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Abstract

In this paper, the individual claim reserving model proposed by Pigeon et al. (2013) is
extended to include paid and incurred data. Analytic expressions are derived for the expected
ultimate losses, given observed development patterns. The usefulness of this new model is
illustrated using a portfolio of general liability insurance policies. Detailed comparisons with
existing approaches reveal that the paid-incurred individual reserving method proposed in
this paper performs well and produces more accurate predictions.

Keywords: Stochastic Loss Reserving, General Insurance, Multivariate Skew Normal distribu-
tion, Prediction.

1 Introduction

An insurance company is liable for the claims generated by the contracts sold to clients. The
insurer will hold capital aside to meet future liabilities attached to incurred claims. He thus must
predict, with maximum accuracy, the total amount necessary to pay claims that he has legally
committed to cover for. This is the job of a reserving actuary. Our paper presents a novel frame-
work for reserving using individual claim data, combining two sources of information, namely
claim payments and incurred losses. On the one hand, we extend the framework developed in
Pigeon et al. (2013) for reserving with individual claims, and now enable consistent handling of
paid and incurred information. On the other hand, we extend remarkable strategies for claims
reserving with paid–incurred information summarized in run–off triangles (see Quarg and Mack
(2004), Wüthrich and Merz (2010), Posthuma et al. (2008)) to the setting of individual claims.

Figure 1 illustrates the run-off (or development) process of a non-life insurance claim. A claim
occurs at a certain point in time (t1), consequently it is declared to the insurer (at t2), possibly
after a period of delay, and one or several claim payments follow (at time points t3, t4, t5)
until the settlement (i.e. closure, at time t6) of the claim. Insurance companies distinguish
Reported But Not Settled (RBNS) claims and Incurred But Not Reported (IBNR) claims. For an
RBNS claim occurrence and declaration take place before the present moment (say τ) and the
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1 Introduction 2

settlement occurs afterwards (i.e. τ > t2 and τ < t6 in Figure 1). An IBNR claim has occurred
before the present moment, but its declaration and settlement follow afterwards (i.e. t1 ≤ τ < t2
in Figure 1). The majority of techniques for loss reserving (see Wüthrich and Merz (2008))
aggregate information on the development of individual claims into run–off triangles. Figure 1
visualizes this operation and Figure 2 is an example of a run–off triangle.
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Figure 1: Time line representing the development of a non–life claim. The upper part illustrates claim
payments over time, and the lower part shows incurred loss adjustments throughout the de-
velopment of a claim. This information is then summarized in two run-off triangles: one for
claim payments and one for incurred losses.

Reserving actuaries typically not only consider claim payments (the upper part in Figure 1) when
evaluating reserves. They also analyze incurred losses (the lower part in Figure 1), especially in
lines of business with large settlement delays and in reinsurance. Incurred losses are the sum of
claim payments and case estimates. Such case estimates are set by an experienced case handler
and express the expert’s current estimate of the outstanding loss on an individual claim. Thus,
case estimates might be adjusted or corrected throughout the development of a claim. Incurred
losses therefore evolve, as Figure 1 illustrates. The incurred loss does not change when the case
estimate is automatically adjusted by subtracting the paid amount (at the date of payment).
Indeed, changes in claim payments and case estimates then annihilate and the incurred loss is
unchanged. Incurred loss adjustments and claim payments should not necessarily occur at the
same time. Typically, the initial case estimate (and thus: incurred loss) is determined by experts
right after reporting of the claim. These features are illustrated in Figure 1.

In current actuarial practice both sources of information are summarized in separate triangles,
see Figure 1 or Table 1 in Wüthrich and Merz (2010). The loss reserving actuary can either
work with a single channel of information (e.g. only claim payments), or can use a paid–incurred
method designed for triangles. Section 1 in Wüthrich and Merz (2010) is an excellent overview
of the milestones in the literature covering such methods.

Recently, the necessity and appropriateness of the use of run–off triangles has been challenged.
Building upon the fundamental work by Norberg (1993), Haastrup and Arjas (1996) and Norberg
(1999), Antonio and Plat (2013) model the development of individual claims in continuous time.
Drieskens et al. (2012), Rosenlund (2012) and Pigeon et al. (2013) work in discrete time and
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aggregate payments per time period (e.g. a development year), but keep the claim specific time
line. Our paper extends the discrete time approach in Pigeon et al. (2013) and allows for
consistent combination of two channels of information, namely claim payments and incurred
losses. The relevance attached by practicing actuaries to incurred loss information motivates
the importance of extending the tools for reserving with individual claims towards inclusion of
incurred losses.

The paper is organized as follows. We introduce the statistical model in Section 2 and we
present our main results in Section 3. We devote Section 4 to the parameter estimation problem
and we perform a case study in Section 5. Finally, we conclude in Section 6. Some technical
developments are gathered in an Appendix, for the sake of completeness.

2 Model specification and assumptions

Our starting point is the availability of a data set with detailed information on the development
of claim payments and incurred losses of individual claims. More specifically, the model uses the
occurrence date, the reporting date, the date(s) and size(s) of claim payment(s) and incurred
loss adjustment(s), and the closure date of the claim. We illustrate the available information
in continuous time in the first three columns of Table 1. In column 1, ‘P ′ refers to cumulative
payments, and in column 2 ‘I ′ is for incurred loss, as recorded on a MM/DD/YY basis.

Original information Date Our Notation

Paid Incurred

Accident 04/26/1997
Reporting 11/28/1997 T = 0

QP = 1 QI = 0
Number of periods with event UP = 4 UI = 4

after first one

P = 0 I = 4,402 12/11/1997 I1 = 4, 402

P = 23 09/30/1998
P = 83 11/12/1998 P1 = 83

P = 110 01/07/1999 NP
1 = 1 NI

1 = 2
P = 134 I = 6,217 10/16/1999 P2 = 134 I2 = 6, 217

P = 160 01/21/2000 NP
2 = 1

P = 550 11/08/2000 P3 = 550

P = 578 I = 6,262 03/15/2001 NP
3 = 1 NI

2 = 2
P = 607 07/25/2001 P4 = 607 I3 = 6, 262

P = 1,867 I = 9,438 03/05/2002 NP
4 = 1 NI

3 = 1
P = 7,394 05/28/2002 P5 = 7, 394 I4 = 9, 438

P = 7,394 I = 7,394 12/03/2003 NI
4 = 1

I5 = 7, 394

Closure 12/03/2003 NP
5 = 1 NI

5 = 0

Table 1: Illustration of claim payments and incurred losses as recorded in continuous time for individual
claims (first two columns). In columns 4 and 5 we demonstrate the discrete time notation used
in this paper. The claim is a bodily injury claim from the data set analyzed in Section 5.



