling hebben belangrijke gevolgen voor verschillende 

landschapsfuncties en hun bijbehorende ecosysteemdiensten. Wereldwijd zijn contrasterende trends 

in de evolutie van het bosareaal geobserveerd: sommige landen zijn aan het vergroenen, terwijl 

andere landen nog in een duidelijke fase van ontbossing zijn. De detectie en kartering van 

veranderingen van bossen is niet vanzelfsprekend omdat het vaak gaat over landschappen in een 

overgangsfase die worden gekenmerkt door onregelmatige temporele fluctuaties en een 

gefragmenteerde ruimtelijke structuur. Bovendien worden de grootste bosdynamieken vaak 

waargenomen in afgelegen berggebieden, wat nauwkeurige detectie en inventarisatie op basis van 

veldwerk bemoeilijkt. 

 

Teledetectie technieken lijken de meest aangewezen technieken om dynamieken in het bosareaal te 

detecteren en te kwantificeren. Gedurende de voorbije 50 jaar werden een grote hoeveelheid 

beelden opgenomen door multispectrale en hyperspectrale satellietsensoren. Op basis van deze 

beelden werden verschillende pogingen ondernomen om vegetatieve bedekking en veranderingen 

hierin in kaart te brengen. Hiervoor werden vaak satellietbeelden met een gemiddelde tot lage 

ruimtelijke resolutie aangewend, zoals de Landsat sensor met een ruimtelijke resolutie van 900 m². 

Ondanks recente verbeteringen in beeldclassificatiemethoden is er nog steeds geen eenduidige 

methode om het bosareaal in kaart te brengen, mede omdat er nog een aantal belangrijke 

methodologische uitdagingen blijven bestaan: (1) de gedetecteerde reflectantiewaarden worden 

verstoord door atmosferische effecten, (2) er zijn belangrijke verschillen tussen belichte en 

beschaduwde hellingen in berggebieden, en (3) het blijft bijzonder moeilijk om meerdere beelden 

naadloos samen te voegen tot homogene beeldcomposieten die nodig zijn voor regionale analyses. 

Gedurende de laatste decennia werd er een reeks van eenvoudige empirische en geavanceerde 

fysisch-gebaseerde ‘preprocessing’ technieken ontwikkeld om deze problemen op te lossen. 

Momenteel is het echter niet duidelijk wat de toegevoegde waarde van deze technieken is voor de 

detectie van regionale veranderingen van het bosareaal. 

 

Het voornaamste doel van dit doctoraatsonderzoek was dan ook om methoden voor de detectie en 

de analyse van bosveranderingen op regionale schaal te evalueren, te vergelijken en te verbeteren 

waar mogelijk. De Roemeense Karpaten , die gekarakteriseerd worden door significante 

veranderingen van het bosareaal gerelateerd aan het proces van decollectivisatie, werden gekozen 

als studiegebied. Om de belangrijkste doelstelling van dit proefschrift te onderzoeken, werden de 

volgende onderzoeksvragen geformuleerd: 

1. In welke mate verbeteren de beschikbare atmosferische en topografische correcties de 

reflectantiewaarden in berggebieden die gedetecteerd werden door satellietbeelden met 

een ruimtelijke resolutie van 30 meter? Leiden geavanceerde fysisch-gebaseerde technieken 

tot betere resultaten dan eenvoudige empirische technieken? 

2. Verbetert ‘image preprocessing’ de landgebruiksclassificatie? 

3. Verbetert topografische correctie en ‘pixel-based compositing’ de kartering van dynamieken 

in het bosareaal voor een groot gebied? 

4. Wat is het patroon en wat zijn de sturende factoren van bosdynamieken in de Roemeense 

Karpaten? 
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Deze eerste onderzoeksvraag werd beantwoord door de resultaten van 15 combinaties van 

atmosferische en topografische correcties te vergelijken. De analyses werden uitgevoerd op een 

Landsat satellietbeeld dat een deel van de Roemeense Karpaten bedekt. De resultaten toonden ten 

eerste een vermindering van de verschillen tussen de gemiddelde verlichte en beschaduwde 

reflectantiewaarden na correctie. Significante verbeteringen werden gevonden voor de technieken 

met een ‘pixel-based Minnaert (PBM)’ of een ’pixel-based C (PBC)’ topografische correctie. Ten 

tweede toonde de analyse van de variatiecoëfficiënten aan dat de homogeniteit van de 

geselecteerde bospixels verhoogd werd na correctie. Tenslotte werd de afhankelijkheid tussen de 

reflectantiewaarden en de terreinverlichting verminderd na de combinatie van een atmosferische 

correctie met een PBM- of PBC-correctie. Rekening houdend met alle resultaten bleek uit deze 

analyse dat de meest geavanceerde correcties tot de meest nauwkeurige resultaten leidden, maar 

deze technieken waren ook het moeilijkst om te automatiseren. Bovendien was de toegevoegde 

waarde van geavanceerde topografische technieken hoog, terwijl de toegevoegde waarde van de 

atmosferische technieken eerder beperkt was. 

 

Om de tweede onderzoeksvraag te beantwoorden, werden alle gecorrigeerde satellietbeelden (15 

combinaties) gebruikt als invoer voor een ‘Maximum Likelihood (ML)’ landgebruiksclassificatie. De 

resulterende landgebruikskaarten die onder andere stedelijk gebied, akkerland, grasland, naaldhout, 

loofhout en gemengd bos bevatten, werden gevalideerd door een vergelijking met 

veldwaarnemingen. De validatie resultaten toonden aan dat de landgebruikskaarten afgeleid van 

gecorrigeerde satellietbeelden nauwkeuriger waren dan de landgebruikskaarten afgeleid van de 

ongecorrigeerde satellietbeelden. Verder waren de gecombineerde correcties het meest efficiënt op 

zwak verlichte hellingen (cos β ≤ 0,65). Rekening houdend met alle resultaten werden de beste 

classificatieresultaten behaald na de toepassing van een combinatie van een atmosferische correctie 

gebaseerd op transmissiefuncties met een PBM of PBC topografische correctie. De resultaten van 

deze studie toonden ook aan dat de topografische component een grotere invloed had op de 

nauwkeurigheid van classificatie dan de atmosferische component. 

 

Om een antwoord te vinden op de derde onderzoeksvraag, werd er een ‘pixel-based compositing’ 

algoritme toegepast dat ontwikkeld werd door Griffiths et al. (2013b). Composieten werden 

ontwikkeld met 3 vrijheidsgraden: (1) de classificatiemethode (Maximum Likelihood of Support 

Vector Machine, SVM), (2) het aantal landgebruiksklassen (4 of 8), en (3) de topografische correctie 

methode (ongecorrigeerd of gecorrigeerd). Vervolgens werden er landgebruikskaarten geproduceerd 

voor de jaren 1985, 1995 en 2010. De nauwkeurigheid van de resulterende landgebruikskaarten 

werd beoordeeld door een vergelijking tussen de landgebruikskaarten en referentiegegevens 

verzameld via veldobservatie of visuele inspectie van zeer hoge resolutie beelden. Uit de kaart 

validatie bleek dat de SVM classificatiemethode resulteerde in een meer accurate classificatie van de 

landgebruiksklassen dan de ML classificatiemethode. Preprocessing technieken verhoogden de 

nauwkeurigheid van de classificatie verder, maar het effect was minder belangrijk dan de selectie van 

de classificatiemethode. De nauwkeurigheid van de kaarten met 8 landgebruiksklassen varieerde 

tussen 66% en 82% voor de drie jaren. De nauwkeurigheid werd verder verhoogd door het verlagen 

van het aantal landgebruiksklassen. De hoogste nauwkeurigheden werden bereikt voor de kaarten 

met 4 landgebruiksklassen en gebaseerd op gecorrigeerde beelden met behulp van een SVM 

classificatiemethode: de nauwkeurigheden waren respectievelijk 85% (1985), 83% (1995) en 91% 

(2010). Verder werden de landgebruiksveranderingen gedetecteerd door de vergelijking te maken 
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tussen de kaarten van 1985, 1995 en 2010. Zowel bebossings- als ontbossingspatronen werden 

waargenomen, maar er werd een gestage vergroening van de Roemeense Karpaten tussen 1985 en 

2010 vastgesteld aangezien het eerste proces dominant was. 

 
In een laatste stap werd er getracht om de verklarende variabelen van de bosveranderingen tussen 

1985-1995 en 1995-2010 te detecteren. Hiervoor werden meervoudige logistische regressie 

modellen gebruikt waarin de verklarende variabelen toegankelijkheid, demografische evolutie, beleid 

en biofysisch milieu gelinkt werden aan de waargenomen bebossings- en ontbossingspatronen. De 

resultaten toonden aan dat zowel bebossing als ontbossing vaker optreden op grote hoogten, maar 

ver van nabijgelegen secundaire wegen. Verder kon er geen significante correlatie gevonden worden 

tussen de demografische veranderingen op het gemeentelijk niveau en de verandering van het 

bosareaal. 
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Chapter 1: Problem statement and research objectives 

 

1.1 Forest cover dynamics 

 

Quantification of global forest change has been lacking despite the recognized importance of forest 

ecosystem services. For the definition of forest, the Global Forest Resources Assessment (FRA) 

adopted a threshold of 10 percent minimum crown cover (FAO, 2010). Forest is defined as land 

spanning larger than 0.5 hectares with trees higher than 5 meters and a canopy cover of more than 

10 percent, or trees able to reach these thresholds insitu (FAO, 2010). This definition does not 

include land that is predominantly under agricultural or urban land use and includes both natural 

forests and forest plantations. However, it excludes stands of trees established primarily for 

agricultural production (e.g. fruit tree plantations). Furthermore, afforestation is defined as the 

transformation from non-forest to forest, i.e., the planting of trees on land that was not previously 

classified as forest, or through natural expansion of forest, i.e., natural successions on land that was 

previously under another land use (e.g., forest succession on agricultural land; FAO, 2010). The 

definition of deforestation used in FRA 2010 is “the conversion of forest to another land use orthe 

long-term reduction of the tree canopy cover below the minimum 10 percent threshold” (FAO, 

2010). 

 

The quantification of global forest change is challenging since a standardized technique needs to be 

feasible for all regional and local scenarios. A worldwide forest inventory was developed in FAO 

(2010), containing all 233 countries. The total forest area in 2010 was estimated on 4 billion hectares, 

or 31% of the total land area. This corresponds to an average of 0.6 ha per capita. Figure 1.1 shows 

that the forested area is unevenly distributed. The forests of five countries account for more than 

half of the total forest area (53%): the Russian Federation, Brazil, Canada, the United States of 

America and China. In contrast, 64 countries, with a combined population of 2 billion people, own 

less than 10% forested land (FAO, 2010). The data of the Global Forest Resources Assessment for 

1990, 2000, 2005 and 2010 are based on FAO land resource questionnaires (FAO, 2010). The data are 

transparent and the reports provide in considerable detail information on forest cover and 

characteristics at the national and regional levels. However, due to the limited availability of recent 

inventory and survey data, the accuracy of estimates and the quality of data was not always assured 

(Matthews and Grainger, 2002). Furthermore, countries in the temperate region (e.g. Romania) 

pointed out that differences in national forestry definitions and systems of measurement, and the 

use of different reference periods, were causing problems (FAO, 2008). 
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Figure 1.1.: The world’s forests (tree cover data were derived from 2005 MODIS data; FAO, 2010). 

 

The most recent worldwide forest inventory was performed between 2000 and 2012 by Hansen et al. 

(2013) and used Earth observation Landsat satellite data with at a spatial resolution of 30 meters. 

The tropics were the only climate domain to exhibit a clear trend, with forest loss increasing by 

210,100 ha per year. Furthermore, Brazil’s well-documented reduction in deforestation was 

compensated by increasing forest loss in Paraguay, Bolivia, Zambia, Indonesia, Malaysia, Angola, and 

elsewhere (Hansen et al., 2013). Moreover, boreal forest losses were largely triggered by fire 

(Potapov et al., 2008; Hansen et al., 2013).  

 

At a global scale, forests are disappearing despite the establishment of forest policies and laws 

supporting sustainable forest management. The annual forest area decreased with 0.20% (8,327,000 

ha/yr) between 1990 and 2000, and with 0.13% (5,211,000 ha/yr) between 2000 and 2010 (FAO, 

2010). Furthermore, Hansen et al. (2013) mapped a global forest loss of 230 million ha and a global 

forest gain of 80 million ha between 2000 and 2012 (Hansen et al., 2013). The statistics of both 

studies - FAO (2010) and Hansen et al. (2013) - demonstrate that the forest decline slowed down 

during the last decade. At continental level, South America suffered the largest net loss of forests 

between 1990-2000 and 2000-2010, about 4 million hectares per year (Figure 1.2; FAO, 2010). 

Hansen et al. (2013) also documented that the tropical dry forests of South America had the highest 

rate of tropical forest loss between 2000 and 2012, especially due to deforestation dynamics in the 

Chaco woodlands of Argentina, Paraguay and Bolivia. The high deforestation in South America was 

followed by Africa, which lost 3.4 million hectares annually between 2000 and 2010 (Figure 1.2; FAO, 

2010). In contrast, Hansen et al. (2013) only reported an annual loss of 53,600 ha per year in the 

African tropical moist deciduous forest between 2000 and 2012.  

 

Oceania also reported a net loss of forest of about 700,000 ha per year over the period 2000–2010, 

mainly due to large forest losses in Australia where severe drought and forest fires have exacerbated 

the loss of forest since 2000 (FAO, 2010). The forest area in North and Central America was 

estimated almost equal in 2000 and 2010 (FAO, 2010). However, North American subtropical forests 

of the southeastern United States are unique in terms of change dynamics due to short-cycle tree 

planting and harvesting (Hansen et al., 2013). In Europe, the forest area continued to expand, though 
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at a slower rate (700,000 ha per year) than in the 1990s (900,000 ha per year; FAO, 2010). Forest gain 

between 2000 and 2012 was substantial in the boreal zone, with Eurasian coniferous forests having 

the largest area of gain of all global ecozones during the study period, due to forestry, agricultural 

abandonment and forest recovery after fire (Prishchepov et al., 2013; Hansen et al., 2013). Asia, 

which had a net loss of forest of some 600,000 ha annually in the 1990s, reported a net gain of forest 

±2.2 million hectares per year in the period 2000–2010, primarily due to the large scale afforestation 

reported by China and despite continued high rates of net loss in many countries in south and 

southeast Asia (FAO, 2010). These results depict that the assessed global forest cover trends are 

consistent, although regional differences between different studies are possible depending on the 

implemented techniques. An accurate assessment of regional forest cover trends is essential since it 

is relevant national policy makers.  

 

The recent Millennium Development Goals Report (2013) stated that accelerated progress and 

actions are needed for forest conservation. At present, about 75% of the world’s forests are covered 

by national forest programmes. However, in many cases, deforestation is caused by factors beyond a 

programme’s control. One of the primary deforestation drivers is the conversion of forests into 

agricultural land to feed the world’s growing population (Millennium Development Goals Report, 

2013). In the Report of the High-Level Panel of Eminent Persons on the Post-2015 Development 

Agenda (2013), some universal goals and national targets were implemented. One of the goals is the 

reduction of deforestation and the increase of reforestation. Thereby, each country is responsible to 

define their own targets (Report of the High-Level Panel of Eminent Persons on the Post-2015 

Development Agenda, 2013). 

 

 
Figure 1.2.: Annual change in forest area by region between 1990, 2000 and 2010 (FAO, 2010). 

 

 

1.2 Controlling factors of forest cover dynamics 

 

Forest cover dynamics are controlled by multiple socio-economic and biophysical variables and 

therefore vary through space and time. Current socio-economic controlling factors of land cover 

change such as urbanization and economic and population growth are producing two contrasting 
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land-use trends. In an attempt to join various worldwide observed and often opposing forest cover 

trends, the concept of forest transition was introduced by Mather (1992). A forest transition is 

defined as a process in which the forested area in a given region or country changes from decreasing 

to expanding. Forest transitions are typically driven by globalization processes in which self 

subsistence farming is gradually replaced by market-oriented agriculture, whereby land units with a 

low productivity will be abandoned and agricultural activities are intensified on the most productive 

land units. This process is often accompanied by urbanization, industrialization and economic 

growth.  

 

At present, most studies on forest transition are country-specific and only focus on the national 

forest cover. In contrast, a forest cover decrease in one country is able to trigger a major import of 

forest products and consequently an increase in deforestation in another country (Rudel et al., 2005; 

Meyfroidt et al., 2010). Importing wood is the economic equivalent of exporting ecological impacts 

(Mayer et al., 2005; Mayer et al., 2006). The international timber trade thus creates illusory images of 

conservation by preserving forests in accessible, affluent political jurisdictions while extracting 

natural resources from remote places with permissive or poorly enforced environmental policies 

(Berlik et al., 2002; Meyfroidt et al., 2010). For example, a forest cover increase in Vietnam between 

1992 and 2005 triggered wood imports and illegal deforestation in Cambodia and Laos (Barney, 

2005; Global Witness, 1999; Meyfroidt and Lambin, 2010). Therefore, transboundary studies that 

incorporate worldwide connections and trades in wood need to be performed. 

 

Figure 1.3 shows a general and conceptual forest transition curve based on Mather (1992). The forest 

transition curve demonstrates a conceptual irregular trend since forest cover change is a non-linear 

process. The length of the time-axis in Figure 1.3 varies from shorter to longer periods (Rudel et al., 

2010). Different controlling factors that influence a forest transition are explained in section 1.1.2. 

The transition can be divided in three phases: a phase of decrease, a turnover phase and a phase of 

forest cover increase (Mather and Needle, 1998). The conceptual figure shows a decline in forest 

cover over time until a turnover phase is reached. After this turnover phase, an increase in total 

forest cover occurs. 

 

Figure 1.3.: The conceptual forest transition curve with indication of different transition phases: decreasing 

forest trend, turnover phase and forest increase (based on Mather, 1992). 
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An overview of documented worldwide forest transitions is presented in Table 1.1. At present, most 

of the developing countries are situated on the left part of the curve since these countries experience 

a net forest cover loss. Whereas more developed countries (e.g. USA and Europe) went through a 

phase with minimal forest percentage and are now located on the upward part of the curve. 

Especially in several European countries with temperate forests, transition occurred over the last 

centuries. More recent cases of forest transition occurred in tropical countries such as Vietnam, India 

and the Philippines (Meyfroidt and Lambin, 2010; DeFries and Pandey, 2010; Vu et al., 2013). In some 

places, economic development created enough off-farm jobs to pull farmers away from the land, 

inducing a natural forest regeneration on abandoned fields. In other places, a scarcity of forest 

products stimulated governments and landowners to plant trees on agricultural lands. Pathways and 

patterns of deforestation and forest transitions vary geographically (Perz, 2007; Lambin and Geist, 

2006; Rudel et al., 2009). The first forest transition studies focused on western European countries 

with a temperate climate. In these countries, worldwide industrialization became less crucial to 

explain reforestation in the second half of the 20th century. In contrast, afforestation through tree 

plantation gained importance (Rudel, 2009).  

Table 1.1.: Worldwide forest transition studies: cases, references, turning point and forest cover at turning 
point as a percentage (based on: Meyfroidt and Lambin, 2010 and 2011; Van Dessel, 2010). 

Case  References Turning point Forest cover at 
turning point (%) 

Europe    

Austria Krausmann (2001) circa 1880 circa 40 
Belgium 
(Flanders) 

Van Rompaey et al., 2002 
 

1930  
 

circa 30 
 

Belgium 
(Wallonia) 

Petit and Lambin (2002) mid 19
th

 century / 

Bulgaria Ionov et al. (2000) < 1950 circa 31 
Czech Republic Bicik et al. (2001) before 1845 circa 29 
Denmark Mather and Needle 

 (1998), Mather (2001) 
1800-1810 circa 4 

European Russia Kauppi et al. 
 (2006) 

1930s circa 28 

Finland Myllyntaus and 
Mattila (2002), Siiskonen (2007) 

circa 1900 < 86 

France Freeman (1994), Mather et al. 
 (1999), Mather (2001), Liébault 
et al. (2005) 

1830 – 1900 circa 13-70 

Germany Kandler (1992), Radkau (2008) 19
th

 century circa 22 
Hungary Mather (1992) between 1800 and 1925 < 12 
Hungary 
(Balaton) 

Jordan et al. (2005) circa 1945 circa 18 

Ireland Rudel et al. (2005) circa 1920-1930 circa 0 
Italy Piussi and Pettenella (2000) < 1925 < 18 
Norway Staaland et al. (1998), FAO 

(2010) 
before 1990 / 

Poland Kozak et al. (2007a) 19t century  
Portugal Kauppi et al. 

 (2006) 
before 1870 circa 7 

Scotland Mather (2004) 
Rudel et al. (2005) 

circa 1750 circa 5 or less 

Slovenia Petek (2002) before 1896 circa 40 
Sweden Ericsson et al. (2000), Bradshaw 1850-1900 circa 30 
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(2004) 
Switzerland Mather and Fairbairn (2000) 19

th
 century, before 1860 < 20 

Ukraine Solovoi (2000), Kuemmerle et 
al. (2010) 

1920-1950 circa 12 

United Kingdom Aldhous (1997), Osborn (2003), 
West (2003) 

1925 circa 5 

Asia - Pacific    

Bhutan FAO (2010), Meyfroidt and 
Lambin (2010) 

circa 1975-1990 circa 65 

China Zhang (2000), Zhang et al. 
(2000,) Wenhua (2004), Mather 
(2007), Wang et al. (2007), Xu et 
al. (2007), Song and Zhang 
(2009) 

1970-1980 circa 13 

India Mather (2007) 1950-1980 15-20 
Japan  Knight (2000), Chhabra (2002), 

Foster and Rosenzweig (2003), 
Tsutsui (2003), Chhabra and 
Dadhwal (2004), Kauppi et al. 
(2006), DeFries and Pandey 
(2010) 

1950-1960 50-60 

New Zealand Stubbs (2008), Wood and 
Pawson (2008), Knight (2009) 

early 20th century / 

Philippines FAO (2010), Preston (1998), 
Shively (2001), Grainger and 
Malayang (2006), Kastner 
(2009) 

after 1988 circa 22 

South Korea Klock (1995), Kim and Kim 
(2005), Youn (2009), Young and 
Kwang (2009) 

1945-1960 10-30 

Vietnam Meyfroidt and Lambin (2008a, 
2008b, 2010); Vu et al. (2013) 

1991-1993 25-31 

America    

Chile Hyde et al. (1996), Clapp (2001), 
Echeverria et al. (2008), Schulz 
et al. (2010), Diaz et al. (2011) 

1950s / 

Costa Rica Kleinn et al. (2002), Kull et al. 
(2007) 

circa 1990 20-30 

Cuba FAO (2010), Diaz-Briquets and 
Perez-Lopez (2000) 

circa 1960s-1970s  circa 14 

El Salvador Hecht et al. (2006), Hecht and 
Saatchi (2007) 

1980s-1990s / 

Puerto Rica Rudel et al. (2000), Grau et al. 
(2003), Grau et al. (2004), Lugo 
and Helmer (2004) 

1950 circa 9 

United States 
(48 
conterminous 
states) 

Clawson (1979), Pisani (1985), 
Pisani (1993), Foster (1992), 
Foster et al. (1998), Rudel 
(2001) 

1920 circa 24 

United States 
(all) 

MacCleery (1994), Houghton 
and Hackler (2000), Ramankutty 
et al. (2010) 

1920 circa 27 

Uruguay FAO (2010), Baldi and Paruelo 
(2008), Vega et al. (2009) 

before 1990 circa 5 

Africa    

Gambia FAO (2010) before 1990 circa 46 
Morocco FAO (2010) 2001 circa 11 
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Rwanda FAO (2010) before 1990 circa 12 
Tunisia FAO (2010) before 1990 circa 2-3 

Notes: cases are grouped by continent. If no dates are provided for the end of the deforestation or the start of 
forest recovery period, the dates directly precede or follow after the turning point. 

 
A forest transition is a complex process which is never triggered by two linearly related controlling 

factors (Mather et al., 1999). In contrast, forest transitions are driven by a combination of socio-

economic and ecological changes associated with loss of forest cover, as well as policies that are 

linked to forest scarcity (Rudel et al., 2005; Angelsen and Rudel, 2013). Other possible controlling 

factors for forest transitions are the following: nature protection, production of biofuels, changes in 

land use intensity, etc. 

 

Rudel et al. (2005) identified two main forest transition pathways based on a cross-national study for 

the 1990s: a forest scarcity and an economic development path. First, in the forest scarcity pathway, 

deforestation caused by agricultural expansion or wood extraction creates a scarcity of forest 

products. Furthermore, the forest scarcity is reinforced by the increasing demand for wood products 

through economic growth (Rudel et al., 2005). As a consequence, governments and land owners are 

incited to establish afforestation programs (Lambin and Meyfroidt, 2010). In this first pathway, 

economic and political changes arise as a response to the adverse impacts of deforestation. 

Furthermore, investments in forestry research, sustainable management practices and fuelwood 

substitution are promoted (Meyfroidt and Lambin, 2010 and 2011). Secondly, in some cases, labor 

scarcity rather than forest product scarcity is the controlling factor of forest conversion. The loss of 

farm laborers stems from urbanization and economic development (Mather, 1992). Farm workers 

leave the countryside for better paying off-farm jobs. Consequently, farmers start to abandon their 

remote and less productive fields which convert slowly to forests. This forest transition pathway is 

called the economic development path. 

 

The forest scarcity pathway is more crucial in densely populated and poorer countries, e.g. in Asia. In 

contrast, the economic development pathway is more logical in richer and less populated countries 

such as in Europe and northern America (Rudel et al., 2005). Recent studies suggested that these two 

pathways are insufficient to explain forest transitions in countries such as: Bhutan, Chile, China, Costa 

Rica, El Salvador, India, Puerto Rico and Vietnam (Hecht, 2010; Mather, 2007; Meyfroidt and Lambin, 

2011; Figure 1.4). Therefore,Lambin and Meyfroidt (2010) identified three additional pathways of 

forest transition: (a) globalization; (b) state forest policy; and (c) smallholder, tree-based land-use 

intensification pathways. The globalization pathway is a modern version of the economic 

development pathway in which national economies are increasingly integrated into and influenced 

by global markets and ideologies. In the state forest policy pathway, national forest policies, 

triggered by factors outside and within the forestry sector, exert an essential role in forest transition. 

This state forest policy pathway was crucial in several Asian countries (e.g. China, India and Vietnam) 

which experienced a forest cover increase that was strongly promoted by the state since the 1990s 

(Mather, 2007). Finally, forest transitions driven by land use planning in economies rather isolated 

fromglobal markets and dominated by smallholders tend to an expansion of natural forests that 

provide multiple ecosystem goods and services, as illustrated by Bhutan (Lambin and Meyfroidt, 

2010). 
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Figure 1.4.: Periods of recent forest transitions. When there was no reliable study confirming the forest 

transition, data from the Forest Resources Assessment (FRA; FAO, 2010) were used to identify countries with 
net reforestation since at least 1990–2010 (note that reforestation may have started before 1990). The class 

‘no forest transition identified’ indicates the countries in which a forest transition was not yet documented. For 
a number of countries, the 2010 FAO data reported a net reforestation. However, these data were not 

confirmed by other studies or contradictory evidence from other source was found. (based on Meyfroidt and 
Lambin, 2011). 

 

Each particular case of forest transition involves interactions between elements of the above 

pathways. However, the concept of forest transition describes a process at an aggregated scale, e.g. 

regional scale. Cases of sub-national or local forest regrowth are contributing to the understanding of 

forest transitions (Meyfroidt and Lambin, 2011). In Table 1.2, the main relationships between the five 

forest transition pathways and their explanatory frameworks of land use transitionsare summarized. 

 

Table 1.2.: Main relationships between forest transition pathways and explanatory frameworks of land use 
transitions (based on Lambin and Meyfroidt, 2010). 

Explanatory frameworks Forest transition pathway 

Forest scarcity     State policy     Economic Dev.    Globalisation    Smallholder Int. 

Socio-ecological feedbacks      
Resource-limited growth X     
Land scarcity, intensification X    X 
Land use adjustment  X X  X 
Socio-economic changes      
Economic modernization   X X  
Market access  X X X X 
Land ownership  X  X X 
Global trade    X  
Diffusion of conservation 
ideas 

 X  X  

 

Generally, forest transitions are complex processes which are often linked to a gradual 

extensification process such as land abandonment (Van Dessel, 2010). Extensification is described as 

the process of removing production from land areas that were previously used for more intensive 

purposes (Izac et al., 1991). Historical analyses of European forest transitions in the 19th century 

highlighted a broad set of interrelated political, institutional, economic and cultural processes 

(Mather, 1992; Mather et al., 1998; Mather, 1998; Mather et al., 1999; Mather and Fairborn, 2000; 
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Mather, 2004). The controlling factors of forest transitions were dependent on the historical and 

geographical contexts. In central and eastern Europe, the recent political history exerted a significant 

influence on forest cover (Bicik et al., 2001; Van Rompaey et al., 2007; Kuemmerle et al., 2010). Along 

with forest regeneration, disturbances triggered by logging and fragmentation affected the forests in 

this region (Kuemmerle et al., 2007). Targets for forest conservation are defined on a regional and 

local scale. For example, the Flemish region in Belgium has the ambitious goal to plant 10 million 

trees by 2020 (BOS+, 2013). In Europe, the establishment of the Natura 2000 network was a major 

achievement. Special Protection Areas designated under the Birds Directive need to be managed in 

accordance with the ecological needs of the bird’s habitats. According to the EU nature directives, 

the conservation objectives should be achieved in agreement with economic, social, cultural and 

recreational requirements. Therefore, member states establish appropriate methods and 

instruments to implement the directives and to achieve the conservation objectives of Natura 2000 

sites (European Commission, 2013b). 

 

 

1.3 Impact of forest dynamics 

 

Among the main effects of human activities on the environment are land use and resulting land cover 

changes. Such changes impact the capacity of ecosystems to provide goods and services to the 

human society (Burkhard et al., 2012). This supply of multiple goods and services by nature should 

match the demands of the society, if self-sustaining human–environmental systems and a sustainable 

utilization of natural capital are to be achieved. Hereby, ecosystem services only have a value when a 

demand exist for this service. While several authors (e.g. van Berkel and Verburg, 2011; Maes et al., 

2011. Haines-Young et al., 2012; Liquete et al., 2013; Stürck et al., 2014) have mapped ecosystem 

services at the continental scale, mapping the demand and supply of ecosystem services has been 

attempted predominately at the local and regional scale, e.g. Burkhard et al. (2012). By linking land 

cover information from remote sensing and land surveys with data from monitoring, statistics, 

modeling or interviews, ecosystem service supply and demand can be assessed and transferred to 

different spatial and temporal scales (Burkhard et al., 2012). 

 

In the future, global change will alter the supply of ecosystem services that are vital for human well-

being. Schröter et al. (2005) investigated the ecosystem service supply during the 21st century in 

Europe by a range of ecosystem models and scenarios of climate and land-use change. Results 

indicated that large changes in climate and land use typically resulted in large changes in ecosystem 

service supply (Schröter et al., 2005). Some of the determined trends were positive (e.g. increases in 

forest area and productivity) or offered opportunities (e.g. extra land for agricultural extensification 

and bioenergy production). 

 

Forest cover dynamics play an essential role within the context of global environmental change and 

hydrological and biogeochemical cycles (Global Land Project, 2005). Changes in forest cover, e.g. 

afforestation and deforestation, are irreversible processes due to their inherent hysteresis. Thereby, 

anthropogenic changes drive the Earth system into a qualitatively different state and ecosystem 

services are unable to recover. Higgins and Scheiter (2012) documented that Earth system scientists 

are particularly concerned about tipping elements: large-scale components of the Earth system that 
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can be switched into qualitatively different states by small perturbations. Land use extensification 

and forest cover dynamics are generally associated with positive feedbacks on ecosystem goods and 

services (Costanza et al., 1997). However, a net forest cover increase is not necessarily translated in 

an increase of forest biomass, biodiversity or ecosystem services (Garcia-Quijano et al., 2007). Forest 

cover changes have an impact on the ecosystems services that regulate provisional (e.g. food), 

regulatory (e.g. climate regulation), cultural (e.g. education) and supporting (e.g. nutrient cycle) 

functions (Millennium Ecosystem Assessment, 2003). Forests can be viewed as striving to produce a 

portfolio of ecosystem services to provide the greatest overall benefit to the public and nature within 

a landscape’s capacity (Kline and Mazzotta, 2012). However, there is always a trade-off between the 

different ecosystem services since they are interrelated and even conflicting.The impact forest cover 

change on ecosystem services mainly depends on the forest cover trajectory and the type of forest 

cover change (e.g. native vs. exotic plantations and plantations vs. revegetation). 

Generally, a decreasing forest cover has a negative impact on different ecosystem services: soil 

conservation (Chazdon, 2008), air quality (Krieger, 2001), biodiversity (Dupouey et al., 2002; Hall et 

al., 2012), carbon sequestration (Philips et al., 1998), soil fertility (Cole et al., 1989), water retention 

(Molina et al., 2012), climate regulation (Costanza et al., 1997; Schröter et al., 2005; World Health 

Organization, 2005), etc. In contrast, an increasing forest cover exerts a positive influence on these 

ecosystem services. For example, Molina et al. (2012) analyzed the impact of forest change on water 

and sediment fluxes in a highly degraded Andean catchment. Different pathways of land cover 

change between 1963 and 2007 were observed and deforestation increased landslide activity in the 

higher, more remote parts. In contrast, a recovery and reforestation was observed in the middle and 

lower parts where agricultural and bare land was prevalent. 

 

Considering global warming, positive forest cover dynamics are able to decrease the amount of 

greenhouse gases in the atmosphere by an enhanced carbon sequestration (Houghton et al., 2000). 

Generally, deforested lands are carbon-poor. The regeneration of a secondary forest increases the 

sequestration of carbon. Furthermore, a forest cover increase and a consecutive lower runoff rate 

has a positive effect on the hydrological cycle. Consequently, a decrease in soil erosion causes a 

lower sediment load in the rivers, which results in an improved water quality (Ammer et al., 1995). A 

study in Greece by Bakker et al. (2005) indicated that abandonment of arable land was triggered by a 

declining productivity. Path analysis showed that erosion was a crucial controlling factor for the 

abandonment and reallocation of cereals. Results of a recent study in the Ecuadorian Andes 

indicated that human activities significantly increased the landslide hazard (Vanacker et al., 2013). An 

increase in the occurrence of landslides was observed after deforestation and road construction. 

Furthermore, various authors suggest that the impact of forest cover change strongly depends on the 

initial state of the ecosystem (Scott et al., 2005; Chazdon, 2008; Hofstede, 2011) and the type of land 

cover established during the transition (e.g. natural forest regeneration versus plantation). 

 

 

1.4 Responses from policy makers 

 

In response to changes in forest cover, policy makers worldwide have developed a wide range of 

policy instruments that aim to steer human-environment interactions towards more sustainable 

development pathways. For example, global protected areas network has been expanding rapidly 
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over the last decades (Jenkings and Joppa, 2009), and various parts of the world’s natural resources 

receive some kind of protection status, also referred to as land zoning. Furthermore, land users and 

local governments are encouraged to preserve and strengthen the delivery of bundles of ecosystem 

services by financial incentives. Payments for ecosystem services (PES) are incentives offered to 

farmers in exchange for managing their land to provide some sort of ecological service (Jack et al., 

2008). There exists a wide range of often nationally-implemented PES programmes of which the 

most expensive programmes are the ‘Unites States Conservation Reserve Programme’ (Ribaudo et 

al., 2001) and the Chinese ‘Grain for Green Programme’ (Zhou et al., 2009) in which farmers are paid 

to remove production of environmentally sensitive land. Another mechanism that was launched is 

environmental certification, whereby a company or a farmer can voluntary choose to comply with 

predefined processes or objectives set forth by the certification service. Thereby, the production 

standards are defined through commodity roundtables, by NGOs, or by private corporations, and 

these standards can be enforced by governments. Widely adopted environmental certificates are the 

‘Forest Stewardship Council’ (FSC) which promotes the responsible management of forests on an 

international scale and ‘Rainforest Alliance’ certifying sustainable forestry, farming and tourism in 

tropical areas. Finally, in an attempt to address the need to take meaningful actions to reduce 

emissions from deforestation and forest degradation, the REDD and REDD+ programmes were set up 

in which national governments receive financial grants if carbon emissions are reduced through 

avoidance of deforestation and forest degradation (REDD) and if additional local environmental and 

socioeconomic benefits are captured (REDD+; Strasburg et al., 2010).  

 

 

1.5 Research challenges 

 

Assessing and monitoring the state of the Earth’s surface is a key requirement for global change 

research (Committee on Global Change Research, National Research Council, 1999; Jung et al. 2006; 

Lambin et al., 2001; Goudie, 2013). Classifying and mapping vegetation is an essential technical task 

for managing natural resources as vegetation provides a base for all living beings and plays an 

essential role in global climate change (Xiao et al., 2004). Vegetation mapping also presents valuable 

information for understanding the natural and man-made environments through quantifying 

vegetation cover from local to global scales at a given time or over a continuous period. Thereby, it is 

critical to obtain current states of vegetation cover in order to initiate vegetation protection and 

restoration programs (Egbert et al., 2002; He et al., 2005). Frequently updated data on vegetation 

cover is preferred in order to better assess the environment (Knight et al., 2006) and to evaluate the 

efficiency of adopted land policy instruments. 

 

There is a need for reliable instruments to detect forest cover dynamics and to evaluate the 

efficiency of policy measures. Although, forest cover detection and mapping is rather challenging 

since the definition of forest is varying between different countries. Moreover, landscapes in the 

transition phase typically consist of patchy structures and dependent on the quality and the 

uncertainties of the assessed forest data. Hereby, certain land units are still degrading, while others 

are in various stages of regeneration. Furthermore, forest cover changes in the turnover phase are 

characterized by up- and downward trends (as shown in Figure 1.3), and subtle variations in 
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vegetation which are hard to detect. Finally, large forests are present in inaccessibility of places 

which are difficult to monitor and where a lack of validation data exists. 

 

Spaceborne remote sensing techniques seem to offer a practical and economical mean to study 

vegetation cover changes, especially over large and remote areas (Langley et al., 2001; Nordberg and 

Evertson, 2003). However, remote sensing imagery has been acquired by a range of multispectral 

and hyperspectral sensors over the past half century. Hereby, satellite imagery is especially used to 

monitor and detect vegetation cover characteristics (Coppin et al., 2001). The interest in Land Use 

and Land Cover Change (LULCC) analyses accelerated the development of mosaicking techniques, 

which integrate several images to construct one large radiometrically balanced image without visible 

boundaries between the original images (Inampudi, 1998). Recent methods adopt pixel-based 

compositing algorithms which select a subset of data from a large data archive. This selection of the 

data is based in the scope of the study, e.g. cloud masking or atmospheric correction (Qi and Kerr, 

1997). Further information on the development of pixel-based image composites (PBICs) is described 

in Chapter 2. 

 

Despite these recent developments, remote sensing methods for the analysis of forest cover 

dynamics at regional scale still suffer from methodological challenges due to atmospherical, 

topographical and shadowing effects. During the last decades, various techniques have been 

developed to correct satellite imagery for geometric, atmospheric and topographic distortions on 

mountainous surfaces. The available techniques range from empirical procedures to process-based 

models. Sophisticated techniques are particularly difficult to apply in streamlined processing 

schemes since site-specific calibration is required. At present, however, the added value of complex 

preprocessing techniques compared to empirical methods and the impact of more sophisticated 

processing on subsequent analyses is unclear. Furthermore, ideal images or pixels for specific 

applications can be selected by mosaicking or compositing techniques. Finally, most studies lack an 

evaluation of the automation potential of the different preprocessing techniques. The automation 

potential determines the difficulty to automate a technique and depends on the availability, amount 

and complexity of the input parameters. For example, the automation potential of different 

correction techniques decreases with the number and complexity of input parameters. In long-term 

vegetation studies that implement medium resolution imagery, techniques require a straightforward 

implementation in order to allow for chain processing. 

