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Abstract

Most mortality models proposed in recent literature rely on the standard ARIMA-framework (in

particular: a random walk with drift) to project mortality rates. As a result the projections are

highly sensitive to the calibration period. We apply a modelling strategy for the time-dependent

parameters in a large collection of mortality models that allows for objective, statistical detection

of one or more structural changes. By comparing projections based on different calibration periods

and different time series specifications, we show that our proposed methodology leads to more robust

mortality projections.
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1 Introduction

Mortality rates have improved substantially during the last century as discussed in, for example, Cairns

et al. (2008) and Barrieu et al. (2012). Life insurance companies and pension funds need to monitor and

predict mortality improvements for proper pricing and reserving. It is also important to quantify the

uncertainty in future mortality rates, for regulatory purposes such as Solvency II.

Constructing mortality rate projections consists of two steps, namely (i) estimating a mortality model

on historical data, and (ii) forecasting the time dependent parameters obtained in (i). The seminal paper

by Lee and Carter (1992) introduces a stochastic mortality model that allows for mortality improvements.

This is a single factor model with age and period effects. Several extensions have been proposed to the

Lee-Carter model, such as the introduction of a cohort effect (Renshaw and Haberman (2006); Currie

(2006)), functional forms for the age effects to limit the number of parameters (Cairns et al. (2006) and

Cairns et al. (2009)), and the introduction of age-group specific and quadratic effects (Plat (2009) and

O’Hare and Li (2011)).

The modelling of time-dependent effects in mortality models is underexposed in recent literature.

The period and cohort effects are often projected using ARIMA-models. However, when structural

changes are present, the time-dependent effects cannot always be captured by standard ARIMA-models.

The resulting mortality forecasts are highly sensitive to the calibration period. Alternatives have been

proposed to tackle this problem, e.g. Booth et al. (2002) and Denuit and Goderniaux (2005) use a

deterministic approach and Li et al. (2013) a Bayesian approach to choose an optimal calibration period,

Milidonis et al. (2011) introduce regime switching models to mortality modelling, and Li et al. (2011),

Sweeting (2011) and Coelho and Nunes (2011) introduce structural changes in trend and difference

stationary processes.

In this paper we extend the approach of Coelho and Nunes (2011). They allow for a single structural

change in period effects. However, multiple structural changes may have occurred, as suggested for trend

stationary processes by Sweeting (2011). We focus on the class of difference stationary processes as the

majority of the above-mentioned literature does. When extending the approach of Coelho and Nunes

(2011) by allowing for multiple structural changes in the period effects, we determine the structural

changes in an objective manner (Bai and Perron (1998)). The optimal number of structural changes is

selected using the Bayesian Information Criterion. As an example, we compare the projections from this

approach to those obtained when no structural changes or a single structural change is allowed using the

Dawid-Sebastiani scoring rule (Riebler et al. (2012)). Whereas the aforementioned papers often focus on

a specific mortality model, we show results for Dutch and Belgian mortality data, calibrated to a wide

variety of mortality models. We include both models with and without cohort effects since recent results

by Coelho and Nunes (2013) show that evidence of structural changes in models without cohort effects

may disappear once cohort effects have been included.

The remainder of this article is organised as follows. First, in Section 2 we introduce different

mortality models and we review methods used for mortality forecasting. In Section 3 we present our

approach for mortality forecasting when allowing for multiple structural changes within the period effects.

We investigate the estimation and backtesting results in Section 4, and Section 5 concludes.

2 Literature review

We start with an overview of mortality models from recent literature. Then we review the literature on

forecasting period and cohort effects when modelling mortality.
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Model Name Formula Original paper

M1 LC logmt,x = β
(1)
x + β

(2)
x κ

(2)
t Lee and Carter (1992)

M1A LC2 logmt,x = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x κ

(3)
t Renshaw and Haberman (2003)

M2 M logmt,x = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x γt−x Renshaw and Haberman (2006)

M2A - logmt,x = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x κ

(3)
t + γt−x

M3 APC logmt,x = β
(1)
x + κ

(2)
t + γt−x Currie (2006)

M5 CBD logit qt,x = κ
(1)
t + (x− x̄)κ

(2)
t Cairns et al. (2006)

M6 logit qt,x = κ
(1)
t + (x− x̄)κ

(2)
t + γt−x Cairns et al. (2009)

M7 logit qt,x = κ
(1)
t + (x− x̄)κ

(2)
t + b(x)κ

(3)
t + γt−x Cairns et al. (2009)

M8 logit qt,x = κ
(1)
t + (x− x̄)κ

(2)
t + (xc − x)γt−x Cairns et al. (2009)

M9 M6∗ logmt,x = β
(1)
x + κ

(1)
t + (x̄− x)κ

(2)
t +

+ (x̄− x)+κ
(3)
t + γt−x

Plat (2009)

M10 M5∗ logmt,x = β
(1)
x + κ

(1)
t + (x̄− x)κ

(2)
t + (x̄− x)+κ

(3)
t Haberman and Renshaw (2011)

M11 M7∗ logmt,x = β
(1)
x + κ

(1)
t + (x̄− x)κ

(2)
t +

+ (x̄−x)+κ
(3)
t + b(x)κ

(4)
t + γt−x

Haberman and Renshaw (2011)

M12 M8∗ logmt,x = β
(1)
x + κ

(1)
t + (x̄− x)κ

(2)
t +

+ (x̄− x)+κ
(3)
t + (xc − x)γt−x

Haberman and Renshaw (2011)

M13 Expl.YM logmt,x = β
(1)
x + κ

(1)
t + (x̄− x)κ

(2)
t +

+ c(x)κ
(3)
t + γt−x

O’Hare and Li (2011)

Table 1: Model specifications used in this paper.