2 Model specification and assumptions 4

2.1 Notation

We leave the continuous time framework from Figure 1 and work in discrete time (e.g. with
periods of one year). We denote the kth claim in a data base with k and the number of claims
from occurrence period i by Ki, i = 1, . . . , I, where I is the number of occurrence periods
considered. Our discrete time framework has the same set up as in Pigeon et al. (2013), but
is now extended to an additional source of information, namely the incurred losses. We specify
the following:

Exposure. To model IBNR dynamics we should have a measure of exposure at our
disposal, per period of occurrence, say θi. We refer to Pigeon et al. (2013) for more details
about exposure measures.

Reporting delay. Tk is the reporting delay for claim k, i.e. the number of periods between
the occurrence period of the claim and its notification to the insurance company. If the
claim is reported during the period of occurrence, Tk = 0.

Claim payments. A first source of information is claim payments (abbreviated with P ).

P.1. QPk is the first payment delay ; it is the number of periods between notification and
the first payment 6= 0 for claim k;

P.2. UPk is the number of period(s) with incremental claim payment 6= 0 after the first
period with positive payment;

P.3. NP
kj is the delay between two periods with payment ; it is the number of periods between

payments j and j + 1. We use Nk,UP
k +1 to denote the number of periods between the

last payment and the settlement of the claim.

P.4. The first cumulative payment ( 6= 0) is denoted with Pk,1. Consecutive cumulative
payments are Pk,2, . . . , Pk,UP

k +1. Since we focus on incremental claim payments 6= 0,
Pk,j differs from Pk,j−1.

Incurred losses. A second source of information is incurred losses (denoted with I),
structured in a similar way as the claim payments information.

I.1. QIk is the initial case estimate delay ; it is the number of periods between notification
and the initialization of a case estimate for claim k. Usually, an initial case estimate is
determined immediately after notification of the claim, as the first bullet in Figure 1
illustrates. However, depending on regulation, legislation and other external factors
the initialization of the case estimate may require more time.

I.2. U Ik is the number of period(s) with adjustment of the incurred losses, after the period
in which the initial case estimate is set.

I.3. N I
kj is the delay between two periods with adjustment of incurred losses. This is the

number of periods between adjustments j and j + 1. We use Nk,UI
k+1 to denote the

number of periods between the last payment and the settlement of the claim.

I.4. The final incurred loss is denoted with Ik,UI
k+1. Preceding incurred losses are Ik,1, . . . , Ik,UI

k
.

Again, since we focus on adjustments to incurred losses Ik,j+1 differs from Ik,j .
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Table 1 illustrates this notation (in columns 4 and 5) for a particular bodily injury claim. Let τ
denote the present moment, i.e. the moment of evaluation of reserves. We denote the collection
of information on claim payments (over all claims), available at τ , with IPτ . Similarly, IIτ is the
information on all incurred losses, as registered up to τ . For the combined information we use
Iτ := IPτ ∪ IIτ .

2.2 Individual paid–incurred developments

Given a claim k and UPk = uPk , the cumulative payments Pk,j are specified by the recursion

Pk,j = Pk,j−1 · λ
(k)
j−1 j = 2, . . . , uPk + 1, (1)

with initial value Pk,1. As in Pigeon et al. (2013) the λ
(k)
j ’s are payment-to-payment link ratios.

They are similar to chain–ladder development factors (see Mack (1993)), but j now refers to a
claim payment instead of development period. The claim payments information on claim k is
then summarized by the vector[

Pk,1 λ
(k)
1 λ

(k)
2 . . . λ

(k)

uPk

]′
. (2)

We combine the stream of information on payments with the information on incurred losses, as
registered for claim k. Similar to the Paid-Incurred Chain (‘PIC’) approach (see Wüthrich and
Merz (2010)) for aggregate data, we impose the condition

Ik,uIk+1 = Pk,uPk +1, (3)

given UPk = uPk and U Ik = uIk. This assumption guarantees that for each claim in the data set
the ultimate loss coincides for claim payments and incurred losses, as it should be. The incurred
losses then follow a backward recursion, namely

Ik,j−1 = Ik,j · γ
(k)
j−1 j = 2, . . . , uIk + 1, (4)

with initial value Ik,uIk+1. The γ
(k)
j are link ratios which express the adjustments in the in-

curred losses for claim k. Again, we monitor these from adjustment-to-adjustment, instead of
development-to-development (as the PIC does).

We illustrate the definition of payment-to-payment link ratios λ(k) and adjustment-to-adjustment
factors γ(k) on the example developed in Table 1. For this particular example we obtain

Pk,1 = 83 λ
(k)
1 = 1.61 λ

(k)
2 = 4.10 λ

(k)
3 = 1.10 λ

(k)
4 = 12.18

γ
(k)
4 = 1.28 γ

(k)
3 = 0.66 γ

(k)
2 = 0.99 γ

(k)
1 = 0.71.

2.3 Distributional assumptions

We define M = max
k

(
uPk
)

+ max
k

(
uIk
)

+ 1, a location vector µ = [µ1 . . . µM ]′, a scale matrix

Σ =


σ11 σ12 . . . σ1M

σ21 σ22 . . . σ2M
...

...
. . .