 

 

1.6 Research objectives 

 

Apparent research gaps and opportunities for the detection of forest cover dynamics are still 

present. The major scientific and policy challenges are the following: 

 Reliable forest assessments with standardized procedures that allow evaluation of land 

management techniques, policy interventions and implementation of financial compensation 

regulations, especially in remote and inaccessible areas. Hereby, possible translocation 

processes which trigger deforestation trends in other countries should be take into account 

included; 
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 Detection of forest cover dynamics which are characterized by fluctuating forest cover trends 

and patchy landscapes; 

 Improvement of mapping procedures and optimization of trade-offs between the complexity 

of the mapping procedure and its automation potential; 

 Impact assessment of forest cover dynamics on ecosystem services such as carbon 

sequestration, biodiversity, and soil and water conservation. 

 
Given the major scientific challenges in the broad research domain, the main objective of this PhD 

research is the methodological improvement of regional scale detection and analysis of forest cover 

dynamics by means recently developed image preprocessing techniques. Therefore, this thesis aims 

at a better understanding of the impact of atmospheric and topographic correction techniques on 

the detection of forest cover dynamics. These techniques are essential in mountain areas since highly 

elevated areas are often very sensitive to changes in environmental drivers and are prone to 

shadowing effects due to elevation differences. Furthermore, the thesis develops an optimal 

preprocessing chain for semi-automatic change analyses of satellite data covering mountainous 

terrain. Since the Romanian Carpathians Mountains still harbor extended areas of virgin forests and 

have a large range in elevation, these mountain range was selected to develop, calibrate and validate 

the different preprocessing techniques. Finally, the produced maps were implemented to analyze the 

spatial pattern of forest cover changes in the Romanian Carpathians. 

 

In order to address the main objective of this thesis, the following specific research questions were 

formulated: 

1. To what extent do available atmospheric and topographic corrections improve the 

homogeneity of reflectance values of distorted medium resolution imagery in mountain 

areas? Do complex procedures perform better than simplified approaches? 

2. Does image preprocessing lead to more accurate land cover classification? 

3. To what extent does topographic correction and pixel-based compositing improve large area 

(change) mapping? 

4. What is the pattern and what are the controlling factors of forest cover changes in the 

Romanian Carpathians? 

 

 

1.7 Thesis outline 

 

The structure of this thesis is shown in Table 1.3. The parts and chapters are ordered from literature 

study to field observation analysis, preprocessing and multi-temporal analysis towards the general 

discussion and overall conclusions. Major parts of this thesis have been published as individual 

research papers. Therefore some overlap may occur between the different chapters. 
 

The first, introductory part consists of three chapters. Chapter 1 provides a general introduction to 

the concept of forest transition and also the research objectives are identified. Chapter 2 consists of 

a thorough literature overview of the available sensors for forest detection. Furthermore, an 

overview is provided of the existing compositing techniques, atmospheric and topographic correction 

methods. The third chapter describes the study area in which the research for this thesis has been 
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conducted. Furthermore, available data on land use change, forest cover dynamics and their 

controlling factors in the Romanian Carpathians is presented. This chapter serves as the background 

upon which the later chapters rely for comparison. 

 

The second part deals with the preprocessing of satellite imagery in the Romanian Carpathians. In 

Chapter 4, a range of atmospheric and topographic correction methods is selected and automated in 

the ENVI/IDL software. Furthermore, the performance of all combined corrections is evaluated in a 

study area of 185 x 185 km. Subsequently, in Chapter 5, the effect of atmospheric and topographic 

correction methods on land cover classification accuracy is discussed. 

 

In the third part, a multi-temporal analysis is performed in the Romanian Carpathians. Chapter 6 

deals with the integration of topographic correction in a pixel-based compositing algorithm and 

forest cover change analysis in the Romanian Carpathian Ecoregion (±107,000 km²). Chapter 7 

includes the analysis of the forest cover change controlling factors in the Romanian Carpathian 

Ecoregion. The final part consists of a general discussion of the main results, along with the overall 

conclusions. Finally, as far from all research opportunities were unaddressed in this thesis, a number 

of future recommendations are listed. 

 

 Table 1.3.: Thesis outline. 

 Part 1: Introduction  

 Chapter 1: Problem statement and research objectives  

 

Chapter 2: State of the art and challenges for forest cover 

dynamics detection with medium resolution satellite imagery  

 

Chapter 3: Study area, forest cover dynamics and their controlling 

factors in the Carpathians  

 Part 2: Atmospheric and topographic correction  

 

Chapter 4: Performance of atmospheric and topographic 

correction methods on Landsat imagery in mountain areas  

 

Chapter 5: Effect of atmospheric and topographic correction 

methods on land cover classification accuracy in mountain areas  

 Part 3: Multi-temporal analysis  

 

Chapter 6: Integration of topographic correction in a pixel-based 

compositing algorithm and forest cover change detection in the 

Romanian Carpathian Ecoregion  

 

Chapter 7: Controlling factors of forest cover changes in the 

Romanian Carpathian Ecoregion  

 

Part 4: General discussion and conclusions 

 Chapter 8: General discussion and conclusions 
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Chapter 2:  State of the art and challenges for forest cover dynamics 

detection with medium resolution satellite imagery 

 

2.1 Monitoring changes in vegetation cover 

 

Traditional methods (e.g. field surveys, literature reviews, map interpretation and ancillary data 

analysis) are ineffective to assess the state of vegetation cover at a regional scale level, especially in 

remote areas. These conventional methods are time consuming, labor intensive and often too 

expensive. Remote sensing techniques offer a practical and economical means to study vegetation 

cover changes, especially over large areas (Langley et al., 2001; Nordberg and Evertson, 2003). First, 

aerial photographs were acquired from a relatively low altitude (up to 6 km) above the Earth's 

surface. Aerial photography has advantages over ground level photographs. The aerial view enables 

the observation of a large area and are fast tools to map inaccessible regions. Furthermore, objective 

comparison of selected areas are possible. Without overlapping photography and a stereoscopic 

viewing instrument, detailed variations in terrain features are invisible. Consequently, the 

interpretation of aerial photography requires training to allow good interpretation (Xie et al., 2008). 

 

Secondly, satellite remote sensing techniques have been developed for land cover mapping at 

regular time intervals. In an effort to monitor major fluctuations in vegetation, scientists started 

using satellite remote sensors about 30 years ago to measure and map the density of green 

vegetation over the Earth. Especially in inaccessible regions, satellite imagery is used to obtain data 

on a cost and time effective basis. Remotely sensed data are generated by various sensor types that 

are attached to different platforms. All sensors capture data at various heights and at different times 

of day. By applying remote sensing imagery, significant efforts have been made by researchers to 

delineate vegetation cover from local to global scale.  

 

Wavelengths of satellite imagery range from visible to microwave, with spatial resolutions varying 

from sub-meter to kilometers and temporal frequencies varying from 30 minutes to weeks or 

months. Typically, the spatial resolution of available remote sensing imagery is divided in four 

categories: (1) low spatial resolution is defined as pixels with ground sampling distance (GSD) of 30 m 

or greater, (2) medium spatial resolution is GSD in the range of 2–30 m, (3) high spatial resolution is 

GSD 0.5–2 m, and (4) very high spatial resolution is pixel sizes <0.5 m GSD. Despite the availability of 

a wide range of remote sensors, field forest inventories remain crucial for the assessment of Ground 

Control Points (GCPs) for validation.  

 

Most long-term vegetation mapping projects have been achieved with medium to low spatial 

resolution imagery. Typical medium spatial resolution sensors are Landsat (Land remote sensing 

satellite program) and Satellite Pour l'Observation de la Terre (SPOT). Examples of low spatial 

resolution sensors are the Moderate Resolution Imaging Spectroradiometer (MODIS) and SPOT-

VEGETATION. Medium to very high spatial resolution scanners can be used to map the Earth’s cover 

by means of categorical land cover classes such a forest, grassland and arable land whereby the 

spectral signature of a pixel is used for identification. This approach is impractical for low spatial 
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resolution sensors since their pixels often cover more than one land cover type. Therefore, a whole 

set of Vegetation Indices (VI) were developed to quantify the concentrations of green leaf vegetation 

around the globe. By combining the daily VIs into 8-, 16-, or 30-day composites, detailed maps of the 

Earth’s green vegetation density were created (NASA, 2013a). Furthermore, maps derived from the 

different sensors are proper tools for land cover analysis, such as the European land cover and forest 

maps compiled in the Coordination of Information on the Environment (CORINE; EEA, 1995), the 

Global Land Cover Facility datasets (NASA, 1997) and the global maps constructed by Hansen et al. 

(2013). The major drawback of these applications is the lack of repeated observations over a longer 

period and problems originating from geometric, atmospheric and topographic distortions (Singh et 

al., 2011). Therefore, preprocessing techniques are an essential step to improve interpretation of 

satellite imagery. A comprehensive overview of the frequently used remote sensors, their derived 

vegetation indices, advantages and disadvantages is provided in the following sections. 

 

2.1.1 Remote sensors 

A remote sensor is a device that captures the unique spectral characteristics of the Earth’s surface. 

The spectral radiances in the red and near-infrared regions are incorporated into spectral vegetation 

indices that are directly related to the intercepted fraction of photosynthetically active radiation 

(Asrar et al., 1984). The different spectral signatures of photosynthetically and non-

photosynthetically active vegetation are shown in Figure 2.1 (Beeri et al., 2007; Xie et al., 2008). 

 

 
Figure 2.1.: Typical spectral signatures of photosynthetically active and non-photosynthetically active 

vegetation (Beeri et al., 2007). 

 

Since different sensors have different spatial, temporal, spectral and radiometric characteristics; the 

selection of appropriate sensors is crucial for mapping vegetation cover. The selection of images 

acquired by adequate sensors is mainly determined by five related factors: (1) mapping objective, (2) 

spatial and temporal resolution, (3) cost of images, (4) climate conditions (especially atmospheric 

conditions), and (5) the technical issues related to image interpretation (Xie et al., 2008). First, the 

mapping objective concerns what is to be mapped and what mapping accuracy is expected. Thereby, 

images with higher spatial resolution are implemented for fine scale vegetation classification (e.g. 

WorldView-2 and QuickBird). Secondly, the spatial and temporal resolution determine the level of 

detail and the number of repeated observations. Thirdly, the cost of remote sensing imagery is 

definitely a consideration when choosing imagery (e.g. Landsat imagery is free for download while 
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the WorlView-2 sensor with high resolution is expensive). Fourthly, cloud-free image series from 

different sources need to be obtained over an extended period (Soudani et al., 2006). Finally, a 

number of technical specifics need to be considered regarding image quality, preprocessing and 

interpretation (e.g. all Landsat standard data products are preprocessed using the Level 1 Product 

Generation System). 

 

Frequently applied sensors for vegetation mapping include Landsat, SPOT, MODIS, AVHRR, IKONOS 

and QuickBird. The temporal and spatial characteristics of these sensors are summarized in Figure 

2.2. Further information is provided in Table 2.1 which is ordered from very high to low spatial 

resolution and described below, based on the research of Xie et al. (2008). 

 

 
Figure 2.2.: Overview of satellite sensors for vegetation and forest mapping with indication of the temporal 

(days) and spatial resolution (m). Note: the division of the x and y axis is not linearly scaled. 

 

Table 2.1.: Main features of image products from different satellite sensors, ordered from very high to low 

spatial resolution (based on Xie et al., 2008). 

Products 

(sensors) 

Spatial resolution and operating 

time 

Footprint size Spectral bands Temporal 

resolution 

WorldView-

2 

46 cm Panchromatic resolution 

and 1.85 meter multispectral 

resolution (2009 to present). 

16.4 x 16.4 km 8 1.1 days on 

average 

QuickBird High resolution (0.6-2.4m) and 

panchromatic and multispectral 

imagery (2001 to present). 

16.5 x 16.5 km 4 1–3.5 days 

depending on 

latitude 

IKONOS High resolution imagery at 1 m 

(panchromatic) and 4 m 

resolution (multispectral bands) 

(1999 to present). 

11 x 11 km 4 3 days 

SPOT A full range of medium spatial 

resolutions from 20 m down to 

2.5 m. SPOT 1, 2, 3, 4, 5 and 6 

were launched in the year of 

60 x 60 km for 

RV/HRVIR/HRG 

4-5 26 days 
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1986, 1990, 1993, 1998, 2002 and 

2012, respectively. 

ASTER Medium spatial resolution (15–90 

m) image with 14 spectral bands 

from the Terra Satellite (1999 to 

present). Visible to near-infrared 

bands have a spatial resolution of 

15 m, 30 m for short wave 

infrared bands and 90 m for 

thermal infrared bands. 

60 x 60 km 15 16 days 

Landsat TM Medium to coarse spatial 

resolution with multispectral data 

(120 m for thermal infrared band 

and 30 m for multispectral bands) 

from Landsat 4 and 5 (1982 to 

present). 

185 x 185 km 7 16 days 

Landsat 

ETM+ 

(Landsat 7) 

Medium to coarse spatial 

resolution with multispectral data 

(15 m for panchromatic band, 60 

to 120 m for thermal infrared and 

30 m for multispectral bands) 

(1999 to present). 

185 km x 185 km 7 16 days 

MODIS Low spatial resolution (250–1,000 

m) and multispectral data from 

the Terra Satellite (2000 to 

present) and Aqua Satellite (2002 

to present). 

2,330 km x 10 km 36 1–2 days 

PROBA-V 300 m (VNIR), 600 m (SWIR) and 1 

km (VNIR and SWIR) (2013 to 

present) 

2,250 x 2,2250 km 4 ± once a day 

SPOT-VGT Medium spatial resolution of 1 km 

(1998 and 2002 to present) 

2,250 x 2,250 km 4 1 day 

AVHRR 1 and 5 km with multispectral 

data from the NOAA satellite 

series (1981 to present). 

2,400 x 6,400 km 4 Twice per day 

 

WorldView-2 

The WorldView-2 sensor was the first high resolution 8-band multispectral commercial satellite and 

provides 46 cm panchromatic resolution and 1.85 meter multispectral resolution (Puetz et al., 2009). 

 
QuickBird 

Similar to IKONOS, QuickBird offers highly accurate and high resolution imagery with panchromatic 

imagery at 60–70 cm resolution and multispectral (4 bands) imagery at 2.4 and 2.8 m resolution 

(Toutin and Cheng, 2002). QuickBird images are normally applied to study special topics in relatively 

small areas. Due to the high cost and rigid technical parameters, QuickBird imagery is impractical for 

applications in large areas (Parcak, 2009). 
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IKONOS 

IKONOS is a commercial sun-synchronous Earth observation satellite launched in 1999 and was the 

first to collect publicly available high resolution imagery at 1 and 4 m resolution (Dial et al., 2003). 

IKONOS has two imaging sensors: the panchromatic sensor collects images of 1 m resolution, while 

the multispectral bands have a spatial resolution of 4 m. Both sensors have a swath width of 11 km 

and a 3 day revisit interval (Dial et al., 2003). The IKONOS observations are at a spatial scale 

equivalent to field measurements typically carried out in ecological and land cover research (Goetz et 

al., 2003). However, for long term mapping, IKONOS satellite imagery is very expensive (Parcak, 

2009). 

 

SPOT 

Six SPOT satellites have been launched so far, from SPOT 1 to SPOT 6 in 1986, 1990, 1993, 1998, 2002 

and 2012, respectively. SPOT imagery comes in a full range of resolutions from 1 km (SPOT 

vegetation imagery) down to 2.5 m (Courtois and Weill, 1985; ASTRIUM, 2013). Two HRV (High 

Resolution Visible) imaging instruments on SPOT 1, 2 and 3 and the corresponding instruments of 

HRVIR (High Resolution Visible and Infrared) on SPOT 4 and HRG (High Resolution Geometry) on 

SPOT 5 scan in either panchromatic or multispectral modes (5 spectral bands; Chevrel et al., 1980; 

ASTRIUM, 2013). In addition, SPOT 4 and 5 also have a second imaging instrument referred to as 

SPOT vegetation (VGT) instrument that collects data at a spatial resolution of 1 km and a temporal 

resolution of 1 day (ASTRIUM, 2013). SPOT 6 was launched in 2012 and the proposed launch date for 

SPOT 7 is in 2014 (ASTRIUM, 2013). SPOT VGT images are useful for observing and analyzing the 

evolution of land surfaces and understanding land cover changes over large areas (Maggi and 

Stroppiana, 2002). Due to the presence of multiple sensor instruments and the high revisit 

frequency, SPOT satellites are capable to obtain low resolution daily image of any place on Earth 

(Maggi and Stroppiana, 2002). 

 

ASTER 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument 

orbiting on the Terra platform. ASTER acquires images with spatial resolutions between 20 and 256 

m (Epiphanio, 2005; Ponzoni et al., 2006) and has been applied to obtain detailed land surface and 

elevation maps (Tuttle et al., 2006). An advantage of ASTER is the availability of 15 spectral bands 

which allow for studies on snow cover, water, vegetation and minerals. 

 

Landsat TM and ETM+ 

The Landsat series of satellites started with the launch of ERTS-1 (Earth Resources Technology 

Satellite, later renamed Landsat 1) in 1972 and continues to this day with Landsat 8, providing the 

world’s longest continuously acquired collection of space-based land remote sensing data. Therefore, 

the Landsat sensor has a long history and wide application for monitoring the Earth from space 

(USGS, 2013b). Since the first Landsat satellite was launched in 1972, a series of more sophisticated 

multispectral imaging sensors with 7 spectral bands, named TM or Thematic Mapper, have been 

launched. The Landsat sensors range from Landsat 1 (1972-1978), Landsat 2 (1975-1981), Landsat 3 

(1978-1983), Landsat 4 (1982-1993), 5 (1984-2013), 6 (1993, launch failed), 7 (1999-now; Enhanced 

Thematic Mapper Plus, ETM+, scan-line corrector failure since 2003) to the Landsat Data Continuity 

Mission (LDCM or Landsat 8) in 2013 (USGS, 2013b). The Landsat TM and ETM+ imaging sensors have 

archived millions of images with a nearly continuous record of global land surface data since its 
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launch. Landsat provides medium to coarse spatial resolution images (USGS, 2013b). For example, 

Landsat ETM+ imagery has a spatial resolution of 30 m for the multispectral bands and 60 to 120 m 

for the thermal infrared band (USGS, 2013b). The long Landsat history is helpful to map long-term 

vegetation cover and to study spatiotemporal vegetation changes. Therefore, Landsat products have 

been applied in vegetation mapping mainly at regional scales. For example, nearly 20-year Landsat 

TM/ETM+ image datasets (19 images) covering western Oregon were applied to detect and 

characterize changes in early forest succession (Schroeder et al., 2006). The different characteristics 

of Landsat spectral sensors require a spectral reflectance correction between these images 

(Schroeder et al., 2006).  

 

MODIS 

MODIS is a key instrument aboard of the Terra and Aqua satellites. Terra MODIS and Aqua MODIS 

together are able to visit the entire Earth’s surface every 1–2 days. The gathered images from MODIS 

with spatial resolutions between 250 m and 1 km are mainly applied to map vegetation dynamics 

and processes at a large scale (Xie et al., 2008). Due to the coarse spatial resolution, vegetation 

mapping at a local or regional scale is discouraged (Justice et al., 1998; Giri et al., 2005). An 

advantage of MODIS is the availability of 36 spectral bands, including thermal bands that allow to 

monitor water vapour and evapotranspiration (Sader and Jin, 2006) . 

 

PROBA-V 

In order to ensure data continuity after the decommissioning of VEGETATION, a new mission under 

the name of Project for On-Board Autonomy - Vegetation (PROBA-V) has been prepared by the 

European Space Agency. The satellite and the instrument were developed and built by Belgian 

contractors and was launched on May 7 2013. PROBA-V is a small satellite, assuring the succession of 

the VEGETATION instruments on board the French SPOT-4 and SPOT-5 Earth observation missions 

(BELSPO, 2011). PROBA-V was initiated by the Space- and Aeronautics department of the Belgian 

Science Policy Office (BELSPO). Traditional vegetation products generated by the VEGETATION 

instruments include the 1-day Synthesis products and the 10-day Synthesis products, both with a 

ground resolution of about 1 km (1 km x 1 km pixel size; VITO, 2013b). Despite the fact that the 

VEGETATION instrument onboard PROBA-V has a higher spatial resolution (smaller ground pixels) 

than the VEGETATION instruments on board the SPOT satellites, the long time series (15 years) of the 

traditional Vegetation products will be continued by PROBA-V (ESA, 2012). Thus, PROBA-V will also 

generate the traditional vegetation products at approximately 1 km x 1 km ground resolution and 

support applications such as land use, worldwide vegetation classification, crop monitoring, famine 

prediction, food security, disaster monitoring and biosphere studies (ESA, 2012). Another advantage 

is that products older than 3 months are downloadable free of charge (BELSPO, 2011). 

 

SPOT-VEGETATION 

The SPOT-VEGETATION programme is a space collaboration between various European partners: 

Belgium, France, Italy, Sweden and the European Commission. It consists of two observation 

instruments in orbit, VEGETATION 1 and VEGETATION 2 (VITO, 2013a). The first satellite component 

(VEGETATION 1) of the programme was launched on March 24 1998 onboard SPOT 4, while the 

second instrument was launched onboard SPOT 5 on May 4 2002. They deliver measurements 

specifically tailored to monitor parameters of land surfaceswith a frequency of about once a day on a 

global basis and a medium spatial resolution of one km (VITO, 2013a). 

http://en.wikipedia.org/wiki/Satellite
http://en.wikipedia.org/wiki/SPOT_(satellite)
http://en.wikipedia.org/wiki/BELSPO
http://en.wikipedia.org/wiki/BELSPO
http://www.spot-vegetation.com/pages/VegetationProgramme/spot4.htm
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AVHRR 

Carried on the NOAA’s Polar Orbiting Environmental Satellite series, the AVHRR sensor is a 

broadband scanning radiometer in the visible, near infrared and thermal infrared spectrum. AVHRR 

image data have two spatial resolutions: ~1.1 km for local area coverage and 5 km for global area 

coverage (Ho and Asem, 1986). AVHRR is widely applied to study and monitor vegetation conditions 

in ecosystems, land cover mapping and production of large scale maps (Johnson et al., 1987; Ehrlich 

et al., 1994; Loveland et al., 2000). One of the advantages of AVHRR is the low cost and the high 

probability of obtaining a cloud-free view of the land surface in e.g. a monthly composite (Eidenshink 

and Faundeen, 1994) due to the high temporal resolution. Since AVHRR has an image archive with 

long history since 1981, it is useful to study long-term changes of vegetation (Teuber, 1990). 

However, AVHRR imagery suffers certain limitations in calibration, geometry, orbital drift, limited 

spectral coverage (4 bands) and variations in spectral coverage especially in the early acquisitions 

(Wu et al., 2010; Devasthale et al., 2012; Latifovic et al., 2012). One of the main advantages of the 

AVHRR instrument is that it provides a long term reflectance data sets to monitor the land surface 

(Maggi and Stroppiana, 2002). 

 

Hyperspectral sensors and applications 

Besides the above mentioned sensors, many other sensors are available. Hyperspectral sensors 

collect hundreds of spectral bands. Note that the principle for mapping vegetation cover from 

remote sensing images relies on the unique spectral features of different vegetation types. Thus, 

hyperspectral imagery contains more vegetation information and is applied for more accurate 

vegetation mapping (Fisher et al., 1998). The Airborne Visible Infrared Imaging Spectrometer 

(AVIRIS), for example, collects images with 224 spectral bands. A disadvantage from this sensor is the 

irregular temporal resolution that depends on weather conditions at target sites (Xie et al., 2008). 

 

Furthermore, the International Geosphere–Biosphere Program started a global land cover mapping 

in the development of the Global Land Cover Characterization (GLCC) Database that was based on 1 

km Advanced Very High Resolution Radiometer (AVHRR) image data in 1992 (USGS, 2013a). Similarly, 

in collaboration with over 30 research teams from around the world, the Joint Research Centre of the 

European Commission in Italy implemented the Global Land Cover 2000 project (GLC2000) in 1999 to 

map global land cover and build up the VEGA2000 dataset by extracting the data from 1 km SPOT4-

VEGETATION imagery (European Commission, 2013a). Two years later, US National Aeronautics and 

Space Administration (NASA) released the database of global MODIS land cover based on monthly 

composites from Terra MODIS Levels 2 and 3 images between January and December 2001 (Xie et al., 

2008). Next to these initiatives at the global and continental scales, numerous programs started to 

map vegetation at regional scale. An example is the USGS – National Park Service Vegetation 

Mapping, that started in 1994 with the aim to produce detailed and computerized maps of the 

vegetation for ~250 national parks across the United States. Inventories were performed by 

processing Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) imagery along with ground 

sampling references.  
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2.1.2 Indices derived from low and medium resolution imagery 

Indices derived from medium to low resolution sensors are a proper tool for land cover analysis. 

Vegetation indices (VIs) have a long history over a wide range of applications such as: vegetation 

monitoring, climate and hydrologic modeling, agricultural activities, drought studies and public 

health issues (Bannari et al., 1995; Elvidge and Chen, 1995; Huete et al., 1997; Huete et al., 2002). 

Vegetation capture the unique spectral signatures, which evolve with the plant life cycle. VIs are 

dimensionless radiometric measures that combine information from different channels, particularly 

in the red and near infrared (NIR) portions of the spectrum, to enhance the vegetation signal. Such 

indices allow reliable spatial and temporal inter-comparisons of terrestrial photosynthetic activity 

and canopy structural variations (Eumetrain, 2010). VIs are generally computed for all pixels in time 

and space, regardless of biome type, land cover condition and soil type (Huete et al., 2002). Due to 

their simplicity and ease of application, vegetation indices have a wide range of usage within the user 

community. In the following paragraphs, the main VIs are summarized (Gutman, 2012). 

 

Normalized Difference Vegetation Index (NDVI) 

The amount of red and NIR reflectance is related to the amount of vegetation present on the ground 

(Huete et al., 1999). Reflected red energy decreases with plant development due to the chlorophyll 

absorption within actively photosynthetic leaves. Reflected NIR energy, on the other hand, will 

increase with plant development through scattering processes in healthy leaves (Eumetrain, 2010). 

 

The most widely used VI is the NDVI which consists of a normalized ratio of the NIR and red bands 

(Rouse, 1973; Equation 2.1): 

 
 

  NIR red

NIR red

NDVI
 

 




   (2.1) 

where ρred and ρNIR are reflectance measurements in % for the red and NIR bands, respectively. NDVI 

values range from 1 to -1. For land targets, the index ranges from 0 for arid or barren areas to 1 for 

densely vegetated areas. Negative NDVI values usually correspond to urban areas. The NDVI over 

water surfaces is close to -1 due to their low reflectance in the NIR band. NDVI’s main advantage is 

the simple computation without assumptions regarding to land cover classes, soil type or climatic 

conditions. Furthermore, long time series of more than 20 years are available. There are also a 

number of disadvantages: additive noise effects, asymptotic (saturated) signals over high biomass 

condition and sensitivity to canopy background brightness (Huete et al., 2002). Furthermore, the 

NDVI is not a structural property of land surface areas. 

 

Enhanced Vegetation Index (EVI) 

The EVI was developed by the MODIS Science Team to take full advantage of the sensor capabilities 

(Liu and Huete, 1995; Equation 2.2): 

 
1 2

 
 G NIR red

NIR red blue

EVI
C x C x L

 

  


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   (2.2) 

 

Where ρ are atmospherically corrected reflectances values for Rayleigh and ozone absorption, L is 

the canopy background adjustment, C1 and C2 are coefficients related to aerosol correction and G is a 
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gain factor. In order to increase the sensitivity to the vegetation signal, the index implements 

measurements in the red and near infrared bands (as in the case of NDVI), and also in the visible blue 

band, which allows for an extra correction of aerosol scattering. EVI also performs better than NDVI 

over high biomass areas, since it does not saturate as easily (Huete et al., 2002). The blue band is 

used to remove residual atmosphere contamination caused by smoke and thin clouds. EVI’s main 

advantage is the good performance under high aerosol loads and biomass burning conditions (Huete 

et al., 2002). Some disadvantages are comparable with the NDVI: it is not a structural property of 

land surface areas and it features an inherent nonlinearity since it is a ratio based index. Other 

disadvantages are the relatively low values in all biomes and also lower ranges over semiarid sites to 

compensate for the effects of NDVI saturation over high biomass areas (Eumetrain, 2010). 

 

Othervegetation indices 

Several other vegetation indices have been developed, the equations of five VIs are provided 

underneath. Furthermore, a extensive variety of other VIs is available for different purpose 

(Veraverbeke et al., 2010; Vina et al., 2011; Huete, 2012). 

 

 Perpendicular Vegetation Index (PVI; Richardson and Wiegand, 1977; Equation 2.3)  

 2 2(0.355 0.149 ) (0.355 0 )  .852NIR red red NIRPVI        (2.3) 

 

 Vegetation Condition Index (VCI; Kogan,1995; Equation 2.6): 

 min  
 100 x 

( )

( )max

NDVI NDVI
VCI

NDVI NDVI




   (2.4) 

where NDVImin and NDVImax are NDVI multi-year absolute maximum, and minimum, respectively. 

 Soil Brightness Index (SBI; Richardson and Wiegand, 1977 ; Equation 2.4)  

 
1 1 1 1+ b + c + a  dgreen red NIR NIRSBI       (2.5) 

where ρgreen is the reflectance measurement for the visible green band and a1, b1, c1 and d1 are 

coefficients. 

 Soil-Adjusted Vegetation Index (SAVI; Huete, 1988; Equation 2.7): 
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where l is the soil brightness correction factor. The value of l varies by the amount or cover of 

green vegetation: l=0 in very high vegetation regions and l=1 in areas without green vegetation.  

 Transformed Soil-Adjusted Vegetation Index (TSAVI; Baret et al., 1989; Equation 2.7): 
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where a = slope of the soil line, b = intercept of the soil line, x = adjustment factor. 
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2.2 Preprocessing and compositing of remote sensing imagery 

 

Figure 2.3 provides an overview of the different preprocessing steps that should be applied prior to 

image compositing, interpretation and classification. Remote sensors capture electromagnetic 

radiance values which are recorded in digital numbers. In a first step, the geometric correction, the 

pixels are placed in a planimetric reference system. Secondly, clouded pixels are detected and 

masked out. Finally, a radiometric correction is carried out which includes the correction for 

disturbances in the atmosphere and for differential illumination effects due to topography. At-

surface reflectance values can then be used for image interpretation and classification. For large 

scale studies, an additional compositing step may be required, in which multiple images are 

mosaicked or pixels are composited. In the following sections, these different steps are documented. 

 

 
Figure 2.3.: Overview of different input data, and preprocessing steps prior to compositing: geometric 
correction, cloud masking, and atmospheric and topographic correction. The SRTM is the shuttle radar 

topography mission. 
 

2.2.1 Geometric correction 

Remote sensors record information about the Earth’s surface by measuring the transmission of 

energy from the surface in different portions of the electromagnetic (EM) spectrum and store the 

information in digital numbers (often coded with one byte resulting in 256 levels). The digital 

numbers (DN; eight-bit) of each spectral band need to be converted to at-satellite radiances (Las,λ, in 

W/(m2μm); Equation 2.8) by means of a calibration. This calibration includes gain and offset values 

describing the sensitivity of the sensor and are obtained from the calibration file in the metadata 

(where Las refers to the at-satellite radiances and λ to the band wavelength in m): 

 Las,λ = DN × gain + offset (2.8) 

 

Geometric correction aims to place the registered pixels in a uniform planimetric reference system. 

This requires corrections for tilting and tipping of the sensor and an orthorectification that includes 

displacements due to off-nadir viewpoints and the topography of the terrain. In most cases, 
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providers of satellite imagery deliver geometrically corrected imagery. For example, all Landsat 

images in the freely available USGS archive are orthorectified with precision terrain correction level 

L1T. This correction provides the geometric accuracy by incorporating ground control points while 

employing a Digital Elevation Model (DEM) for topographic accuracy (NASA, 2013b). 

 

2.2.2 Cloud masking 

To correctly interpret results, clouds and cloud shadows are often masked out by different 

procedures: visually (Knorn et al., 2012a; Prishchepov et al., 2012; Vicente-Serrano et al., 2008), by 

image differencing with a cloud-free reference image (Kennedy et al., 2010) or by using a specifically 

developed algorithm, such as the Function of mask (FMASK) algorithm (Zhu and Woodcock, 2012). 

Most of the cloud detection and masking algorithms are designed for implementation on a global 

(Gardner, 1993; Ackerman et al., 2002; Asmala and Shaun, 2012; Prishchepov et al., 2012; Zhu and 

Woodcock, 2012) or regional scale (Saunders, 1986; Logar et al., 1998; Knorn et al., 2012a). However, 

the practical implementation is often unsuccessful in the equatorial regions, especially southeast Asia 

(Franya and Cracknell, 1995; Bendix et al., 2004; Asmala and Shaun, 2012). 

 

2.2.3 Atmospheric correction (AC) 

Atmospheric correction is usually the first step in a radiometric correction in which the radiance 

received at the satellite is corrected for scattering, absorbing, and refraction of light by molecules in 

the atmosphere (Gao and Zhang, 2009). Atmospheric correction aims at the isolation of the solar 

direct irradiance from other radiance fluxes that enter the sensor: the path radiance, the sky diffuse 

irradiance and the adjacent terrain reflected irradiance (Jensen, 2005; Lillesand et al., 2004; Figure 

2.4). 

 
Figure 2.4.: Process of solar (ir)radiance entering a sensor: (a) path radiance, (b) solar direct irradiance, (c) sky 

diffuse irradiance, and (d) adjacent terrain reflected irradiance (Van Beek, 2011). 

 
AC methods can be divided in two major types: (1) empirical methods and (2) methods based on 

radiative transfer models (Gao et al., 2009). An overview of frequently implemented atmospheric 

correction algorithms, their type, references and abbreviations is provided in Table 2.2. Empirical 

methods assess atmospheric disturbances based on parameters derived from the recorded radiance 

values. In contrast to more advanced AC methods, empirical corrections don’t require external 
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atmospheric parameters collected by in-situ field measurements during the satellite flight. The most 

popular empirical AC methods are the dark object subtraction (DOS; Vincent, 1972; Chavez, 1975) 

and the empirical line method (Conel et al., 1987). 

 

The DOS correction assumes that the atmospheric scattering or path radiance is equal to the 

radiance captured in the darkest object or pixel of the image (Vincent, 1972; Chavez, 1975; Chavez, 

1996). The correction for scattering is implemented by subtracting the radiance value of the darkest 

object from all pixels of the image (Chavez, 1996). The empirical line method is based on regression 

analyses between the infrared band and other bands, whereby it is assumed that the infrared band is 

less susceptible to atmospheric scattering than the bands capturing shorter wavelengths (Conel et 

al., 1987). The empirical AC correction methods are relatively easy to apply since they only require 

the observed radiance values stored in the pixels of the image. However, these methods remain 

rough approximations of the underlying physical processes happening in the atmosphere, and their 

results are often of low quality (Moran et al., 1992; Thome et al., 1993). 

 

The second type of methods are based on radiative transfer models which implement parameters 

that describe the atmospheric condition at the moment of image capture (Gao et al., 2009). A wide 

range of radiative transfer models has been developed that physically describe the pathways and the 

interaction of the electromagnetic radiance with different wavelengths through the atmosphere 

(Table 2.2). Most models include the following parameters: water vapour, ambient atmospheric 

pressure value and aerosol concentration (Berk et al., 1998; Richter, 1996; 1998; Kobayashi and 

Sanga-Ngoie, 2008). The main disadvantage of correction methods based on radiative transfer 

models is the need to capture these parameters during each satellite flight (Chavez, 1996). In many 

cases, the required parameters need to be derived from look-up tables or need to be assessed by 

means of regression between the captured parameters. Table 2.2 summarizes frequently 

implemented AC methods, in which the methods are ordered chronologically by year of publication. 

The AC methods applied in this PhD thesis are described in detail in Chapter 4. 

 

Table 2.2.: Atmospheric correction (AC) algorithms, type, reference and explained abbreviation. 
 

Correction Type Reference Abbreviation (explained) 

Flat field 
Empirical line 

Empirical 
Empirical 

Roberts et al., 1986 
Conel et al., 1987, 
Smith and Milton, 1999  

 

LOWTRAN Radiative transfer 
 

Kneizys et al., 1988 Low resolution atmospheric 
transmission 

IAR 
MODTRAN 
 
Cloud shadow 

Empirical 
Radiative transfer 
 
Empirical 

Kruse, 1988 
Berk et al., 1989 
 
Reinersman et al., 
1998; Lee et al., 2005; 
Filippi et al., 2006 

Internal Average Reflectance 
Moderate resolution 
atmospheric transmission 

RTCs, image-based 
procedures and DOS 
ATREM 
Inverse technique 
SMAC 
 
DOS  

Radiative transfer 
and empirical 
Radiative transfer 
Radiative transfer 
Radiative transfer 
 
Empirical 

Moran et al., 1992 
 
Gao et al., 1993 
Gilabert et al., 1994 
Rahman and Dedieu, 
1994 
Chavez, 1996 

Radiative transfer codes 
 
Atmosphere Removal algorithm 
 
Simplified method for AC 
 
Dark object subtraction method 
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ATCOR2 
 
SDAS 
 

Radiative transfer 
 
Radiative transfer 

Richter, 1996 
 
Staenz et al., 1998 

Acronym for atmospheric 
correction  
Imaging Spectrometer Data 
Analysis System 

 
FLAASH 
 
DOS, DDV and 
modified DDV 
AC with look-up tables 
 
LEDAPS 
 
 
HATCH 
 
 
QUAC 
6S 
 
 
 
ACORN 

 
Radiative transfer 
 
Empirical 
 
Radiative transfer 
 
Radiative transfer 

 
Radiative transfer 

 
 

Radiative transfer 
Radiative transfer 

 
 
Radiative transfer 

Adler-Golden et al., 
1999 
Song et al., 2001 
 
Liang et al., 2001; Liang 
and Fang, 2004 
Wofsy and Harriss, 
2002; Masek et al., 
2006 
Qu et al., 2003 
 
 
Bernstein et al., 2005 
Sriwongsitanon et al., 
2011; Vermote et al., 
1997; Zhao et al., 2000; 
Burns and Nolin, 2014 
Kruse, 2004 

 
Fast Line-of-sight Atmospheric 
Analysis of Spectral Hypercubes 
Dense Dark Vegetation 
 
 
 
Landsat Ecosystem Disturbance 
Adaptive Processing System 
 
High-accuracy Atmospheric 
Correction for Hyperspectral 
Data 
Quick Atmospheric Correction 
Second simulation of a satellite 
signal in the solar spectrum  
 
 
Atmosphere Correction Now 

Transmittance 
functions (TF) 
COST and MADCAL 

Radiative transfer 
 
Empirical and 
radiative transfer 
 

Kobayashi and Sanga-
Ngoie, 2008 
Kennedy et al., 2010 ; 
Main-Knorn et al., 
2012a 

This method is the AC part of the 
combined radiometric correction 
Multivariate Alteration Detection 
and Calibration 

COST and ATCOR2 Empirical and 
radiative transfer 

Broszeit and Ashraf, 
2013 

 

 

2.2.4 Topographic correction (TC) 

After atmospheric correction, the at-satellite radiance is converted to at-surface reflectance (ρT,λ) 

which includes variations in Earth-sun distance, the mean exo-atmospheric solar irradiance and the 

solar zenith angle. Equation 2.9 proposed by Markham and Barker (1986) is the most frequently 

adopted to carry this conversion. 
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where: λ = band wavelength; t = terrain; ρt,λ = observed surface reflectance on an inclined surface 

(%,); Ls,λ = at-satellite radiance after atmospheric correction (W/(m2 μm)); d = Earth–sun distance 

(astronomical units); θs= solar zenith angle (degrees) and ESUNλ= mean exo-atmospheric solar 

irradiance (W/(m2 μm)). 