...
σM1 σM2 . . . σMM
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and a shape vector ∆ = [∆1 . . . ∆M ]′. Let Ω be a random vector combining both paid and
incurred, on log scale

Ω : =
[

logP1 log λ1 log λ2 . . . log λmax
k

(uPk ) log γmax
k

(uIk) . . . log γ1

]′
(5)

=
[

Ω1 Ω2 Ω3 . . . . . . . . . . . . ΩM

]′
.

For an ordered set v = {v1, . . . , v|v|}, |v| 6M , we construct the random vector Ωv by selecting el-

ements from Ω corresponding to the subscripts collected in v, i.e. Ωv :=
[
Ωv1 Ωv2 . . . Ωv|v|

]′
.

In a similar way, we construct the location vector µv = [µv1 . . . µv|v| ]
′, the shape vector

∆v = [∆v1 . . . ∆v|v| ]
′ and the scale matrix

Σv =

 σv1v1 σv1v2 . . . σv1v|v|
...

...
. . .

...
σv|v|v1 σv|v|v2 . . . σv|v|v|v|

 .
We assume that the random vector Ωv follows a |v|–Multivariate Skew Normal (MSN|v|) dis-

tribution with location vector µv, scale matrix Σ
1/2
v and shape vector ∆v. Here, Σ

1/2
v is the

square root of matrix
(
Σ

1/2
v

)(
Σ

1/2
v

)′
by Cholesky decomposition. The specification of the MSN

distribution used in this paper is in Definition 1 (see Gupta and Chen (2004), Akdemir (2009),
Akdemir and Gupta (2010) and Pigeon et al. (2013)). The corresponding moment generating
function (mgf) is in Appendix A.

Definition 1 (MSN distribution). Let µ = [µ1 . . . µl]
′ be a vector of location parameters, Σ a

(l×l) positive definite symmetric scale matrix and ∆ = [∆1 . . . ∆l]
′ a vector of shape parameters.

The (l × 1) random vector X follows a l–Multivariate Skew Normal (MSNl) distribution if its
density function is of the form

MSNl

(
x;µ,Σ1/2,∆

)
=

2l

det(Σ)1/2
· φl
(
Σ−1/2 (x− µ)

)
·

l∏
j=1

Φ
(

∆je
′
jΣ
−1/2 (x− µ)

)
,

(6)

where e′j are the elementary vectors of the coordinate system Rl and

φl (·) =
l∏

j=1

φ (·)

where φ (·) and Φ (·) are the pdf and cdf of the standard Normal distribution, respectively.

The scale parameter Σ is not the usual variance-covariance matrix as in the Multivariate Nor-
mal distribution. Formula (6) is generally valid whatever the square root considered. In the
remainder of the paper, we specify the matrix Σ1/2 instead of Σ because of the plurality of the
square roots of Σ.

For the time components (P.1-P.3) and (I.1-I.3) in Section 2.1 we use the same distributional
assumptions as in Pigeon et al. (2013). We do not repeat the assumptions here, but explain
them in the case study covered in Section 5.
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3 Ultimate loss prediction

As mentioned in Section 1, insurance companies distinguish RBNS claims and IBNR claims.
In this paper, we divide RBNS claims into two subclasses: pure RBNS (or just RBNS in the
following) and Reported But Not Paid (‘RBNP’). The latter expression describes a RBNS claim
for which no payments have been made yet and no case estimate has been determined yet. The
total reserve amount comes from the prediction of the remaining run-off of RBNS claims, and
the predictions for losses related to RBNP and IBNR claims.

For a claim k, we denote its development

Ωvk =
[
logPk,1 log λ

(k)
1 log λ

(k)
2 . . . log λ

(k)

uPk
log γ

(k)

uIk
. . . log γ

(k)
1

]′
, (7)

where the ordered set vk takes values {1, . . . , uPk + 1,max
k

(
uPk
)

+ 1 +

(
max
k

(
uIk
)
− uIk

)
, . . . ,M}.

To relax notation we suppress the claim index in the propositions below.

Proposition 1. For a claim with development structure as in Section 2 and for given values
UP = uP and U I = uI , we denote uP+I := uP + uI + 1, i.e. the length of the vector with
combined P and I information, and have the following results.

(i) The vector

D =
[
lnP1 lnP2 . . . lnPuP +1 ln IuI . . . ln I1

]′
(8)

= RΩv

=
[
D1 D2 . . . DuP+I

]′
with R the uP+I × uP+I matrix

R =


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

 , (9)

follows a MSNuP+I distribution with parameters Rµv, RΣ
1/2
v and ∆v.

(ii) The expected value of Pt (with t = 1, . . . , uP + 1) is

E
[
Pt|UP = uP , U I = uI

]
= 2u

P+I · exp
(

R[t,]µv+0.5R[t,]

(
Σ

1/2
v

)(
Σ

1/2
v

)′
R′

[t,]

)
·
uP+I∏
j=1

Φ

(∆v,j

((
Σ

1/2
v

)′
R′

[t,]

)
j√

1 + ∆2
v,j

)
,

(10)

with R[t,] the tth row of R. The expected value of It (with t = 1, . . . , uI , and t? = uP+I −
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t+ 1) is

E
[
It|UP = uP , U I = uI

]
= 2u

P+I · exp
(

R[t?,]µv+0.5R[t?,]

(
Σ

1/2
v

)(
Σ

1/2
v

)′
R′

[t?,]

)
·
uP+I∏
j=1

Φ

(∆v,j

((
Σ

1/2
v

)′
R′

[t?,]

)
j√

1 + ∆2
v,j

)
.

(11)

(iii) The covariance between eDi and eDj (with i, j = 1, . . . , uP+I) is

Cov
[
eDi , eDj |UP = uP , U I = uI

]
= 2u

P+I · exp
(

t′i+jRµv+0.5t′i+jR
(
Σ

1/2
v

)(
Σ

1/2
v

)′
R′ti+j

)
·
uP+I∏
n=1

Φ

(
∆v,n

((
Σ

1/2
v

)′
R′ti+j

)
n√

1 + ∆2
v,n

)

−22(uP+I) · exp
(

R[i,]µv+R[j,]µv+0.5

(
R[i,]

(
Σ

1/2
v

)(
Σ

1/2
v

)′
R′

[i,]
+R[j,]

(
Σ

1/2
v

)(
Σ

1/2
v

)′
R′

[j,]

))

×
uP+I∏
n=1

Φ

(
∆v,n

((
Σ

1/2
v

)′
R′

[i,]

)
n√

1 + ∆2
v,n

)
·
uP+I∏
n=1

Φ

(
∆v,n

((
Σ

1/2
v

)′
R′

[j,]

)
n√

1 + ∆2
v,n

)
, (12)

with ti+j is the sum of two uP+I column vectors with zero elements except for ‘1’ at its
ith, respectively jth, row.