 

In a final preprocessing step, the at-surface reflectance values are normalized. This step is essential in 

mountainous areas where pixels receive differential illumination depending on different illumination 

angles at the moment of image acquisition. Hereby, a Lambertian surface is an ideal diffuse reflection 

which reflects the incoming radiation equally into all directions of the hemisphere (Figure 2.5a).The 

apparent brightness of such a surface to an observer is the same regardless of the observer's angle of 
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view (Jensen, 1996). In contrast, the process when reflected light rays is scattered unequally in all 

directions for a rough surface is called non-Lambertian reflection (Figure 2.5b). 

 

 
Figure 2.5.: (a) Lambertian reflection, and (b) non-Lambertian reflection (Jensen, 1996). 

 

Due to the differences in illumination, comparable vegetation types show a dissimilar reflectance 

response on different hill slopes, where shaded areas have lower than expected reflectance, and the 

opposite effect is observed on brightly illuminated areas (Figure 2.6, Riaño et al., 2003). 

 

 
Figure 2.6.: Differences in illumination due to topographic effects (Riaño et al., 2003). 

 

Topographic normalization aims at removing these differential illumination effects by assessing the 

theoretical reflectance for a horizontal surface (ρH,λ; Veraverbeke et al., 2010). Figure 2.7 shows the 

different angles that explain differential illumination: solar zenith angle (θs), the slope angle of the 

terrain (θn, in degrees), the solar azimuth angle (ϕt, in degrees) and the aspect angle of the terrain 

(ϕa, in degrees). Furthermore, the incident solar angle β (degrees) is the angle between the normal 

to the ground surface and the solar zenith direction (Civco, 1989). 

 
Figure 2.7.: The different angles involved in topographic correction. 
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The normalized reflectance of a horizontal surface (ρH,λ) can be calculated using different topographic 

corrections. An overview of frequently implemented topographic correction algorithms, their type, 

references and abbreviations is provided in Table 2.3. Three major types of topographic correction 

methods have been developed: (1) empirical methods, (2) Lambertian geometrical methods, and (3) 

non-Lambertian geometrical methods.  

 

Empirical methods assume that induced illumination variations are wavelength-independent 

(Crippen, 1988). For example, band ratioing removes the differential illumination by dividing the 

recorded reflectance value of an individual pixel in a specific band by the average of the recorded 

reflectance values of all bands (Colby, 1991; Ono et al., 2007). The major advantage of empirical 

topographic correction methods is that the complex illumination geometry is included in the 

calculations. Empirical methods have shown their efficiency in removing relative over- or under- 

illumination, but in many applications image artifacts occurred (Ekstrand, 1996; Hantson and 

Chuvieco, 2011).  

 
Geometrical methods are based on a reconstruction of the incoming radiance, given the incidence 

angle of the sun and the aspect of the slope (Figure 2.7). A straightforward correction is the cosine 

correction that assesses the observed reflectance on a horizontal terrain (ρH,λ; Equation 2.10) 
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Where ρt,λ is the observed reflectance on an inclined terrain (%,), λ is the wavelength, θs is the solar 

zenith angle and β the incident solar angle. The incident solar angle β is calculated with the metadata 

of the image, which will be explained in Chapter 4 (Civco, 1989). The cosine correction is a frequently 

implemented geometrical correction which assumes Lambertian reflection and includes the direct 

solar irradiance on the ground (Teillet et al., 1982). In this method, the illumination geometry of each 

pixel is derived with a co-registered digital elevation model (DEM). A disadvantage of the cosine 

correction is the ignorance of the diffuse irradiance from the sky and adjacent terrain reflected 

irradiance (Teillet et al., 1982). Furthermore, the effectiveness of geometric corrections depends on 

the accuracy and the resolution of the DEM (Conese et al., 1993). The cosine correction also often 

results in an overcorrection of the brightness since pixels in the shade still receive radiance due to 

diffuse skylight (Moran et al., 1992; Dengsheng et al., 2008; Soenen et al., 2008; Richter et al., 2009).  

 

Therefore, an improved cosine correction was proposed in which an empirical coefficient Cλ was 

added to equation 2.10 as follows: 
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The coefficient Cλ is dependent on wavelength and on the intensity of diffuse sky irradiance and 

should be calibrated empirically (Teillet et al., 1982; Meyer et al., 1993).  

 

More advanced topographic correction procedures also include the observation angle of the sensor. 

In the case of Lambertian reflection in which the incident radiance is reflected homogeneously in the 

hemisphere, the observation angle is of no importance. However, the majority of the Earth’s surface 
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behaves as a near-perfect diffuse reflector. Minnaert (1941) was the first to propose a solution for 

this problem by adding an empirical coefficient k, describing the reflection type, to a standard cosine 

resulting in Equation 2.12: 
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whereby k = 1 in the case of perfect Lambertian reflection and k > 1 in the case of semi-diffuse or 

semi specular reflection. 

 

The Minnaert procedure is attractive from conceptual point of view but, is difficult to implement 

since it requires an assessment of the k value for each pixel. Different ways for computing the k value 

have been developed. A simple way is to use a single global k value for an entire image (Colby and 

Keating, 1998; Garcia-Haro et al., 2001; Mitri and Gitas, 2004; Gitas and Deverux, 2006). This 

calculation is based on the assumption that the anisotropic nature of reflectance is homogeneous 

over the study area. However, this assumption is invalid due to topography and land cover variations 

(Bishop and Colby, 2002). In reality, a global k value cannot result in accurate correction for all slopes 

and aspects due to differences in topographic impacts on the land surface reflectance (Ekstrand, 

1996; Bishop and Colby, 2002). A second approach computes individual pixel-based k values for each 

land cover class, based on NDVI values or on a regression analysis between reflectance values and 

cos β (Bishop and Colby, 2002; Bishop et al., 2003; Blesius and Weirich, 2008). Finally, k values are 

derived for each band and different slope groups (Lu et al., 2008). These advanced geometrical 

corrections account for the non-Lambertian behavior by the implementation of bidirectional 

reflectance distribution functions (BRDFs; Zhang and Gao, 2009). The major disadvantage of these 

advanced methods is the requirement of additional parameters that need to be derived from 

regression analyses, look-up tables or land cover maps (Aspinall, 2002; Hansen et al., 1994; Lu et al., 

2008). The requirement to collect these additional input data hampers the inclusion of advanced 

topographic correction methods in automated processing chains which are necessary in large scale 

mapping (Rogan and Chen, 2004; Rogan et al.; 2008). 

Table 2.3. provides an overview of frequentlyimplemented TC methods that were described in recent 

literature, ordered chronologically by year of publication. The algorithms were classified in three 

different groups: (1) empirical (E), (2) geometrical assuming Lambertian reflection (LG), and (3) 

geometrical assuming non-Lambertian reflection (NLG). The TC methods applied in this PhD thesis 

are described in detail in Chapter 4. 

 

Table 2.3.: Topographic correction (TC) algorithms, type, reference and explained abbreviation. 
 

Correction Type Reference Abbreviation (explained) 

Minnaert 
 
 
 
Cosine 
C  

NLG* 
 
 
 
LG* 
NLG 
 
 

Minnaert, 1941; Smith et 
al., 1980; Bishop and 
Colby, 2002; Lu et al., 
2008;  
Teillet et al., 1982 
Teillet et al., 1982 ; Meyer 
et al., 1993; Jensen, 1996; 
Bishop et al., 2003 

 
 

Two stage topographic 
normalization 

E* Civco, 1989  

Band ratios E Colby, 1991; Ono et al.,  
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2007 
Minnaert with changing 
constant and correction 
based on empirical 
function 
SCS 

NLG and E 
 
 
 
NLG 

Ekstrand, 1996 
 
 
 
Gu and Gillespie, 1998 

 
 
 
 
Sun-canopy-sensor 
topographic 
correction 

Statistical Approach LG Gu et al., 1999  
Band ratio, Minnaert, 
aspect partitioning and 
combinations of these 
corrections 

E, NLG, LG and 
combinations 

Hale and Rock, 2003  

C-Huang Wei NLG Huang et al., 2008  
PBC and PBM NLG Kobayashi and Sanga-

Ngoie, 2008 
Pixel-based 
Minnaert and pixel-
based C-correction 

Empirical line, cosine, C, 
Minnaert, statistical-
empirical, SCS, b, SCS+C 
and MFM-TOPO 

E, LG, NLG, NLG, E, NLG, 
NLG, NLG and NLG 

Soenen et al., 2008 MFM-TOPO is a 
canopy reflectance 
model-based TC 

Empirical, cosine, C and 
Minnaert 
Cosine, SCS, b and VECA 

E, LG, NLG and NLG 
 
LG, NLG, NLG and NLG 

Wu et al., 2008 
 
Gao and Zhang, 2009 

 
 
VECA is the variable 
empirical 
coefficient 
algorithm 

C, modified Minnaert and 
Gamma 

NLG, NLG and NLG Richter et al., 2009  

Simplified normalization 
Modified C-correction 
Cosine, C, Minnaert, 
modified Minnaert and 
empiric–statistic 
correction 

E 
NLG 
LG, NLG, NLG, NLG, NLG, 
and E 

Cuo et al., 2010 
Veraverbeke et al., 2011 
Hantson and Chuvieco, 
2011 

 

Cosine, C, smooth C, 
SCS+C, C-Huang Wei and 
slope matching 

LG, NLG, NLG, NLG, NLG, 
and E 

Singh et al., 2011  

Three-factor+C NLG Zhang and Gao, 2011  
Cosine, Minnaert , C, SCS, 
two stage topo 
normalization and slope 
matching 

LG, NLG, NLG, NLG, E, 
and E 

Zhang et al., 2011  

C, statistical-empirical and 
VECA 

NLG, E and NLG Li et al., 2013  

C, improved Cosine, 
Minnaert, statistical-
empirical and VECA 

NLG, NLG, NLG, E and 
NLG, 

Szantoi and Simonetti, 
2013 

 

Minnaert NLG Crawford et al., 2013  
Empirical rotation model E Tan et al., 2013  
C, SCS+C, Minnaert SCS, 
slope-matching and VECA 

NLG, NLG, NLG, E and 
NLG 

  

* E is empirical, LG is Lambertian geometrical and NLG is non-Lambertian geometrical. 

One may expect that the more advanced topographic correction methods deliver more accurate 

results. However, including additional parameters also introduces additional uncertainty in the 
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model calculations through propagation of errors in the input data. Van Rompaey and Govers (2002) 

showed that the quality of the available input data determined the model complexity and that the 

most complex models were not necessarily producing the best results due to error propagation. The 

question whether or not these more advanced topographic correction methods have an added value 

for the detection and mapping of forest cover dynamics will be addressed in the following chapters. 

 

2.2.5 Combined topographic and atmospheric correction 

AC and TC methods are both components of the radiometric correction and are often implemented 

subsequently in a preprocessing chain. In some cases, the atmospheric and the topographic 

components of radiometric corrections are interacting. This is for example the case in a C-correction 

(Equation 2.11), whereby an extra coefficient is introduced to describe the diffuse sky irradiance. An 

independent atmospheric correction preceding a C-correction would result in lower C-values since 

part of the diffuse sky-irradiance is already removed. In this study, we refer to this type of models as 

‘combined methods’ which combine an AC and TC method with or without any interaction between 

both components. 

 

Many radiometric correction methods described in literature are presented as ‘integrated’, but are 

no more than a sequential application of independent AC and TC methods. So far, a maximum of five 

individual atmospheric and/or topographic methods has been combined and compared by Riaño et 

al. (2003) and Vicente-Serrano et al. (2008). The combination of a specific AC and TC models is often 

given a model name such as e.g. MODTRAN, ATCOR or LOWTRAN. The major disadvantage of these 

radiometric correction models with a predefined combination of a specific AC and TC component is 

the lack of flexibility. For certain applications, other combinations of AC and TC that those offered in 

existing models may be suited. Moreover, the fixed combination of AC and TC components hinders 

the interpretation, validation and comparison of results. A certain combined model may perform 

poor, but it will be impossible for an end user to attribute these results to the AC or TC component of 

the model. Therefore, in this study, all combined models will be split up in a topographic and an 

atmospheric component. This has two advantages: (1) evaluation of the performance of each 

component individually, and (2) creation of many more new combinations of AC and TC methods. 

 

An overview of frequently implemented combined corrections, and their acronyms are provided in 

Table 2.4, ordered chronologically by year of publication. Many of these models are implemented in 

remote sensing software and it is up to the user to select an appropriate combined radiometric 

correction method given the characteristics of the study area, available data, computing time and the 

goal of the image processing. 

 

Table 2.4.: Combined correction, reference and explained abbreviation. 
 

Combined correction Reference Abbreviation (explained) 

Inverse technique + band ratios 
ATCOR2 + DEM [ATCOR3] 

Conese et al., 1993 
Richter, 1997; Richter and 
Schäpfler, 2002; Richter and 
Schäpfler, 2011 

 

6S + DEM Sandmeier and Itten, 1997  
DOS + Minnaert, C and variation of C Riaño et al., 2003  
DOS + cosine and SCS Vincini and Frazzi, 2003  
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ATCOR2 + Minnaert Mitri and Gitas, 2004  
LOWTRAN-7 + Minnaert 
MODTRAN + SCS 
TF + PBC  

Gitas and Devereux, 2006 
Huang et al., 2008 
Kobayashi and Sanga-Ngoie, 
2008 

 
 
 

DTA and 6S + cosine and C Vicente-Serrano et al., 2008 DTA is the dark target approach 
MODTRAN-4 + AMARTIS and SIERRA Lenot et al., 2009 AMARTIS is advanced modeling of 

atmospheric radiative transfer for 
inhomogeneous surfaces; SIERRA is 
spectral reflectance image extraction 
from radiance with relief and AC 

DOS + Minnaert and SCS  Gao and Zhang, 2009  
Parameterized BRDFs Wen et al., 2009 Bidirectional reflectance 

distribution function 
6S + C-correction Burns and Nolin, 2014  

 

2.2.6 Compositing 

For large scale studies, an additional compositing step may be required, in which multiple images or 

footprints are mosaicked or in which pixels are composited (see Figure 2.3). If the study area exceeds 

one sensor’s footprint, it is necessary to mosaic different images. A major challenge in this process is 

the development of unitemporal, homogeneous and radiometric consistent composites (Hansen and 

Loveland, 2012). In the hypothetical case of perfect radiometric correction of the footprints, a simple 

mosaicking of images would be sufficient. In reality, this leads to patched composites with stitch lines 

clearly visible (Gutman et al., 2008). 

 

In order to address this problem, pixel-based image compositing (PBIC) algorithms have been 

composed in which ‘the most suitable pixel‘ for each cell in terms of observation time and 

radiometric disturbance is selected from an image archive. A clouded pixel on one footprint may for 

example be replaced by an unclouded pixel from a footprint of the year before. Figure 2.8 shows the 

principle of PBIC with an archive of 3 images. In reality, archives of thousands of images can be used. 

In the first step, all available images are collected and georeferenced (Figure 2.8a). Next, for each 

cell, all available pixels in the archive are ranked according to their suitability. Finally, the composite 

is composed by selecting the best or most suitable pixels for each cell (Figure 2.8b). Each pixel of the 

composite consists of a single value and not an average value, since pixel and footprint specific 

metadata (solar zenith angle, solar azimuth angle, etc.) need to be stored for further analysis, e.g. 

topographic correction. 
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Figure 2.8.: Pixel-based compositing with (a) selection of all available images (in this example there are only 3 

images available), and (b) construction of the pixel-based composite with selection of the best pixel for each 

cell after a suitability assessment. 

 

The conversion from footprint-based mosaicking to pixel-based compositing was initially developed 

for wide-swath sensor data, which suffered from cloud disturbances (Cihlar et al., 1994; Holben, 

1986). PBIC methods can be classified according to different suitability criteria. Initial PBIC methods 

aimed at developing cloud-free composites and implemented the parameter ‘distance from cloud’ as 

a criterion (Hansen et al., 2008; Roy et al., 2010). For example, the South Dakota State University 

approach works with all available Landsat data based on a cloud cover metadata threshold (Broich et 

al., 2011; Hansen et al., 2011; Potapov et al., 2011 and 2012). Other PBIC methods were developed 

for the removal of the missing lines in Landsat-7 imagery (Goward et al., 1999; Arvidson et al., 2001; 

Arvidson et al., 2006). The Cropland Data Layer product combines the Advanced Wide Field Sensor 

(AWiFS) and Landsat ETM+ and TM data in characterizing annual crop types (Johnson and Mueller, 

2010). Kennedy et al. (2007) developed a change detection algorithm which selects idealized pixels 

based on the temporal trajectory of spectral values. Furthermore, Huang et al. (2010) developed a 

similar algorithm for forest cover change mapping. This Vegetation Change Tracker (VCT) is based on 

the spectral–temporal characteristics of land cover and forest change processes. In 2010, Kennedy et 

al. (2010) presented the Landsat-based detection of trends in disturbance and recovery (LandTrendr) 

approach which implements change detection algorithms to perform temporal segmentation and 

fitting of Landsat time series. This approach was also used in eastern Europe by Griffiths et al. 

(2013a). 

 

Griffiths et al. (2013b) implemented a PBIC algorithm to produce cloud-free and best observation 

composites of leaf-on phenology. Suitability of a given pixel was based on a parametric decision 

function which included: (1) the acquisition year, (2) the acquisition day-of-year, and (3) the pixel's 

distance to the next cloud/shadow. For each unique acquisition, scores across the parameters were 

summed up and for a given pixel all spectral band values of the acquisition with the highest total 

score were written into the final best observation composite (Griffiths et al., 2013b). The most recent 

worldwide forest change inventory between 2000 and 2012 by Hansen et al. (2013) was also based 
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on a per-pixel set of cloud-free image observations. The spatially homogeneous pixel-based image 

composites also offer other advantages: (1) avoidance of artificial partitioning into footprints, (2) 

observation frequency increase by across track overlap exploitation, (3) reduction of large scale 

mappingcosts, and (4) improved large area LULCC analyses (Masek et al., 2006). The major drawback 

is the dependency on storage and computational power as pixels of thousands of images need to be 

evaluated at the same time. 

 

Pixel-based image compositing clearly offers new possibilities for the large scale analysis of land and 

forest cover dynamics. The homogeneous image composites can be classified and analyzed in a single 

operation resulting in consistent land cover (change) maps. It is clear that the image compositing 

algorithms interact to some extent with the topographic and atmospheric correction methods 

described above. If in a first step all the images from the archive are preprocessed, different pixels 

may be selected for the composite as some distorted pixels may become suitable after correction. An 

alternative procedure would consist of firstly constructing the composite and secondly applying 

radiometric correction. In this case, the added value of topographic and atmospheric correction 

would probably be lower since pixels with major disturbances are already removed. The possible 

interaction between pixel-based compositing and radiometric corrections and their consequences for 

the accuracy of the resulting maps are not yet examined at present and will be addressed in the 

following chapters. 
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Chapter 3:  Study areas, forest cover dynamics and their controlling 

factors in the Carpathians 

  

3.1 Biophysical setting of the Carpathians 

 

The Carpathian mountain range connects eight eastern European countries: from Serbia and 

Romania in the south through Ukraine, Poland, Hungary, Czech Republic, Slovakia and Austria in the 

north (Björnsen et al., 2009). Covering an area of ±209,256 km², the Carpathian Mountains are one of 

Europe’s most remarkable natural regions with unique forest ecosystems (Badea et al., 2004; WWF, 

2012). Formed during the early Tertiary period, the Carpathians are relatively young mountains with 

elevations varying from 300 to 2,655 m above sea level (Webster et al., 2001). The mountains are 

mainly composed of sequences of sandy rocks formed of layers of alternating sandstone and shale. 

Other parts of the Carpathians are formed of limestone, or, as in the case of the Tatras, magmatic 

rock such as granite (Webster et al., 2001). The biodiversity of this region is unique in Europe. Due to 

its function as a refuge in the last ice age, an incredibly high natural diversity of species is present, 

including many endemic ones (about 12% of the total flora). Overall, this region harbors over one 

third of all European vascular plant species (Oszlányi et al., 2004). Furthermore, the Carpathians 

region serves as the last refuge for large predators such as the brown bear (Ursus arctos), the wolf 

(Canis lupus) and the lynx (Lynx lynx) (Oszlányi et al., 2004). Apart from this enormous diversity, 

Europe’s largest natural mountain beech and conifer mixed forest ecosystems are found here, along 

with Europe’s largest old-growth natural and unmanaged virgin forests. More than half of the 

mountainous region is covered by natural or planted forest (Webster et al., 2001). The Carpathian 

forest is an essential corridor for the dispersal of species, since it links the European southern, 

northern and western forests (Carpathian Ecoregion Initiative, 2001). 

 

Several recent studies describe the major landscape transitions that occurred in eastern Europe (Bicik 

et al., 2001; Feranec et al., 2000; Kuemmerle, 2006 and 2008a; Van Dessel et al., 2010). The following 

transition phases can be identified: (1) the communist collectivization process triggered an arable 

land increase and the disappearance of small fields; (2) the decollectivization after the communist 

period induced the conversion of less fertile soils into permanent grassland or forests and a more 

intensive agricultural use of the most suitable soils. The fall of the Iron Curtain brought substantial 

changes in the region’s socio-economic and institutional structures. This triggered widespread land 

use changes which in turn affected local livelihoods, biodiversity and the provision of ecosystem 

services.  

 

In order to secure the unique characteristics of the Carpathian Mountians, several areas have been 

protected over the last decades. In 1999, the Carpathian Ecoregion Initiative (CERI) was formed and 

aims for better protection and conservation of the area (Carpathian Ecoregion Initiative, 2012). In 

Figure 3.1, the total Carpathian Ecoregion is delineated in light blue. Detailed biodiversity and socio-

economic assessment has been undertaken to provide the basis for a long term biodiversity vision for 

core areas, complemented by a range of specific local projects aiming at sustainable forms of rural 

diversification. CERI is innovative since such a large scale long-term approach has never been 

attempted in the region. It is a unique international partnership with contributions from 

governments and international donor agencies such as the European Commission, the United 
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Nations Development Programme and the World Bank (Turnock, 2001). Since the analyses of 

Chapters 4 to 7 are implemented on two scale levels in the Romanian Carpathians, a regional or large 

scale and a local or small scale area in the Romanian Carpathians are chosen as study areas. In the 

next sections, the Romanian forest history, management and protections is described. 

 

 
Figure 3.1.: The Carpathian Ecoregion in a light blue color, covering part of eight different countries (Carpathian 

Ecoregion Initiative, 2007).The regional scale study area was explored in three contrasting study sites: 
Gheorgheni (northern polygon), Brașov (central polygon) and Făgăraș (western polygon). 

 

3.1.1 Forest types and history 

Due to the variety of climatic conditions and altitude above sea level, Romania is the most varied 

country for vegetation and forest growth in temperate Europe (Veen et al., 2010). The conditions 

vary from the east-mediterranean (Black Sea) till continental climates and from lowland floodplain 

and coastal sites till high mountains with forest and shrub formations along and above the timberline 

in the central and southern Carpathians. At the beginning of the Neolithic period (some 8,000 years 

BC), forests covered ca. 80% of the present day Romanian territory (Biriş et al., 2006). Three 

historical periods of massive forest cuttings are known: the Dacian Kingdom and its succession (100 

BC–105 AD), the Ottoman Empire (thirteenth to nineteenth century), and the Inter-bellum (first half 

of the twentieth century). By the end of the nineteenth century, only 40% of the country was 

covered by forests. This means that 50% of the forested area was removed and changed mostly into 

agricultural land. In 1940, forests were reduced till 28% of the country area. Since that time, the total 

forest cover remained more or less stable with 27% forest cover present day (Veen et al., 2010).  

 

In 2005, Romanian forests covered a total surface of 6,3 million hectares, representing about 27% of 

Romania’s land area (WWF, 2005). Two third of the forest area was located in the mountain area, 

24% in the hilly area and 10% in lowlands. According to forest inventories data of 2010, broadleaved 

tree species cover 70%, while conifers 30%. The most widespread species are European beech (Fagus 

silvatica, 32%; Figure 3.2a), Norway spruce (Picea abies, 23%; Figure 3.2b), oak species (Quercussp., 

17%) and silver fir (Abies alba, 15%) (Stancioiu and O’Hara, 2006; ASFOR, 2010). Furthermore, also 

pine (Pinus sylvestris), European larch (Larix decidua), sycamore maple (Acer pseudoplatanus), rowan 

(Sorbus aucuparia), birch (Betula sp.) and pioneer species such as willow (Salix sp.) occur frequently. 
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Figure 3.2.: (a) Typical broadleaved European beech stand, and (b) old grown coniferous forest (photos: Iris 

Deliever, 2012). 
 

After the fall of the communist regime, the wood harvesting and processing sector was fully 

privatized. Over 650 enterprises are members of the Romanian Forestry Association (ASFOR), a 

professional organization which represents the forestry and the woodworking industry. ASFOR was 

founded in 1994 with the mission to promote and protect the general interests of its members on 

both national and international levels (ASFOR, 2010). Since 2004, ASFOR has been a member of the 

European Organization of the Sawmill Industry (EOS). Skidders, cable cranes, horses and gravitation 

are the currently used means for harvesting in Romania (NIS Romania, 2013). The development of 

the forest sector is closely linked to the usage of cable cranes and the building of new forest roads 

(ASFOR, 2010). Unlike other countries in Central Europe, Romania has a very poorly developed forest 

road net. The current density of the Romanian forest road net is 6.2 m per ha, as opposed to 18 – 35 

m per ha in other European countries (ASFOR, 2010). In 2010, Romania remained the main hardwood 

lumber producer within the EOS, accounting for 25.3% of the total production (ASFOR, 2010). Along 

with France which produced 23.7% of the entire EOS volume, Romania covered half of the hardwood 

lumber production. 

 

3.1.2 Forest management and silvicultural systems 

Matthews (1989) and the British Colombia Ministry of Forests (2001) grouped the different 

silvicultural management systems in even-aged systems (e.g. clear-cut, shelterwood, coppice or 

patch cut systems) and uneven-aged systems (selection system). The silvicultural regime refers to the 

system of technical, economic and legal regulations issued by the Central Public Authority (Dumitriu 

et al., 2003). In Romania, The National Forest Administration Romsilva (NFA) was established in 1990 

and manages all state owned forests with 41 County branches. NFA Romsilva performs the State 

forest inventory and undertakes forest management on private or community owned forests on 

contractual basis (WWF, 2005). The private and local public administration forests can be managed 

by: 

 Private Forest Districts established by private forest owners or local public administration; 

 NFA – County Forest Directorates through their Forest Districts, on a contractual base; 

 Individuals with a limitation to specific activities. 
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The Forest Code of 1996 stipulated the main characteristics of the forest management. Under the 

Forestry Code of 1996, a forest area was defined as an area larger than 0.25 ha and covered with 

forest trees (FAO, 1997). Furthermore, the forests should be managed through management plans 

issued either by private companies or by the Forest Research and Management Planning Institute 

(FRMPI) and approved by a Technical Committee of the State Authority for Forests (WWF, 2005). The 

main characteristics of Romanian forest management plans were: management rules in accordance 

with the forest type and forest site; maintenance of natural composition in forests; use of natural 

regeneration; maintenance of a high-level rotation age for native forest species; clear-cutting only in 

pure stands of spruce, pine, acacia, poplar and willow for areas smaller than 3 ha with an absolute 

exceptional maximum area of 5 ha; a coppice regime is allowed only in poplar and willow forests; 

natural regeneration or forestation of these areas within a maximum of two years; adequate wood 

harvesting technical solutions in order to maintain the ecological balance; and an evolution towards 

multi-use forests (FAO, 1997; WWF, 2005). Law 120/2004 regarding the forestry regime and forest 

administration rules modified and completed the previous Law 141/1999 (FAO, 1997). This 1999 Law 

enforced a legal framework for sustainable forest management in both state owned and private 

forests. The recent Law 120/2004 stipulated that all forest operations should be executed in 

accordance with the management plans and the implementation is the responsibility of the State 

Authority for Forests and the National Control Authority through their local bodies (FAO, 1997). 

However, a lack of resources led to inadequate enforcement, directly influencing illegal logging 

(WWF, 2005). 

 

According to the Romanian Forest Code of 1996, cleared patches are supposed to be regenerated in 

two to three years. When regeneration after the second year is insufficient, trees must be planted in 

order to afforest the area. These species are cultivated in nurseries and planted in the field after 

three or four years (Figure 3.3a and b). A disadvantage of the reseeded monocultures, often grown 

by foreign seed, is the resulting poorer habitat diversity. Consequently, these new forest are more 

vulnerable to natural disasters such as diseases and storms. 

 

    
Figure 3.3: (a) Norway spruce and other coniferous species nursery, and (b) Norway spruce sapling planted 

recently on a cleared forest plot in Gheorgheni (photos: Steven Vanonckelen, 2012). 

 

Forest management plans are developed in accordance with sustainable forest management criteria 

and revised every 10 years (FAO, 1997; Lawrence, 2009). These plans are the basis for all forest 

management activities, including the annual cutting allowance per surface units and species. Before 

1989, management plans were developed only by FRMPI, but starting 12 years ago, there was an 
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increased number of private companies which produced or revised forest management plans (WWF, 

2005). The forest management plans are the basis to establish regional and national inventory of 

forested areas and wood harvested volumes. Table 3.1 shows the historical annual allowable cut and 

wood harvest in Romania between 1962 and 2004 (Bud, 2000; Borlea et al., 2004). This data are 

calculated by cumulating the allowable cut for each forest district of the national forest area (state 

owned forest and private forest). The data show that the calculation of the annual allowable cut was 

influenced by the political and economic context. In 1986, the forest management started to be 

directed as ‘close-to-nature forestry’ with an interdiction of clear-cuttings on areas larger than 3 ha 

and only in spruce forests (WWF, 2005). 

 

Table 3.1.: Annual allowable cut and wood harvest in Romania between 1962 and 2004 (in million m
3
; Bud, 

2000; Borlea et al., 2004) 
 

Year Annual allowable cut (million m
3
) Annual wood harvest (million m

3
) 

1962-1975 24 25-27 
1976-1980 21 22 
1981-1985 21 23 
1986-1990 18 18,5 

1991 19 15,3 
1993 15 13,6 
1994 14,5 12,9 
1995 14,4 13,8 
1996 14,6 14,8 
1997 14,8 14,5 
1998 15,2 12,6 
1999 15,5 13,7 
2000 15,8 14,2 
2001 17 13,4 
2002 17 16,8 
2003 16 15 
2004 18 17,5 

 

Romanian forests have been generally well-managed over the years so that certification in line with 

the standards set by the Forest Stewardship Council (FSC) is achieved in certain forest management 

units, e.g. in the Persani Mountains near Brasov (Turnock, 2001; Ioras et al., 2009; WWF, 2010). Such 

a better management maintains biodiversity and secures higher prices for the harvested timber. 

Certification is also relevant since the main demand for Romanian timber is shifting from Arabian and 

Chinese markets to western Europe which is demanding FSC certified timber (Turnock, 2001). 

 

3.1.3 Forest ownership and restitution 

Before 1989, almost the entire Romanian forest area was owned by the state. Starting in 1991, large 

areas of forest were returned to the former owners, according to three consecutive land restitution 

laws in 1991, 2000 and 2005 (Abrudan et al., 2009). Law 18/1991 returned up to one hectare to 

historically entitled private individuals (350,000 ha in total), irrespective of historic location or extend 

(Vasile and Mantescu, 2009). After the second phase in 2000, the restituted area was restricted to 1 

ha. Many owners were uncertain of their property rights, feared to loose their land again in the next 

restitution phase and as a consequence, more unsustainable logging was observed after this second 

phase (Olofsson et al., 2011). Most of the restituted forests were immediately cleared by the new 



Chapter 3 

44 
 

owners and this tendency was further clear-cuttings were stimulated by weakened institutions and 

increased economic hardship (Mantescu and Vasile, 2009; Knorn et al., 2012a). The law of 2005 

favored public owners while constraining the restituted forest area for individuals (10 ha), churches 

(30 ha), and community members (20 ha; Griffiths et al., 2012). This law stated that all forested areas 

which were privately owned before World War II should be restituted, including protected forests 

and resulting in a process which is still going on (Abrudan et al., 2009; Olofsson et al., 2011). Since 

2005, the third law aimed at returning all remaining pre-World War II not state-owned forest 

property. Once complete, up to 70% of Romanian forests will have been restituted, increasing the 

number of non-state forest owners to 800,000 (Ioras and Abrudan, 2006; Lawrence, 2009; Lawrence 

and Szabo, 2005). The restitution process led to the current structure of forest ownership as 

presented below (WWF, 2005): 

• 65% of forest area is owned by the Romanian State and managed by the National Forest 

Administration (NFA); 

• 24% of forest area is owned by various entities/institutions, including local public 

administration and managed by private and public forest districts or contracted under the 

management of the NFA; 

• Individual owners own 11% of the forest area. Part of individual owners is managing the 

forest by themselves while some of them are gathered in owner associations or other forms of 

group management. Individuals own areas from less than 1 ha to 10 ha. 

 

3.1.4 Natural and human impact on forests 

Extreme events such as windstorms affect the Romanian Carpathian Ecoregion. In February 2006, an 

intense windstorm affected the area and a small scale hurricane moved across the Romanian 

Carpathian Ecoregion during the summer of 2009. Small scale wind events occur rather often, 

affecting small areas of forest by wind-throw (Anfodillo et al., 2008; Keeton and Crow, 2009). 

Furthermore, extensive salvage logging occurs after wind-throws (Macovei, 2009) (Figure 3.4). 

 

 
Figure 3.4.: Wind-thrown area with a huge clear-cut afterwards (Gheorgheni; photos: Steven Vanonckelen, 

2012). 

 

Pests such as insect infestations have enormous impacts on forest stands. The spruce bark beetle (Ips 

typographus) sickens Norway spruce stands with large scale clear-cutting as a remedy (Keeton and 

Crow, 2009). The spruce bark beetles nestle just underneath the bark of tree and feed themselves 
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from the tree saps until eventually the tree dies (Figure 3.5a). In order to kill the insects and to 

prevent further infestation, beetle traps are placed in the affected areas (Figure 3.6b). 

 

   
Figure 3.5: (a) Spruce bark beetle pattern on a dead tree trunk, and (b) Beetle trap (Gheorgheni; photos: Iris 

Deliever, 2012). 

 

Unsustainable and/or illegal logging is a major environmental and economic problem in eastern 

Europe and increased after the breakdown of socialism (Kuemmerle et al., 2009a). During the study 

visits in Romania, traces of illegal logging were observed. Figure 3.6a shows a tree stem that was cut 

with an axe at chest height. The trees were cut at chest height in order to keep an eye on the 

surroundings and trees were dragged out of the forest by horse power (Figure 3.6b). 

 

   
Figure 3.6.: Logging by gypsies with (a) tree cut with an axe, and (b) tree harvesting by horse power (Braşov; 

photo: Iris Deliever, 2012). 

 

In Romania, most footslopes and plateaus are used for arable farming and cattle herding. In many 

areas, transhumance is still applied by bringing herds of sheep, goat and cows above the tree line for 

summer grazing. Figure 3.7 shows a herder with cattle that is grazing on the higher mountain parts in 

Braşov. 
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Figure 3.7.: Typical scene of transhumance (Braşov; photo: Iris Deliever, 2012). 

 

3.1.5 Virgin forests and forest protection 

Virgin forests or old growth forests are forests which have not been influenced directly by man in 

their development and are the last places where nature survives in its purest state (Brünig and 

Mayer, 1980; Schuck et al., 1994; Parviainen, 2005). These virgin forests play a key role in 

maintaining biodiversity and are irreplaceable for sustaining biodiversity (Gibson et al., 2011). 

Moreover, old-growth forests play an important part in the response to climate change since they 

continue to sequester carbon for long time periods and store more carbon per unit area than any 

other ecosystem or forest successional stage (Luyssaert et al., 2008; Knohl et al., 2009; Wirth, 2009; 

Keeton et al., 2011; Knorn et al., 2012b). Old-growth forests in the Carpathian Mountains store high 

carbon levels in comparison to younger and managed forests (Holeksa et al., 2009; Keeton et al., 

2010). Despite their ecological importance, old-growth forests around the globe are vanishing at an 

alarming rate mainly due to deforestation, unsustainable logging practices and increases in fire 

frequency (Achard et al., 2009). Of the total forest area in central Europe, only 0.2% of old-growth 

forests have survived, mainly in remote mountainous areas or within nature reserves (Frank et al., 

2009; Schulze et al., 2009; Knorn et al., 2012b). 

 

Romania’s forests represent up to 65% of the virgin forests still remaining in Europe, outside of 

Russia, 80% of which are still unprotected (WWF, 2012). The area of existing virgin forests in Romania 

declined dramatically in the last century. The assessed 2 million ha of virgin forests at the end of the 

nineteenth century and based on forest inventory data was reduced to 700,000 ha and 400,000 ha in 

respectively 1945 and 1984 (WWF, 2012). Inventories organized by Veen et al. (2010) in Romania 

found 218,494 ha of remaining virgin forests. Hereby, the identified virgin forests sites were mainly 

located in the southern part of the mountain region. In the 1990s, virgin forests were protected 

within the national nature protection policy. Today, most of the remaining old-growth forests are 

included in the system of protected areas (Biriş and Veen, 2005; Knorn et al., 2012b). These 

protected forests represent ca. 12.5% of the total Romanian forested area. Moreover, there is a lack 

of similar and complete inventories of virgin forests in the Romanian Carpathians (Muys et al., 2011). 

In May 2011, the Parties to the Carpathian Convention approved a protocol to protect Carpathian 

natural forests (COP3, 2011). Romanian virgin forest sites should all be protected as nature reserves 

to avoid their commercial exploitation and to allow scientific research (Muys et al., 2011). 

Surprisingly, Knorn et al. (2012b) concluded that 72% of the old-growth forest disturbances between 
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2000 and 2010 were found within protected areas. Logging in old-growth forests was partially related 

to the institutional reforms, insufficient protection and ownership changes since the collapse of 

communism in 1989. The majority of harvesting activities in old-growth forest areas were in 

accordance with the law. However, the future of Romania’s old-growth forests and the provided 

ecosystem services remains uncertain without improvements to their governance.  

The first official forest protection measure was taken in the fourteenth century, by means of the 

‘Carti de paduri oprite’ (Letters of forbidden forests; Veen et al., 2010). The letter mentions ‘branişti,’ 

which means forests in which nobody had the right to cut trees, mow hay or graze cattle; also 

hunting, fishing or picking fruits was forbidden. These areas may be seen as the first precursors of 

later forest reserves. Regular forest protection started first in the Banat region in the eighteenth 

century (1739). In Transylvania, a law on forest use was published in 1781. Similar regulations 

followed later in other parts of the country (Bucovina in 1786; Moldavia in 1792; Wallachia in 1793). 

In the nineteenth century, however, the Treaty of Adrianople (1829) had a new, strongly negative 

impact on lowland forests. Between 1856 and 1890, about 3 million hectares of remaining forests 

were changed into arable land to cultivate cereals. In the Inter-bellum period, the forest area was 

further reduced by 1.3 million hectares (Veen et al., 2010). In the 1930s, under the influence of the 

modern Central European forestry ideas, the old practice of unscrupulous forest exploitation was 

stopped. Further reduction of the forested area was forbidden and forestry planning was introduced. 