The proof of Proposition 1 follows in Appendix B. From this Proposition, we obtain expected
values and covariances for cumulative paid and incurred amounts.

Proposition 2. For a claim with development structure as in Section 2 and for given values
UP = uP and U I = uI , we denote uP+I := uP + uI + 1. Let ‘vo’ be the set of subscripts
corresponding to the observed part of the random vector Ωv, ‘vf ’ the complementary set and
v′ := {vo, vf}. In both vectors, subscripts are in increasing order, e.g. vo1 < vo2 < . . .. Let
tP be the number of periods with observed partial payments and tI the number of periods with
observed adjustments in incurred losses.

The random vector Ωv′ follows a MSNuP+I distribution with parameters µv′, Σ
1/2
v′ and ∆v′. We

define

µv′ :=

[
µ̃o

µ̃f

]
, Σ

1/2
v′ :=

[
Σ̃oo 0

Σ̃fo Σ̃ff

]
, ∆v′ :=

[
∆̃o

∆̃f

]
.

µ̃o and ∆̃o are |vo|–column vectors, and µ̃f and ∆̃f are |vf |–column vectors. Σ̃oo is a |vo|× |vo|
lower triangular matrix with positive diagonal elements and Σ̃ff is a |vf | × |vf | lower triangular

matrix with positive diagonal elements. Denote µ? := µ̃f + Σ̃foΣ̃
−1
oo (ωvo − µ̃o), Σ? := Σ̃ff and

∆? := ∆̃f. The expected value of PtP +s with s = 1, . . . , uP + 1− tP , conditional on the observed
stream of combined (P, I) information in Ωvo, is

E
[
PtP +s|Ωvo = ωvo, U

P = uP , U I = uI
]

= exp

 tP∑
j=1

ωj

 · 2|vf | exp
(
t?sµ

?+0.5t?s((Σ?)1/2)((Σ?)1/2)
′
(t?s)′

)
·
|vf |∏
j=1

Φ

(
∆?
j

(
((Σ?)1/2)

′
(t?s)′

)
j√

1 + (∆?
j )

2

)
.

(13)
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Hereby t?s := [ 1 . . . 1 1 0 . . . 0 ] is a |vf |–row vector with 1 at position 1, . . . , s and 0
elsewhere. Similar expressions for E

[
ItI+s|Ωvo = ωvo, U

P = uP , U I = uI
]

are directly available.

The proof of Proposition 2 follows in Appendix C. The conditional expected value including past
information on claim payments or incurred losses only follows from Proposition 2 by choosing
an appropriate subset of v. Using the results from Propositions 1 and 2, an expression for the
total IBNR, RBNP and RBNS reserve easily follows.

Proposition 3 (Best estimates for ultimate RBNS, RBNP and IBNR losses). Let Iτ denote the
combined information available for all claims in the data set at evaluation moment τ , and Ik,τ
the specific information available for claim k. The latter is the observed part of the development
of claim k, i.e. Ωvok (see Proposition 2). Using the development structure from Section 2, we
obtain the following expressions for the ultimate IBNR, RBNP and RBNS losses.

(i) The expected value of the total outstanding IBNR and RBNP reserves, respectively, is

E[IBNR|Iτ ] versus E[RBNP|Iτ ] = (x) · EUP ,UI

[
E
[
PUP +1|UP , U I

]]
,

where (x) should be replaced with E[KIBNR], the expected number of IBNR claims for
the given data set, in case of IBNR reserves, and with kRBNP, the observed number of
open claims without payment and without initial case estimate, in case of RBNP reserves.
As in Pigeon et al. (2013) the occurrence of IBNR claims is driven by a thinned Pois-
son process, where thinning is based on the delay in reporting the claim to the insurance
company. PUP +1 is the random variable representing the ultimate loss of a claim, and
E
[
PUP +1|UP , U I

]
follows from Proposition 1 (ii).

(ii) The expected value of the ultimate RBNS loss is

E[RBNS|Iτ ] =

KRBNS∑
k=1

EUP ,UI

[
E
[
Pk,UP

k +1|Ik,τ = Ωvok , U
P
k , U

I
k

]]
where the sum runs over all RBNS claims in the data set. KRBNS is the observed number of

RBNS claims for the data at hand. For each RBNS claim E
[
Pk,UP

k +1|Ik,τ = Ωvok , U
P
k , U

I
k

]
follows from Proposition 2. The corresponding best estimate of the RBNS reserve then
follows by subtracting the most recent observed cumulative claim amount.

4 Parameter estimation

Parameter estimation is performed as in Pigeon et al. (2013). We use maximum likelihood for
estimating parameters of the distributions describing time dynamics (i.e. the random variables
U , Q and N in Section 2.1). To estimate shape parameters, we follow an iterative proce-
dure inspired by Akdemir (2009). We take the following steps: (i) start with initial values
for shape parameters; (ii) obtain estimates for location and scale parameters by the method
of moments; (iii) obtain updated estimates for shape parameters by the maximum product of
spacings method (see Cheng and Amin (1983) and Ranneby (1984)); and (iv) repeat steps (ii)
and (iii) until convergence. With the resulting shape parameters held fixed, we obtain location
and scale parameters by applying maximum likelihood. In the likelihood optimization, numer-
ical approximation of the Hessian matrix is used to estimate standard errors for location and
scale parameters. We perform data manipulations and likelihood optimization with R. A sample
R program illustrating the estimation procedure is available from the authors.
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5 Case study

5.1 The data

Background. We use data from a portfolio of general liability insurance policies for private
individuals. The claim payments from this data source have been analyzed in Antonio and Plat
(2013) and Pigeon et al. (2013). However, the information on incurred losses has not been con-
sidered before. Our analysis uses claim payments and incurred losses registered between January
1, 1997 and December 31, 2005. For these claims, we have access to paid and incurred losses
registered in years 2006, 2007 and 2008. We will use this information to evaluate our results.
Two types of payments are in the data set: Bodily Injury (BI) and Material Damage (MD).
We demonstrate the paid–incurred individual reserving method using BI claims. Corresponding
run–off triangles are in Figures 2 (claim payments) and 3 (incurred losses).

1 2 3 4 5 6 7 8 9

1997 271148 905934 1284478 1861430 2473545 2631995 2786279 3196535 3210059

1998 213628 712468 1048113 1424123 1735178 1802001 2018831 2114466 NA

1999 255561 870035 1325213 1640168 1943254 2290108 2452256 NA NA

2000 260538 905787 1421300 2016922 2508790 2966609 NA NA NA

2001 458840 1418720 2077303 2754281 3302786 NA NA NA NA

2002 318890 1015278 1663586 2212191 NA NA NA NA NA

2003 298100 1216496 1964751 NA NA NA NA NA NA

2004 328135 1371792 NA NA NA NA NA NA NA

2005 554960 NA NA NA NA NA NA NA NA

Figure 2: Bodily Injury: cumulative triangle with claim payments, aggregated by occurrence and devel-
opment year.

1 2 3 4 5 6 7 8 9

1997 3031512 3841628 3941695 3943014 3951643 4236078 4108628 3988837 3824533

1998 1677016 1916667 2031341 2310552 2829381 2715373 2507187 2599724 NA

1999 2119737 2484931 2725846 3329335 3331172 3057421 3096374 NA NA

2000 1946812 3151446 3929432 3966003 4156290 4595953 NA NA NA

2001 3059369 4221567 4745409 5100208 5584066 NA NA NA NA

2002 4320019 4215660 5425686 5930939 NA NA NA NA NA

2003 2713203 3796245 3904498 NA NA NA NA NA NA

2004 3461298 4353255 NA NA NA NA NA NA NA

2005 3935140 NA NA NA NA NA NA NA NA

Figure 3: Bodily Injury: cumulative triangle with incurred losses, aggregated by occurrence and devel-
opment year.

Incurred losses and claim payments coincide at settlement of the claim, as required by condition
(3). The latest observed cumulative paid amount is 20, 149, 870 euro (in total), while the most
recent total incurred loss is 37, 824, 482 euro. This is the sum of the numbers on the diagonal in
Figures 2 and 3, respectively. Thus, the claim experts’ estimate of the total outstanding loss is
37, 824, 482− 20, 149, 870 = 17, 674, 612 euro, as evaluated at the end of 2005.

Descriptive statistics. The data set consists of 7, 367 reported BI claims of which 6, 197
claims are closed at the time of evaluation. We present descriptive statistics for closed claims with
positive payments in Table 2. We illustrate dependence between the components of development
vector Ω ((5)) in Figure 5.
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Variables Mean Median s.e. Minimum Maximum Number of
Observations

P1 1, 190 397 3, 272 6.58 162, 300 3, 700
λ1 10.78 3.30 32.99 1.00 667.70 1, 245
λ2 4.81 1.99 10.97 1.00 131.80 343
λ3 2.67 1.74 2.22 0.51 12.57 116
λ4 2.28 1.65 1.89 0.96 12.19 51

γ1 8.71 2.21 45.00 0.001 1, 528 1, 958
γ2 6.04 1.31 58.61 0.8 1, 269 483
γ3 1.79 1.14 3.76 0.02 42.84 131
γ4 3.48 1.02 13.25 0.46 80.62 36

Table 2: Descriptive statistics for closed claims: first payment and development factors λj and γj with
j 6 4 for BI claims.

5.2 Estimation results

Occurrence of claims. We first model reporting delays, in a similar way as Pigeon et al.
(2013). We investigate the use of a discrete distribution combined with some degenerate com-
ponents, specified as

f1(t;ν) =

p∑
s=0

νs · Is(t) +

(
1−

p∑
s=0

νs

)
fT |T>p(t), (14)

where Is(t) = 1 for reporting in period s after the period of occurrence and 0 otherwise. f(t)
is the probability mass function of a discrete distribution with parameter(s) νp+1, . . . , νp+q. We
consider the use of a Geometric, Binomial, Poisson and Negative Binomial distribution for f(·),
combined with p + 1 degenerate components (p = −1, 0, 1, 2, 3). Our preferred specification
(using BIC) is a Geometric distribution, with a degenerate component for reporting at ‘0’ and
‘1’ periods after occurrence. Corresponding parameter estimates are in Table 3.

The number of claims from occurrence period i, say Ki, follows a Poisson distribution with
intensity θ ·w(i). w(i) is the exposure registered for occurrence period i. However, since we only
observe reported claims, the Poisson distribution should be thinned in the following way

θ · w(i) · F1(r?i − 1;ν). (15)

Evaluation then takes place r?i periods after occurrence period i, at the beginning of this period.
F1(·;ν) is the distribution function for reporting delay with unknown parameters ν correspond-
ing to the probability mass function (14). We calibrate this thinned Poisson process to the
number of reported claims per occurrence period, and obtain θ̂ = 0.8117 (s.e. 0.0148).

Time dynamics. For the other discrete random variables describing the time dynamics of a
claim (i.e. UP , U I , QP , QI , NP and N I , see Section 2.1), we also consider mixtures of a discrete
distribution with degenerate components. Again, our preferred specification is a Geometric
distribution with degenerate components. Corresponding results for UP and U I , i.e. the number
of periods with payment 6= 0 (after the first one) and the number of periods with adjustment of
incurred loss (after the case estimate initialization), are in Table 3. Since this case study reports
results for ultimate losses, we only show estimation results for the distribution of T , UP and U I .
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Reporting delay # Claim payments # Incurred loss
adjustments

(T ;ν) (UP ;β) (UI ;γ)
(s.e.) (s.e.) (s.e.)