Within this development, one of the most important tasks of leading foresters of that time was the 

exploitation of virgin forests and introduction of organized forestry.  

The nature conservation activity throughout the last 80 years can be divided into three periods (Biriş 

et al., 2006): 

 Before 1944: the establishment of Retezat National Park (1935, about 10,000 ha of which 

7,500 ha is forest) and 55 small-protected areas (about 5,515 ha) of which 30 are Protected 

Forest Areas (PFA; approximately 4,352 ha). 

 Between 1944 and 1989: the Retezat National Park is extended to about 22,500 ha (20,000 

ha in the forest fund), with a strict protected area of 9,600 ha. The number of small-

protected areas increased to 75 with a total surface area of 64,196 ha, 40 of these areas are 

located in the forest fund with an area of 21,702 ha. 

 After 1990: the number of large protected areas increased to 13 in 1994 with an area of 

397,000 ha and to 17 in 2000. The number of small-protected areas located outside of the 

large areas increased to 693, covering ±102,000 ha. The 17 large protected areas consist of: 

- 11 national parks with a total area of 300,544 ha (221,263 ha is forest), having 49 strict 

protected areas (60,119 ha) of which 46 are PFA (52,977 ha); 

- 5 natural parks with a total area of 251,632 ha (181,000 ha of forests), having 74 strict 

protected areas (17,866 ha) of which 65 are PFA (11,108 ha); 

- 1 Biosphere Reserve with a total area of 580,000 ha (17,539 ha of forest), having 19 strict 

protected areas (52,160 ha) of which 3 are PFA (5,125 ha).  

 

Today, about 20% of Romanian territory and about 10% of the country’s forests are under some form 

of protection (Ioja et al., 2010). The national network of protected areasis organized in accordance 

with the first five categories of the International Union for Conservation of Nature (IUCN): scientific 

reserve, national park, natural monument, nature reserve and natural park (Oszlanyi et al., 2004; 
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Biriş et al., 2006; IUCN, 2008). Besides the categories of protected areas included in the national 

network of protected areas, Romania recognizes the categories of protection stipulated through 

international or EU legislation (Diaci et al., 1998; Biriş et al., 2006): 

•  Biosphere Reserves; 

•  Ramsar Sites – Wetlands of International Importance; 

•  World Heritage Natural Sites; 

 Natura 2000. In order to fulfill the accession criteria imposed by the EU, the Romanian state 

was obliged to create or adjust different laws that had a major impact on the land regulation 

and the forest protection policy. The global EU nature conservation strategy was 

implemented in the Birds and Habitats Directives of respectively 1979 and 1992.These 

Directives are the legal framework of the Natura 2000 network, which influences sustainable 

development, forest management and forest protection. Romania accessed the EU in 2007 

and participated since 2001 in the Natura 2000 network (Natura 2000, 2012). The Natura 

2000 network includes two different protection zones: Special Protection Areas (SPAs) and 

Areas of Special Conservation Interest (SCIs). The Birds Directive requires SPAs and the 

Habitats Directive requests the establishment of SCIs for species other than birds and also 

habitats on itself. In the Romanian SPAs, 105 birds species were identified, comprising 70% of 

the Romanian ornitofauna (Timisescu, 2009). The Romanian SCI zones consist of 6 forest 

habitats, 4 natural and semi-natural grassland formations and 2 other types of habitats 

(freshwater habitats and running water). In total, 34,830 km2 or 18% of Romania is covered 

by these two protection zones (Matei, 2011). Implementing the Natura 2000 network in 

Romania is rather difficult due to the lack of trained experts, data availability and/or their 

chaotic dispersion. At the governmental level difficulties consist of budget constraints, 

human resources limitations and insufficient experience concerning protected areas 

management and monitoring requirements. Difficulties at the local and county level include 

limited integration of environmental issues, less importance given to biodiversity and 

interests focused mainly on economic development (Biriş et al., 2006). 

 

While the recent increase in protected areas is a milestone for biodiversity conservation in Romania, 

considerable concerns about the status of nature protection remain: protected areas are sometimes 

subject to illegal logging and poaching, and many protected areas lack professional management, 

financing, and scientific support (Soran et al., 2000; Ioja et al., 2010; Knorn et al., 2012a). 

 

3.2 Landscape changes in Romania 

 

In post-war eastern Europe, a state-organized collective farming system was installed. Following the 

example of the Soviet Union, individual fields were merged in order to create fields with a size and 

shape that enabled mass production technologies (Van Dessel, 2010). When the communist system 

collapsed in December 1989, drastic socio-economic and political changes occurred with a transition 

from state-commanded to market-driven economies (Kuemmerle et al., 2007). Former collective 

agricultural entities were divided to return the land units to the former and legitimate landowners. 

However, many new landowners were living in cities and no longer interested in cultivating arable 

lands on the countryside. Consequently, fragmented marginal fields were abandoned and changed to 

grassland and forest (Kuemmerle et al., 2006 and 2008a). In Romania, several natural and 
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anthropogenic factors have influenced the forest cover changes. Land reforms affected large areas of 

forest land that altered from state-owned to private ownership. 

 

3.2.1 Forest dynamics 

Remote sensing data are implemented as an independent information source to monitor vegetation. 

The land cover pattern in central and eastern Europe is the result of different periods of intensive 

land cover change due to a succession of different stages in economic and political situation (Lowicki, 

2008; Van Dessel, 2010). Generally, there was an overall trend of a more stable forest cover in 

Romania since the 1970s (Bennet, 2000). Based on the annual FAO land resource questionnaires, 

national Romanian forest statistics for 1990, 2000, 2005 and 2010 were presented in Figure 3.8 (FAO, 

2010; FAOSTATS, 2013a; Worldbank 2013). The total forest area was respectively 6,371,000 ha in 

1990 and 6,573,000 ha in 2010. Between 1990 and 2000, the forested area declined slightly with 

±5,000 ha. After a minor forest increase of ±25,000 ha between 2000 and 2005, there was a major 

forest increase of 200,000 ha between 2005 and 2011 (Figure 3.8). 

 

 
Figure 3.8.: Romanian forest area between 1990 and 2011 in ha (own processing, data: FAO, 2010; FAOSTATS, 

2013a; Worldbank, 2013). 

 

Non-protected as well as protected forest areas changed of owner during three restitution phases in 

1991, 2000 and 2005 (Abrudan et al., 2009; Knorn et al., 2012a). As stated above, many owners were 

uncertain of their property rights after the second phase in 2000, and feared to loose their land again 

in the next restitution phase. As a consequence, more unsustainable logging was observed after this 

second phase (Olofsson et al., 2011). Most of the restituted forests were immediately cleared by the 

new owners and this tendency was further clear-cuttings were stimulated by weakened institutions 

and increased economic hardship (Mantescu and Vasile, 2009; Knorn et al., 2012a). A study by 

Griffiths et al. (2013a) investigated the influence of three restitution laws on Romanian forest cover 

in a Landsat footprint between 1984 and 2000. The forest disturbance was highest after 

implementation of the three restitution laws. The laws of 1991, 2000 and 2005 resulted in forest 

disturbance levels of respectively 34%, 21% and 32%. After law implementation, forest harvesting 

increased due to a low Gross Domestic Product (GDP), weak implementation and insecurity of the 
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property laws. The disturbance was higher in areas of private ownership (Griffiths et al., 2013a). The 

main reason for natural disturbances were wind-throw and bark beetle attacks (Anfodillo et al., 

2008). 

 

A national scale study on deforestation and forest degradation between 2000 and 2011 was 

conducted by Greenpeace (2012). The analysis was based on freely available Landsat TM and ETM+ 

images, and HR satellite images from Google Earth. The total forest area of Romania in 2000 was 

8,171,399 ha. This number is an overestimation compared to the total forest area of FAO (2010). 

Total area of deforestation and forest degradation between 2000-2011 was 280,108 ha 

(approximately 28,000 ha per year). This means that 3.4% of Romania forest cover was lost or 

degraded in the recent 10 years (Greenpeace, 2012). However, the afforestation area was not 

calculated and forest was defined as 20% or greater canopy cover for trees of 5 m or more in height. 

Another national scale study estimated land cover changes between 1990 and 2006 using CORINE 

Land Cover products, based on satellite images from three different years: 1990, 2000 and 2006. Two 

major land cover-change types were considered: from forest to other land cover (i.e. deforestation) 

and from a different land cover to forest (i.e. afforestation). Using the CORINE model, 2,871 ha was 

affected by afforestation between 1990 and 2006, while 3,267 ha was deforested. So based on the 

CORINE maps, the Romanian landscape experienced an increased forest cover between this period. 

However, since the average size of forest properties was small, land cover changes in Romania 

occurred often on small areas. Most of these areas could not be quantified in the model, leading to 

an underestimation (Dutca and Abrudan, 2010). 

 

Similar trends were presented by studies in smaller Romanian study areas. A local scale study by 

Kuemmerle et al. (2008a) analyzed land cover changes using Landsat TM/ETM+ images between 

1990 and 2005 in the Romanian Argeş County (6,824 km2). The results revealed that there was 

almost no change in forest cover between 1990 and 2005. Cropland on the other hand showed an 

abandonment rate of 21.1% (512 km²; Kuemmerle et al., 2008a). Furthermore, no large scale logging 

was observed. Müller et al. (2009) also examined cropland abandonment in Argeş county between 

1990 and 2005. A major cropland abandonment was recorded in the hilly areas, which might trigger 

natural reforestation. In contrast, less farmland abandonment was discovered in the plain areas. A 

recent study by Müller et al. (2013) examined cropland abandonment in Argeş County during the 

post-socialist transitional period from 1990 to 2005. This time period following the collapse of 

socialism was dominated by extensive cropland abandonment in areas where agricultural production 

was no longer profitable. Gradual changes were observed in later stages of the transition period. 

Overall, 28% of all cropland was abandoned in Romania between 1990 and 2005 (Müller et al., 2013). 

 

As explained in section 3.1.6, the Romanian nature is protected by a national and international 

network of protected areas. However, after the fall of the communist regime, the protected areas 

were neglected due to weakened institutions (Soran et al., 2000). Knorn et al. (2012b) detected old-

growth forest disturbances between 2000 and 2010 near the border of Ukraine and in the 

northwestern part of the Romanian Carpathian Ecoregion. Furthermore, Knorn et al. (2012b) 

reported a continued loss of old-growth forests in the Romanian Carpathians despite an increasing 

protected area network. About 72% of the old-growth forest disturbances was found within 

protected areas and was partly related to institutional land reforms, insufficient protection and 

ownership changes since the collapse of communism in 1989 (Knorn et al., 2012b). Knorn et al. 
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(2012a) also assessed disturbance patterns between 1987 and 2009 in the northern Romanian 

Carpathians. Forest disturbance rates increased sharply in two waves after 1995 and 2005. 

Substantial disturbances were detected in protected areas and even within core reserve areas (Knorn 

et al., 2012a). Moreover, logging rates were largely triggered by rapid ownership and institutional 

changes. Corruption and lack of transparency was also a major problem, leading to cases where 

sanitary or salvage logging has been misused to harvest healthy forest stands (Brandlmaier and 

Hirschberger, 2005; Knorn et al., 2012a). Finally, a study of Ioja et al. (2010) reported an overall 

decrease in the efficacy of Romania’s protected areas following the creation of the Natura 2000 sites. 

Administrative bodies were generally under-staffed and poorly financed, conditions that were 

reflected in a poor enforcement and implementation of conservation goals (Ioja et al., 2010). 

 

Forest ecosystems were also affected by pollution over the past decades. Rapid industrialization after 

World War II induced increasing environmental pollution, resulting in widespread deterioration of 

forest health. After the communist era, these polluting industries were halted and emissions were 

reduced drastically. By comparing emission between 1990 and 2010, CO2 emission was predicted to 

drop by 10%, SO2 by 68%, NOx by 42%, and particulate matter (< 10 μm) by 67% (Van Vuuren et al., 

2006). Hostert et al. (2010) concluded that the socialist history of eastern European countries has 

caused a totally different abandonment process than that of western Europe. In the post-socialist 

countries, land abandonment and additionally forest transition was a result of rapid institutional and 

economic changes. Whereas in the western European countries, the process resulted from slow 

socio-economic transformations such as industrialisation.  

 

3.2.2 Arable land dynamics 

Starting from 1989, a sharp decline occurred in the arable land percentage in Romania (Figure 3.9; 

FAOSTATS, 2013a; Worldbank 2013). Hereby, arable land was defined as the land under temporary 

agricultural crops (multiple-cropped areas were counted only once). The abandoned land resulting 

from shifting cultivation was not included in this category (FAOSTATS, 2013b). In contrast, the 

adherence to the EU in 2007 and the implementation of the EU-regulations in environmental and 

agricultural policies stimulated the agriculture in Romania (Van Dessel, 2008). The production was 

intensified by increasing expenditure and expanding cultivated land, as shown in Figure 3.9. Smaller 

and less efficient farms with an unfavourable location for a function change failed to keep up with 

the competition and were left fallow or were afforested (Lowicki, 2008). 
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Figure 3.9.: Arable land in Romania between 1961 and 2012 in ha (own processing, data: FAOSTATS, 2013a; 

Worldbank 2013). 

 

A study by Griffiths et al. (2013c) covering the entire Carpathian Mountains compared cropland 

abandonment, grassland conversion, afforestation and forest expansion in different countries. 

Generally, agricultural abandonment was the largest change process between 1985 and 2010. For 

example, more than 67% of all cropland-grassland-cropland conversions was mapped in Romania. 

Furthermore, grassland conversion persisted during 1995-2010 in western Romania. Finally, the most 

extensive afforestation in the total Carpathian Ecoregion during the EU accession period occurred in 

Romania (28%) (Griffiths et al., 2013c). 

 

3.3 Study areas 

3.3.1 Regional scale study area 

The regional scale study area of this PhD research is situated in the Romanian Carpathian Ecoregion, 

which constitute more than half of the total Carpathian region (52.9%; Oszlányi et al., 2004). About 

60% of the forest cover in the Carpathian mountain range is located in Romania (Webster et al., 

2001). During field campaigns in May 2010 and July 2011, the regional scale study area was explored 

in three contrasting Romanian study sites. The main characteristics of the test sites are summarized 

in Table 3.2. The first site is located around the town Gheorgheni in the northern part of the 

Romanian Carpathian Ecoregion and is indicated as the most northern polygon in Figure 3.1. In this 

study site, arable land has been partially abandoned. The second study site is located in the forested 

area south of the town Brașov (central polygon in Figure 3.1). The last study site is part of the Făgăraș 

mountains on the southern ridge of the Romanian Carpathian Ecoregion (most western polygon in 

Figure 3.1). This study site is part of a protected Natura 2000 area and is located at the intersection 

between the counties Brașov, Sibiu and Argeș. 
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Table 3.2.: Characteristics of the three test sites on the regional scale study area. 
 

 Study site 1 Study site 2 Study site 3 

Name Gheorgheni  Brașov Făgăraș 
Average elevation (m) 1,100 820 680 
Dominant land cover type Forest and arable land Forest and urban Forest, grassland and 

bare soil 
Dominant forest type Coniferous Broadleaved Broadleaved and 

coniferous 
Influence of nearby city No Yes (ski slopes) No 
Protected No No Yes (Natura 2000) 

 

In Figure 3.10, the Carpathian Ecoregion is delineated by an irregular and green polygon. The 

Romanian part of the Ecoregion is covered by nine Landsat footprints. The regional scale study area 

comprises ±107,000 km² (Figure 3.10) and consists of a mountainous terrain with elevations up to 

2,544 m and a temperate-continental climate. The growing season is between April and October, and 

varies in response to annual rainfall and elevation (Rotzer and Chmielewski, 2001). Both temperature 

and precipitation are highly inversely correlated with elevation. This mountain area is characterized 

by a mean annual temperature of ±7°C and a mean annual rainfall ranging between 750 and 1,400 

mm (Mihai et al., 2007; Müller et al., 2009). Warm summers alternate with cold winters and high 

precipitation rates, mostly as snow (Stancioiu and O’Hara, 2006). In summer, showers and 

thunderstorms occur frequently, reaching peak intensity in June (Perzanowski and Jerzy, 2001). The 

bedrock in this area consists of crystalline schist, sedimentary rock deposits as limestone and volcanic 

layers (Griffiths et al., 2013a). Major soils include Podzols in the mountain zone and Cambisols in the 

foothill zone (FAO/UNESCO, 1988). 

 
Figure 3.10.: Location of Romania in Europe and indication of the Carpathian Ecoregion (irregular and green 
polygon) and the nine Landsat footprints comprising the Romanian Carpathian Ecoregion (blue rectangles). 
Also the elevation data from the Shuttle Radar Topography Mission elevation data are shown in Romania. 

 

In the regional scale study area, several forest clearings (Figure 3.12a and b) and specially even-aged 

silvicultural systems were observed: the alternate strip clearcutting system and the patch cut system. 

In the alternate strip clearcut system (Figure 3.12a and b), a stand is harvested over a period of three 

to seven years by removing several strips rather than harvesting the entire stand at once (British 
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Colombia Ministry of Forests, 2001). Strip clearcutting was developed to take advantage of natural 

seeding from the leave-strips. The patch cut system (Figure 3.13a and b) involves removal of an 

entire stand of trees less than one hectare in size from an area and each patch is managed as a 

distinct even-aged opening (British Colombia Ministry of Forests, 2001). Both management strategies 

allow natural regeneration in the cleared patches - which normally takes about 7 to 9 years - before 

the surrounding mature forest is cut (Matthews, 1989). 

    
Figure 3.11.: (a) and (b) Examples of forest clearings in Gheorgheni(photos: Steven Vanonckelen, 2012). 

 

 
Figure 3.12.: (a) Alternate strip clearcutting system (Google Earth, 2011), and (b) View in a cleared forest stripe 

clearcut (Gheorgheni; photos: Iris Deliever, 2012). 

 

 
Figure 3.13.: (a) Patch cut system (Google Earth, 2011), and (b) View in a cleared forest patch (Gheorgheni; 

photos: Iris Deliever, 2012). 
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3.3.2 Local scale study area 

The local scale study area consists of a Landsat-5 Thematic Mapper image (path 183/row 28) located 

in the central-eastern Romanian Carpathian Ecoregion (Figure 3.14). The study area covers 185 x 185 

km and elevation ranges between 53 and 2,545 m with a mean elevation of 570 m. The total 

population in the study area is estimated at 2,667,000 people of which 277,000 live in Braşov and 

175,500 in Bacau (NIS Romania, 2013). 

 

 
Figure 3.14.: Romania with indication of the bordering countries. The white-outlined rectangle delineates the 
local study area of Chapter 4 and 5, the solid white rectangle a zoom in the study area. Also the elevation data 

from the Shuttle Radar Topography Mission elevation data are shown in Romania. 
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Chapter 4: Performance of atmospheric and topographic correction 

methods on Landsat imagery in mountain areas* 

*This chapter is accepted as: Vanonckelen
, 

S., Lhermitte, S., Balthazar, V., Van Rompaey, A.Performance of 

atmospheric and topographic correction methods on Landsat imagery in mountain areas. International Journal 

of Remote Sensing. 

 

4.1 Introduction 

Worldwide, mountain areas are experiencing rapid land cover changes that affect a set of ecosystem 

services, such as soil and water conservation, biodiversity preservation and carbon sequestration 

(DeFries et al., 2004; Foley et al., 2005; Lambin and Meyfroidt, 2010; World Health Organization, 

2005). Not surprisingly, increasing efforts are invested in land cover monitoring and mapping of 

mountain areas. The relative inaccessibility of mountain areas favors remote sensing techniques as a 

monitoring tool (Lambin and Geist, 2006; Turner et al., 2007). Implementation of remote sensing 

tools is, however, often hampered by problems originating from atmospheric and topographic 

distortions (Singh et al., 2011). Therefore, preprocessing techniques are an essential step to improve 

interpretation of satellite imagery. 

 

As stated In Chapter 2, atmospheric correction (AC) methods aim at removing radiometric distortions 

caused by the interaction between radiance and atmosphere. AC methods can be divided in two 

major types: empirical and radiative transfer modelling methods (Gao et al., 2009). Topographic 

correction (TC) aims at removing radiometric distortions by deriving the radiance that would be 

observed in flat terrain. A list of topographic correction methods is shown in Table 2.3. As explained 

in Chapter 2, three major types of topographic correction methods have been developed: empirical, 

Lambertian geometrical andnon-Lambertian geometrical methods. 

 

During the past 30 years, AC and TC methods have mainly been evaluated individually, which is 

shown in Table 2.4. However, a maximum of five individual AC and/or TC methods has been tested 

(Table 2.4). In principle, many more ‘new’ combined models can be built with individual atmospheric 

and topographic methods. Appropriate combined corrections are selected according to the study 

area, available data, research goals and implementation time. In order to select the most appropriate 

preprocessing steps, the performance of combined corrections should be evaluated based on 

different individual AC and TC components. 

 

The added value of this study is the decomposition of combined models in an AC and a TC 

component, and the evaluation of their combined corrections. Most studies to date lack a thorough 

comparison between different AC and TC methods. This chapter systematically evaluates the effects 

of all possible combinations of two AC and four TC methods, along with uncorrected imagery. 

Thereby, a variety of representative methods – 2 atmospheric and 4 topographic correction methods 

- is selected based on their data input requirement and automation complexity. This selected 

correction methods are automated in the ENVI/IDL software. Since ATCOR3 is a popular combined 

model, the evaluation of this combined model is also included in the analyses.
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4.2 Study Area and Dataset 

The study area consists of a Landsat-5 Thematic Mapper image (path 183/row 28) located in the 

central-eastern Carpathian mountains in Romania (Figure 4.1). The study area covers 185 x 185 km 

and comprises parts of the eastern Carpathian mountains and the Transylvanian Plateau. Elevation 

ranges between 53 and 2,545 m with a mean elevation of 570 m. 

 

 
Figure 4.1.:Romania with indication of the bordering countries. The white-outlined rectangle delineates the 

local study area of Chapter 4 and 5, the solid white rectangle a zoom in the study area. Also the elevation data 
from the Shuttle Radar Topography Mission elevation data are shown in Romania (Vanonckelen et al., 

accepted). 

 

The elevation ranges in study area are between 53 and 2,545 m with a mean elevation of 570 m. The 

area is characterized by a temperate mountain climate with an average yearly rainfall volume of 

about 635 mm and a mean annual temperature of about 11°C in the centre of the study area. The 

ridges of the eastern Carpathians consist of crystalline schist, sedimentary and volcanic rock. The 

steep hillslopes are covered with mixed forests consisting of coniferous (e.g. Abies alba and Picea 

abies) and broadleaved trees (e.g. Betula pendula, Carpinus betulus and Fagus sylvatica) (Kuemmerle 

et al., 2008a). Footslopes and plateaus are used for farming and cattle herding. Total population in 

the study area is estimated at 2,667,000 people, of which 277,000 live in Braşov and 175,500 in 

Bacau (NIS Romania, 2013). The majority of the population earns an income from farming. 

 

The Landsat sensor was used in Chapters 4 to 7 since long-term vegetation mapping is best 

achievable with medium to low resolution imagery. The Landsat sensor has multiple advantages: a 

16-day repeat cycle (NASA, 2013b), an extended operation time (USGS, 2013b), revised calibration 

and the entire image archive is freely downloadable (Chander et al., 2010; Loveland and Dwyer, 
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2012). In this study, a Landsat-5 image was selected since the Landsat archive is freely available 

(Loveland and Dwyer, 2012), Landsat images have been calibrated (Chander et al., 2010) and the 

spatial resolution is 30m. The Landsat-5 image from 24 July 2009 was obtained from the archive of 

the United States Geological Survey and covers 185 x 185 km. In this analysis, all corrections were 

performed on six non-thermal bands: three visible bands (0.45–0.52 μm, 0.52–0.60 μm and 0.63–

0.69 μm) and three infrared bands (0.76–0.90 μm, 1.55–1.75 μm and 2.08–2.35 μm). The image was 

orthorectified with precision terrain correction level L1T by the United States Geological Survey and 

no cloud masking was performed, since cloud coverage in the study area was below 1%. The solar 

elevation and azimuth angles were 57.8° and 136.9°, respectively. The digital elevation model (DEM) 

was the space shuttle radar topography mission (SRTM) version 4.1 from CGIAR-CSI/NASA (2013), 

which was co-registered with the Landsat image using automatic tie matching and considering both 

Landsat displacement and acquisition geometry (RMSE < 0.5pixels; Leica Geosystems, 2006). The 

SRTM was preferred since it provided a high-quality DEM at resolution levels of 1 arc sec (30 x 30 m) 

in the US or 3 arc sec (90 x 90 m) worldwide (Rabus et al., 2003). Though the ASTER GDEM from the 

METI/NASA is characterized by a worldwide 1 arc sec resolution, several analyses have indicated that 

the ASTER GDEM was more subject to artifacts such as stripes or cloud anomalies (Hirt et al., 2010; 

Van Ede, 2004). Therefore, the SRTM was resampled to a pixel size of 30 x 30 m by means of a 

bicubic spline interpolation to match the resolution of the Landsat image. 

 

4.3 Methodology 

 

First, digital numbers (DN) of each spectral band were calibrated to at-satellite radiances (Las,λ) based 

on gain and offset values included in the metadata and as described in Equation 2.8. A cloud masking 

was not applied in the analyses of Chapter 4 and 5, since cloud coverage in all images of the study 

area was below 1%. Secondly, the calibrated radiance values were atmospherically corrected by 

means of different atmospheric correction methods which are described in section 4.3.1. After 

atmospheric correction, the at-satellite radianceswere converted to at-surface reflectances with 

Equation 2.9. According to the Landsat 5 sensor values of Chander et al. (2009), the mean exo-

atmospheric solar irradiance per band was respectively: 1,983, 1,796, 1,536, 1,031, 220, 83 W/(m2 

μm). In a final step, the normalized reflectance of a horizontal surface (ρH,λ) was calculated using 

different topographic correctionmethods as described in section 4.3.2. 

4.3.1 Atmospheric corrections 

In this chapter, an empirical AC, an AC based on radiative transfer models and no correction were 

compared on one Landsat footprint. Table 4.1 provides the implemented equations of the AC 

methods. The implemented empirical AC method is the DOS correction, which assumes that 

observed radiances from dark objects are a good assessment of atmospheric scattering (path 

radiance). Thereby, a uniform atmosphere across the image is assumed and DOS only considers the 

effect of atmospheric scattering (Bruce and Hilbert, 2004). The at-satellite radiance was computed by 

subtracting a minimum radiance value (Lmin, in W/(m2 μm)) from each pixel value, as shown in 

Equation 4.2 of Table 4.1 (Song et al., 2001). The minimum value was calculated for each band as the 

1th percentile radiance value over the entire image and accounts for the atmospheric effect (Chavez, 

1996). 
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Table 4.1.: Equations and references of the two applied atmospheric corrections (Vanonckelen et al., accepted). 

AC Equation Reference 
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Note: DOS is the dark object subtraction method and TF is the atmospheric correction based on transmittance 

functions. Ls,λ(in W/(m
2
 μm)) is the atmospherically corrected at-satellite radiance of the image and Las,λ is the 

atmospherically uncorrected radiance of the image. Lmin represents the minimum radiance value of the image, 

calculated as the 1
th

 percentile. Tr,λ is the Rayleigh scattering transmittance function, including sea-level 

atmospheric pressure (P0; in mbar), ambient atmospheric pressure (P; in mbar) and band wavelength (λ). M is 

the relative air mass and θs is the solar zenith angle (in degrees). Tw,λ is the water-vapor transmittance function, 

calculated with the precipitable water vapor (W; in cm), relative air mass (M) and water-vapor absorption 

coefficients (aw). 

 

The second method is the TF atmospheric correction, which implements the atmospheric part of the 

IRC method of Kobayashi and Sanga-Ngoie (2008). This correction removes the effects of Rayleigh 

scattering and water-vapor absorption. TF correction extends the DOS method with a denominator 

containing normalized and band specific transmittance functions of water-vapor absorption and 

Rayleigh scattering, as shown in Equation 4.3 of Table 4.1. Transmittance functions were calculated 

for each wavelength and normalized per band. Here, a simplified approach was implemented, 

calculating the normalized transmittance function for each band based on the mean wavelength. The 

Rayleigh scattering transmittance function (Tr,λ) was calculated by Equation 4.4, which is based on 

sea-level atmospheric pressure (P0; in mbar), ambient atmospheric pressure (P; in mbar) and 

wavelength (λ). The value of sea-level atmospheric pressure was assumed to be 1,013 mbar and the 

ambient atmospheric pressure value (995 mbar) was obtained from daily mean surface pressures in 

NASA’s atmospheric Giovanni portal (2013). Relative air mass M was calculated using Equation 

4.5.This value was constant across the study area, since M was only dependent on the solar zenith 

angle (θs). The water-vapor transmittance function (Tw,λ) was calculated with Equation 4.6 in Table 

4.1 based on the following parameters: precipitable water vapor (W; in cm), relative air mass (M) and 

water-vapor absorption coefficients (aw) given as a function of wavelength (Bird and Riordan, 1986). 

The precipitable water vapor (1.39 cm) was obtained from the Aqua satellite in NASA’s atmospheric 

Giovanni portal (2013) and based on the central point in the image at acquisition. Values of W and P 

were selected for the center of the image and were assumed constant across the study area. 

Therefore, central values were compared with values in the four corners of the image. The minima 

and maxima of these values were only varying 1 to 5% of the central value. 
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4.3.2 Topographic corrections 

Four different topographic corrections were evaluated in this analysis. Table 4.2 provides the 

implemented equations of all TC methods. The first method, band ratioing, is based on the 

assumption that reflectance values vary proportionally in all bands. The observed reflectance on an 

inclined terrain (ρt,λ) was obtained by calculating the arithmetic mean of observed reflectances over 

all spectral bands, as shown in Equation 4.7 of Table 4.2. 

 

Table 4.2.: Equations and references of the four applied topographic corrections (Vanonckelen et al., accepted). 

TC Equation Reference 
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Kobayashi and Sanga-Ngoie, 
2008 

 

Note: PBM is the pixel-based Minnaert correction and PBC is the pixel-based C-correction. Ρh,λ(dimensionless or 

%) stands for the normalized reflectance of a horizontal surface for a specific spectral band number (N) and ρt,λ 

for the observed reflectance on an inclined terrain. θs is the solar zenith angle and β is the incident solar angle. 

θn is the slope angle of the terrain andk,λ is the slope of the regression between x= log(cos θn cos β) and y= 

log(ρT,λcos θn). Parameter Cλ is the quotient of intercept (bλ) and slope (mλ) of the regression line between x and 

y. The h-factor represents a topographic parameter derived from the SRTM (h = 1-θn/π) and the h0-factor an 

empirical parameter derived from the regression line between reflectance and cos β (h0= (π +2θs)/2π). 

 

The second method, cosine correction, assumes a uniform reflectance of incident solar energy in all 

directions (Lu et al., 2008).The cosine of the incident solar angle is calculated with Equation 4.11 and 

varies between -1 and +1: 

 cos β = cos θs cos θn + sin θs sin θn cos (ϕt – ϕa)       (4.11) 

 

where θn, ϕt and ϕa, are slope angle of the terrain, solar azimuth angle andaspect angle of the 

terrain, respectively. This illumination parameter is the basis of the cosine correction formula, which 

is provided in Equation 4.8 of Table 4.2. The cosine correction only includes direct solar irradiance on 

the ground and ignores diffuse irradiance from the sky and adjacent terrain reflected irradiance 

(Teillet et al., 1982). Furthermore, the standard cosine correction is subject to overcorrection which 

is most pronounced in low illuminated areas (Moran et al., 1992; Soenen et al., 2008; Richter et al., 

2009). The third implemented method is the pixel-based Minnaert correction (PBM), which accounts 

for non-Lambertian reflectance behavior by means of an empirical Minnaert constant k. In this study, 

the k-value was assessed for each band following the regression analysis between x = log(cos θn cos 

β) and y = log(ρT,λcos θn) (Equation 4.9 in Table 4.2; Lu et al., 2008; Meyer et al., 1993; Jensen, 1996). 

More sophisticated approaches assessed wavelength-dependent k-values (Bishop and Colby, 2002; 

Bishop et al., 2003). The fourth implemented method, pixel-based C-correction (PBC), consisted of 

the topographic part of the radiometric correction applied in the analysis of Kobayashi and Sanga-
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Ngoie in 2008. The PBC method adds an additional factor Cλ to the cosine correction in Equation 4.10 

of Table 4.2 to account for diffuse sky irradiance. The factor Cλ is the quotient of the intercept (bλ) 

and the slope (mλ) of the regression line. This additional factor is function of terrain slope, solar 

zenith angle, topographic parameters derived from the SRTM (β and h-factor) and empirical 

parameters derived from the regression line between reflectance and cos β (Cλ and h0-factor). 

4.3.3 ATCOR3 correction 

Many so-called combined correction methods are presented and/or evaluated which consist of an 

atmospheric and a topographic component. For example, problems of overcorrection in the cosine 

correction are solved by the Hay's model (Hay, 1979). This model implements transmittance 

functions and the inclination and orientation of the surface to accounts for the anisotropic 

distribution of the diffuse irradiance (Richter, 1997; Guanter et al., 2008). Moreover, the so-called 

ATCOR3 correction integrates a MODTRAN atmospheric radiative transfer code and a modified 

Minnaert topographic method. This correction is similar to the combination of TF with PBM 

correction, though the atmospheric part of ATCOR3 implements MODTRAN and the k value is 

calculated differently. For reasons of comparison and visualisation, ATCOR3 results are shown in 

parentheses within the TF and PBM combination in all tables. The atmospheric part consists of an 

interactive and an automatic part (Richter, 1996). In the interactive part, sensor type and relevant 

acquisition information were chosen, such as solar zenith angle, calibration information and date. 

Secondly, a reference target (dense dark vegetation or water) was defined. The automatic phase 

calculated the visibility of the reference areas for the selected atmospheric characteristics and linked 

these characteristics with results obtained from the MODTRAN atmospheric radiative transfer code 

(Balthazar et al., 2012). Preset ATCOR look-up tables were implemented to calculate the radiation 

components, as well as molecular and particulate absorption and scattering (Frey and Parlow, 2009). 

The topographic ATCOR3 part is a modified Minnaert model based on a set of empirical rules (Richter 

et al., 2009). The normalized reflectance ρH,λ is calculated with the correction factor (cos β/cos βT)
b in 

equation 4.12, where b is function of wavelength and vegetation cover, and βT is a threshold value 

depending on θs: 

 , ,

cos 
 

cos

b

h t
T

 


 
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  

 
     (4.12) 

with b is function of the vegetation cover and wavelength. The ATCOR3 method combines two 

empirical parameters to calculate the bidirectional reflectance distribution function model: the lower 

boundary threshold of the factor (cosβ /cosβT)
b and the threshold βT (0 - 90°). The first parameter 

regulates the intensity of the correction by adapting the correction factor. When β exceeds the 

threshold βT (i.e. in low illuminated areas), the corrected surface reflectance is converted according 

to Richter and Schläpfer (2013): 

b = 1/2 for non-vegetation; 

b = 3/4 for vegetation in the visible spectrum ( λ< 720 nm); 

b = 1/3 for vegetation if λ ≥ 720 nm. 

 

Furthermore, if the correction factor is smaller than 0.25, it will be reset to 0.25 to prevent a too 

strong reduction (Richter and Schläpfer, 2011). The second parameter βT is a threshold value of the 

local illumination angle below which Lambertian correction is applied (ρH,λ = ρT,λ) (Balthazar et al., 
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2012). This threshold was calculated based on θs plus an increment that depends on its initial value, 

as described in Equations 4.13 to 4.15 (Richter et al., 2009): 

 βT = θs + 20° if θs < 45° (4.13) 

 βT = θs + 15° if 45° <θs < 55° (4.14) 

 βT = θs + 10° if θs > 55° (4.15) 

 

4.3.4 Evaluation of combined corrections 

The combined correction methods were evaluated based on three analyses that test the 

homogeneity of reflectance values within a land cover class or within the entire image. Since forest 

was the dominant land cover class, most statistical analyses were carried out on a set of 4,000 forest 

pixels. These pixels were delineated on the basis of ground control points collected during field visits 

in May 2010 and July 2011 and visual interpretation of high resolution satellite imagery (WorldView-

2, 8 bands, 46 cm resolution, acquisition date 13 October 2010). Forest pixels were classified in two 

groups, based on visual inspection of the satellite data and the value of cos β: illuminated (cos β> 0.8) 

and shaded forest pixels (cos β< 0.6). Visual inspection was performed by comparing the illuminated 

(sun-oriented) and shaded land units on true color composites before and after correction. 

 

The combined correction methods were evaluated based on the following three analyses: 

 

(1) By comparing differences in reflectance values between shaded and illuminated slope groups, 

where each group was represented by 2,000 forest pixels. These differences are expected to 

decrease after successful correction. Furthermore, the reflectance values between all pairs of shaded 

and illuminated slope groups before and after correction were tested with a dependent t-test for 

paired samples. Equation 4.16 was implemented where z is difference in average reflectance values 

for shaded and illuminated slope groups, s is the sample standard deviation and n is the sample size 

(i.e. the 15 combined corrections and ATCOR3). The t-test was performed at the significance level 

0.05. 

  t n
z

s
  (4.16) 

 

(2) By calculating the coefficient of variation (CV) of reflectance values within the selected forest 

pixels with Equation 4.17. The CV is expected to decrease after a successful combined correction. 

 
SD

CV 100 
mean

  (4.17) 

where SD is the standard deviation of the reflectance values within the forest class. To allow for a 

better interpretation, average CV values over all bands and CVdifference values were calculated 

(CVdifference = CVbefore correction – CVafter correction). 

 

(3) By examining the dependency between reflectance values and cos β before and after correction 

on a stratified sample of 5,000 points over the entire image and on the selected forest pixels. This 

statistic was evaluated based on the regression slope and the P-value for testing the hypothesis of no 

dependency before and after correction. The dependency is expected to decrease after a successful 
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correction and correlations are significant if P-values are larger than the significance level 0.05. In this 

analysis, band 4 was selected based on the large differences in average reflectance values between 

illuminated and shaded slopes in the first statistical analysis. 

 

4.4 Results 

 

All analyses were performed on the 15 combined methods and ATCOR3. The tables show results for 

all combinations. In contrast, it was impractical to show all combinations in the figures. Therefore, six 

representative combinations were presented: (a) no AC and no TC; (b) DOS without TC; (c) DOS with 

band ratio; (d) TF with cosine; (e) TF with PBM; and (f) TF with PBC. These six combinations were 

selected since all single AC and TC methods were included and represented the range data 

requirement and thus modeling complexity. 

4.4.1 Differences in reflectances (shaded versus illuminated) 

Figure 4.2 shows reflectance values on illuminated (squares) and shaded slopes (circles) of the six 

bands and representative combinations for the selected forest pixels. In bands 1 to 3 of Figure 4.2a, 

small differences were present between average uncorrected reflectance values of illuminated and 

shaded areas. In contrast, average reflectance values were less homogenous in bands 4, 5 and 7. 

Combination of DOS without TC especially diminished the differences between reflectance values of 

shaded and illuminated slopes in bands 4, 5 and 7 (Figure 4.2b). Similar outputs were obtained for TF 

without TC. Application of DOS with band ratio overcorrected average reflectance values of visual 

bands and the difference in average reflectance values was reduced in bands 4 to 7 (Figure 4.2c). 

After cosine with TF correction (Figure 4.2d), average reflectance values of shaded slopes were 

higher than illuminated slopes for bands 1 to 3, which indicated an overcompensation of reflectance 

values of shaded slopes. ATCOR3 and the TF with PBM combination showed a reduction of 

differences between average illuminated and shaded reflectances in all bands (Figure 4.2e). 

Implementation of TF with PBC correction performed best (Figure 4.2f), since average reflectance 

values of illuminated and shaded areas were similar. 
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Figure 4.2.: Average reflectance (%) calculated in the forest class as a function of spectral band: (a) no AC or TC; 

(b) DOS without TC; (c) DOS with band ratio; (d) TF with cosine; (e) TF with PBM and (f) TF with PBC. The 
dashed line with square dots denotes the illuminated areas, the solid line with round dots the shaded areas. 

The whiskers represent the standard deviations(Vanonckelen et al., accepted). 
 

The largest differences in reflectance values between illuminated and shaded forest slopes were 

observed in band 4. Table 4.3 shows that topographic corrections had a stronger impact on the 

reflectance values than atmospheric correction in this band. Differences after TC without AC ranged 

between -1.91% and 5.56%, while differences after only AC ranged between 8.54% and 9.86%. 

Furthermore, combination of AC and TC methods resulted in the smallest differences with a 

minimum of -0.83% (TF with PBC) and a maximum of 5.83% (TF with band ratio). Results of the TF 

with PBM method (4.14%) were comparable to the results of ATCOR3 (3.73%). The smallest 

differences were found after TF with PBC correction (-0.83%). When the t-test was significant, an 

asterisk was added in Table 4.3. Significant results were present for the ATCOR3 method and for 

combined corrections with a PBM or a PBC topographic correction. The PBM method was only 

significant in combination with the transmittance based atmospheric correction. In contrast, the PBC 

correction was significant in combination with all atmospheric corrections.  
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Table 4.3.: Average reflectance differences (%) between illuminated and shaded forest slopes of band 4 for the 
15 combined corrections and ATCOR3 (in parentheses). The asterisks indicate a significant t-test between all 

pairs of shaded and illuminated slope groups before and after correctionat the significance level 0.05 
(Vanonckelen et al., accepted). 

 No TC Band ratio Cosine PBM PBC 

No AC 10.16 5.56 -2.36 4.65 -1.91* 
DOS 9.86 5.12 -2.34 5.04 -1.62* 
TF 8.54 5.83 -1.56 4.14* (3.73*) -0.83* 

4.4.2 Coefficient of variation 

Table 4.4 shows CV values for the selected forest pixels of each spectral band. Furthermore, average 

CV and CVdifference values over all bands are presented. There was only an increase in CV for bands 2, 3 

and 5 after band ratioing without AC. All other combined corrections decreased the CV values. 

Results after TC without AC emphasized the effectiveness of topographic corrections. The CVdifference 

value after implementation of band ratio without AC was low (1.09). Furthermore, CVdifference values 

increased after implementation of the three other TCs without AC. The CVdifference value was highest 

for PBC (5.57), followed by PBM (4.65), and cosine (2.57), respectively. Table 4.4 also shows the 

performance of the two AC methods without TC. TF correction resulted in higher homogeneity than 

DOS correction, since the CVdifference value after TF (1.85) was higher than the value after DOS (1.04). 

Best results were obtained after combined corrections. Combination of TF with PBC correction 

resulted in the highest homogeneity (CVdifference of 8.60), closely followed by ATCOR3 (CVdifference of 

8.48) and TF with PBM correction (CVdifference of 8.17). 

 

Table 4.4.: CV values for each band, average CV and CVdifference values over all bands (dimensionless) of the 15 
combined corrections and ATCOR3 (in parentheses) for the selected forest pixels (Vanonckelen et al., 

accepted). 

 CV   TM1 TM2 TM3 TM4 TM5 TM7 Average  Difference 

No AC No TC  
Band ratio  

45.66 
42.44 

54.16 
57.74 

71.46 
75.51 

33.58 
30.32 

41.21 
45.49 

40.98 
42.08 

47.84 
48.93 

/ 
1.09 

Cosine 44.68 54.32 67.82 24.81 40.97 39.05 45.27 2.57 

PBM 41.55 48.73 64.37 30.55 36.98 36.96 43.19 4.65 

PBC 41.51 46.56 62.71 30.14 35.09 37.60 42.27 5.57 

DOS No TC  
Band ratio  

44.93 
41.71 

53.60 
51.68 

67.18 
65.84 

34.90 
31.03 

40.78 
37.31 

39.40 
37.83 

46.80 
44.23 

1.04 
3.61 

Cosine 43.69 52.57 67.76 30.79 37.98 38.00 45.13 2.71 

PBM 41.28 49.53 63.86 27.77 36.98 37.40 42.80 5.04 

PBC 40.62 49.80 60.66 26.62 34.82 37.13 41.61 6.23 

TF 
 
 
 
 
 

No TC  
Band ratio  

43.80 
41.16 

52.85 
49.87 

65.86 
64.87 

33.18 
30.26 

40.26 
37.62 

39.98 
38.41 

45.99 
43.70 

1.85 
4.14 

Cosine 41.02 50.28 67.92 27.53 36.81 36.44 43.33 4.51 

PBM 40.05 
(39.74) 

46.58 
(46.89) 

63.53 
(62.87) 

23.45 
(23.16) 

33.55 
(33.87) 

30.84 
(29.61) 

39.67 
(39.36) 

8.17 
(8.48) 

PBC 39.26 46.50 61.58 24.39 34.80 28.91 39.24 8.60 
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4.4.3 Correlation analysis 

Correlation coefficients between cos β and reflectance values before and after correction were 

computed on the selected forest pixels and the stratified sampling over the entire image. Tables 4.5 

and 4.6 show results of both sampling strategies for all combined corrections in band 4. Before 

correction, correlation between cos β and reflectance values of both sampling strategies was 

positive. This is shown in Tables 4.5 and 4.6 by slope values of 16.3 and 14.6 respectively, and 

significance levels less than 0.05. The dependency of reflectance values on terrain illumination was 

reduced after correction. All tested corrections decreased slope values of the regression line, though 

correlations remained significant for a number of combinations. After combining DOS without TC, 

positive correlation was still present. Slope values decreased from 16.3 to 13.9 and from 14.6 to 12.6, 

respectively. A significant correlation was still present for both samplings after combination of an AC 

with band ratio or cosine correction. In Tables 4.5 and 4.6, P-values were lower than the significance 

level and slope values were negative. Implementation of DOS with band ratio and TF with cosine 

resulted negative slope values in both scenarios. Combination of PBM or PBC without an AC resulted 

in a small dependency, with slope values smaller than 3.0 and P-values between 0.31 and 0.39. 

Dependency of reflectance values on terrain illumination was reduced after implementation of an AC 

with PBM or PBC method. For the forest pixels (Table 4.5), slope values ranged between 2.2 and 2.5, 

and P-values indicated that data were uncorrelated (P > 0.05). Table 4.6 shows that sampling over 

the entire image was even performing better than the forest sample, with slope values 

approximating 0 and P-values larger than 0.05. Results were improved most after ATCOR3 and 

combination of TF with PBM and PBC correction. Reflectance values and cos β were uncorrelated 

with reduced slope values of 1.1, 1.3 and 0.7, respectively. 

 

Table 4.5.: Slope and P value of correlation analysis of the selected forest pixels in band 4 for the 15 combined 

corrections and ATCOR3 (in parentheses)(Vanonckelen et al., accepted). 

 No TC Band ratio Cosine PBM PBC 

 slope
 

P slope P slope P slope P slope P 
No AC 16.3 <0.001 -3.6 <0.001 -10.7 <0.001 3.0 0.312 2.9 0.326 
DOS 13.9 <0.001 -3.3 <0.001 -9.8 <0.001 2.5 0.351 2.5 0.355 
TF 12.5 <0.001 -3.0 <0.001 -9.4 <0.001 2.2 

(2.1) 
0.378 

(0.386) 
2.3 0.384 

 

Table 4.6.: Slope and P value of correlation analysis of the stratified sample in band 4 over the entire image for 

the 15 combined corrections and ATCOR3 (in parentheses)(Vanonckelen et al., accepted). 

 No TC Band ratio Cosine PBM PBC 

 slope
 

P slope P slope P slope P slope P 
No AC 14.6 <0.001 -2.5 <0.001 -9.3 <0.001 2.1 0.365 2.3 0.386 
DOS 12.6 <0.001 -2.1 0.001 -8.5 <0.001 1.8 0.403 1.6 0.412 
TF 11.4 <0.001 -1.9 0.001 -8.7 <0.001 1.3 

(1.1) 
0.465 

(0.474) 
0.7 0.483 

 

Figure 4.3 shows true color composite images (TM 3, 2, 1) before and after implementation of the six 

representative combined corrections. These images provide a better understanding of the study area 

and depict the removal of shading effects after combined correction. The image shows a 120 km² 

representative zoom of the study area as indicated in Figure 4.1. Without any corrections applied, 

there are clear differences between sun-oriented and opposite slopes in Figure 4.3a. The output after 

DOS without a TC did not result in visual differences compared to no AC or TC and shown in Figure 
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4.3b. A comparable output was obtained for TF without TC. In contrast, combined AC and TC 

methods changed the appearance of the images. Band ratioing resulted in an overall lowering of 

reflectance values as expected after implementation of Equation 4.7 (Figure 4.3c). Combined TF and 

cosine correction resulted in a reduction of shades on poorly illuminated areas in Figure 4.3d, though 

an overcorrection in the visible bands appeared. Best results were obtained after combination of TF 

with PBM or PBC correction in Figures 3e and f. Differential illumination effects were reduced and 

spectral characteristics of sun-oriented and opposite slopes were similar. 

 

 
Figure 4.3.: True color composite images (RGB: band 3, 2 and 1) of the zoom in the study area with a linear 

stretching: (a) no AC or TC; (b) DOS without TC; (c) DOS with band ratio; (d) TF with cosine; (e) TF with PBM and 
(f) TF with PBC (Vanonckelen et al., accepted). 

 

4.5 Discussion 

 

This analysis provided an analysis of fifteen combinations of two atmospheric and/or four 

topographic corrections along with uncorrected imagery. Generally, visible bands presented small 

differences between average reflectance values of illuminated and shaded areas. These differences 

indicated that especially bands 1 to 3 were not strongly affected by topographical effects. 

Furthermore, it is a possible indication that atmospheric distortions had a larger influence than 

topographic distortions in these bands due to scattering and diffusion, which was confirmed by 

results of previous research (Kobayashi and Sanga-Ngoie, 2008; Schroeder et al., 2006; Vicente-

Serrano et al., 2008). Implementation of TF with cosine indicated an overcorrection of reflectance 

values of shaded slopes since cos β is smaller in these non-illuminated areas and since the diffuse sky 

irradiance was ignoraned which resulting in an overestimation of the output radiance data (Teillet et 

al., 1982). The overcorrection of areas under low illumination conditions, especially steep terrain 

(a)  no AC or TC (b)  DOS without TC (c)  DOS with band ratio

(d)  TF  with cosine (e)  TF with PBM (f)  TF  with PBC
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where incident angles approach 90°, has been observed in several analyses (Hantson and Chuvieco, 

2011; Meyer et al., 1993; Teillet et al., 1982). 

 

This was ATCOR3 and combination of TF with PBM and PBC showed a reduction of differences 

between average reflectance values in all bands and significant t-test results. These results were 

comparable to experiments conducted by Huang et al. in 2008, Wen et al. in 2009 and Vicente-

Serrano et al. in 2008. Average CVdifference values increased after implementation of advanced TCs 

without AC. The average CVdifference value was highest for PBC, followed by PBM and cosine correction. 

Correlation analysis showed that PBM or PBC without an AC resulted in a small dependency. 

However, this dependency was even reduced after combined correction, which proved that TC 

methods had a larger impact on the results than AC methods. A valid explanation for these results 

was the application of only one Landsat footprint in this analysis. The dependency between cos β and 

reflectance values was decreased most after ATCOR3 and the combination of TF with PBM or PBC. 

Similar results were obtained in a previous analysis by Kobayashi and Sanga-Ngoie in 2008. Largest 

illumination effects were observed in the forest class, which explained an improved performance of 

sampling over the entire Landsat image. 

 

Considering overall results, this analysis showed that most complex combined corrections were most 

effective but also most difficult to automate since they require more input data which need to be 

derived from look-up tables or regression analyses. Relative simple AC methods failed compared to 

the more advanced AC methods since the last methods were more capable to simulate the 

atmospheric processes of scattering and diffusion by implementing parameters such as the water 

vapor and ambient atmospheric pressure. This was also true for the TC methods, in which the more 

advanced TC method included parameters that were derived from regression analyses or from a 

DEM. Furthermore, the added value of complex TC methods was high, while the added value of AC 

methods was limited. These results confirmed findings of previous analyses by Eiumnoh and Shrestha 

in 2000 and Hale and Rock in 2003, where topographic effects had a larger impact on reflectance 

values than atmospheric effects. Therefore, application of a combined correction based on a complex 

TC component and a rather straightforward AC component was justified in this local scale study. 

 

 

4.6 Conclusions 

 

In this analysis, the performance of the combination of three atmospheric and five topographic 

correction methods and the ATCOR3 method was evaluated along with uncorrected Landsat imagery. 

Most similar studies to date missed a thorough comparison between different AC and TC methods, 

while this analysis decomposed combined models in an AC and a TC component and systematically 

evaluated effects of all combinations. Statistical comparison of illuminated versus shaded reflectance 

values of forested pixels without any correction indicated that major differences were present in 

bands 4 to 7. After implementation of combined corrections, these differences were reduced. The 

smallest differences in reflectance values were present after ATCOR3 correction or combination of an 

atmospheric correction with PBM or PBC. Furthermore, most ofthese combined corrections resulted 

in significant t-test results. Comparable conclusions were drawn from the analysis of the coefficients 

of variation for the forest sampling. The CV of each spectral band decreased after combined 
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correction. Overall results indicated that TC had a larger impact on the reflectance values than AC. 

Added value of AC methods was relatively low, since only one Landsat image was implemented. 

Results of the AC methods were included since these methods are essential in time series analyses. In 

this study, ATCOR3 and combinations of TF with PBM or PBC performed best, though these methods 

required the largest amount of input data. 

 

The added value of this study was the decomposition of combined models and the systematic 

evaluation along with uncorrected imagery. This local scale study demonstrated that the benefits in 

reduction of atmospheric and topographic distortions justified automation of more complex 

corrections in mountain areas. 
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Chapter 5: Effect of atmospheric and topographic correction 

methods on land cover classification accuracy in mountain areas* 

 

*This chapter is published as: Vanonckelen, S., Lhermitte, S., Van Rompaey, A., 2013. The effect of atmospheric 

and topographic correction methods on land cover classification accuracy, International Journal of Applied 

Earth Observation and Geoinformation, 24, 9-21. 

 

5.1 Introduction 

 

Assessing the rate and spatial pattern of land cover changes is challenging given the ruggedness and 

inaccessibility of mountain areas (Lambin and Geist, 2006). Remote sensing techniques are privileged 

monitoring tools and yet suffer from methodological challenges that need to be resolved by 

correction methods (Balthazar et al., 2012; Lhermitte et al., 2011). A typical image preprocessing 

includes sensor calibration, atmospheric and topographic correction and relative radiometric 

normalization (Vicente-Serrano et al., 2008). Remote sensing-based land cover mapping in mountain 

areas is especially affected by atmospheric and topographic effects on recorded sensor signals 

(Soenen et al., 2008). Topographic effects are caused by differences in illumination angles at the 

moment of image acquisition and result in a variation of reflectance response for similar terrain 

features (Veraverbeke et al., 2010). During the past 10 years, several atmospheric correction (AC) 

and topographic correction (TC) methods have been evaluated individually. Table 2.3 summarizes the 

most frequently used correction methods. Some authors (e.g. Richter, 1996; 1998; Kobayashi and 

Sanga-Ngoie, 2008) have evaluated the influence of combined AC and TC corrections. The combined 

methods that have been developed include a specific combination of an atmospheric and a 

topographic correction. In literature, though, only a limited number of combined AC and TC 

corrections has been tested and described so far (Table 2.3). Nevertheless, at present, a systematic 

comparison of the performance of different combined corrections on classification accuracy is 

lacking. 

 

Several authors examined the influence of atmospheric and/or topographic corrections on land cover 

classification in mountain regions. In Table 5.1, an overview of recent studies that examine the 

influence of different correction methods on classification accuracy is presented. Depending on the 

correction methods used, there was no improvement in classification accuracy (e.g. Blesius and 

Weirich, 2005; Zhang et al., 2011) or an increase in the overall classification accuracy (OA) up to 40% 

(e.g. Gitas and Devereux, 2006). However, it is difficult to compare these studies since the input files 

and parameters are varying: study areas, vegetation types, sensors, DEMs, AC and TC corrections, 

etc. 

 

Table 5.1.: Reference, study area and land cover, classification method, AC and TC, and improvement in 

accuracy after correction (Vanonckelen et al., 2013). 

Reference Study area 
and land 
cover (LC) 

Classification 
method 

AC and TC Improvement in 
accuracy after 
correction 

Conese et al., 1993 
 
Meyer et al., 1993 

Italy, all LCs 
 
Switzerland, 

Supervised 
(ML

*
) 

Not specified 

Inverse technique + 
topographic normalization 
No AC + statistical, Minnaert 

Kappa increase 
from 0.56 to 0.62 
Overall accuracy 
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(non)-forest and C (OA) increase with 
10-30% 

Sandmeier and 
Itten, 1997 
Coburn and 
Roberts, 2004 
Hale and Rock, 
2003 

Switzerland, 
all LCs 
Canada, all 
LCs 
USA, all LCs 

Supervised 
(ML) 
Supervised 
(ML) 
Supervised 
(ML) 

6S + DEM 
 
No AC + different statistical 
texture measures 
No AC + band ratios, Minnaert, 
aspect partitioning and 
combinations of these 
corrections 

OA increase 
between 1-7% 
Not specified 
 
OA increase with 4-
13% 

Mitri and Gitas, 
2004 

Greece, all 
LCs 

Fuzzy 
classification 

ATCOR2 + multi-resolution 
segmentation 

OA of 98.85% 

Blesius and 
Weirich, 2005 
Gitas and 
Devereux, 2006 
Huang et al., 2008 

USA, all LCs 
 
Greece, all 
LCs 
USA, all LCs 

Supervised 
 
Supervised 
(ML) 
Support vector 
machines 

No AC + Minnaert 
 
DOS + Minnaert 
 
MODTRAN + SCS and a revised 
correction 

No improvement 
 
OA increase of 
maximum 40% 
OA increase from 
85.5% to 89.1% 

Soenen et al., 2008 Canada, all 
LCs 

Supervised 
(ML) 

Empirical line + cosine, C, 
Minnaert, statistical-empirical, 
SCS, b, SCS+C and MFM-TOPO 

Class accuracy 
increase between 
13-62% 

Gao and Zhang, 
2009 
Cuo et al., 2010 

China, all LCs 
 
Thailand, all 
LCs 

Supervised 
(ML) 
Supervised 

DOS + Minnaert and SCS 
 
Simplified normalization 

OA increase from 
88.1% to 89.7% 
OA from 55% to 
85% and 51% to 
91% 

Zhang et al., 2011 China, all LCs Artificial neural 
networks 

No AC + cosine, Minnaert, C, 
SCS, two stage normalization 
and slope matching 

No improvement 

*
 ML is the Maximum Likelihood classification algorithm. 

 

In order to allow a good comparison between the existing AC and TC methods, a  systematic analysis 

is essential. The overall research question of this chapter is therefore the evaluation of the impact of 

fifteen combined AC and TC corrections on the accuracy of land cover classifications in mountain 

areas. A land cover classification analysis is performed on the image outputs after implementation of 

fifteen AC and TC combinations. The selected atmospheric and topographic correction methods are 

frequently used and have a different degree of complexity. The methods differ from relatively 

straightforward to complex with a highdata and computation requirement. The study area is a 

Landsat-5 Thematic Mapper (TM) image in the Romanian Carpathians.  

 

Four aspects of the overall research question are examined for two validation sets: 

- Which AC and TC combinations result in the best overall classification accuracy? 

- What is the influence of different AC and TC combinations on class accuracies? 

- Does the influence of combined corrections on overall classification accuracy vary under 

different illumination conditions? 

- Does the influence of combined corrections on classification accuracy vary under different 

atmospheric conditions? 

 

These four aspects help us to conclude what the individual and combined effect of the different AC 

and TC components is on classification accuracy. 
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5.2 Material and methods 

5.2.1 Study area and data acquisition 

Study area 

In order to address the research questions described above, a local scale study area of 915 km² in the 

Romanian Carpathian mountains was selected (Figure 4.1, white-outlined rectangle). The study area 

consists of rugged terrain with an elevation varying between 690 and 2,540 m above mean sea level. 

The Făgăraș mountains which are located at the intersection between the counties Brașov, Sibiu and 

Argeș are included in the study area. 

 

The dominant lithology of the Făgăraș mountains is crystalline rock with occasional occurrence of 

limestone. Major soils include Podzols in the mountain zone and Cambisols in the foothill zone 

(FAO/UNESCO, 1988). Three natural vegetation zones are present: a foothill zone with mixed and 

broadleaved forests between 250 and 1,500 m with Betula pendula, Carpinus betulus and Fagus 

silvatica (Figure 5.1a); a mountain zone (1,500–2,200 m; Figure 5.1b and c) with coniferous forests 

(e.g. Abies alba, Picea abies, Pinus mugo); and an alpine zone (>2,200 m; Figure 5.1d) above the tree 

line dominated by Carex curvula, Festuca supine and Juncus trifidus (Enescu, 1996; Kuemmerle et al., 

2008a; Mihai et al., 2007). The majority of the land cover comprises forests as forestry has 

traditionally been an important component of the regional economy and a major source of rural 

income (Ioras and Abrudan, 2006). Forests provide important ecosystem services and are being 

affected by natural and human induced threats: bark-beetle infestations (Knorn et al., 2012a), wind-

throws (Anfodillo et al., 2008), extensive salvage logging after wind-throws (Macovei, 2009) and land 

restitutions (Kuemmerle et al., 2008a). 

 

   
 

   
Figure 5.1.: (a) Foothill zone (1,020 m) with mixed and broadleaved forests. (b) Mountain zone (1,640 m) with 

coniferous forests. (c) Mountain zone (2,050 m) with small vegetation. (d) Alpine zone (2,360 m) above the tree 
line with grasses (Vanonckelen et al., 2013). 

 

 

(a) (b) 

(c) (d) 
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Satellite and elevation data 

The recent opening of the global Landsat archive by the United States Geological Survey (USGS) 

provides opportunities to advanced land cover studies. The released archive of Landsat imagery is 

temporally and spatially extensive and freely available for download (Knudby et al., 2010). For this 

study, Landsat-5 TM images (path 183/row 28) with acquisition days July 24, 2009 and August 12, 

2010 were selected (see white-outlined rectangle in Figure 4.1). In this chapter, all analyses were 

performed on the SRTM and the 6 Landsat bands of Chapter 4. The images were orthorectified with 

precision terrain correction level L1T by the USGS. Clouds and cloud shadows were ignored since 

cloud coverage in the study area was below 1%. The solar elevation angle at image capture was 

respectively 57.8° and 53.8° for the 2009 and 2010 images. The difference between the atmospheric 

parameters of both images is explained in the methodology.  

 

Ground Control Points 

GCPs for land cover classification training and validation were gathered through field visits and the 

analysis of highresolution satellite imagery. Training data were gathered systematically over the total 

image in order to collect the spectral range of the different classes. Pixels were chosen not too close 

together in order to avoid spatial autocorrelation (Campbell, 1981; Labovitz and Masuoka, 1984). 

First, eighty-three usable GCPs were recorded through transect walks in the study area during field 

visits in May 2010 and July 2011 (Figure 5.2, red dots). The dominant vegetation type and 

topographic information, such as slope and elevation, was recorded for each point. Secondly, since 

the number of field-registered points was insufficient to serve as training and validation data for 

image classification, extra land cover data were derived by a visual interpretation based on high 

resolution satellite imagery (WorldView-2, 8 bands, 46 cm resolution, acquisition date October 13, 

2010). 

 
Figure 5.2.: True color composite image (RGB: band 3, 2 and 1) of the local scale study area: the red dots 

indicate the registered reference points (Vanonckelen et al., 2013). 

 

On the basis of the WorldView-2 image and field expertise, 322 extra reference points were 

identified. In order to check whether the land cover types for the selected reference points in 2010-

2011 were equal in 2009, two Landsat images from the same season and acquired around identical 

dates (July 24, 2009 and August 12, 2010) were selected. Furthermore, the consistency of the land 

cover types throughout the years 2009-2011 was checked based on Google Earth. 



Effect of atmospheric and topographic correction methods on land cover classification accuracy in mountain areas 

 

77 
 

5.2.2 Methodology 

Figure 5.3 presents an overview of the applied methodology. After data acquisition, the input images 

were corrected by applying the fifteen combinations of AC and TC corrections (including scenarios 

without atmospheric and/or topographic correction). Secondly, each corrected image is classified. 

Thirdly, the land cover maps are evaluated by comparing overall classification accuracies, class 

accuracies and overall accuracies for three illumination conditions. 

 
Figure 5.3.: Overview of the methodology: data acquisition, preprocessing steps, land cover classification and 

evaluation of the land cover classification (Vanonckelen et al., 2013). 

 

Preprocessing steps 

The preprocessing steps were similar as described in the methodology section in Chapter 4. Hereby, 

the 3 different AC methods of section 4.3.1 were implemented. Furthermore, the five TC methods of 

section 4.3.2 were implemented: i) no TC, ii) band ratioing, iii) cosine correction, iv) pixel-based 

Minnaert correction (PBM), and v) pixel-based C-correction (PBC). These three AC and five TC 

methods – including no AC and no TC – were combined to fifteen different combinations of AC and 

TC methods. The combination of no topographic and no atmospheric correction was considered as 

the baseline scenario. The Lmin  values (in W/(m2 μm)) per band for the 2009 and 2010 images were 

respectively: [37.50, 26.12, 14.50, 36.16, 2.76, 0.44] and [40.60, 27.57, 16.58, 44.92, 3.60, 0.57]. The 

ambient atmospheric pressure (P, in mbar) was respectively 995 and 925 mbar for the 2009 and 2010 

image. The value of P was obtained for the central point in the image and at acquisition time. 

Precipitable water vapor values (W) were respectively 1.39 and 2.99 cm. The most complex 

combined correction (TF-PBM) simulated the total radiance pathway through the atmosphere and 

implemented the path radiance, solar direct irradiance, sky diffuse irradiance and adjacent terrain 

reflectance. In contrast to Chapter 4, the ATCOR3 procedure was not implemented in Chapter 5. 

Finally, the uncorrected images and the fourteen corrected images provide the input for the 

classification protocol described below. 
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Land cover classification 

In order to obtain classification accuracies, an appropriate classification algorithm is required. Since 

this study concentrates on the effect of atmospheric and topographic corrections on land cover 

accuracy, a relatively straightforward classifier was chosen. When detailed information of the study 

area exists and good training data are available, a supervised classification is preferable (Kuemmerle 

et al., 2006). The supervised maximum likelihood (ML) classifier based on the Gaussian distribution of 

the elements in the coherent scattering matrix is used in this study (Foody, 2002). The maximum 

likelihood decision rule is relatively convenient to implement in ENVI when sufficient GCPs are 

available. It is at present still the most widely applied classification technique because of its relative 

simplicity and robustness (Gao and Zhang, 2009). Furthermore, the classifier utilizes means, 

variances and covariances of training site statistics, where most other decision rules are based on 

simpler statistics (Chen et al., 2004). Moreover, Table 5.1 shows that ML classification is still 

frequently implemented in recent assessments of land cover accuracy (e.g. Gao and Zhang, 2009; 

Soenen et al., 2008). The classification procedure is based on a 10-fold cross validation (Kohavi, 1995) 

where the image is repeatedly trained with two-thirds of the reference points and validation is based 

on the remaining one-third of reference points. Thereby, the 405 reference points are repeatedly 

and randomly subdivided in training and validation datasets. First, the classification is performed on 

the uncorrected and corrected images of 2010. Secondly, reflectance spectra are modeled as the 

linear combination of a finite number of spectrally unique signatures of pure ground components, 

referred to as endmembers (Bateson et al., 2000). Therefore, the endmember spectra of the 2009 

image are collected based on the GCPs of the 2010 image and applied on the 2009 image. 

Endmember spectra are easier to interpret than DNs, and, therefore, provide a more intuitive link 

between image measurements and observations in the field (Adams et al., 1995; Martinez et al., 

2006). The land cover classes used for image classification are described in Table 5.2. In total, six 

classes are discerned, including two non-vegetation classes (bare soil and water surface). 

 

Table 5.2.: Land cover classes, code and dominant species in the study area (Vanonckelen et al., 2013). 

Land cover classes Code Dominant species 

Broadleaved forest BL Carpinus betulus, Fagus sylvatica, 
Quercus petraea Quercus robur 

Bare soil BS / 
Coniferous forest CF Abies alba, Picea abies, Pinus 

mugo, Pinus sylestris 
Grassland GRASS  
Mixed forest

 
MX Mixture of the dominant BL and CF 

forest species 
Water surface WT / 

Bare soil (BS), grassland (GRASS), water (WT), and broadleaved (BL), coniferous (CF) and mixed forest (MX). 
Mixed forests are stands where neither broadleaved nor coniferous trees account for more than 75% of the 

tree crown area (UN-ECE/FAO, 2000). 

 

Evaluation of land cover classification 

The performance of land cover classification maps for each of the correction methods is examined 

based on four statistical analyses: 

(1)   Class reflectance values separability; 

(2)   Overall classification accuracy to determine the best combination of AC and TC; 

(3)   Land cover class accuracies to understand the effect on each class; 
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(4)   Classification accuracies to examine the effect of different illumination conditions. 
 

One of the most popular measures of classification accuracy derived from the confusion matrix is the 

percentage of cases correctly allocated (Foody, 2002). A problem is that some cases are allocated to 

the correct class purely by chance (Congalton, 1991; Pontius, 2000; Rosenfield and Fitzpatrick-Lins, 

1986; Turk, 1979). To accommodate for the effects of chance agreement, Cohen’s kappa coefficient 

has often been used and a number of commentators argue that it should, in some circumstances, be 

adopted as a standard measure of classification accuracy (Cohen, 1960; Congalton et al., 1983; 

Foody, 2002; Smits et al., 1999). Kappa became popularized in the field of remote sensing and map 

comparison by Congalton (1981), Monserud and Leemans (1992), Congalton and Green (1999), Smits 

et al. (1999) and Wilkinson (2005). The kappa coefficient has many attractive features as an index of 

classification accuracy. In particular, it performs a compensation for chance agreement and a 

variance term can be calculated to enable the statistical testing of the significance of the difference 

between two coefficients (Rosenfield and Fitzpatrick-Lins, 1986; Foody, 2002). However, Pontius 

(2000) documented some conceptual problems with the standard Kappa since it is frequently 

complicated to compute, difficult to understand and unhelpful to interpret. Therefore, multiple 

variations on Kappa were proposed in an attempt to remedy the flaws of the standard Kappa 

(Pontius; 2000). Although, the use of Kappa continues to be pervasive in spite of criticisms from 

many authors (Foody, 1992; Foody, 2002; Turk, 2002; Jung, 2003; Di Eugenio and Glass, 2004; Foody, 

2004; Allouche et al., 2006; Foody, 2008; Pontius and Millones, 2011).  

 

First, average reflectance values per wavelength and land cover type for the all combined corrections 

are analyzed to understand the differences in accuracy. Secondly, average kappa coefficientsof the 

2009 and 2010 images are derived as a measure of classification accuracy. The range of classification 

accuracies between both dates is shown through the whiskers on the bars and illustrates the 

difference in accuracy between the two dates. In this context, two validation datasets are used: a set 

containing all validation pixels and a so called difference subset. This subset includes the validation 

pixels that are classified differently between the classification of one of the combined corrections 

and the classification of the uncorrected image. Thirdly, at class level, differences of average 2009-

2010 kappa values (δkappa)for each class are calculated using the following equation (Zhang et al., 

2011): 

 δkappai= kappai, corrected− kappai, uncorrected (5.1) 

 

where: kappai, corrected is the kappa value of class i based on a corrected image classification; and 

kappai, uncorrected is the kappa value of class i derived from theuncorrected image classification. In this 

section, the overall δkappa over all fourteen correction methods is also calculated to provide a 

general perspective on the performance of all combined corrections. Fourthly, the effect of AC/TC 

methods on classification accuracy is evaluated for three different levels of illumination separately. 

Therefore, both validation sets are divided in three illumination zones based on the illumination 

parameter cos β that is calculated using Equation 4.11 and varies between -1 and +1 (maximum 

illumination) (Civco, 1989). The three illumination zones are: low illumination [cos β ≤ 0.65], 

moderate illumination [0.65 < cosβ <0.85], and high illumination [cosβ ≥ 0.85]. The spatial 

distribution of each zone is illustrated in Figure 5.4. An equal area subdivision in thirds of the total 

area is approximated with these class boundaries. Finally, based on all accuracy criteria, the 
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individual effect of the two components (AC and TC) within a combined correction is evaluated and 

the influence of combined corrections under different atmospheric conditions is examined. 
 

 

Figure 5.4.: The study area divided in three illumination zones: black is the low illumination zone *cos β ≤ 0.65], 
gray is moderate illumination *0.65 < cos β < 0.85+ and the high illumination zone is indicated in white *cos β ≥ 

0.85] (Vanonckelen et al., 2013). 

5.3 Results 

5.3.1 Class reflectance separability 

Figure 5.5 shows average reflectance values per wavelength and land cover type for: (a) the 

uncorrected images and (b) after TF-PBM correction of 2009 (solid line) and 2010 (dashed line). The 

spectra for all land cover types of both dates before correction are overlapping (Figure 5.5a). 

Therefore, it is difficult to differentiate land cover classes in all bands before correction. On the 

contrary, the different land cover spectra of all bands show less overlap after TF-PBM correction. In 

band 1, 2, 3 and 7; the reflectance values per land cover class are less overlapping and the overlap 

between land cover classes also diminishes for bands 4 and 5. Especially the reflectance values of the 

GRASS, BL and WT classes are discernable after correction, which is shown by a large gap between 

the reflectance values of both dates. There is also an improvement between the differentiation of 

the three other land cover classes: values between the different land cover types are less 

corresponding. 
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Figure 5.5.: (a) Average reflectance values per wavelength (band) and land cover type for the uncorrected 
images of 2009 (solid line) and 2010 (dashed line). (b) Average values for the most advanced method (TF-PBM) 

of 2009 (solid line) and 2010 (dashed line) (Vanonckelen et al., 2013). 

5.3.2 Overall accuracy 

Figure 5.6 presents average 2009-2010 kappa values of the uncorrected and corrected classifications 

using the full validation set (black) and the difference subset (white). For the full validation set, 

average kappa coefficients are generally high, varying between 0.87 (no AC and no TC; range 0.017) 

and 0.94 (TF-PBM; range 0.007). In this study, all combined corrections result in higher average 

kappa values. The land cover maps of methods that combine an atmospheric correction (DOS or TF) 

with a PBC or PBM topographic method are performing best. For these combinations, average kappa 

values are 0.94 (Figure 5.6; range respectively 0.006 and 0.007). Application of an atmospheric 

correction (DOS or TF) without TC correction increased average value with respectively +0.03 and 

+0.04 for the full validation set. Implementation of topographic corrections without AC correction 

resulted in higher average kappa values: +0.008 for band ratio, +0.015 for cosine, +0.027 for PBC and 

+0.022 for PBM correction. The range of classification accuracies provides information of the 

difference in classification accuracy between the 2009 and 2010 classification. Therefore, the range 

of the average kappa coefficients of both dates is able to provide valuable information. In this study, 

the average accuracy range over all five topographic corrections for the scenarios without AC, with 

DOS and TF correction is calculated. For the combined corrections without AC, the average difference 

of classification accuracy between both dates is larger (~0.017) than for the DOS (~0.015) and TF 

(~0.007) corrections respectively. This implies that the difference in classification accuracy between 

different dates is larger when no AC is applied, whereas it is smallest for TF corrections, with the TF-

PBC method performing best (range 0.006). 

 

In this study, an analogue analysis was carried out on the difference pixels. The implementation of a 

so-called ‘difference subset of pixels’ had the major advantage that differences in accuracies and 

ranges were more pronounced. The white bars in Figure 5.6 show average kappa values in the 

difference area. The average kappa value of the uncorrected image in the difference area (0.22; 

range 0.025) is lower than the value of the entire image (0.87; range 0.017). Increases in average 

kappa value after application of topographic corrections without AC correction were the following: 

+0.10 for band ratio, +0.19 for cosine, and +0.23 for PBC and PBM correction. Implementation of DOS 

and TF without TC correction resulted in average kappa increases of respectively +0.13 and +0.20 for 

the difference subset. The highest average kappa values in the difference area with lowest range 

were achieved after implementation of TF-PBC correction (average 0.77; range 0.012) and TF-PBM 

correction (average 0.76; range 0.023). 
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Figure 5.6.: Average kappa coefficients of the 2009 and 2010 images using the full validation set (black) or 
difference subset (white) of the 15 combinations of corrections. The range of classification accuracies between 

both dates is shown through the whiskers on the bars (Vanonckelen et al., 2013). 

 

To illustrate the effect of the different combinations, outputs of three representative techniques are 

shown for the 2009 land cover maps in Figure 5.7: the baseline scenario (i.e. the uncorrected image), 

a combination with a low classification accuracy (i.e. a TF and cosine combination) and a scenario 

with high accuracy (i.e. a TF and PBC combination). Figure 5.7a-c shows the resulting true color 

composites and classified images. The difference in illumination is clearly visible for points 1 and 2 in 

the composite without correction (Figure 5.7a) and combination of TF and cosine correction causes 

overcorrection in the visible bands (Figure 5.7b). The TF-PBC correction (Figure 5.7c) reduces the 

differential illumination effects: the same land cover types have comparable spectral values for 

similar terrain features on opposite facing slopes. As a result, illumination differences between points 

1 and 2 in Figure 5.7c on opposite facing slopes have disappeared. The classification results show no 

clear differences between land cover maps resulting from the uncorrected (Figure 5.7a) and the TF-

cosine corrected image (Figure 5.7b). Table 5.3 shows the percentages of 2009 LC classes for the 

three combinations of correction methods and confirms this finding. There is only a minor difference 

of ±3% in the broadleaved and mixed forest class that is hardly to distinguish on the indicated points 

3 and 4 in Figure 5.7a and b. Compared to these two maps, the LC map resulting from TF-PBC 

correction shows less BL and MX forest (Figure 5.7c). This is confirmed by the data in Table 5.3: the 

decrease in the BL and MX classes after TF-PBC correction and compared to the baseline scenario is 

respectively 7% and 12%. The BS class is decreasing with 3% and in contrast, the CF and GRASS 

classes are increasing with respectively 8% and 14%. The difference is also shown by comparison 

between points 3 and 4 on the LC maps. For point 3, the MX forest type in Figure 5.7 a and b has 

disappeared and is replaced by CF forest in Figure 5.7c. The dominant BL forest type in point 4 is 

replaced by grasslands and bare soil in Figure 5.7c. 
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Table 5.3.: Percentage of the six land cover classes present in 3 combinations of 2009 AC and TC correction 

methods (%)(Vanonckelen et al., 2013). 