0.8997 0.5259 0.3586
(0.005) (0.010) (0.008)
0.0790 0.2325 0.3771
(0.004) (0.007) (0.008)
0.5271 0.0761 0.1178
(0.062) (0.005) (0.006)

0.2053 0.2606
(0.018) (0.028)

Table 3: Parameter estimates and standard errors for a Geometric distribution with degenerate compo-
nents, as used for {Tk}, {UP

k } and {U I
k} random variables in Section 2.1.

MSN distribution for paid and incurred development vector. We consider two distri-
butional specifications for the development vector Ω (see (5)): the MSN distribution on the one
hand and the Multivariate Normal (MN) (or, MSN with ∆ = 0) distribution on the other hand.
In the estimation process we calibrate the development vector corresponding to claim payments
(i.e. logP1, log λ1, log λ2, . . . , log λmaxk (uPk )) with a maximum dimension of 5. We estimate

the development vector corresponding to incurred losses (i.e. log γmaxk (uIk), . . . , log γ1) with a
maximum dimension of 4. This is motivated by the fact that very few claims have more than
5 periods with incremental payment or more than 4 periods with adjustment in incurred loss
(see the descriptive statistics in Table 2). Thus, for the given data, the vector µ has dimension
(9 × 1), the matrix Σ has dimension (9 × 9) and the vector ∆ has dimension (9 × 1). When
the development process of a claim uses less development factors, appropriate sub–vectors and
sub–matrices are used in the likelihood, as discussed in Section 2.3.

We visualize the empirical correlation matrix corresponding to Ω with a heat map in Figure 4.

ln(γ1)

ln(γ2)

ln(γ3)

ln(γ4)

ln(λ4)

ln(λ3)

ln(λ2)

ln(λ1)

ln(P1)

ln(P1) ln(λ1) ln(λ2) ln(λ3) ln(λ4) ln(γ4) ln(γ3) ln(γ2) ln(γ1)

0.25

0.50

0.75

1.00
value

Figure 4: Empirical correlation matrix of Ω, visualized as heat map (in absolute value).
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Figure 4 motivates the following structures for the matrix Σ: (i) a diagonal structure (ΣA), (ii)
dependence between the first payment and all development factors (ΣB) and (iii) dependence
between the first payment and all development factors and between two successive elements of
the vector Ω (ΣC):

ΣA =


σ11 0 0 . . . 0
0 σ22 0 . . . 0
0 0 σ33 . . . 0
...

...
. . .

...
0 0 0 . . . σ99

 , ΣB =


σ11 σ12 σ13 . . . σ19
σ12 σ22 0 . . . 0
σ13 0 σ33 . . . 0

...
...

. . .
...

σ19 0 0 . . . σ99

 , ΣC =



σ11 σ12 σ13 . . . 0 σ19
σ12 σ22 σ23 . . . 0 0
σ13 σ23 σ33 . . . 0 0

...
...

. . .
...

...
σ18 0 0 . . . σ88 σ89
σ19 0 0 . . . σ89 σ99


.

Table 4 reports the Akaike and Bayesian Information Criterion (AIC, BIC), the number of
parameters used and the realized log–likelihood for the MSN and MN distributions with scale
matrix specified as ΣA, ΣB or ΣC . Based on these statistics, we prefer the MSN to the MN
assumption, and the preferred structure for the scale matrix is ΣB. Table 5 shows corresponding

# parameters Scale -ll AIC BIC
matrix

18 + 9 = 27 ΣA 13, 387 26, 828 26, 996
MSN 26 + 9 = 35 ΣB 12, 612 25, 294 25,512

33 + 9 = 42 ΣC 12, 599 25, 282 25, 543

18 ΣA 13, 421 26, 878 26, 989
MN 26 ΣB 12, 891 25, 834 25, 996

33 ΣC 12, 868 25, 802 26, 007

Table 4: A comparison of MSN versus MN specification for the logarithm of the development vector Ω
(5) with different structures for Σ.

parameter estimates. A selection of examples of observed data and fitted density contours are
in Figure 5.

5.3 Prediction results

5.3.1 Analtyical best estimates

We obtain analytical results for the expected value of total RBNS, RBNP and IBNR reserves
using the result from Proposition 3, where unknown parameters are replaced with estimates.
These expressions evaluate claims until settlement, even if this takes place beyond the boundary
of the triangle. Table 6 displays these analytical results for the Bodily Injury case study, using
the MSN and MN distribution for the development vector.

5.3.2 Simulation results

IBNR and RBNP reserves. For each occurrence period, we simulate the number of IBNR
claims from a thinned Poisson process (see (15)), where thinning is based on reporting delay
(see (14)). For each IBNR claim k, we simulate the number of period(s) with claim payments
UPk + 1, as well as the number of periods with incurred loss adjustment U Ik + 1. Consequently,
we simulate the development vector Ωk (see (5)). As such, we develop a claim until settlement
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Location Scale Shape

µ (s.e.) Σ1/2 ∆

µ1 = 4.81 σ11 = 3.78 σ12 = −1.36 ∆1 = 1.37
(0.03) σ22 = 1.82 σ13 = −0.70 ∆2 = 1.56
µ2 = 1.03 σ33 = 0.93 σ14 = −0.26 ∆3 = 1.07
(0.03) σ44 = 0.97 σ15 = −0.32 ∆4 = 4.43
µ3 = 0.79 σ55 = 0.44 σ16 = −0.18 ∆5 = 1.09
(0.05) σ66 = 1.00 σ17 = −0.20 ∆6 = 2.66
µ4 = 0.15 σ77 = 0.73 σ18 = −0.58 ∆7 = 0.49
(0.06) σ88 = 1.35 σ19 = −1.77 ∆8 = −0.39
µ5 = 0.51 σ99 = 4.13 ∆9 = −1.76
(0.09)
µ6 = −0.32
(0.11)
µ7 = −0.05
(0.07)
µ8 = 0.89
(0.05)
µ9 = 2.96
(0.04)

Table 5: Parameter estimates for the MSN distribution used in the case study.
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Figure 5: Empirical observations of the development vector Ω (see (5)) and contour plots obtained from
selected MSN model (see Table 5).
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(which can be beyond the boundary of the triangle). Finally, we evaluate the total IBNR reserve.
The prediction routine for the RBNP reserve is similar to the routine for IBNR claims. However,
the number of RBNP claims is observed, and therefore does not require a simulation step.