 No AC - no TC TF - cosine TF - PBC 

Broadleaved forest 26 29 19 
Bare soil 19 19 16 

Coniferous forest 12 11 20 
Grassland 15 16 29 

Mixed forest 27 24 15 
Water surface 1 1 1 

 

 

 

 
 

Figure 5.7.: True color composite with a linear stretching (RGB: band 3, 2 and 1) and ML classification of the 
2009 image with visualization of contrasting points delineated by numbers 1 and 2: (a) no AC or TC; (b) TF with 

cosine correction and (c) TF with PBC correction (Vanonckelen et al., 2013). 
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5.3.3 Class accuracy 

Figure 5.8 shows average 2009-2010 δkappa values per class between uncorrected and corrected 

image using the full validation set for the 14 combinations of corrections and anoverall value per 

class over the 14 combinations of corrections. The results are included in a bubble chart, in which the 

size of the bubble represents the average 2009-2010 δkappa value. A red color represents a negative 

δkappa value and a blue color a positive δkappa value. Positive average δkappa values indicate a 

more accurate classification of a specific land cover class compared to the baseline scenario. The 

results show positive average δkappa values for the CF and MX classes which implies that combined 

corrections improve classification accuracy for these LC categories. The combination of TF-PBM 

correction produces the best results: increases in average kappa values of respectively 0.17 and 0.18 

for the CF and MX forest types. The overall δkappa values over all fourteen correction methods are 

also shown in Figure 5.8. The overall value increases with 0.09 for the CF and MX forest types and 

with 0.01 for the GRASS class. For the three other LC types (BS, BL and WT), mapping accuracy is not 

increasing after correction: difference values of the WT and BL class have not been changed and 

there is even a small negative overall δkappa value (-0.03) for the BS class.  

 

 
Figure 5.8.: Average 2009-2010 δkappa values per class between uncorrected and corrected image using the 

full validation set for the 14 combinations of corrections and anoverall value per class over the 14 combinations 
of corrections. The size of the bubble represents the average 2009-2010 δkappa value. A red color represents a 

negative δkappa value and a blue color a positive δkappa value. BS = bare soil; BL = broadleaved forest; CF = 
coniferous forest; MF = mixed forest; GRASS = grassland; WT = water (Vanonckelen et al., 2013). 

 

The average 2009-2010 accuracy of the six classes is also evaluated within the difference area (Figure 

5.9). Average δkappa values of the CF and MX forest types are especially improving after correction. 

The trend for the CF and MX forest class is similar as the trend for the full validation set but almost all 

average δkappa values have increased. The maximum average δkappa value for the CF class is 0.30 

(TF-PBC combination), compared to the maximum average value of 0.17 for the CF class using the full 

validation set. The MX forest class has a maximum average δkappa value of 0.20 (TF-PBM 

combination), an increase with 0.02 compared to the maximum average value of 0.18 for the full 

validation set. Trends for the other classes are not uniform. The overall δkappa values (Figure 5.9) 

over all fourteen correction methods per LC class are pinpointing to general increases of respectively 

OVERALL 
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0.19 and 0.10 for the CF and MX forest types. For the four other LC types (BS, BL, GRASS and WT), 

overall δkappa values are not increasing or even slightly decreasing in the difference zone. Compared 

to the full validation set, BS and GRASS classes are performing slightly worse in the difference zone 

(overall δkappaof -0.01). The overall class accuracy of WT is slightly positive (0.01) and the BL class is 

performing equal before and after correction. 

 

 

Figure 5.9.: Average 2009-2010 δkappa values per class between uncorrected and corrected image using the 
validation subset for the 14 combinations of corrections and anoverall value per class over the 14 combinations 
of corrections. The size of the bubble represents the average 2009-2010 δkappa value. A red color represents a 

negative δkappa value and a blue color a positive δkappa value. BS = bare soil; BL = broadleaved forest; CF = 
coniferous forest; MF = mixed forest; GRASS = grassland; WT = water (Vanonckelen et al., 2013). 

5.3.4 Illumination conditions 

Figure 5.10 shows that the average 2009-2010 accuracy of the uncorrected image is small in the low 

illumination zone (kappa value of 0.23; range 0.018). After correction the accuracy is improving, 

especially for the combination of TF-PBC or TF-PBM. For those two combinations, average kappa 

values are increasing from 0.23 to 0.72 (range respectively 0.011 and 0.012). The range of 

classification accuracies between both dates is smallest after implementation of the TF with a 

topographic correction method: 0.013 (band ratioing), 0.014 (DOS), 0.011 (PBC) and 0.012 (PBM). 

Results in the difference area of the low illumination zone also show that highest average kappa 

values with lowest ranges are achieved after implementation of TF-PBC (average 0.72; range 0.011) 

and TF-PBM correction (average 0.72; range 0.012).The same trends are visible in the moderate and 

high illumination zone. Here, the accuracies are also improving, though the increases are smaller 

(respectively +0.45 and +0.42 between no AC/TC and TF-PBM) than in the low illumination zone 

(+0.49 between no AC/TC and TF-PBM). In the moderate zone, the largest improvement in accuracy 

is an increase in average kappa from 0.33 (baseline scenario; range 0.015) to 0.84 (TF-PBM; range 

0.007). Overall, the accuracy is largest in the high illumination zone with average kappa value of 0.85 

for the TF-PBM combination (range 0.007). 

 

OVERALL 
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Figure 5.10.: Average kappa coefficients of the 2009 and 2010 images using the 15 combinations of corrections 
for three different illumination characteristics (black represents the low illumination zone, gray stands for the 

moderate illumination zoneand white is the high illumination zone). The range of classification accuracies 
between both dates is shown through the whiskers on the bars(Vanonckelen et al., 2013). 

 

 

5.4 Discussion 

 

This study provided an impact analysis of fourteen combinations of atmospheric and topographic 

correction methods on the accuracy of land cover classification. Adding and comparing the effect of 

AC/TC correction in combination with different classification algorithms would generate so many 

data and to some extent hide the single effect of AC/TC correction. Therefore, two Landsat-5 TM 

images from July 24 2009 and August 12 2010 were selected and compared. The characteristics of 

the study area (steep slopes, no intensive human influence, few roads and low population) were 

favorable to discourage large changes in land cover between both dates. The land cover classification 

accuracy under the baseline scenario (no topographic and no atmospheric correction) was relatively 

high because of the high quality of the Landsat image and the availability of a large number of land 

cover calibration data that were collected during fieldwork. 

First, the differentiation between land cover classes was relatively difficult before correction: there 

was an overlap between average reflectance values of both dates per land cover type and the 

differences between average class reflectance values was small (Figure 5.5a). On the contrary, the 

different land cover spectra of all bands showed less overlap after TF-PBM correction (Figure 5.5b). 

However, the class separability of the BS class remained poor after correction, which can be 

explained by the remaining large differences in reflectances after correction (Figure 5.5b) and by 

location of the bare soil land cover in the landscape. This bare soil land cover class was mainly 

present at the highest elevations where artifacts were visible in the shaded zones, also after 

correction (Figure 5.7). Secondly, considering overall accuracies of the full validation set, average 

kappa values were generally high. The overall high accuracies were achieved through the 

implementation of a high-quality image and a high number of reference data sampled on the ground 

by means of field work. The results indicated that average land cover classification accuracy 

increased more after combined AC/TC correction than when an individual AC or TC correction was 
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applied. The average kappa coefficients varied between 0.87 for the baseline scenario and 0.94 for 

TF-PBM correction. 

Compared to other studies performed by Hale and Rock (2003), Gitas and Devereux (2004) and Cuo 

et al. (2010), overall accuracies were high and the increases in accuracy were therefore lower. 

Comparable results were achieved by a study of Huang et al. (2008). There, overall accuracy 

increased from 85.5% to 89.7% after a combination of a MODTRAN and SCS correction. Gao and 

Zhang (2009) described an OA increase from 51% to 91% after a simplified normalization.A small 

variety in accuracy range between both dates was expected since there were changes between the 

land cover types of 2009 and 2010. The range in classification accuracy between both dates was 

larger when no AC was applied (0.017), whereas the range was smallest for TF-PBM correction 

(0.007). The ranges for the accuracies after DOS (~0.015) and no AC (~0.017) were comparable. 

However, a larger variability in the range for DOS correction was expected since the overall 

accuracies were higher after DOS correction. In contrast, a large accuracy range of land cover maps 

without AC correction was observed since the atmospheric parameters between both images were 

different. After combined AC and TC correction, there was a smaller range in accuracies since the 

effect of diverse atmospheres and illumination was removed. In general, the TF-PBC method was 

performing best with a range of only 0.006. 

Thirdly, the class accuracies showed positive average δkappa values for CF and MX classes and no 

classification improvements for the other land cover classes (BS, BL, GRASS and WT). The study of 

Zhang et al. (2011) at class level showed that δkappa values of pine forests on sunny and shaded 

slopes increased by a maximum of about 0.12 using topographically corrected images. On the 

contrary, δkappa values of oak and mixed forests on sunny and shaded slopes decreased up to 0.7 

after correction. The MFM-TOPO correction of Soenen et al. (2008) increased pine class accuracy by 

62% over shaded slopes and spruce class accuracy by 13% over moderate slopes. Finally, 

classification accuracies were evaluated for three illumination conditions separately. Average 

accuracy of the uncorrected image was smallest in the low illumination zone and largest in the high 

illumination zone. The largest improvements in accuracy were achieved in the low illumination zone, 

where the average kappa value increased from 0.23 (baseline scenario; range 0.018) to 0.73 (TF-

PBM; range 0.012). This comparison showed that the correction methods performed best on steep 

slopes in mountain areas. 

The composite without correction (Figure 5.7a) showed differences in illumination on opposite 

slopes. Furthermore, combination of TF and cosine correction (Figure 5.7b) caused an overcorrection 

in the visible bands. This was explained by the ignorance of the diffuse sky irradiance, resulting in an 

overestimation of the output radiance data (Teillet et al., 1982). Finally, combination of the TF-PBC 

and TF-PBM corrections (Figure 5.7c) reduced the differential illumination effects on opposite facing 

slopes and solved the problem of overcorrection. The natural catena from broadleaved forest on the 

footslopes over mixed and coniferous forest to grasslands at the highest altitudes (as described in the 

study area section) was best depicted on the TF-PBC map. This result was explained by the location 

of the different land cover types in the landscape: the forest classes (BL, MX and CF) covered the 

steepest slopes dominated by differences in illumination (Figure 5.1a-c). On the contrary, the other 

land cover types (BS, GRASS and WT) were located on the mountain ridge where illumination was 

high. As a consequence, it was harder to improve the differentiation between these three land cover 

classes since the class accuracy before correction was already high. In less mountainous areas and 
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when atmospheric variables between the dates are larger, atmospheric corrections have a larger 

impact on classification accuracy. Therefore, it is recommended to invest in AC and TC methods for 

multi-temporal studies. A balance must be found between the benefits of AC/TC correction in terms 

of increased classification accuracy and decreased automation potential. Such balance depends on: 

size of the study area, number of footprints, number and location of available GCPs, location and 

spectral signatures of the land cover types that need to be mapped. 

Considering overall results, the study showed that the most complex combined corrections (TF-PBC 

and TF-PBM) performed best since these methods simulate the radiance pathway through the 

atmosphere in the most accurate way. In general, results indicated that the topographic component 

had a higher influence on classification accuracy than the atmospheric component. This was shown 

by the difference in overall classification accuracies in Figure 5.6 for the full and difference subset. In 

a study by Prishchepov et al. (2012), no atmospheric correction was implemented in a multi-

temporal analysis since classification accuracy was not significantly improved. The observed accuracy 

differences were explained by relative large differences in elevation (690 to 2,540 m above mean sea 

level) and solar elevation angles (respectively 57.8° and 53.8°) between both dates. There were 

relative small differences in atmospheric parameters (minimum radiance, ambient atmospheric 

pressure and precipitable water vapor) as described in the preprocessing steps section.In a multi-

temporal study with more pronounced variations in atmospheric parameters, the impact AC 

methods becomes more important. 

 

5.5 Conclusions 

 

A wide range of atmospheric and topographic correction methodologies is available in literature. 

However, application of combined corrections is labor and data intensive, especially for the most 

advanced techniques. It is therefore important to examine the added value of these corrections on 

land cover classification. In this chapter, the added value of fifteen combined corrections (including 

the scenarios without atmospheric and/or topographic correction) was evaluated on a dataset and 

based on four criteria: class reflectance separability, overall classification accuracy, class accuracy 

and illumination specific accuracy. The statistical analysis was performed for two validation sets: a 

set containing all validation pixels and a subset containing the difference pixels between the 

classified, uncorrected image and one of the classified, corrected images. 

Analysis of average reflectance values per wavelength and land cover type of the uncorrected and 

corrected images of 2009 and 2010 showed that differentiation between all land cover classes 

improved after combined correction. The accuracy results also showed that overall classification 

accuracies of all corrected land cover maps increased after combined correction. Average kappa 

coefficients for the full validation sets differed between 0.87 for the scenario without corrections 

(range 0.017) and 0.94 for the atmospheric correction based on transmittance functions (TF) 

combined with the pixel-based Minnaert (PBM) correction (range 0.023). Higher increases in average 

kappa values were present for all combined corrections when the difference validation subset was 

used. The results also indicated that average land cover classification accuracy increased more after 

combined AC/TC correction than after an individual AC or TC correction. After combined AC/TC 

correction, the differences in range between both dates and images were removed and an identical 
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and optimal classification was performed. Results of the class accuracies showed positive average 

δkappa values for coniferous and mixed classes and no classification improvements for the four other 

land cover classes. In this study, the impact of combined AC/TC corrections was especially effective 

to increase the mapping accuracy of the different forest types. AC/TC corrections were less effective 

in increasing mapping accuracies of land cover types above the tree line since these areas were well 

illuminated. Considering the analysis in the different illumination zones, combined correction 

methods performed best in the low illuminated areas. In this study between two dates, results 

indicated that the influence of the topographic component on classification accuracy was higher than 

the atmospheric component. This was explained by relative small variations in atmospheric 

parameters and relative large differences in topographic parameters within the scene. 

The topographic component influenced the accuracy more than the atmospheric component. 

However, it was worthwhile to invest in both atmospheric and topographic corrections in a multi-

temporal study. For each application, a balance must be found between the benefits of AC and TC 

corrections in terms of increased classification accuracy and decreased automation potential of the 

preprocessing procedure. Furthermore, application of a combined correction based on a complex TC 

component (PBC or PBM) and a TF atmospheric component was justified in this study. Best overall 

classification results were achieved after TF-PBM or TF-PBC since the pathway through the 

atmosphere was simulated in the most accurate way. However, drawbacks of these advanced 

methods were their data requirements that impeded fully automated application and integration in 

image preprocessing chains. Further research should focus on the application of the combined 

corrections to other study areas and larger temporal series. 
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Chapter 6: Integration of topographic correction in a pixel-based 

compositing algorithm and forest cover change detection in the 

Romanian Carpathian Ecoregion* 

*A part of this chapter was presented at the Multitemp 2013 Conference and will be published as:Vanonckelen, 

S., Griffiths, P., Lhermitte, S., Van Rompaey, A., 2013. Integration of topographic correction in a pixel-based 

compositing algorithm for large scale land cover mapping. Proceedings of Multitemp 2013, 7
th

 International 

Workshop on the Analysis of Multi-temporal Remote-Sensing Images, Banff, Alberta, Canada, 26-28 June 2013. 

 

The research in this chapter was carried out in collaboration with Prof. Patrick Hostert and Dr. Patrick Griffiths 

from the Geography Department at the Humboldt-University in Berlin. The pixel-based compositing procedure 

was developed, calibrated and applied for the entire Carpathian Mountains by Griffiths et al. (2013). The results 

from this study build further on their work, by adding a topographic correction after the compositing 

procedure. The research team of Prof. Hostert is greatly acknowledged for their willingness to share their codes 

and the time spent on running the procedures including the topographic correction module. 

 

6.1 Introduction 

The opening of the Landsat archive in 2009 provided opportunities to reconstruct LULCC for large 

areas (Loveland and Dwyer, 2012). Apart from the topographic and atmospheric distortions 

discussed in the previous chapters, large area land cover mapping poses some challenges. 

Firstly,Landsat footprints have a footprint size of 185 x 185 km which requires image mosaicking for 

areas larger than one footprint. Secondly, Landsat satellites have a 16-day repeat cycle. However, 

especially in mountain and tropical areas, it is possible that only a few unclouded footprints are 

provided per yearly growing season (Ju and Roy, 2008; Griffiths et al., 2013a). This poses a problem 

since land cover classifications should be based on phenologically consistent datasets (Masek et al., 

2006). Finally, data availability can be further limited by discontinuities due to sensor or data related 

errors (e.g. the failure of scan line correction in Landsat 7; Arvidson et al., 2006). There is a need for 

accurate, reliable and timely estimates of LULCC at medium scale spatial resolution (30 m; Giri et al., 

2013). Therefore, pixel-based image compositing (PBIC) techniques have been developed to improve 

large area change monitoring at medium spatial resolutions (Gutman et al., 2008). 

 

A PBIC technique selects the most suitable pixel for each location from a series of available source 

images. The history and principles of PBIC are explained in Chapter 2 (section 2.2.6). The free access 

to the Landsat archive (Loveland and Dwyer, 2012), 16-day repeat cycle, extended Landsat operation 

time (Ju and Roy, 2008), revised Landsat calibration (Chander et al., 2010) and improvements in 

computational resources (Plaza et al., 2011; Richards, 2005) allowed the application of PBIC 

techniques with Landsat imagery at medium scale resolution. At present, however, it is unknown to 

what extent the results of PBIC can be improved if topographic preprocessing is applied on the 

source images. Therefore, a PBIC algorithm is combined with a topographic correction in this chapter, 

which results in topographically corrected composites based on Landsat source images of target 

years 1985, 1995 and 2010 covering the Romanian Carpathian Ecoregion. Next, the accuracy of the 

derived land cover and land cover change maps is examined. 
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6.2 Study area 

As described in Chapter 3, the regional study area is located in the Romanian part of the Carpathian 

Ecoregion (Figure 6.1). In this figure, the Carpathian Ecoregion is indicated by an irregular polygon 

and the nine considered Landsat footprints are shown by rectangles. 

 
Figure 6.1: Location of Romania in eastern Europe and indication of the Carpathian Ecoregion (irregular 

polygon) and the nine Landsat footprints comprising the Romanian Carpathian Ecoregion (rectangles). Romania 

was overlaid with the Shuttle Radar Topography Mission elevation data. 

 

Different studies have examined Romanian land and forest cover changes on a regional and local 

scale. On a local scale of one Landsat footprint, Knorn et al. (2012a) mapped the land cover in the 

northern Romanian Carpathians based on 8 topographically uncorrected Landsat TM/ETM+ images 

between 1987 and 2009. Results suggested that forest disturbances increased, especially in two 

waves after 1995 and 2005 (Knorn et al., 2012a). Another local scale study by Griffiths et al. (2012) 

investigated the Romanian forest cover and the influence of forest restitution on an atmospherically 

corrected Landsat footprint between 1984 and 2010. The results indicated that forest cover 

increased with 1,100 km² between 1987 and 2010 and increased forest disturbances were observed 

since 1989. 

 

Local forest cover changes are influenced by different transition trajectories than regional changes. 

However, the results of the above mentioned local scale studies were confirmed by studies on larger 

scales. On a national scale, the Global Forest Resources Assessment of FAO (2010) estimated the 

total Romanian forest area 6,371,000 ha in 1990 and 6,573,000 ha in 2010 (Figure 3.15). Between 

1990 and 2000, the forested area declined slightly with ±5,000 ha. Turnock (2002) also observed a 

decrease in forest cover in the Carpathians after 1989. These forest cover assessments also suggest 

that this downward trend reversed in 1990: current logging rates are substantially lower than logging 

rates during and immediately after the communist regime, and forests are expanding on unused or 

abandoned land (Olofsson et al., 2011). According to FAO (2010), after the minor forest increase of 

±25,000 ha between 2000 and 2005, there was a major forest increase of 200,000 ha between 2005 

and 2011 (Figure 3.15). New change detection approaches based on time series of Landsat images 

offer several methodological advantages, including robustness against spectral variations arising 
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from topography and phenology (Griffiths et al., 2013a). Recently, large scale land cover change 

mapping across the entire Carpathians based on pixel-based Landsat compositing between 2000 and 

2010 has been presented by Griffiths et al. (2013a). Results indicated that the compositing algorithm 

succeeded in constructing seasonally consistent large area composites (Griffiths et al., 2013a). Based 

on an atmospherically corrected PBIC between 1985 and 2010, Griffiths et al. (2013b) also examined 

forest disturbances across the entire Carpathian Ecoregion. Results showed that large changes in 

forest composition occurred in Romania: coniferous forests decreased with 7% or 197,330 ha 

between 1985 and 2010, while broadleaved and mixed forests increased with 12% and 2% or 

respectively 1,095,030 ha and 233,290 ha (Griffiths et al., 2013b). The total forest area increased 

from 6,027,370 ha in 1985 to 7,158,360 ha in 2010. 

 

However, topographically corrected composites of the Romanian Carpathians are still missing and 

the influence of topographic correction on large scale pixel-based compositing has not been 

examined. Therefore, in this chapter, a pixel-based topographic correction was integrated in the 

compositing algorithm of Griffiths et al. (2013a), applied on the Romanian Carpathians and compared 

to the topographically uncorrected composites. Results were evaluated by the calculation of overall 

and land cover specific classification accuracies. Furthermore, land cover changes between 1985, 

1995 and 2010 were mapped. 

 

6.3 Materials and methods 

In order to test the results of Chapter 5, a pixel-based image composite for each year (1985, 1995 

and 2010) was constructed. The basic concepts of a PBIC procedure were already explained in 

Chapter 2. However, the PBICs were constructed and topographically corrected in this chapter 

following five steps. 

First, all available Landsat TM and ETM+ images from the USGS Landsat archive with a precision 

terrain correction L1T and covered by less than 70% clouds were considered (Griffiths et al., 2013a). 

Furthermore, all images acquired within a two year range of the target years 1985, 1995 and 2010, 

and between mid-February and mid-November (Figure 6.2a). The range of acquisition months was 

included to avoid low sun elevation angles, shadowing and high snow coverage. Figure 6.2a 

represents is a simplification of the PBIC procedure since the first step only contains 3 available input 

images, while in this study more than 1000 images were available for the three years.  

Secondly, all footprints were georeferenced and atmospherically corrected with the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm (Masek et al., 2006) and 

masked for clouds using the FMASK algorithm (Zhu and Woodcock, 2012). Hereby, georeferencing of 

all images was crucial since an optimal pixel will be selected for each cell in the next step.  

Thirdly, a pixel-based composite was constructed for each year by sampling the most suitable pixel 

for each cell from the all available imagery (Figure 6.2b). The principle of pixel-based image 

compositing (PBIC) algorithms has been explained in Chapter 2 (section 2.2.6). In this Chapter, the 

most suitable observation was selected for each cell based on a suitability assessment that was 

elaborated by Patrick Griffiths and presented in Griffiths et al. (2013a). This suitability assessment 

was automated in an ENVI/IDL workflow using scripts. A single value and not an average value was 
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extracted for each cell, since pixel and scene specific metadata (solar zenith angle, solar azimuth 

angle, etc.) were also stored for usage in the next steps. 

 
Figure 6.2.: Pixel-based compositing with (a) selection of all available images (in this example there are only 3 
images available), (b) construction of the pixel-based composite with selection of the best pixel for each cell 

after a suitability assessment, and (c) topographically corrected pixel-based composite. 
 

In this study, the suitability for each cell was assessed based on 3 parameters, for which a pixel score 

was calculated. Afterwards, the total weighting of the pixel scores was obtained. As the study 

focused on temperate forest mapping, composites with high scoring weights in the period of main 

photosynthetic activity were preferred. Therefore, images as close as possible to the middle day of 

year - namely day 183 which is an approximation of the peak leaf-on state in Romania - were 

selected. Normally, day 183 is each year on July 2, except for a leap year. For each pixel, the 

suitability was assessed based on scoring weights for three parameters: day of year (DOY, i.e. 

seasonal suitability), acquisition year (i.e. annual suitability), and distance of a pixel to the next cloud 

(i.e. risk of atmospheric disturbance) (Griffiths et al., 2013a). Highly suitable pixels have: (1) a DOY 

nearby 183, (2) an acquisition year close to 2010, and (3) no adjacent clouds. The different factors 

were weighted according to a flexible parametric weighting scheme proposed by Griffiths et al. 

(2013a). In this weighting scheme, scores were calculated according to the year median DOY, 

preferred seasonal window and the distance to clouds. Next, the scores were summed up andafter 

selection of the pixels with the highest final score, the composite was constructed for the 6 spectral 

bands (Griffiths et al., 2013a). The PBIC procedure was applied on the total Landsat archive to 

generate three composites for target years 1985, 1995 and 2010. 

Fourthly, an alternative composite was constructed by correcting the pixel-based composite for 

shadowing effects due to topography (Figure 6.2c). The selection of the appropriate topographic 

correction method for implementation and automation in an image processing chain is not 

straightforward since the most complex methods demand the highest number of input data. The 

automation potential of corrections normally decreases with the number and complexity of input 

data. Therefore, it is possible to define a complexity range in the input data: (a) single value input 

parameters available in image metadata (e.g. solar zenith and azimuth angle), (b) single value input 

parameters available in external data sources (e.g. sea-level atmospheric pressure, slope and 

azimuth angle), (c) single value input parameters derived from regression models (e.g. k- and C-

factor), and (d) data layers available in external data sources (e.g. DEM and NDVI). In a previous study 
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by Vanonckelen et al. (2013), three atmospheric and five topographic corrections were applied in all 

possible combinations on two Landsat acquisition (2009 and 2010) in the Romanian Carpathians. The 

results showed that a pixel-based Minnaert correction (PBM) resulted in a more accurate detection 

of land cover in mountain areas. Therefore, the pixel-based compositing procedure was combined 

with a PBM correction as shown in Figure 6.2c. The PBM of Chapter 4 and 5 implemented a 

regression analysis between cos β and (un)corrected radiances for each band based on selected 

sample data. This sampling scheme and regression analysis was impossible to include in the 

automated PBIC procedure. Therefore, the topographic part of the ATCOR3 correction described in 

Chapter 4 (section 4.3.3) was included in this analysis. 

The differentiation between vegetation and non-vegetation in this Chapter was based on the pixel-

based NDVI value (Equation 6.1). In this study, an NDVI value lower than 0.7 was considered as non-

vegetation and a higher value as vegetation. This threshold value was determined by trial and error 

runs, field knowledge and comparison of the outputs with existing vegetation maps. Thereby, the 

threshold value 0.7 was the best boundary between vegetation and non-vegetation. 

 
 

  NIR red

NIR red

NDVI
 

 




   (6.1) 

 

where ρred and ρNIR are reflectance measurements in % for the red and NIR bands. 
 

The lower boundary threshold of the factor (cosβ /cosβT)
b prevents an excessive reduction of the 

reflectances if the local solar zenith angle is substantially higher than the threshold angle (Richter and 

Schläpfer, 2013). Though a value of 0.25 is the standard threshold (Richter et al., 2009), the user is 

encouraged to optimize the parameter to obtain adequate results for a specific study area (Balthazar 

et al., 2012). In this study, an optimal lower boundary of 0.05 was derived by trial and error. Thereby, 

especially under- and overcorrection problems were improved in the natural and false color 

composites. 

Finally, based on the generated composites, large scale land cover maps were compiled for the three 

target years using the Maximum Likelihood (ML) and Support Vector Machine (SVM) classifiers. The 

ML was explained in Chapter 5. The non-parametric and supervised SVM is well suited to map 

spectrally complex classes, such as in forest change analysis (Vapnik, 1999; Melgani and Bruzzone, 

2004; Huang et al., 2008). The basic principle of a SVM classifier is to identify a hyperplane that 

optimally separates two classes in the feature space. The hyperplane is constructed in an iterative 

way by maximizing the distance among class boundaries (Huang et al., 2002; Pal and Mather, 2005; 

Foody et al., 2007; Alcantara et al., 2012). To determine this hyperplane, only the edges between the 

class distributions are described based on a relatively small amount of training data (Foody and 

Mathur, 2004; Mathur and Foody, 2008). SVMs are non-parametric classifiers since the distribution 

of the training data is not modeled (Anthony et al., 2008). In contrast to parametric classifiers such as 

ML, the different classes are separated by directly searching for adequate boundaries between the 

classes (Keuchel et al., 2003). 

 

SVMs frequently outperform other non-parametric and parametric classifiers (Foody and Mathur, 

2004) while requiring few training data (Huang et al., 2002; Pal and Mather, 2005; Guo et al., 2005; 

Dixon and Candade, 2008; Knorn et al., 2009). SVMs are well suited to separate multimodal classes, 

which are difficult for parametric-based classifiers to classify accurately due to the violation of the 
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assumption of a normal distribution of reflectance values within one class (Foody and Mathur, 2004; 

Pal and Mather, 2005; Kuemmerle et al., 2009a; Prishchepov et al., 2012). To separate classes with 

non-linear boundaries, kernel functions are used to transform training data into a higher-dimensional 

space, where linear class separation is possible (Huang et al., 2002). SVMs have been successfully 

applied to map forest cover changes over large areas (Huang et al., 2008; Kuemmerle et al., 2008b, 

Sieber et al., 2013).  

 

The parametric ML classifier was implemented using ENVI/IDL and the EnMAP Box software to 

differentiate 8 land cover classes (Table 6.1): arable land, bare soil, urban land, grassland, water and 

forest. Since the dominant LC class in this study area was forest, this class was divided in three 

categories: broadleaved, coniferous and mixed forest. The ML classifier of 2010 was trained with 

randomly sampled points from three different sources: (1) GCP-collection during field visits in May 

2010 and July 2011, (2) GCP-identification on high-resolution satellite imagery (WorldView-2, 8 

bands, 46 cm resolution, acquisition date October 13, 2010), and (3) GCP-identification on high 

resolution imagery from Google Earth. An average of 800 training points was randomly sampled per 

land cover class with a minimum distance of 1 km to minimize spatial autocorrelation (Campbell, 

1981; Labovitz and Masuoka, 1984), except for the water class since the study area lacked large 

water bodies (Table 6.1). About 500 training points were sampled for the relative less present classes 

water and urban. Points were gathered systematically in order to collect the spectral range of the 

different classes. For the scenarios of 1985 and 1995, ground truth data were unavailable. In order to 

train the ML classifier, the 2010 training data were selected and verified on false and natural color 

composites of the 1985 and 1995 pixel-based composites. Training was performed with ±90% of the 

samples and validation with the remaining ±10%. 

 

Table 6.1.: Land cover classes, code, dominant species and average training and test samples in the study area. 

Land cover classes Code Dominant species Average training 
samples 

Average test 
samples 

Arable land AR /  900 100 
Broadleaved forest BL Carpinus betulus, Fagus 

sylvatica, Quercus petraea 
Quercus robur 

900 100 

Bare soil BS / 900 100 
Coniferous forest CF Abies alba, Picea abies, 

Pinus mugo, Pinus sylestris 
900 100 

Grassland GRASS / 900 100 
Mixed forest

 
MX Mixture of the dominant 

BL and CF forest species 
900 100 

Urban land UR / 500 50 
Water surface WT / 500 50 

Urban land (UR), arable land (AR), bare soil (BS), grassland (GRASS), water (WT), and broadleaved (BL), 
coniferous (CF) and mixed forest (MX). Mixed forests are stands where neither broadleaved nor coniferous 
trees account for more than 75% of the tree crown area (UN-ECE/FAO, 2000). Arable land is the land under 
temporary agricultural crops (multiple-cropped areas are counted only once). The abandoned land resulting 

from shifting cultivation is not included in this category (FAOSTATS, 2013b). 

 
The SVM classifier was implemented to discern the 8 land cover classes of Table 6.1. Furthermore, all 

non-forest classes were grouped and SVM classification was performed on only 4 land cover classes: 

non-forest, broadleaved forest, mixed forest, and coniferous forest. A similar and successive 

separation of classes was performed by Griffiths et al. (2013b), Main-Knorn et al. (2013) and Olofsson 



Chapter 6 
 

 

98 
 

et al. (2013). The SVM training and validation principles were similar as ML classification. However, 

the SVM classifier for 2010 was trained with randomly sampled points based on high resolution 

imagery from Google Earth. About 900 training points were sampled for the three forest classes and 

2000 points for the non-forest class. Validation was performed with independently and randomly 

sampled GCP points from two sources: fieldwork and high-resolution WorldView-2 imagery. The SVM 

parameterization, image classification, and accuracy assessment was carried out with the EnMAP Box 

software (www.hu-geomatics.de). 

 

In order to evaluate the results, overall accuracy (OA) and land cover specific producer’s and user’s 

accuracies were assessed as presented by Congalton (1991) and Foody (2002). The accuracies were 

assessed for five different scenarios: 

1) ML with 8 classes – topographically uncorrected; 

2) ML with 8 classes – topographically corrected; 

3) SVM with 8 classes – topographically corrected; 

4) SVM with 4 classes – topographically uncorrected. 

5) SVM with 4 classes – topographically corrected. 

 

Finally, the main land cover trends related to forest cover changes were mapped and areal statistics 

were calculated for the two periods: 1985-1995 and 1995-2010. Table 6.2 summarizes the different 

land cover change types that were included in the main land cover trends: stable broadleaved forest, 

stable mixed forest, stable coniferous forest, deforestation, afforestation, disturbance and non-

forest. Afforestation is the establishment of trees on land that is not covered by forest (IPCC, 2013). 

The disturbance class contains the conversions from one forest class in another forest class. 

 

Table 6.2.: The land cover change types that were included in the main land cover trends 

Land cover trend Land cover change types 

Stable BL BL-BL 
Stable MX MX-MX 
Stable CF CF-CF 
Deforestation BL-NF, MX-NF, CF-NF 
Afforestation

 
NF-BL, NF-MX, NF-CF  

Disturbance CF-BL, BL-CF, CF-MX, MX-CF, BL-MX, MX-BL 
Non-forest All other land cover change types 

Broadleaved forest (BL), mixed forest (MX), coniferous forest (CF) and non-forest (NF). 

 

6.4 Results 

6.4.1 Land cover accuracies 

The classification accuracy matrices of the topographically uncorrected ML classification of 1985, 

1995 and 2010 are presented in Table 6.3. The produced land cover maps have overall accuracy 

values of 66% (1985), 75% (1995) and 78% (2010). The highest producer’s accuracies are present in 

the CF and UR classes, with accuracy values ranging between 85% to 89%, and 82% to 99% 

respectively. The accuracies are lowest for the AR and MX classes, with producer’s accuracies ranging 

from 44% till 57% and from 54% till 60%, respectively. The results of Table 6.3 indicate that especially 

the differentiation between the AR, BS and GRASS classes is less accurate, which is indicated by the 
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low producer’s and/or user’s accuracy (PA and UA) values. This can be explained by a similar spectral 

signature of these three land cover classes since arable lands are regularly left fallow and hayfields or 

grasslands are hard to distinguish from arable lands. In contrast, the classification accuracy of the 

forest classes (BL, MX and CF) is relatively high. Also the WT and UR classes are consistent land cover 

types with high producer’s accuracies ranging between 82% and 99% since both land cover classes 

have a specific and easily discernable spectral signature. Finally, a remarkable trend in the accuracy 

of the AR class is noticeable: the producer’s accuracy is decreasing from 57% in 1985 to 44% in 2010. 

In the final stage, 33% from the AR class is classified as the GRASS class (Table 6.3).  

 

Table 6.3.: Classification accuracy assessment of a topographically uncorrected Maximum Likelihood 
classification of 1985, 1995 and 2010 (separated by commas and in %). 

 Reference   Classification              

 AR BL BS UR CF GRASS MX WT  

AR 57,58,44 2,1,1 2,7,6 6,5,2 0,1,0 6,4,5 2,2,2 3,2,0  

BL 2,3,2 77,92,88 0,3,0 0,0,0 0,0,0 8,4,3 5,4,14 0,0,0  

BS 13,13,13 6,0,1 64,61,72 4,5,5 1,1,0 4,3,3 3,2,0 4,1,0  

UR 7,5,3 0,0,0 5,5,13 83,86,90 0,1,1 0,0,0 1,1,0 4,2,0  

CF 2,0,0 1,0,1 9,8,1 1,0,0 89,85,88 2,0,0 25,25,29 4,0,0  

GRASS 17,14,33 7,5,1 16,13,8 0,0,0 1,0,0 74,85,87 3,2,0 2,0,0  

MX 2,5,2 7,1,8 0,1,0 0,1,0 8,10,11 5,4,1 60,64,54 0,0,0  

WT 1,3,2 0,0,0 3,1,0 4,2,1 1,1,0 0,2,0 1,0,0 82,93,99  

          

PA 57,58,44 77,92,88 64,61,72 83,86,90 89,85,88 74,85,87 60,64,54 82,93,99  

UA 94,60,61 29,45,51 62,88,90 51,77,75 52,64,75 39,61,64 56,66,69 89,95,97  

OA         66,75,78 

Urban land (UR), arable land (AR), bare soil (BS), grassland (GRASS), water (WT), and broadleaved (BL), 
coniferous (CF) and mixed forest (MX). Producer’s Accuracy (PA), User’s Accuracy (UA) and Overall Accuracy 
(OA). Note: accuracy values are provided as integers, consequently it is possible that the sum over all land 

cover classes is not exactly 100. 
 

Table 6.4 presents the classification accuracy matrices of the topographically corrected ML 

classification of 1985, 1995 and 2010. Compared to the uncorrected ML classification (Table 6.3), the 

overall accuracy values have increased with respectively 4% (1985), 4% (1995) and 3% (2010). 

Furthermore, the accuracies of the classes with lowest PA values in Table 6.3 (AR, BS and MX) show a 

larger accuracy increase compared to the other land cover types.  

 

Table 6.4.: Classification accuracy assessment of a topographically corrected Maximum Likelihood classification 
of 1985, 1995 and 2010 (separated by commas and in %). 

 Reference   Classification              

 AR BL BS UR CF GRASS MX WT  

AR 60,62,48 2,1,1 2,6,5 5,2,3 0,1,0 5,4,4 3,1,2 3,2,1  

BL 2,3,2 80,91,88 0,4,1 0,1,1 2,1,0 6,4,4 5,7,11 1,0,0  

BS 12,10,14 7,0,1 67,64,73 5,5,3 1,2,0 3,2,2 4,2,3 3,1,1  

UR 5,6,4 0,0,0 7,5,13 85,85,91 0,1,1 1,1,0 1,1,2 4,0,1  

CF 4,2,2 1,2,2 8,7,1 1,0,0 89,84,88 2,1,1 17,22,23 3,1,0  

GRASS 14,10,26 8,3,1 12,12,9 1,1,1 1,0,0 77,88,87 3,2,1 2,1,0  

MX 2,6,3 7,1,7 1,0,1 0,1,1 8,10,10 5,3,1 62,65,57 0,0,0  

WT 1,4,1 0,0,0 3,1,1 3,2,0 1,1,1 0,3,1 1,0,0 84,94,97  
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PA 60,62,48 80,91,88 67,64,73 85,85,91 89,84,88 77,88,87 62,65,67 84,94,97  

UA 89,59,64 37,46,53 66,87,91 60,75,76 57,64,77 41,56,64 57,63,69 87,95,97  

OA         70,79,81 

Urban land (UR), arable land (AR), bare soil (BS), grassland (GRASS), water (WT), and broadleaved (BL), 
coniferous (CF) and mixed forest (MX). Producer’s Accuracy (PA), User’s Accuracy (UA) and Overall Accuracy 
(OA). Note: accuracy values are provided as integers, consequently it is possible that the sum over all land 

cover classes is not exactly 100. 
 

The classification accuracy matrices of the topographically corrected SVM classification of 1985, 1995 

and 2010 are presented in Table 6.5. Compared to the uncorrected SVM classification (Table 6.4), 

there is a small increase in overall accuracy with respectively 3% (1985), 0% (1995) and 1% (2010). 

The low producer’s accuracies of the AR, BS and GRASS classes in Table 6.5 indicate that the 

differentiation between the classes is still hard. The misclassification between these classes has 

improved compared to the ML classifier and uncorrected scenarios, but remains problematic. Since 

this study is focusing on forest cover dynamics, all non-forest classes were grouped in a ‘non-forest’ 

class and the classification analysis was performed on the topographically uncorrected and corrected 

SVM scenarios. 

 

Table 6.5.: Classification accuracy assessment of a topographically corrected Support Vector Machine 
classification of 1985, 1995 and 2010 (separated by commas and in %). 

 Reference   Classification              

 AR BL BS UR CF GRASS MX WT  

AR 61,61,50 2,1,1 3,6,3 4,2,2 1,2,0 5,4,4 4,1,1 4,2,1  

BL 2,3,2 81,91,88 0,5,1 1,1,1 0,1,1 5,3,5 3,7,9 1,0,0  

BS 10,10,13 5,0,0 69,63,74 3,5,2 2,1,0 4,2,2 5,2,1 3,1,0  

UR 4,5,3 1,1,0 5,5,13 86,85,93 0,1,1 1,1,1 1,1,3 3,0,0  

CF 5,1,2 2,3,3 9,8,1 1,0,0 89,84,90 2,0,1 17,19,23 3,1,0  

GRASS 14,11,24 5,3,2 11,11,8 0,1,0 0,0,1 77,89,88 3,2,1 1,0,0  

MX 1,4,3 6,1,6 2,1,1 0,1,1 7,10,7 4,5,0 65,67,61 0,0,0  

WT 1,4,1 0,0,1 1,1,2 2,2,1 1,1,1 1,3,1 1,1,0 85,95,98  

          

PA 61,61,50 81,91,88 69,63,74 86,85,93 89,84,90 77,89,88 65,67,61 85,95,98  

UA 89,59,63 36,45,52 65,87,91 60,75,76 58,64,76 76,79,87 58,64,70 88,95,98  

OA         73,79,82 

Urban land (UR), arable land (AR), bare soil (BS), grassland (GRASS), water (WT), and broadleaved (BL), 
coniferous (CF) and mixed forest (MX). Producer’s Accuracy (PA), User’s Accuracy (UA) and Overall Accuracy 
(OA). Note: accuracy values are provided as integers, consequently it is possible that the sum over all land 

cover classes is not exactly 100. 
 

Table 6.6 shows the classification accuracy matrices of the topographically corrected SVM 

classification of 1985, 1995 and 2010 with 4 land cover classes. Compared to the uncorrected SVM 

classification with 8 classes (Table 6.4), there is a large improvement in overall accuracy with 

respectively 10% (1985), 4% (1995) and 7% (2010). The accuracies of the three forest classes has 

increased, but the largest increase is present in the non-forest (NF) class. This increase is explained 

by the omittance of the AR, GRASS and BS classes, which were hard to differentiate between each 

other. In Table 6.6, the MX forest class has the lowest producer’s accuracies ranging between 

respectively 70% (1985), 67% (1995) and 85% (2010). 
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Table 6.6.: Classification accuracy assessment of a topographically uncorrected Support Vector Machine 
classification of 1985, 1995 and 2010 (separated by commas and in %). 

 Reference   Classification      

 NF BL MX CF  

NF 82,81,94 8,2,4 5,5,1 1,4,1  

BL 7,6,9 84,97,89 8,6,4 1,1,3  

MX 3,6,2 2,1,5 70,67,85 1,10,10  

CF 5,7,1 5,0,1 17,23,9 89,86,87  

      

PA 82,81,94 84,97,89 70,67,85 89,86,87  

UA 93,94,90 75,85,83 57,61,80 63,78,74  

OA     83,83,89 

Non-forest (NF), broadleaved forest (BL), coniferous forest (CF) and mixed forest (MX). Producer’s Accuracy 
(PA), User’s Accuracy (UA) and Overall Accuracy (OA). Note: accuracy values are provided as integers, 

consequently it is possible that the sum over all land cover classes is not exactly 100. 

 

The classification accuracy matrices of the topographically corrected SVM classification with 4 land 

cover classes of 1985, 1995 and 2010 are presented in Table 6.7. Compared to the uncorrected SVM 

classification with 4 classes (Table 6.6), the overall classification accuracies increase with respectively 

2% (1985), 0% (1995) and 2% (2010). The CF forest class has the highest producer’s accuracies 

(respectively 92%, 86% and 88%) and the MX forest class shows the lowest PAs (respectively 72%, 

66% and 86%). 

 

Table 6.7.: Classification accuracy assessment of a topographically corrected Support Vector Machine 
classification of 1985, 1995 and 2010 (separated by commas and in %). 

 Reference   Classification      

 NF BL MX CF  

NF 85,83,97 7,1,2 5,5,1 1,4,1  

BL 5,5,1 85,97,89 6,5,4 0,1,1  

MX 3,5,1 1,2,8 72,66,86 6,10,11  

CF 4,6,1 6,0,1 17,25,10 92,86,88  

      

PA 85,83,97 85,97,89 72,66,86 92,86,88  

UA 98,96,93 76,85,84 59,62,81 64,77,75  

OA     85,83,91 

Non-forest (NF), broadleaved forest (BL), coniferous forest (CF) and mixed forest (MX). Producer’s Accuracy 
(PA), User’s Accuracy (UA) and Overall Accuracy (OA). Note: accuracy values are provided as integers, 

consequently it is possible that the sum over all land cover classes is not exactly 100. 

 

6.4.2 Land cover maps 

As expected, the classification accuracies of the composites with 8 land cover classes (Table 6.3, 6.4 

and 6.5) are lower than the accuracies with only 4 land cover classes (Table 6.6 and 6.7). 

Furthermore, since the differences in classification accuracy of the topographically uncorrected and 

corrected SVM composites with 4 classes are small and especially visually difficult to analyze, only 

the resulting land cover maps of the topographically composites 1985, 1995 and 2010 are presented 

in Figures 6.3a, b and c. Figure 6.3a presents the land cover map of 1985. The Romanian Carpathian 
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mountain range is dominated by the forest classes, with broadleaved forest in light green, coniferous 

forest in dark green and mixed forest in between. Lower elevated areas - located in the centre and 

northwest corner of the map - are dominated by the non-forest class, especially arable land and 

grassland. In general, no major changes are present in the three figures. However, it is possible to 

discern a gradual greening of some areas in 1995 (Figure 6.3b) and 2010 (Figure 6.3c). In order to 

support the visual results, the statistics of the land cover types were calculated and presented. 
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Figure 6.3.: Land cover maps in the Romanian Carpathian Ecoregion of (a) 1985, (b) 1995 and (c) 2010. 
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Figure 6.4 shows the statistics in percentage of the topographically corrected SVM classification with 

4 land cover classes in the Romanian Carpathian Ecoregion. The general trends between 1985 and 

2010 show a decrease of ±5% in the non-forest class and consequently a similar increase in the forest 

class. In 1985, the land cover map consisted for 57% of NF, 27% of BL, 10% of MX and 7% of CF. 

Compared to 1985, Figure 6.4 denotes an increase in the BL and MX forest cover classes in 1995 and 

2010. The CF forest class remains stable. The increase from 10% to 13% between 1985 and 2010 was 

largest in the mixed forest class, followed by an increase from 27% to 29% in the similar period for 

the BL class. In contrast, CF forest remained stable between 1985 and 2010, with a minor increase 

between 1985 and 1995.  

 

 
Figure 6.4.: Statistics of the cover change maps of 1985, 1995 and 2010 in the Romanian Carpathian Ecoregion. 

The average standard deviation over all land cover types and bands for the 3 years was respectively 1.85 for 
1985, 1.64 for 1995 and 1.38 for 2010. Non-forest (NF), and broadleaved (BL), mixed (MX) and coniferous (CF) 

and forest. 

 
In Table 6.8, these statistics are also summarized in ha for the Romanian Carpathian Ecoregion. The 

non-forest class accounts for more than half of the surface area, followed by the BL, MX and CF class. 

The decrease in the non-forest class between 1985 and 2010 (-516,072 ha) is especially compensated 

by an increase in the BL and MX forest classes with respectively increases of 302,784 ha and 217,162 

ha. The CF forest class experienced a small decline of 3,874 ha between 1985 and 2010. Table 6.8 

also shows that the total forest area increased from ±4,614,864 ha in 1985 to ±5,130,936 ha in 2010. 

 
Table 6.8.: Land cover area in ha of the 4 land cover classes of 1985, 1995 and 2010. 

Land cover area (ha)         1985 1995  
 

2010  

NF 6,100,236 5,927,443 5,584,164 
BL 2,859,076 2,920,346 3,076,238 
MX 1,034,334 1,111,709 1,337,118 
CF    721,453 755,602 717,579 
Total forest 4,614,864 4,787,657 5,130,936 

Broadleaved forest (BL), mixed forest (MX), coniferous forest (CF) and non-forest (NF). 
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6.4.3 Land cover change maps 

Based on the topographically corrected SVM classification with 4 land cover classes, land cover 

change maps between 1985-1995 and 1995-2010 were constructed. In order to assess the spatial 

pattern of land cover conversions, the main land cover trends related to forest cover changes 

between 1985, 1995 and 2010 were determined and visualized: afforestation, deforestation and 

disturbance. Furthermore, the three stable forest classes were included in the change map. Figure 

6.5 shows the main land cover trends between 1985 and 2010. Table 6.9 provides an overview of the 

land cover change types that were included in the main land cover trends.  

 
Figure 6.5.: Non-forest (grey), stable broadleaved, mixed and coniferous forest (green), deforestation (red), 

disturbance (yellow) and afforestation (light green) between 1985-1995. 

 

Table 6.9.: The main land cover trends and their areal change between 1985-1995 and 1995-2010 (in ha). 

Land cover trend Area 1985-1995  
(ha) 

Area 1995-2010 (ha) 

Stable BL 2,287,758 2,467,323 
Stable MX 1,089,086 1,267,481 
Stable CF 1,020,613 997,483 
Deforestation 292,383 322,380 
Afforestation

 
426,086 478,727 

Disturbance 54,653 34,368 
Non-forest 5,544,520 5,147,338 

Broadleaved forest (BL), mixed forest (MX), coniferous forest (CF) and non-forest (NF). 

 

The 1985-1995 change map shows that the forest classes remain fairly stable with ±2 million ha of 

stable BL forest and ±1 million ha of stable MX and CF forest. In contrast, the land cover change types 
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- deforestation, afforestation and disturbance – are underrepresented. The afforestation class covers 

about 425,000 ha (blue color in Figure 6.5) and occurs mainly in lower elevated areas or at the edges 

of the stable forests in higher elevated areas. The Carpathian Ecoregion was greening in the period 

1985-1995 since deforestation is lower than afforestation and is only occurring on ±290,000 ha (red 

color in Figure 6.5). The disturbance class is hard to distinguish in Figure 6.5 (yellow color), since it 

only accounts for ±55,000 ha and shows a scattered pattern nearby the edges of the stable forest 

classes. 

 

The change map of 1995-2010 in Figure 6.6 shows an increased presence of deforestation and 

afforestation. Deforestation is especially present in the southern and western corners of the 

Carpathian Ecoregion and accounts for ±320,000 ha. The afforestation class covers about 479,000 ha 

in Figure 6.6. Both land cover trends occur mainly at the fringes of the stable forests. Furthermore, 

the NF class between 1995 and 2010 decreased with about 400,000 ha compared to the period 1985-

1995. Compared to 1985-1995, the stable BL and CF forest classes increased in the second change 

period, with a presence of ±2.5 million ha of stable BL forest and ±1.25 million ha of stable CF forest. 

The disturbance class only accounted for ±35,000 ha. 

 

 
Figure 6.6.: Non-forest (grey), stable broadleaved, mixed and coniferous forest (green), deforestation (red), 

disturbance (yellow) and afforestation (light green) between 1995-2010. 
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6.5 Discussion 

Hitherto, forest cover dynamics in the Romanian Carpathians were described by means of local scale 

case studies and topographically corrected Landsat composites were missing at regional scale. In this 

chapter, classification accuracies were assessed for five different scenarios in which 3 components 

were altered: classifier (ML or SVM), number of classes (4 or 8) and topographic correction 

(uncorrected or corrected). 

 

First, land cover accuracies were assessed and compared for the five scenarios. The topographically 

uncorrected classification for 8 land cover classes resulted in overall accuracies of respectively 66% 

(1985), 75% (1995) and 78% (2010). The topographic correction improved the ML classification with 

respectively 4% (1985), 4% (1995) and 3% (2010). Therefore, a SVM classification was performed on 

the topographically corrected composites which resulted in an accuracy increase of respectively 3% 

(1985), 0% (1995) and 1% (2010). These results presented an indication that the implementation of a 

topographic correction had a smaller influence on the classification accuracies than the selection of a 

classifier. Compared to the results of Chapter 5, the accuracies were lower and the influence of the 

topographic correction was less pronounced. This was mainly explained by: (1) the larger extent of 

and more heterogeneous land cover classes in the study area of Chapter 6, and (2) the overall less 

pronounced topography in the study area of Chapter 6. In contrast, Chapter 5 only assessed accuracy 

values for one Landsat footprint located in a steeper study area of the Romanian Carpathian 

mountains.  

 

Therefore, the influence of topographic correction on classification accuracy was larger. 

Furthermore, Chapter 5 only examined the accuracy for six land cover classes, compared to eight 

land cover classes in Chapter 6. The arable land and urban class were not included in Chapter 5, 

which resulted in higher accuracies since especially the subtle differentiation between arable land 

and grassland was not included. However, the overall accuracy of the land cover maps produced in 

this study were higher than a similar large scale study of Griffiths et al. (2013a) which obtained an OA 

of 65% for the pixel-based image composites without topographic correction. Furthermore, UA 

values were ranging between 9% and 94%, and PA values varied between 36% and 96%. For example, 

the UA for the PBIC of grassland was 14%, the PA was 50% and bare soil class was not included in the 

analysis of Griffiths et al. (2013a). Another local scale study on one multi-temporal Landsat TM 

footprint in Oregon by Kennedy et al. (2007) selected the most suitable pixels based on the temporal 

signatures of spectral values that are associated with different land cover changes. Here, the 

automated method labeled the year of disturbance with 90% overall accuracy in clear-cuts and with 

77% accuracy in partial-cuts. 

 

Nevertheless, even after optimization of the classifier and inclusion of a topographic correction 

procedure, the identification of 8 different land cover types, still involved considerable levels of 

uncertainty. Especially the differentiation between the classes arable land, bare soil and grassland 

resulted in low producer’s and/or user’s accuracy values. This low separation of land cover classes is 

caused by similar spectral signatures of these three land cover classes. Since only one optimal pixel 

near the median DOY of 183 was selected for each year, phenology-related errors due to missing 

effects of crop cycles were included in the analysis. In a comparable analysis of Griffiths et al. (2012) 

on one Romanian Landsat footprint, the acquisition dates of some images between mid-October and 
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late-May explained lower accuracies due to strong phenology and illumination differences. 

Therefore, future versions of the PBIC algorithm should address the potential of different phenology 

measures by including specific temporal and spectral observations (Griffiths et al., 2012). The 

accuracies of the classes with lowest accuracy values before correction (arable land, bare soil and 

grassland) showed a larger accuracy increase compared to the other land cover types. The accuracies 

of the topographically uncorrected and corrected Support Vector Machine classifications for 4 land 

cover classes resulted in significant improvements of the accuracies. Compared to the uncorrected 

SVM classification with 8 classes (Table 6.4), there was a large improvement in overall accuracy for 

the scenario with 4 classes of respectively 10% (1985), 4% (1995) and 7% (2010). Furthermore, the 

influence of the topographic correction was again smaller than the influence of the classifier. 

Compared to the uncorrected SVM classification with 4 classes (Table 6.6), the overall classification 

accuracies of the corrected SVM classification increased with respectively 2% (1985), 0% (1995) and 

2% (2010). 

 

Generally, the main land cover conversion between 1985-1995 and 1995-2010was the conversion of 

non-forest in forest. A steady greening of the Romanian Carpathian Ecoregion was observed since 

afforestation was larger than deforestation in the two periods. Between 1985 and 2010, a decrease 

of ±5% in the non-forest class was compensated by an increase in the forest class (Table 6.8). The 

decrease in the non-forest class between 1985 and 2010 (-516,072 ha) was especially compensated 

by an increase in the BL and MX forest classes with respectively increases of ±302,784 ha and 

±217,162 ha. The CF forest class experienced a small decline of ±3,874 ha between 1985 and 2010. 

Table 6.8 also showed that the total forest area increased from ±4,614,864 ha in 1985 to ±5,130,936 

ha in 2010. Griffiths et al. (2013b) examined forest disturbances across the Romanian Carpathian 

Ecoregion in a similar way. Results showed that large changes in forest composition between 1985 

and 2010 occurred in Romania: coniferous forests decreased with 7% or ±197,330 ha between 1985 

and 2010, while broadleaved and mixed forests increased with 12% and 2% or respectively 

±1,095,030 ha and ±233,290 ha (Griffiths et al., 2013b). In general, the total forest area increased 

from ±6,027,370 ha in 1985 to ±7,158,360 ha in 2010. Moreover, the Global Forest Resources 

Assessment of FAO (2010) reported ±6,573,000 ha of Romanian forest area in 2010. Based on this 

comparison, our results reflect conservatives estimates of forest cover and forest cover change. 

 

The change detection analysis showed that stable forests were present on higher elevations. The 

1985-1995 change statistics in Table 6.8 showed that afforestation occurred on±425,000 ha and was 

larger than deforestation (±290,000 ha) in the Carpathian Ecoregion. The disturbance class only 

accounted for ±55,000 ha. In the 1995-2010 change statistics, an increased presence of deforestation 

and afforestation was observed. Deforestation accounted for ±320,000 ha and afforestation covered 

±479,000 ha. Both land cover trends occurred mainly at the fringes of the stable forests. Compared 

to 1985-1995, the stable BL and CF forest classes experienced a larger increase between 1995 and 

2010. An area of ±2.5 million ha of stable BL forest and ±1.25 million ha of stable CF forest was 

present in this second period (Table 6.9). However, this second period was five years longer than the 

first period. The deforestation was especially triggered by the weak implementation of the property 

laws during the different restitution phases, as explained in Chapter 3. The increasing forest area in 

Romania was confirmed by other studies. As indicated in Chapter 3, a national scale study of 

Greenpeace (2012) estimated the total area of deforestation and forest degradation ±280,108 ha 

between 2000 and 2011. However, in this study, forest was defined as 20% or greater canopy cover 
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for trees of 5 m or more in height. Another national scale study that was mentioned in Chapter 3 

estimated land cover changes between 1990 and 2006 using CORINE Land Cover products. Thereby 

±2,871 ha was affected by afforestation and ±3,267 ha was deforested. However, since the average 

size of forest properties was small, most of these areas could not be quantified in the model, leading 

to underestimations (Dutca and Abrudan, 2010).  

The conversion from non-forest to a forest class was triggered by the abandonment of cropland and 

a slow afforestation. A similar study by Olofsson et al. (2011) in the Romanian Carpathians between 

1990 and 2010 showed that grasslands and forests were expanding on unused or abandoned 

farmland after 1989. A study by Griffiths et al. (2013c) in the Romanian Carpathian Ecoregion showed 

grassland abandonment rates between 60% and 70% between 1985 and 2010. Moreover, grassland 

conversion persisted during 1995-2010 in western Romania. Furthermore, afforestation occurred 

after the EU accession and was especially concentrated in areas favorable for farming (Griffiths et al., 

2013c). In this study, the afforestation was mainly present in the northwestern corner of the study 

area which is also a suitable region for farming practices.The locations of deforestation in Romania 

also overlapped with the mapped areas of ‘full canopy removal’ in other studies. Knorn et al. (2012a) 

assessed these patterns between 1987 and 2009 in the northern Romanian Carpathians. Largest 

deforestation was present near the Ukranian border in between 1994 and 2009, which overlapped 

with the deforestation patterns between 1990 and 2010 (Figure 6.6). Another study by Knorn et al. 

(2012b) also detected old-growth forest disturbances between 2000 and 2010 near the border of 

Ukraine and in the northwestern part of the Romanian Carpathian Ecoregion, as detected in Figure 

6.6. Moreover, Griffiths et al. (2012) determined areas of deforestation between 1985 and 2010 on a 

Landsat footprint in central-eastern Romania. Thereby, main deforestation patterns were observed 

during the first restitution phase between 1991 and 1999. Furthermore, these patterns were present 

at the borders of the forest and the plateaus, and overlapped more or less with observed patterns in 

Figure 6.6.  

 

In a following step, pixel-based compositing procedure can be improved, e.g. by implementation of 

variability metrics to alleviate scan line correction-off errors which was also tested successfully by 

Griffiths et al. (2013a). Such metrics can be produced to capture relevant phenologic states in the 

seasonal cycle of vegetation (Hansen et al., 2002; Griffiths et al., 2013a). Furthermore, the decision 

for image selection during compositing was based on a flexible parametric weighting scheme that 

evaluated available observations for their suitability. However, this decision system lacks a 

parameter that quantifies the atmospheric or topographic distortion. For example, the observation 

with the lowest reflectance in the blue band can be selected to minimize the atmospheric effects 

(Griffiths et al., 2013a). 

 

 

6.6 Conclusion 

So far, multi-temporal change analyses in the Carpathian mountains were performed with mosaicked 

satellite data or with pixel-based image composites. However, at present, the inclusion of a 

topographic correction in the compositing of Landsat data was still lacking. In this chapter, a 

topographic correction was included in the pixel-based image compositing algorithm and tested 

between 1985 and 2010. The multi-temporal analysis in the Romanian Carpathian Ecoregion 
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provided large scale topographically corrected maps and accuracy results. Thereby, the classification 

accuracy was assessed for five different scenarios in which 3 components were altered: classifier (ML 

or SVM), number of classes (4 or 8) and topographic correction (uncorrected or corrected). 

 

Generally, the overall accuracies for 8 land cover classes was between 66% and 82% for all years. The 

overall accuracy values were highest for the land cover maps of 2010. Furthermore, results 

presented an indication that the implementation of a topographic correction had a smaller influence 

on the classification accuracy than the selection of a classifier. However, after topographic correction 

and improvement of the classifier, the differentiation between the eight different land cover classes 

remained difficult. Therefore, accuracies of the topographically uncorrected and corrected Support 

Vector Machine classifications were determined for 4 land cover classes. This resulted in significant 

improvements of the accuracies. The overall classification accuracies of the corrected SVM 

classification were respectively 85% (1985), 83% (1995) and 91% (2010). 

 

A steady greening of the Romanian Carpathian Ecoregion was observed between 1985 and 2010 

since afforestation was larger than deforestation. Between 1985 and 2010, a decrease of ±5% in the 

non-forest class was compensated by an increase in the forest class. This decrease in the non-forest 

class was especially compensated by an increase in the broadleaved and mixed forest classes. The 

change detection analysis showed that the afforestation and deforestation trends were larger in the 

second period (1995-2010). In contrast, the disturbance trend was more important in the first period 

(1985-1995) but was only present on a small area. As shown in the next chapter, the examination of 

the main land cover trends can result in interesting research questions for large scale studies. 

 

The further development of automatic detection methods based on time series with a high temporal 

resolution is helpful for the identification of forest cover changes. In a following step, pixel-based 

compositing procedure can be improved by implementation of variability metrics, as explained in the 

discussion of Chapter 6. Moreover, the determination of the optimal lower boundary threshold of 

the factor (cosβ /cosβT)
b can be improved, e.g. by an optimization procedure of the as performed by 

Balthazar et al. (2012). Finally, the application of topographic correction before the pixel-based 

image compositing deserves further elaboration. This application would allow the inclusion of a 

parameter that quantifies the illumination effects and improves the input map for classification. 

Especially change detection studies in mountain areas could profit from such improvements.
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Chapter 7: Controlling factors of forest cover changes in the 

Romanian Carpathian Ecoregion 

 

7.1 Introduction 
 

 

Forest cover changes are complex processes with different possible pathways and controlling factors. 

A better insight in the factors that control forest cover change can support the development of 

sustainable conservation plans. Moreover, forest cover change data can be used to evaluate whether 

an implemented forest conservation policy was successful or not. 

 

Due to the lack of reliable and consistent data at larger spatial scales, many studies have evaluated 

controlling factors of forest cover change at local scale levels. The drawback of this approach is that it 

is unknownwhether the extent of the local scale study is representative for a larger area. Moreover, 

such local scale studies can only partially reveal the complex interactions of controlling factors that 

operate at different scale levels. Controlling factors such as soil type, soil gradient and accessibility 

can vary from parcel to parcel and are therefore typically important at local scale levels. Other 

controlling factors such as land use policy, forest protection and regional economic development 

show a variation over longer distances and can only be analyzed at regional scale levels. Based on the 

land cover data produced in the previous chapters of this work, such a regional scale analysis of the 

controlling factors of forest cover change will be carried out in the Romanian Carpathian Ecoregion. 

The selected period between 1985 and 2010 will allow to evaluate the impact of the policy changes 

that occurred following the fall of the communist regime in 1990. 

 

In Romania, several natural and anthropogenic factors have influenced the forest cover changes. 

Land zoning and changes in ownership regimes have been major drivers of forest cover changes 

during the past decades. Land reforms affected large areas of forest land that altered from state-

owned to private ownership. Non-protected as well as protected forest areas changed of owner 

during the three restitution phases (Knorn et al., 2012a). Three factors explained increased logging 

rates after the implementation of forest restitution laws. First, the economic recession provided an 

incentive for the new owners to immediately clear-cut their forests for short-term returns (Ioras and 

Abrudan 2006; Strimbu et al., 2005). Secondly, Romania’s forest restitution was a slow and complex 

process, with many new owners fearing that their property rights were not permanent (Sikor et al., 

2009), leading to rapid deforestation. Thirdly, the post-socialist period in Romania was characterized 

by weak institutional strength and law enforcement, which resulted in increased illegal logging rates 

(Ioja et al., 2010; Strimbu et al., 2005). Results of a similar study in the northern part of Romania by 

Knorn et al. (2012a) suggested that the decline of the forest area was largely triggered by 

institutional changes. Moreover, new forest owners often lacked capacity and knowledge for 

sustainable forest management and nature conservation (Knorn et al., 2012a). Natural stand-

replacing disturbance events also occurred in the Romanian Carpathians and included avalanches, 

wind-throw and insect infestation (Schelhaas et al., 2003; Toader and Dumitru, 2005). Informal 

interviews pointed out that corridors in forests were deliberately placed to inflict wind-throw and 

thereafter allow salvage logging (Knorn et al., 2012a). Forest fires, on the other hand, were not 

widespread and were always occurring in small areas (Anfodillo et al., 2008; Rozylowicz et al., 2011). 
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The objective of this study in the Romanian Carpathian Ecoregion is the assessment of the relative 

importance of local and regional scale controlling factors. In Chapter 6, a multi-temporal land cover 

dataset was produced by integrating a topographic correction procedure in pixel-based Landsat 

compositing procedure. The reconstruction of the main land cover changes between 1985, 1995 and 

2010 showed particular patterns of an overall land cover greening, though deforestation was 

observed at a number of locations. At present, it is unclear to what extent such patterns are caused 

by variations in the biophysical environment, regional socio-economic settings or land use policy 

implemented at a national scale. Therefore, an exploratory analysis of possible controlling factors of 

the regional scale land cover change patterns will be carried out based on the image composites 

produced in the previous chapter. Firstly, possible controlling factors of the observed land cover 

changes are selected. Next, their relative importance and the significance of these factors will be 

evaluated by means of a logistic regression analyses for the periods 1985-1995 and 1995-2010. 
 

7.2 Materials and Methods 

7.2.1 Study Area 

The study area of this chapter was the Romanian Carpathian Ecoregion, which was described in 

Chapter 6 (Figure 6.1). 

7.2.2 Analysis of controlling factors of forest cover change 

Variables that could possibly explain the observed land cover changes in the periods 1985-1995 and 

1995-2010 were selected based on two criteria. First, the observed land change processes were 

linked with possible explanatory variables mentioned in literature (Table 7.1). This resulted in the 

formulation of hypotheses on possible controlling factors which were related to accessibility, 

demography, land use policy and the biophysical environment. A second criterion was the nation-

wide availability of categorical and numerical data that could be considered as proxy-variables for the 

controlling factors. 

 

Table 7.1.: Studies on controlling factors of land cover changes: study area, period, topic of interest, 
explanatory variables and reference. 

Study 

Area 

Period Topic of interest Explanatory variables Reference 

Belize   1989-1995 Deforestation Accessibility Chomitz and Gray, 1996 
Republic 
of Congo 

  1987-1995 Deforestation Accessibility Wilkie et al., 2000 

Czech 
Republic 

  1850-2000 Land cover 
change 

Land use policy and economic 
condition 

Bicik et al., 2001 

Belgium 1774-1990 Soil erosion Slope gradient and soil type Van Rompaey et al., 
2002 

Hungary 1784-2002 Sediment fluxes Land cover change Jordan et al., 2005 
France 1834-2001 Deforestation Land use policy, technological 

progress and rural exodus 
Vandendael, 2007 

Belgium 1775-1929 Land cover 
change 

Land use policy and 
technological progress 

Petit and Lambin, 2002 

Ecuador 1963-2002 River channel Land cover change Vanacker et al., 2005 
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response 
Greece 1886-1996 Land cover 

change 
Soil erosion Bakker et al., 2005 

Europe 2001-2010 Cropland Land use policy Van Meijl et al., 2006 
Czech 
Republic 

1992-1998 Sediment fluxes Field size Van Rompaey et al., 
2007 

Worldwide 1984-2010 Cropland 
abandonment 

Socio-economic factors Benayas et al., 2007 

Poland, 
Slovakia 
and 
Ukraine 

1986-2000 Cropland 
abandonment 

Land use policy and 
demography 

Kuemmerle et al., 2008b 

Romania 1990-2002 Cropland 
abandonment 

Land use policy Kuemmerle et al., 2008a 

Romania 1990-2005 Cropland 
abandonment 

Elevation and slope gradient Müller et al., 2009 

Europe 2000-2030 Cropland 
abandonment 

Land cover change and macro-
economic condition 

Verburg and Overmars, 
2009 

Hungary 1981-2006 Land cover 
change 

Soil type Szillassi et al., 2010 

Uganda 1989-2010 Urban growth Land use policy Vermeiren et al., 2012 
Ethiopia 1957-2007 Deforestation Elevation and slope gradient Getahun et al., 2013 
Ethiopia 1965-2007 Deforestation Land use policy and slope 

gradient 
Teka et al., 2013 

Albania/ 
Romania 

1990-2005 Cropland 
abandonment 

Elevation and slope gradient in 
both countries, accessibility in 
Albania 

Müller et al., 2013 

Belgium 
and France 

6000 before 
Christ - 1850 

Deforestation Soil type and slope gradient De Brue and Verstraeten, 
2013 

 

First, various studies identified the role of accessibility as an important controlling factor of both 

deforestation and afforestation. The spatially explicit model of von Thünen (1826) demonstrated that 

physical accessibility affected the land cover by including a transportation cost in the model that 

simulated the profit of peri-urban farmers. If forest is considered as a non-productive land cover, it 

will remain only in inaccessible places, according to the von Thünen model. However, if timber wood 

is an important product to be sold at a central market, timber will be harvested in accessible places 

(and possibly compensated by new plantations). This process is confirmed by manylocal scale studies 

reporting higher rates of deforestation along roads (e.g. Belize, Chomitz and Gray, 1996; Republic of 

Congo, Wilkie et al., 2000; Table 7.1). Higher deforestation rates were also related to different non-

market factors such as immigrants that settled along new road systems or a rise in logging for 

fuelwood. In contrast, a study of Getahun et al. (2013) in Ethiopia reported the opposite trend: 

deforestation occurred in relatively remote places away from the road systems, where isolated 

communities had no link with the regional market and were locked in to a system of self-subsistence 

agriculture. Since accessibility can steer a forest cover change in two directions, the variables 

distance to roads and distance to settlements were included as proxy-variables for accessibility in the 

analysis.  

 

Secondly, demographical variables can also be linked with deforestation and afforestation, where the 

relation is obvious at first sight: more people put a higher pressure on the land, resulting in less 

forest. Normally, changes in population density are related with accessibility, e.g. people migrate 

from inaccessible to accessible places. However, recent research by Teka et al. (2013) showed that 
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the opposite relation was valid for remote areas in northern Ethiopia: natural population growth was 

higher in inaccessible villages which resulted in a higher land pressure. In this study, population 

density change was therefore included as a possible factor explaining the spatial pattern of the 

observed land cover changes.  

 

Thirdly, socio-economic changes and its related land use policy are considered as an essential 

controlling factor of forest changes. The Romanian land use policy is interesting since a communist 

period with a central policy and collective farming was followed by a transition phase and the start of 

a free-market system. This socio-economic transition initially induced uncertainties related to land 

tenureship and private land ownership since a new forest protection policy system was installed 

following EU-guidelines. The three restitution laws of 1985, 1995 and 2010 affected large forest areas 

and non-protected as well as protected forest areas changed of owner during phases. The 

consequences of this transition period has been described for other countries in eastern Europe. A 

study of Bicik et al. (2001) reported the economic condition and especially the land use policy as the 

main social controlling factors over the past 150 years in the Czech Republic. Van Rompaey et al. 

(2007) described a transition from arable land to grassland and forest due to the abandonment of 

state farms along the borders of the Czech Republic. Szilassi et al. (2010) described similar processes 

for Hungary and was able to show that the soil type was an important controlling factors. Hereby, 

land of the former state farms with fertile soils was often bought by foreign investors to continue 

and intensify farming, while state farms with unfertile soils were completely abandoned. 

Decollectivization policies and the migration from rural to urban areas were considered as the main 

causes of cropland abandonment in Poland, Slovakia and Ukraine (Kuemmerle et al., 2008b). In 

Romania, cropland abandonment between 1990 and 2005 was mainly triggered by policy reforms 

where by steep lands at high elevations were the first to be taken out of production (Kuemmerle et 

al., 2008a; Müller et al., 2009 and 2013). 

 

The decollectivization triggered land abandonment and simultaneously it was held responsible for 

forest cover disturbances. Kuemmerle et al. (2009b) compared forest cover dynamics on public and 

the decollectivized private forests stands in Poland on the basis of Landsat images between 1988 and 

2000. Results showed that disturbance peaked in both public and private forests inthe transition 

period after the collapse of communism (Kuemmerle et al., 2009b). However, disturbance rates in 

private forests were about five times higher than on public lands. Furthermore, the spatial pattern of 

disturbances was similaracross ownership types, but private forests were more fragmented than 

state and National Park forests (Kuemmerle et al., 2009b). A complete overview of the forest 

clearings following the change in political regime in the Romanian Carpathians is, however, not yet 

available due to the absence of a central cadastral system. At present, land ownership data are still 

stored in decentralized records at communal level. Therefore, it was impossible to compile a national 

scale landownership map for this study. The analysis of possible policy effects on the forest cover 

dynamics was therefore restricted to the evaluation of the forest protection levels imposed by the 

Natura 2000 protection programme, which were described in Chapter 3. 

 

Finally, the biophysical environment is a key variable that controls the spatial pattern of land use 

change. In a phase of expansion of farming land, the most suitable land units for agriculture will 

firstly be taken in production, leaving the less suited land units under forest. In contrast, in a phase of 

farmland abandonment, the less suited arable fields will be abandoned first. A range of land cover 
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studies described this process over various time scales and in different regions worldwide (Van 

Rompaey et al., 2002; Müller et al., 2009; Szillassi et al., 2010; De Brue and Verstraeten, 2013; 

Getahun et al., 2013; Müller et al., 2013; Teka et al., 2013). The biophysical factors that are the most 

frequently linked with suitability for arable farming are slope gradient, climate, soil type and soil 

fertility. 

 

Eight explanatory variables, available for the whole Romanian Carpathian Ecoregion were selected 

and grouped in four categories: (1) accessibility, (2) demography, (3) land use policy and (4) 

biophysical environment (Table 7.2). The following eight factors were assessed for the Romanian 

Carpathian Ecoregion: distance to primary and secondary roads, distance to most nearby settlement, 

demographic evolution, protection level, slope gradient, elevation and soil type (Table 7.2). In the 

next paragraphs, the selected explanatory variables are briefly discussed. 

 

Table 7.2.: Variable description: variable, unit and category. 

Variable Unit Category 

Distance to primary roads (DPR)   Meter Accessibility 
Distance to secondary roads (DSR) Meter  Accessibility 
Distance to nearby settlement (DNS) Meter Accessibility 
   
Demographic evolution (DE, 1986-2010) Change in number of 

inhabitants/km
2
 

Demography 

   
Protection level (PL) 
   0 = Not protected 
   1 = Special Protection Area (SPA)  

Categorical Land use policy 

   2 = Area of Special Conservation Interest (SCI)   
   
Slope gradient (SG) Degrees Biophysical environment 
Elevation (EV) Meter a.s.l. Biophysical environment 
Soil type (ST) 
1 = Andosol (AN) 

Categorical Biophysical environment  

2 = Cambisol (CM)   
3 = Fluvisol (FL)   
4 = Leptosol (LP)   
5 = Luvisol (LV)   
6 = Phaeozem (PH)   
7 = Podzol (PZ)   

 

 

Accessibility 

For each pixel, the Euclidean distance to the most nearby settlement, the most nearby primary and 

secondary road was calculated. The location of roads and settlements was extracted from the 2003 

NUTS-database (Nomenclature of territorial units for statistics), developed by the European 

Commission and presented in Figure 7.1 (European Commission, 2013b). 
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Figure 7.1.: Primary roads (black line), secondary roads (brown line) and protected area (SCI in dark green and 

SPA in light green) in the Romanian Carpathian Ecoregion. SCI is an area of Special Conservation Interest and 

SPA is a Special Protection Area (European Commission, 2013b). 

 

Land use policy 

The Romanian legislation to safeguard valuable regions dates back to the communist times (1948-

1989) in which the protected area expanded. Between 1940 and 1991, the number of protected 

areas increased from 36 to 539 and their total areas were expanded about 13 times from 1,551 ha to 

1,140,388 ha (Cristea 1995 and 1996b; Soran et al., 2000). This was especially possible after the 

publication of Ministry Council Resolution no. 518 in 1954 which was the basis for legal activity for 

nature protection in Romania (Soran et al., 2000). After the fall of this regime, the protected areas 

were neglected due to weakened institutions. However, since 2001, Romania participated in the 

Natura 2000 network that comprises two different protection zones: SPAs and SCIs (Natura 2000, 

2012). This protection zones were discussed in Chapter 2. The Birds Directive requires SPAs and the 

Habitats Directive requests the establishment of SCIs for species other than birds and also habitats 

on itself. In total, 34,830 km2 or 18% of Romania falls under one of these two protection statuses 

(Matei, 2011).  

 

Implementing the NATURA 2000 network in Romania is rather difficult due to the lack of trained 

experts, data availability and/or their chaotic dispersion (Biriş et al., 2006). Therefore, considerable 

concerns about the status of nature protection remain: protected areas are sometimes subject to 

illegal logging and poaching, and many protected areas lack professional management, financing, and 

scientific support (Soran et al., 2000; Ioja et al., 2010; Knorn et al., 2012a). The categorical variable 

‘protection level’ consists therefore of three categories: not protected (0), under the SPA (1) or SCI 

(2) protection level. In Figure 7.1, the SPAs are shown in light green and the SCIs in dark green. 

 

Demography 

As in most Carpathian countries, the national Romanian population number has been decreasing 

over the last 15 years (NIS Romania, 2013). Census data, however, show that this decline is relatively 

recent: Romania’s population was strongly increasing between 1960 and 1992, stimulated by the 

family policy of the central government (NIS Romania, 2013). During the communist regime, 
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especially the rural population was affected by high unemployment rates and poverty. Consequently, 

a major part of the rural population abandoned their land and moved to the cities, in a number of 

cases stimulated by organized resettlement programmes (Turnock, 1991). After the fall of 

communism in 1989, the migration to the urban areas continued. However, this trend was inversed 

after 1997 and an net urban-rural movement was detected. People returned to the rural areas since 

the city life became more expensive and the job uncertainty increased (Guran-Nica et al., 2010).In 

this study, population data were analyzed at communal level (Solovastru, 2010). Population data of 

1986 and 2010 were provided by the NIS of Braşov (NIS Romania, 2013). Figure 7.2 shows the 

demographic evolution in change in inhabitants per km2 between 1986 and 2000. Results show that 

the population is declining in the major part of the study area. Absolute population change in the 

communes of the high mountains is relatively low due to the very low population density in this 

mountain area. 