RBNS reserves. For each RBNS claim k, we first simulate the remaining number of periods
with payment. This implies simulating UPk conditional on the (already) observed number of
periods with payments (i.e. tPk in Proposition 2). Analogously, we simulate the number of
incurred loss adjustments, given the already observed number of periods with incurred loss
adjustment (tIk). Using these simulated values we generate the future part of the vector Ωk (see
(8) and Proposition 2), given the observed part of this vector. Finally, we evaluate the RBNS
reserve.

A comment applies to the simulation procedure for IBNR, RBNP and RBNS reserves. When
the simulated UPk or U Ik value exceeds the maximal dimension (4, respectively 4) used in the
calibration process (in Section 5.2), we apply a tail factor1.

Approach Expected S.E. VaR0.95 VaR0.995

Value

Chain-Ladder 15, 261, 478 2, 014, 391 18, 787, 651 20, 966, 860
(payments only)

Chain-Ladder 20, 337, 149 18, 957, 335 27, 474, 358 33, 639, 819
(incurred losses only)

PIC (ρ1 = 0) 20, 679, 977 1, 918, 866 23, 721, 875 25, 677, 209
(Wüthrich and Merz, 2010)

Individual paid–incurred 14, 107, 648 1, 684, 473 17, 053, 373 19, 872, 889
with MSN

Individual paid only 13, 488, 803 1, 840, 184 16, 673, 684 19, 883, 007
with MSN

Individual paid–incurred 11, 120, 832 1, 194, 498 13, 191, 743 14, 850, 789
with MN

Table 6: Outstanding loss reserves as estimated with techniques for aggregate data (chain-ladder, PIC
with independence between paid and incurred loss development factors) and techniques for
individual data (paid–incurred with MSN and MN specification and paid only with MSN
specification). Expected values are from analytical expressions and other results are based on
10,000 simulations.

5.3.3 Discussion

Individual paid-incurred results. Table 6 summarizes the distribution of the outstanding
loss reserve. Expected values are calculated with analytical expressions and other results are
based on 10,000 simulations. As in Pigeon et al. (2013) estimates based on the MN specification
are lower than the corresponding (and, preferred) MSN results. We also report estimates of
the oustanding loss reserve obtained with a MSN model including information on payments
only, using the structure ΣB for the scale matrix. The inclusion of information from incurred
amounts results in a larger expected value (14, 107, 648 versus 13, 488, 803) and in a smaller
standard error (1, 684, 473 versus 1, 840, 184). The impact of these three individual reserving

1This tail factor is the geometric average of empirically observed development factors.
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models on the shape of the distribution of the total outstanding claim amount is illustrated in
Figure 6.

0e+00

1e−07

2e−07

3e−07
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1.0e+07 1.5e+07 2.0e+07
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MSN (paid−incurred)

MN (paid−incurred)
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Figure 6: Probability density function of the total outstanding reserve obtained with the MSN model
(solid line) and with the MN model (broken line) using information on paid and incurred
amounts, and with the MSN model (dotted line) with information on paid amounts only.
Results are based on 10,000 simulations.

Benchmarking with techniques for triangles. To enable benchmarking, we include the
estimation results as obtained with standard techniques for run-off triangles. We include results
for: a bootstrap Overdispersed Poisson (ODP) model with chain–ladder structure (as in the R

chainladder package) on claim payments only (see Triangle 2) and on incurred losses only (see
Triangle 3), and the PIC method with independence between paid and incurred loss development
factors (Wüthrich and Merz (2010)). Despite the fact that the P/I ratio for the first occurrence
period is 0.84 << 1, we also estimate the reserve with the Munich chain–ladder method (Quarg
and Mack (2004)), as implemented in the R chainladder package. The corresponding best
estimate is 22, 293, 102 euro.

Benchmarking with claim experts’ estimates. As reported in Section 5.1, the total,
latest observed cumulative paid amount is 20, 149, 870 euro, while the most recent total incurred
loss is 37, 824, 482 euro. Thus, the claim experts’ estimate of the total outstanding loss is
37, 824, 482 − 20, 149, 870 = 17, 674, 612 euro. This is an aggregate, overall case estimate, as
evaluated at the end of 2005, in order to cover future payments. A significant part of this
amount (i.e. 1.18 million euro) comes from one unique claim.
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For claims occurred between the first day of 1997 and the last day of 2005, we also have infor-
mation available on paid amounts and incurred losses as registered in 2006, 2007 and 2008. At
the end of 2008, the total, latest observed cumulative paid amount is 28, 251, 441 euro, while
the total incurred loss amount is 36, 745, 920 euro. We illustrate these results in Figure 7. Thus,
8, 101, 571 euro was paid in 2006, 2007 and 2008, and the total case estimate is re-adjusted
to 8, 494, 479 euro (end of 2008). This results in a best estimate of 16, 596, 050 euro for the
time horizon [2006, final run-off), using observed payments (in 2006, 2007 and 2008) and case
estimates (set end of 2008). Taking into account the very large claim in the data set (with a
case estimate of 988, 871 euro, evaluated at the end of 2008), we conclude that the novel paid-
incurred reserving method for individual claims leads to reasonable results. For the case-study
at hand, the techniques designed for triangles of paid and incurred data lead to remarkably
higher estimates for the outstanding loss.