 
Figure 7.2.: Demographic evolution (change in inhabitants per km

2
) between 1986 and 2000 in the Romanian 

Carpathian Ecoregion (NIS Romania, 2013). 

 

Biophysical environment 

Elevation and slope values were derived from an SRTM with an original spatial resolution of 90 x 90 

m (CGIAR-CSI/NASA, 2013). As explained in Chapter 4, this resolution was resampled to 30 x 30 m by 

means of a bicubic spline interpolation to match the resolution of the Landsat data (Figure 6.1). 

According to the WRB full soil code, 30 different classes were present in the Romanian Ecoregion. In 

order to reduce the level of detail, these 30 classes were merged in 8 main WRB soil types: Andosol 

(AN), Cambisol (CM), Fluvisol (FL), Leptosol (LP), Luvisol (LV), Phaeozem (PH), Podzol (PZ) and Regosol 

(RG) (FAO/UNESCO/WRB, 1998). The main soil types in the lower lying areas are Luvisols and 

Phaeozems which are fertile soils and suitable for a wide range of agricultural uses (FAO, 2006). 

Fluvisols are occurring around water bodies and also have a good natural fertility (Figure 7.3). In 

contrast, higher elevated areas are dominated by Cambisols, Podzols and Andosols. Cambisols 

generally result in good agricultural land and are used intensively, while Podzols are unattractive soils 

for arable farming due to their low nutrient status, low level of available moisture and low pH (FAO, 

2006). Andosols are generally fertile soils and have a high potential for agricultural production (FAO, 

2006). Furthermore, Leptosols have a resource potential for wet-season grazing and as forest land, 

and many Regosols are used for extensive grazing (FAO, 2006). Arable land in Romania, opposed to 
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forest, is normally expected land units with gentle slopes with fertile soils, at lower elevation ranges 

types (e.g. Luvisols and Phaeozems).  

 
Figure 7.3.: Eight main WRB soil types in the Romanian Carpathian Ecoregion: Andosol (AN), Cambisol (CM), 

Fluvisol (FL), Leptosol (LP), Luvisol (LV), Phaeozem (PH), Podzol (PZ) and Regosol (RG) (FAO/UNESCO, 1998). 

 

7.2.3 Logistic regression 

A wide range of methods is available to evaluate the relation between an observed land cover 

change and a potential explanatory variable. First, the most straightforward approach is based on 

frequency analyses of a crosstabulation tables in which the observed number of land cover changes 

in a certain category of a explanatory variable is compared with the expected number of land cover 

changes (Van Rompaey et al., 2001). A significant over- or under representation of a change type in a 

given class of a categorical variable can then be interpreted as a correlation. 

 

 Though this method allows to test individual variables, simultaneous analysis of the effect of 

multiple variables is often impossible since correlation between explanatory variables is not allowed 

in crosstabulation analysis. A second drawback is the need to categorize each numerical variable, 

which automatically leads to a loss of information. An alternative technique is a logistic regression 

that links at set of explanatory variables (numerical and/or categorical) with the probability of 

occurrence of a certain event, in this case a specific land cover change (Hosmer and Lemeshow, 

2000). The advantages of logistic regression analyses are: (1) calibration is possible with a relatively 

limited number of input data, (2) both categorical and numerical variables can be included 

simultaneously, (3) there is no need to categorize numerical variables, and (4) correlated explanatory 

variables can be included (Baker, 1989; Nelson and Geoghegan, 2001; Serneels and Lambin, 2001; 

Van Rompaey et al., 2001; Munroe et al., 2002; Verburg et al., 2004; Van Dessel et al., 2008). 

However, some disadvantages are the following: an implicit assumption of linearity of the land cover 

change process in terms of the logit function and between dependent and independent variables, 

the prerequisite of selecting explanatory variables, and the limitation of application to studies using 

between-subject designs (Tu, 1996; Steyerberg et al., 2001).  
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Therefore, more advanced model approaches include neighborhood effects in which e.g. the 

progression of a deforestation front is simulated. Neighborhood effects are typically modeled with 

cellular automata that describe potential pull and push effects between various land cover types by a 

range of parameters (Clarke et al., 1997; Verburg et al., 2004; Poelmans and Van Rompaey, 2009). 

Finally, the most advanced approach consists of agent-based models that simulate land cover 

changes by modeling the behavior of individual agents (land users) based on the goal and the 

characteristics of the agents and the characteristics of the environment in which they can operate 

(Parker and Meretsky, 2004). Though this technique is promising from a conceptual point of view, 

the practical application has been limited to a few case studies since a large database describing the 

individual behavior of land users or agents is required for model calibration (e.g. Brown and 

Robinson, 2006; Rui and Ban, 2010). These examples were mainly based on data derived from 

interviews with households and stakeholders. 

 

Given the possibilities and drawbacks of the available techniques and data, a logistic regression 

analysis was selected for the further analysis of the observed land cover change in the Romanian 

Carpathians. In this study, a stepwise Multiple Logistic Regression (MLR) was implemented using 

ArcMap 10 and SAS 9.2. Thereby, a MLR-equation was derived for the two main observed land cover 

changes: deforestation and afforestation (respectively DEFOR and AFFOR; see Chapter 6). The forest 

disturbance class was not included in the analysis since Chapter 6 showed that disturbance occurred 

only in a few fragmented locations in the Romanian Carpathian Ecoregion. Furthermore, the MLR 

analysis was performed for the two time periods, respectively 1985-1995 and 1995-2010. 

Probabilities for the two main land cover change types were assessed using the standard logistic 

regression equation 7.1. By applying these equation, it is possible to assess the probability of the 

occurrence of a land cover change at pixel level. 

 

 
 

              


               

* * * * * * * * * * * * * * *
( )

1 * * * * * * * * * * * * * * *

EXP a b DPR c DSR d DNS e DE f SPA g SCI h SG i EV j AN k CM l FL m LP n LV o PH p PZ
P AFFOR

EXP a b DPR c DSR d DNS e DE f SPA g SCI h SG i EV j AN k CM l FL m LP n LV o PH p PZ

 (7.1) 

 

with P(AFFOR), the probability that a pixel will be afforested; DPR, distance to primary roads (in 

meters); DSR, distance to secondary roads (in meters); DNS, distance to nearby settlement (in 

meters); DE, demographic evolution (inhabitants/km2); protection level (SPA, SCI); SG, slope gradient 

(in degrees); EV, elevation (in meters); ST, soil type [Andosol (AN), Cambisol (CM), Fluvisol (FL), 

Leptosol (LP), Luvisol (LV), Phaeozem (PH), and Podzol (PZ)]; a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p: 

regression coefficients. The categorical variables soil type (9 categories) and protection level (3 

categories) were coded with binary dummy variables: a value of 0 (absence of the category) or 1 

(presence of the category) (Hosmer and Lemeshow, 2000). The number of dummy variables was one 

less than the number of categories per categorical predictor, so 8 dummy variables for the soil type 

and 2 dummy variables for the protection level. The reference category for soil type was Regosol and 

the reference for protection level was ‘no protection’. A similar analysis was performed for the 

deforestation land cover change. 

Since the Natura 2000 network in Romania only started in 2001, the predictor ‘protection level’ was 

not included in the MLR-models for the period 1985-1995. In a stepwise MLR, the model coefficients 
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are assessed by maximizing the likelihood of the observed land cover changes (deforestation or 

afforestation) through an iterative procedure. Parameters that are not significant at a 95% 

confidence level are left out of Equation 7.1, after which new parameters are calibrated for the 

remaining variables.  

Positive values for the coefficients imply that the probability of the land cover change increases with 

increasing values for the explanatory variable. In order to calculate the regression coefficients, 

25,000 points were selected separately for the two dependent variables (AFFOR and DEFOR). The 

sampling was based on the land cover changes that were examined in Chapter 6 (Figure 6.6 and 6.7) 

and the values of the corresponding explanatory variables were extracted for each pixel. Hereby, half 

of the sample (about 12,500 points) was selected in the area where the land cover change was 

absent (coded with ‘0’) and the other 12,500 pixels were chosen in the area where the land cover 

change occurred (and coded with ‘1’). For example, the spatial pattern of the sample points for 

afforestation is shown in Figure 7.4, where afforestation occurred in the green points and was absent 

in the red points. Thereby, all afforestation sampling points were selected from points which were 

originally non-forest. In contrast, all deforestation sampling points were chosen from points that 

were originally forest. 

 
Figure 7.4.: Spatial pattern of the sample points for afforestation. Afforestation occurred in the green points 

and was absent in the red points. 

 

After the MLR analysis, probability maps were constructed using Equation 7.1 for each MLR-model 

(AFFOR and DEFOR). Afterwards, the goodness of fit was evaluated using a Relative Operation 

Characteristic procedure (Hall et al., 1995; Schneider and Pontius, 2001; Pontius and Schneider, 

2001). This analysis was performed to evaluate whether the MLR-models described the observed 

land cover changes better than random models. In a ROC-analysis, true positives (i.e. pixels correctly 

predicted) were plotted against false positives (i.e. pixels incorrectly predicted) for different land 

cover changes (Pontius and Schneider, 2001). The ROC-curve of a significant model has more true 

positives for the same level of false positives. In the case of a random model without any predictive 

power, a scatter around the 1:1 line is expected. In contrast, low false positive values would 

correspond to very high true positive values for a near-perfect model. The overall ROC-value is 
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defined as the area under the ROC-curve (AUC), which is an indication of the model performance. 

Therefore, a significant model is characterized by an AUC-value larger than 0.5 while a random model 

corresponds with an AUC-value of 0.5 (Pontius and Schneider, 2001). 

 

7.3 Results 

7.3.1 1985-1995 

Table 7.3 provides an overview of all MLR coefficients, Wald Chi-square and the P-values for both 

afforestation and deforestation in the study area between 1985 and 1995. Afforestation is correlated 

with 5 explanatory variables at a 95% confidence level. Significant predictors for afforestation are the 

slope gradient, elevation, distance to nearby settlements, and distance to primary and secondary 

roads with P values smaller than 0.05 (Table 7.3). All significant predictors are positively correlated 

with afforestation since the corresponding coefficients are positive, apart from distance to secondary 

roads. This means that afforestation in 1985-1995 rather occurred on steep slopes at high elevations, 

away from settlements and primary roads but nearby secondary roads. The Wald Chi-square values 

show that slope gradient and elevation are the most influential predictors (Table 7.3).  

 

Deforestation in the period 1985-1995 is positively correlated with elevation, but negatively with 

distance to settlements and distance to primary and secondary roads. This implies that forests were 

mainly removed at high elevations and in relatively accessible places. Furthermore, also Podzols were 

significantly correlated with deforestation (Table 7.3), whereby forests were rather avoided for 

deforestation on Podzols. The most influential predictor of deforestation model 1985-1995 was 

elevation with a Wald Chi-square value of 2,041 in Table 7.3. 

 

Table 7.3.: Coefficients and the P-value of the stepwise multiple logistic regression equation between 1985-

1995 where a = intercept, b(DPR) = coefficient of distance to primary roads, c(DSR) = coefficient of distance to 

secondary roads, d(DNS) = coefficient of distance to nearby settlement, e(DE) = coefficient of demographic 

evolution, f(SPA) = coefficient of special protected area, g(SCI) = coefficient of area of special conservation 

interest, h(SG) = coefficient of slope gradient, i(EV) = coefficient of elevation, j(AN) = coefficient of Andosols, 

k(CM) = coefficient of Cambisols, l(FL) = coefficient of Fluvisols, m(LP) = coefficient of Leptosols, n(LV) = 

coefficient of Luvisols, o(PH) = coefficient of Phaeozems, p(PZ) = coefficient of Podzols. 

           Afforestation          Deforestation 

 Coefficient Wald Chi-
square 

P-value
 

Coefficient Wald Chi-
square 

P-value 

Intercept (a) -1.39 838 <0.0001 -0.24 1,248 <0.0001 
b(DPR) 0.000033 27 <0.0001 -0.000030 27 <0.0001 
c(DSR) -0.000060 53 0.0023 -0.00011 139 <0.0001 
d(DNS)

 
0.000031 52 <0.0001 -0.00004 147 <0.0001 

e(DE) NS / / NS / / 
f(SPA) NA NA NA NA NA NA 
g(SCI) NA NA NA NA NA NA 
h(SG) 0.050 863 <0.0001 NS / / 
i(EV) 0.00088 225 <0.0001 0.0026 2,041 <0.0001 
j(AN) NS / / NS / / 
k(CM) NS / / NS / / 
l(FL) NS / / NS / / 
m(LP) NS / / NS / / 
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n(LV) NS / / NS / / 
o(PH) NS / / NS / / 
p(PZ) NS / / -0.0017 6 0.027 

NS: non-significant at the 95% confidence level; NA: not applicable since the Natura 2000 network in Romania 
only started in 2001. 

 

The goodness of fit of the modeling approach was evaluated with ROC-curves and AUC-values. The 

results for the deforestation and afforestation between 1985 and 1995 are shown in Figure 7.5a and 

b. The final model ROC curve is presented in green and compared against the 1:1 line (in orange). 

AUC-values of 0.76 for deforestation and 0.71 for afforestation show that the MLR model describes 

observed transitions better than a random model.  

 
Figure 7.5.: ROC curves showing the true and false positives between 1985-1995 for (a) afforestation, and (b) 

deforestation. 
 

7.3.2 1995-2010 

The MLR coefficients, Wald Chi-square and the P-values for afforestation and deforestation at the 

95% confidence level are shown in Table 7.4. Afforestation is significantly correlated with 10 

explanatory variables, including 5 soil types. Afforestation between 1995 and 2010 was correlated 

with: slope gradient, elevation, distance to primary and secondary roads, demographic evolution, 

Cambisols, Fluvisols, Luvisols, Phaeozems and Podzols (Table 7.4). This implies that land units with 

steep slopes at high elevations, away from primary roads but nearby secondary roads were preferred 

for afforestation. Afforestation in this period was also significantly correlated with population 

increase. Cambisols, Luvisols, Fluvisols and Podzols were preferred for afforestation while Phaeozems 

were avoided. The most influential predictors for afforestation were elevation and slope gradient 

with Wald Chi-square value of respectively 2,322 and 1,107 (Table 7.4). 

 

Deforestation in the period 1995-2010 was significantly correlated with all evaluated predictors 

except two soil types (Fluvisols and Leptosols). The coefficients show that deforestation probabilities 

were higher than average on land units with steep slopes, at high elevations, nearby settlements, 

nearby roads (primary and secondary), in places with an increasing population and in zones with SPA 

or SCI protection. Furthermore, Andosols, Cambisols, Phaeozems and Podzols were preferred over 

(a)  Afforestation (b)  Deforestation
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Luvisols. The most influential predictor for afforestation in the period 1995-2010 was elevation as 

indicated with a Wald Chi-square value of 2,041. 

 

Table 7.4.: Coefficients and the P-value of the stepwise multiple logistic regression equation between 1995-

2010 where a = intercept, b(DPR) = coefficient of distance to primary roads, c(DSR) = coefficient of distance to 

secondary roads, d(DNS) = coefficient of distance to nearby settlement, e(DE) = coefficient of demographic 

evolution, f(SPA) = coefficient of special protected area, g(SCI) = coefficient of area of special conservation 

interest, h(SG) = coefficient of slope gradient, i(EV) = coefficient of elevation, j(AN) = coefficient of Andosols, 

k(CM) = coefficient of Cambisols, l(FL) = coefficient of Fluvisols, m(LP) = coefficient of Leptosols, n(LV) = 

coefficient of Luvisols, o(PH) = coefficient of Phaeozems, p(PZ) = coefficient of Podzols. 

  Afforestation    Deforestation 

 Coefficient Wald Chi- 
square 

P-value
 

Coefficient Wald Chi-
square 

P-value 

Intercept (a) -2.40 2,044 <0.0001 -0.25 937 <0.0001 
b(DPR) 0.000080 132 <0.0001 -0.000050 80 <0.0001 
c(DSR) -0.000060 37 0.0023 -0.000010 88 <0.0001 
d(DNS)

 
NS / / -0.000090 520 <0.0001 

e(DE) 0.00051 5 0.028 0.0014 13 0.0003 
f(SPA) NS / / 0.12 31 <0.0001 
g(SCI) NS / / 0.24 152 <0.0001 
h(SG) 0.068 1,107 <0.0001 0.014 76 <0.0001 
i(EV) 0.001 2,322 <0.0001 0.0034 2,697 <0.0001 
j(AN) NS / / 0.76 95 <0.0001 
k(CM) 0.36 89 <0.0001 0.14 6 0.015 
l(FL) 0.62 92 <0.0001 NS / / 
m(LP) NS / / NS / / 
n(LV) 0.30 56 <0.0001 -0.52 53 <0.0001 
o(PH) -0.55 104 <0.0001 0.66 61 <0.0001 
p(PZ) 0.37 33 <0.0001 0.95 89 <0.0001 

NS: non-significant at the 95% confidence level. 

 

Figure 7.6a and b show the ROC curves for the modeled afforestation and deforestation between 

1995 and 2010. The AUC-values are higher than the models describing forest cover change in 1985-

1995 period: 0.81 for the deforestation model and 0.80 for afforestation. 

 
Figure 7.6.: ROC curves showing the true and false positives between 1995-2010 for (a) afforestation, and (b) 

deforestation. 

(a)  Afforestation (b)  Deforestation
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7.3.3 Comparison between 1985-1995 and 1995-2010 

Table 7.5 shows a comparison between the coefficients for afforestation and deforestation for the 

time periods 1985-1995 and 1995-2010. A comparison shows that both deforestation and 

afforestation occurred at the same places in both time periods. For the period 1995-2010, more 

predictors were found to be significantly correlated with deforestation or afforestation. For most 

predictors, a similar correlation with deforestation or afforestation was found for both periods. Table 

7.5 also shows that the sign of most coefficients (+/-) was consistent between 1985-1995 and 1995-

2010. Only one inconsistency was observed: Podzols were negatively correlated with afforestation in 

the period 1985-1995 and positively correlated in 1995-2010.  

 
Table 7.5.: Comparison of the coefficients for afforestation and deforestation between 1985-1995 and 1995-

2010, with: b(DPR) = coefficient of distance to primary roads, c(DSR) = coefficient of distance to secondary 

roads, d(DNS) = coefficient of distance to nearby settlement, e(DE) = coefficient of demographic evolution, 

f(SPA) = coefficient of special protected area, g(SCI) = coefficient of area of special conservation interest, h(SG) 

= coefficient of slope gradient, i(EV) = coefficient of elevation, j(AN) = coefficient of Andosols, k(CM) = 

coefficient of Cambisols, l(FL) = coefficient of Fluvisols, m(LP) = coefficient of Leptosols, n(LV) = coefficient of 

Luvisols, o(PH) = coefficient of Phaeozems, p(PZ) = coefficient of Podzols. 

 Coefficients for Afforestation model Coefficients for Deforestation model 
      ’85-‘95          ’95-‘10

 
’85-‘95 ’95-‘10

 

b(DPR)        +  + - - 
c(DSR)        -  - - - 
d(DNS)

 
        +  NS - - 

e(DE)          NS + NS + 
f(SPA)          NA  NS NA + 
g(SCI)          NA  NS NA + 
h(SG)          +  + NS + 
i(EV)          +  + + + 
j(AN) NS         NS NS + 
k(CM) NS          + NS + 
l(FL) NS          + NS NS 
m(LP) NS         NS NS NS 
n(LV) NS          + NS - 
o(PH) NS          - NS + 
p(PZ) NS          + - + 

NS: non-significant at the 95% confidence level; NA: not applicable since the Natura 2000 network in 
Romania only started in 2001. 

 

7.4 Discussion 

In this chapter, eight explanatory variables describing accessibility, demography, land use policy and 

the biophysical environment were linked with observed land cover changes in the Romanian 

Carpathian Ecoregion. By a logistic regression model, the main explanatory variables of deforestation 

and afforestation were detected for two periods: 1985-1995 and 1995-2010. Model validation 

showed a good fit between observed afforestation and deforestation patterns and the predicted 

probabilities. The area under the curve ranged from 0.71 to 0.81 over the two periods and was 

highest for the deforestation scenario between 1995 and 2010. In the following section, the results 

were summarized for the 4 categories: biophysical environment, accessibility, demography and land 

use policy.  
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7.4.1 Biophysical environment 

In general, the variables linked to the biophysical environment (e.g. slope gradient and elevation) 

were positively linked to both land cover changes (Table 7.5). The biophysical environment was the 

most influential predictor in the multiple regression models. The results of the MLR showed that 

both deforestation and afforestation occurred at relatively high elevations and on steep slopes. For 

afforestation, this observation was in line with the theory that land units with a low suitability for 

farming were firstly abandoned. Following the same logic, deforestation should have occurred at 

lower elevations and on weaker slopes, which was however not the case. A possible hypothesis could 

be that the forests were not harvested for the creation of new agricultural land but for their timber 

yield. Under this assumption, forest that provide the highest yield will be deforested first. In the 

Carpathian Ecoregion, many forests in the lower areas were the result of a recent regreening due to 

land abandonment and recent tree plantations after the regime change. In contrast, the forests at 

higher elevations were on average more mature and worthwhile harvesting. Further fieldwork and 

forest age mapping should confirm this hypothesis. 

 

Moreover, the results showed that Phaeozems were avoided for afforestation, while Podzols were 

preferred. This result is in line with the intrinsic suitability of these soil types. The Phaeozems, rich in 

nutrients and organic material, are highly suitable for grassland and arable land (FAO, 2006). Podzols 

on the other hand are considered as unattractive soils for arable farming and suitable soils for forests 

(FAO, 2006), which made them attractive for new plantations in the period after the 

decollectivization. Furthermore, the correlation of afforestation with the occurrence of Podzols that 

occurred mainly at higher elevations in the study area, may partly explain the positive correlation 

between afforestation and elevation. 

7.4.2 Accessibility 

Distance to settlements, distance to primary and secondary roads were taken as proxy variables for 

accessibility. The results showed that deforestation mainly occurred in relatively accessible places 

nearby settlements, primary roads and secondary roads in both periods. This finding may confirm the 

von Thünen model in which timber is considered as a market product, whereby transportation costs 

and accessibility control the deforestation patterns to a certain extent. The afforestation process 

seems to follow a different logic since afforestation probabilities were further away from settlements 

and primary roads in both periods. This may be explained by the fact that afforestation results from 

the natural regeneration of trees due to the forest transition which mainly occurs on abandoned 

fields which are often located in rather remote places (Kuemmerle et al., 2006 and 2008a). Griffiths 

et al. (2013c) observed an extensive afforestation in the Romanian Carpathian Ecoregion during the 

EU accession period. Furthermore, another explanation could be the obliged replanting of young 

trees in the second year after a cut when the natural regeneration was insufficient (Dumitriu et al., 

2003). Further field observations are necessary to validate these hypotheses. 

7.4.3 Demography 

In the first period, the demographic evolution (population growth or decrease) was not significantly 

correlated with the observed deforestation and afforestation patterns. However, both forest cover 

trends were positively correlated with population growth between 1995 and 2010. This might be 
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explained by the fact that an increasing population leads to a more intensive management of the 

Romanian forest with frequent clear-cuts followed replanting, while the landscape in the 

depopulating areas is more stable. Due to a mismatch between the available population data (1986 

and 2000) and the observed land cover patterns (1985, 1995 and 2010), further field observations 

are necessary to validate this hypothesis. 

7.4.4 Land use policy 

The end of the communist regime resulted in new political and economical conditions and a change 

in land tenureship after the decollectivization process in the 1990s. Crucial evolutions in the 

Romanian forestry sector were the implementation of three restitution laws between 1991 and 

2005, the accession to the EU and the construction of protected areas. However, weak 

implementation of the property laws resulted in increasing forest disturbance rates and nation-wide 

data to research the impact of the restitution laws were unavailable. 

 

Therefore, data on the Natura 2000 network in Romania were used as a controlling factor for the 

impact of land use policy. Since both protection levels (SPA and SCI) started in 2001, they were only 

considered in the second period (1995-2010). It might be expected that the Natura 2000 policy 

instrument led to a slowing down of deforestation in the delineated zones. However, the opposite 

was observed: both protection levels were significantly positively correlated to deforestation 

between 1995 and 2010. This means that both in SCI and SPA zones, relatively more forest 

disappeared than outside these zones. A possible explanation for this finding might be an accelerated 

deforestation in the SPA and SCI zones between 1995-2001. In this period, the Natura 2000 policy 

instrument was not yet implemented. Furthermore, Biriş et al. (2006) reported that the 

implementation of the Natura 2000 network in Romania is rather difficult due to the lack of trained 

experts, data availability and/or their chaotic dispersion. 

 

This finding are also in line with finding from other researchers that analyzed forest cover dynamics 

at local scale levels during and just after the fall of the communist regime (Soran et al., 2000; 

Brandlmaier and Hirschberger, 2005; Ioja et al., 2010; Knorn et al., 2012a and b). Knorn et al. (2012b) 

detected old-growth forest disturbances between 2000 and 2010 near the border of Ukraine and in 

the northwestern part of the Romanian Carpathian Ecoregion. The same study also reported a 

continued loss of old-growth forests in the Romanian Carpathians despite an increasing protected 

area network. 72% of the old-growth forest disturbances was found within protected areas and was 

partly related to institutional land reforms, insufficient protection and ownership changes since the 

collapse of communism in 1989. In another study, Knorn et al. (2012a) assessed disturbance patterns 

between 1987 and 2009 in the northern Romanian Carpathians. Forest disturbance rates increased 

sharply in two waves after 1995 and 2005. Substantial disturbances were detected in protected areas 

and even within core reserve areas. Furthermore, logging rates were largely triggered by rapid 

ownership and institutional changes. Corruption and lack of transparency were also mentioned as a 

major problem, leading to cases where sanitary or salvage logging has been misused to harvest 

healthy forest stands (Brandlmaier and Hirschberger, 2005; Knorn et al., 2012a). Finally, a study of 

Ioja et al. (2010) reported an overall decrease in the efficacy of Romania’s protected areas following 

the creation of the Natura 2000 sites. Administrative bodies were generally under-staffed and poorly 
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financed, conditions that were reflected in a poor enforcement and implementation of conservation 

goals (Ioja et al., 2010). 

 

7.4.5 Are the Romanian Carpathians in a forest transition phase? 

Despite the disappearance of forest over the past decades in the Romanian Carpathians and 

according to the observed inefficiency of the land use policy, it could be concluded that the 

Romanian Carpathians are experiencing an overall greening. The afforestation patterns observed and 

described in this study show to a certain extent a similarity with the positive forest cover change in 

mountain regions of western Europe such as the French Alps. Remote areas, marginal arable fields 

and grasslands are being abandoned and are gradually replaced by natural regrowth or plantation 

forest. This trend is quite similar with observation made at the beginning of the 20th century in e.g. 

the Swiss and French Alps and the Pyrenees (Freeman, 1994; Mather et al., 1999; Mather and 

Fairbairn, 2000; Mather, 2001; Liébault et al., 2005). 

 

The delay with which the Romanian Carpathians experienced a forest transition can be explained by 

the fact that western Europe transformed much earlier to an industrial society, while Romania 

remained a society based on agriculture for a longer period. At present, still 29% of Romania’s 

population is employed in the agricultural sector (Eurostat, 2012), which is the highest percentage in 

Europe. The communist period further delayed the entrance of Romania in a global market system 

which sustained the agriculture on from global economic point of view non-profitable land units. 

 

7.5 Conclusion 

Hitherto, former studies on land cover change patterns and their controlling factors were conducted 

at a local scale. These studies were able to reveal certain relations between local conditions and land 

cover change or focused on a specific land cover change. However, local scale studies were limited 

since no regional scale variables were included such as demographic trends and regional policy 

regulations. This study aimed to produce new insights in the mechanisms of land cover change by 

including both local and regional scale variables. Regional scale land cover maps produced with 

advanced pixel-based compositing techniques were combined to map the main land cover changes.  

 

In order to acquire a better insight in the controlling factors of the forest cover dynamics, the 

observed dynamics were linked with 8 explanatory variables. The results show that deforestation 

follows to a certain extent a von Thünen logic in which the accessible places are logged first, while 

the deforestation patterns seem to occur in more remote locations, possibly related to the 

abandonment of remote fields. Land suitability for farming and forestry could be identified as a 

crucial factor. Afforestation is dominant on Podzols, while the Phaeozems are avoided.  

 

Furthermore, this study showed that the implementation of the Natura 2000 network missed its goal 

since more deforestation was observed in the protected areas than outside. This could partly be 

explained by the lawless period following the fall of the communist regime and before the 

installation of the protected zones. A second explanation were the concerns on the difficult 

implementation of the Natura 2000 network in Romania and the status of nature protection. The 
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most important finding was the observation that the Romanian Carpathians are greening, despite 

local reports of deforestation and illegal logging. The observed forest cover trends can therefore be 

considered as a delayed forest transition similar to transition phases in the western European 

mountain ranges at the beginning of the 20th century. 
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Chapter 8: General discussion, conclusions and prospects 

 

8.1 General conclusions and discussion 

 

Forest cover changes have essential implications on a variety of landscape functions and their 

associated ecosystem services. Obviously, there is a need for reliable assessments of forest cover 

dynamics in order to assess future levels of ecosystem services. From scientific point of view there is 

an increasing interest in reliable data on forest cover dynamics that may provide a better insight in 

the drivers and mechanisms of forest cover change. Policy makers that are trying to steer forest 

cover dynamics in a certain direction developed a range of instruments such as land zoning, payment 

systems for the conservation of ecosystem services and product certification for sustainable 

production processes. Not surprisingly, there is a need for the evaluation of those instruments to 

check whetherthe protection by certain policiesis efficient. 

 

The detection and mapping of forest dynamics is, however, rather challenging since landscapes in the 

transition phases typically consist of patchy structures. Moreover, many hotspots of change are 

located in remote mountain areas. Finally, forest cover changes in the turnover phase from net 

deforestation to net afforestation are often characterized by subtle up- and downward trends. 

Remote sensing techniques seem to be proper tools for the analysis of forest cover changes in 

mountain areas and yet suffer from methodological problems. Many forest cover maps derived from 

remote sensing imagery are unreliable due to atmospheric and topographic distortions, especially in 

mountain areas. Moreover, for large scale studies, there is a strong need for reliable techniques to 

develop homogeneous image mosaicks. A range of techniques and methods has been developed but 

a systematic comparison of their efficiency for mapping forest cover dynamics was lacking till now. 

 

This thesis evaluated the existing atmospheric and topographic correction techniques based on 

assessments of reflectance homogeneity and classification accuracy. Furthermore, a topographic 

correction procedure was integrated in a pixel-based image compositing (PBIC) algorithm for the 

analysis of forest cover change on a large scale. Thereby, the detection of forest cover change in the 

Romanian Carpathian Ecoregion between 1985 and 2010 was taken as an example application. 

 

The scientific challenges related to large scale monitoring of forest cover change were addressed by 

following four research questions. Here, the main findings of this thesis are summarized: 

 

1. To what extent do available atmospheric and topographic corrections improve the 

homogeneity of reflectance values of medium resolution imagery in mountain areas? Do 

complex procedures perform better than simplified approaches? 

Most radiometric correction methods described in literature are presented as integrated methods 

although they consist of a sequential application of an atmospheric and topographic correction. In 

this study, it was decided to evaluate the basic topographic and atmospheric components for such 

models. Firstly, a typology of atmospheric and topographic correction methods was developed. Next, 

the performance of 15 atmospheric and topographic combinations was assessed. In order to do so, 
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three validation techniques were developed: (1) assessment of differences in reflectance between 

illuminated and shaded land units before and after correction, (2) statistical homogeneity tests for 

pixels with equal land cover before and after correction, and (3) correlation analysis between 

observed reflectance and terrain illumination. The analyses were performed on a Landsat footprint in 

the Romanian Carpathian mountains. First, results showed a reduction of the differences between 

average illuminated and shaded reflectance values after correction. Significant improvements were 

found for methods with a pixel-based Minnaert (PBM) or a pixel-based C (PBC) topographic 

correction. Secondly, the analysis of the coefficients of variation showed that the homogeneity for 

the selected forest pixels increased after correction. Finally, the dependency of reflectance values on 

terrain illumination was reduced after implementation of an atmospheric correction combined with 

the PBM or PBC method. 

 

Considering the overall results, this analysis showed that the complex combined corrections were 

most accurate but also most difficult to automate. Furthermore, the added value of complex 

topographic methods was high, while the added value of atmospheric methods was limited. 

Therefore, application of a combined correction based on a complex topographic component and a 

rather straightforward atmospheric component was justified in this case study. The added value of 

this study was the decomposition of combined models and the systematic evaluation along with 

uncorrected imagery. 

 

2. Does image preprocessing lead to more accurate land cover classification? 

In order to address this research question, all combinations of two atmospheric corrections, four 

topographic corrections and the uncorrected scenarios were applied on two acquisitions (2009 and 

2010) of a Landsat image in the Romanian Carpathian mountains. First, results showed that all 

corrected images resulted in higher overall classification accuracies than the uncorrected images. 

Secondly, class accuracies of especially the coniferous and mixed forest classes were enhanced after 

correction. Finally, combined correction methods showed most efficient on weakly illuminated 

slopes (cos β ≤ 0.65). The highest classification accuracy was achieved after combination of the 

transmittance functioncorrection with PBM or PBC topographic correction. Results of this study also 

indicated that the topographic component had a higher influence on classification accuracy than the 

atmospheric component. 

 

3. To what extent does topographic correction and pixel-based compositing improve large area 

(change) mapping? 

Recently, pixel-based image compositing algorithm have been developed to produce homogeneous 

land cover maps for larger areas, such as Griffiths et al. (2013b) for the Carpathians and Hansen et al. 

(2013) for the world. It is clear that these methods interact with preceding or following radiometric 

correction. Although, the added value of the combination of these methods was not examined till 

now. In this work, the results of pixel-based image compositing with and without topographic 

correction was examined. Therefore, the classification accuracy was assessed for five different 

scenarios in which 3 components were altered: classifier (Maximum Likelihood or Support Vector 

Machine, SVM), number of classes (4 or 8) and topographic correction (uncorrected or corrected). 

The results were evaluated by the calculation of overall and land cover specific accuracies. The 

overall accuracy for 8 land cover classes was between 66% and 82% for all years. Furthermore, the 
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implementation of a topographic correction had a smaller influence on the classification accuracy 

than the selection of a classifier. In contrast, overall classification accuracies of the corrected SVM 

classification for 4 land cover classes were higher, respectively 85% (1985), 83% (1995) and 91% 

(2010). The change analysis observed a steady greening of the Romanian Carpathians between 1985 

and 2010 due to a larger afforestation than deforestation.  

 

4. What is the pattern and what are the controlling factors of forest cover changes in the 

Romanian Carpathians? 
 

An analysis of the produced forest cover change maps for the Romanian Carpathians showed an 

overall greening of the landscape since more afforestation than deforestation occurred. In this final 

part, the observed land cover change patterns were linked with 8 controlling factors in four 

categories: accessibility, demography, land use policy and biophysical environment. The most 

important finding was the observation that the Romanian Carpathians are greening, despite local 

reports of deforestation and illegal logging. The observed forest cover trends can therefore be 

considered as a delayed forest transition similar to transition phases in the western European 

mountain ranges at the beginning of the 20th century. 

 

The multiple logistic regression also concluded that afforestation and deforestation were mainly 

positively related to the biophysical environment (elevation and slope gradient) for both periods. In 

contrast, the distance to secondary roads was negatively related to both land cover changes in these 

periods. Furthermore, land suitability for farming and forestry was identified as a crucial factor since 

afforestation was dominant on Podzols, while Phaeozems were avoided. Finally, this study showed 

that more deforestation was observed in forests protected by the Natura 2000 network than outside 

these forests. This was explained by the lawless period following the fall of the communist regime 

and the difficult implementation of the Natura 2000 network in Romania. 

 

 

8.2 Prospects and recommendations for further research 

 

This study aimed at contributing to a better detection of forest cover dynamics, especially in 

mountain areas. Therefore, available preprocessing methods were examined, evaluated with novel 

evaluation techniques and integrated in chain processing. Nevertheless, this research revealed that 

several additional procedures could be developed and evaluated. 

 

The approach adopted in this study consisted of the decomposition of so-called ‘combined correction 

methods’in their basic topographic and atmospheric components. In this way, the performance of 

each component could be evaluated separately. The case study proved that the benefits in reduction 

of atmospheric and topographic distortions justified the automation of more complex corrections in 

mountain areas. Preprocessing methods that were complex to automate in a processing chain were 

unattractive for integration in regional scale analyses though. This was especially valid for pixel-based 

compositing algorithms which need to preprocess large image archives. Therefore, a larger focus on 

the automation potential of correction methods is desired in further studies. The automation 

potential of different corrections decreases with the complexity of input parameters. Therefore, 

indicators that quantify the automation potential should be developed. Such indicators should 



General discussion, conclusions and prospects 

 

133 
 

include a distinction between: (a) single value input parameters available in image metadata (high 

automation potential), (b) single value input parameters available in external data sources (medium 

automation potential), (c) single value input parameters derived from regression models (low 

automation potential), and (d) data layers available in external data sources (low automation 

potential). Consequently, the automation difficulty could be assessed for each combined correction 

by summing the scores of all input variables. Such an automation indicator could then be used in an 

expert system that helps a user to select the appropriate techniques given the accuracy criteria and 

the manpower available in the project. 

 

The integration of different scale levels of satellite imagery will also play an important role in future 

research since the costs of high and very high resolution imagery is expected to decrease. This will 

provide additional data for regional scale land cover studies. For example, high and very high 

resolution imagery can be used for the accurate selection and verification of ground control points to 

improve accuracy assessments of land cover mapping. The techniques that were implemented in this 

research can also support the improvement of the direct monitoring of ecosystem services. 

Moreover, this research can provide a basis for the evaluation of policy instruments and conservation 

measures. In the future, new analyzing techniques will be necessary to evaluate programmes such as 

eco-certificates and payments for ecosystem services.  

 

In this thesis, pixel-based compositing and topographic correction were integrated in a rather 

straightforward procedure: topographic correction of the imagery after compositing. The decision for 

image selection during compositing devised by Griffiths et al. (2013a) was based on a flexible 

parametric weighting scheme that evaluated available observations for their suitability. A more 

sophisticated integration could be developed by extending the flexible parametric weighting scheme 

with e.g. the local solar incidence angle and off-nadir position. In mountain areas, the inclusion of 

parameters that quantify the illumination effect could be interesting for an adapted topographic 

and/or atmospheric correction. Griffiths et al. (2013a) suggested the selection of the observation 

with the lowest reflectance in the blue band to minimize the atmospheric effects. Furthermore, in 

such a scheme, topographic and atmospheric correction should be performed before the composting 

procedure since the compositing will depend on the preprocessing. Results in this study and the 

study by Griffiths et al. (2013a) showed that compositing artifacts related to SLC-off scan line errors 

were visible in some areas of the land cover map when using the uncorrected PBIC. These artifacts 

were still visible in the map resulting from the topographically corrected PBIC. However, Griffiths et 

al. (2013a) showed that the inclusion of variability metrics is able to alleviate the SLC-off errors. 

 

Finally, this study focused on the impact of atmospheric and topographic corrections on a single 

study area: the Romanian Carpathian Ecoregion. Further research should therefore focus on the 

application of the techniques on other mountain study areas and larger temporal series. 
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