0e+00

1e−07

2e−07

3e−07

3.0e+07 3.5e+07 4.0e+07
Amounts

MSN (paid−incurred)

Figure 7: Probability density function of the total cumulative paid amount obtained with the MSN
model, as evaluated end of 2005. Results are based on 10,000 simulations. Expected total
cumulative paid amount is 20, 149, 870+14, 088, 172 = 34, 238, 042 euro. The cross on the left
along the horizontal axis (28, 251, 441) represents the observed cumulative paid amount and
the cross on the right along the horizontal axis (36, 745, 920) represents the claim experts’
estimate of the total cumulative paid amount, both evaluated at the end of 2008.

6 Conclusion

In this paper, we have adopted the individual claim reserving model proposed by Pigeon et al.
(2013) to combine information about paid amounts and incurred losses. The Multivariate Skew
Normal distribution is used to describe the dynamics of the claim settlement process under the
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condition that the ultimate loss coincides for claim payments and incurred losses. Analytical
expressions are derived for expected payments and incurred losses, as well as for their covariance
structure, given the number of periods with claim payments and incurred loss adjustments.
Conditional expected values, given past observed claim development, are also obtained in closed
form so that the total outstanding IBNR and RBNP reserves, as well as the ultimate RBNS
loss, are available analytically.

The theoretical results are illustrated by means of a case study based on a portfolio of general
liability insurance policies. The Multivariate Skew Normal model is tested against its simpler
Multivariate Normal counterpart and various covariances structures, supported by the data, are
considered. AIC and BIC both support the Multivariate Skew Normal model developed in this
paper, with an appropriate covariance matrix inducing dependence between the first payment
and all development factors.

The comparison with collective reserving methods (performed in Table 6) reveals that – for the
case study developed here – the proposed model in the present paper reduces the outstanding
loss reserve and improves on predictive accuracy (lowering the associated standard errors). The
same comment applies to the tails as VaRs at probability levels 95% and 99.5% also appear
to be smaller with the Multivariate Skew Normal model compared to collective approaches.
Considering the individual claim reserving model using paid data, only, as developed in Pigeon
et al. (2013), we see that neglecting the information about incurred losses bias downwards the
outstanding loss reserve but moderately impacts high quantiles. Replacing the Multivariate Skew
Normal distribution with the Multivariate Normal one greatly underestimates both outstanding
reserves and high quantiles. These numerical findings clearly support the practical relevance of
the new individual claim reserving model developed in the present paper.
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A Moment generating function of MSNl distribution

The moment generating function (mgf) of a random vector X ∼ MSNl(µ,Σ
1/2,∆) evaluated at

t ∈ Rl is

mX(t) = 2l · exp

(
t′µ+ 0.5t′

(
Σ1/2

)(
Σ1/2

)′
t

)
·

l∏
j=1

Φ

(
∆j

(
(Σ1/2)

′
t
)
j√

1 + ∆2
j

)
. (16)

B Proof of Proposition 1

(i) By construction, Ωv follows a MSNuP+I distribution with parameters µv, Σ
1/2
v and ∆v.

Let ln (Pt) = ln (P1)+
∑t−1

j=1 ln (λj), t = 2, . . . , uP +1 and ln (It) = ln (P1)+
∑uP

j=1 ln (λj)+∑uI

j=t ln (γj), t = 1, . . . , uI . The moment generating function of the random vector D =

RΩv is specified as follows (with t a uP+I column vector)

mD(t) = mΩv

(
R′t
)

= 2u
P+I · exp

(
t′Rµv+0.5t′R
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v

)(
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1 + ∆2
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)
.

We recognize the moment generating function of a MSN distribution and conclude

D ∼ MSNuP+I

(
Rµv,RΣ1/2

v ,∆v

)
.

(ii) For t = 1, . . . , uP+1, we have, conditional on UP and U I , E[Pt] = E
[
eln(Pt)

]
= E

[
eR[t,]Ωv

]
=

mΩv

(
R′[t,]

)
, so (16) allows us to write

E[Pt] = 2u
P+I · exp

(
R[t,]µv+0.5R[t,]

(
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)(
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)′
R′

[t,]

)
·
uP+I∏
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)
,
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with R[t,] the tth row of R. The proof is similar for E[It], t = 1, . . . , uI .

(iii) For i, j = 1, . . . , uP+I , we have, conditional on UP and U I ,

Cov
[
eDi , eDj

]
= E

[
eDi+Dj

]
− E

[
eDi
]
E
[
eDj
]

= E
[
eti+jRΩv

]
− E

[
eR[i,]Ωv

]
E
[
eR[j,]Ωv

]
= mRΩv

(
t′i+j

)
−mΩv

(
R′[i,]

)
mΩv

(
R′[j,]

)
.

By using results in (i) and (ii), expression (12) follows.

C Proof of Proposition 2

We define

Ψ :=

[
1|vo|×|vo| 0|vo|×|vf |

−Σ̃foΣ̃
−1
oo 1|vf |×|vf |

]
.

Using a similar argument as in (i) of Proposition 1, the random vector

ΨΩv′ =
[
Ωvo Ω?

vf = Ωvf − Σ̃foΣ̃
−1
oo Ωvo

]′
,

follows a MSNuP+I distribution with parameters
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]
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[
Σ̃oo 0
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]
, ∆v′ =

[
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]
.

The probability density function of ΨΩv′ becomes
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We recognize a product of two MSN densities

MSN|vo|

(
µ̃o, Σ̃

1/2
oo , ∆̃o

)
×MSN|vf |

(
µ̃f − Σ̃foΣ̃

−1
oo µ̃o, Σ̃

1/2
ff , ∆̃f

)
.

Therefore, the components Ωvo and Ωvf − Σ̃foΣ̃
−1
oo Ωvo are independent. By substituting ω?vf =

ωvf−Σ̃foΣ̃
−1
oo ωvo in (17), we find that given Ωvo = ωvo, Ωvf is MSN distributed with parameters

µ̃f +Σ̃foΣ̃
−1
oo (ωvo − µ̃o), Σ̃ff and ∆f . Finally, using the approach in the proof of Proposition 1

(ii) (see Appendix B), the expression for

E
[
PtP +s|Ωvo = ωvo, U

P = uP , U I = uI
]
.

follows.
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