2.1 Mortality model structures

Let the number of deaths during calendar year t aged x at death be dt,x, and the average population

aged x during calendar year t be et,x. The death rate, mt,x, is defined by

mt,x =
dt,x
et,x

. (1)

The probability that a person aged exactly x at the beginning of calendar year t dies within the next

year is called the mortality rate qt,x. The force of mortality µt,x is the instantaneous death rate at

exact time t for individuals aged exactly x at time t. If we assume that µt,x is constant in the interval

[t, t+ 1)× [x, x+ 1), the mortality rate is linked to the death rate by the approximation (see Cairns et al.

(2009)):

qt,x ≈ 1− e−mt,x . (2)

We will estimate the mortality rates using age effects (β
(i)
x ), period effects (κ

(i)
t ), and cohort (year of

birth) effects (γc), with c = t − x. Mortality models may include several age and period effects, hence

the superscript (i) for the β’s and κ’s.

As in Brouhns et al. (2002), we assume a Poisson distribution for the number of deaths within a

year, Dt,x ∼ Poisson(et,xmt,x). The various specifications for mt,x are listed in Table 1. Here, b(x) =(
(x− x̄)2 − 1

n

∑xn

xi=x1
(xi − x̄)2

)
where xi are the ages included in the data set, c(x) = (x̄ − x)+ +

[(x̄ − x)+]2, x̄ is the average of the ages, and xc is a constant which can be chosen up front or can be

estimated; in this paper we estimate this parameter1. For each of these models we specify the likelihood

1We estimate the model for all xc ∈ {x1, . . . , xn}, and the value of xc is chosen such that the likelihood is maximised.
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and apply standard Newton-Raphson steps to maximise this likelihood. Since most models may involve

identification issues, we apply the parameter constraints as proposed in the recent literature. Appendix

A gives an overview.

The models M5 to M8 use the linearity of the age effects for the pensioner ages. That linearity

does not hold for lower and higher ages, and these models are therefore appropriate for the pensioner

ages only (60-89). We therefore calibrate the models M5-M8 only on the ages 60-89, whereas the other

models are calibrated both for the ages 20-89 and the ages 60-89.

2.2 Forecasting mortality

We give an overview of standard ARIMA time series models, extensions to the standard ARIMA models,

and other time series models used for forecasting mortality.

Standard ARIMA-models

Cairns et al. (2011) consider the models M1 to M5, M7 and M8. These models are fitted to England and

Wales mortality data from the years 1961 to 2004. For the period effects they fit a (uni/multi)variate

random walk with drift. For the cohort effects they estimate different ARIMA(p, d, q)-specifications. The

specifications used in backtesting are selected based on biological reasonableness of the projections and

the BIC. Second order differencing of the cohort effect (d = 2) leads to large confidence intervals which

the authors find less plausible. For the data under consideration a mean reverting process (AR(1)) or

an ARIMA(1, 1, 0) process (both including a constant) is most appropriate for the cohort effects.

Plat (2009) introduces M9 and includes it in a comparative study of mortality models fitted to data

from the United States (1961 to 2005), England & Wales (1961 to 2005), and the Netherlands (1951 to

2005). In his approach the first period effect (κ
(1)
t in Table 1) is the main effect, and a random walk with

drift is used to project this factor. For the other period effects (κ
(2)
t and κ

(3)
t in Table 1), a non-stationary

ARIMA process like a random walk with drift is not used for projection, because he argues that this may

lead to biologically unreasonable projections. Therefore, a mean reverting process is fitted with non-zero

mean (AR(1) with a constant).

Plat (2009) considers two approaches for calibrating cohort effects: (i) estimate the cohort effect

for all cohorts available, and (ii) estimate the cohort effect only for cohorts older than 1946. The idea

is that the cohort effect is most prominent for higher ages, and cohort effects estimated on younger

cohorts should therefore not be used to project mortality rates for the elderly2. The cohort effect is then

projected using a mean reverting process with mean zero. As a result, there is no trend in the projected

cohort effect.

Haberman and Renshaw (2011) consider the models listed in Table 1, except for M2A and M13,

and they consider the Lee-Carter model extended with a cohort effect instead of our M3 specification.

The models are fitted on England and Wales data from 1961 to 2007. To project mortality these authors

fit a multivariate random walk with drift for all period effects, similar to the approach used in Dowd

et al. (2010). Haberman and Renshaw (2011) argue that the extrapolation of the cohort effect for

M2-M3 should be avoided, because there is no justification to treat the cohort effect and the period

effect independently. Therefore, they focus on modelling life expectancy and annuity values for existing

cohorts.

Lovász (2011) considers several models for Finnish (1950 to 2009) and Swedish (1950 to 2008) data.

He models the period effects as in Dowd et al. (2010) and Haberman and Renshaw (2011) by assuming

a multivariate random walk with drift. For the cohort effects he chooses the ARIMA(p, d, q)-process

2In this paper, we set the cohort effects equal to zero for the models M9 and M13 when there are no observations

available related to age 60 or higher, conform the idea in Plat (2009).
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that is optimal in terms of BIC. He considers the combinations d ∈ {0, 1, 2} and (p, q) ∈ {0, 1, 2}, and

for those datasets the optimal ARIMA specifications are always integrated, possibly with a lag included

(ARIMA(p, 1, 0)); two times differencing is never optimal.

Finally, O’Hare and Li (2011) introduce M13 and apply it to data from a range of developed countries

from 1950 to 2006. The proposed model is a modification of Plat’s model, and therefore they use the

same ARIMA-specifications as in Plat (2009). A random walk with drift is used for the main period

effect, mean reverting processes with non-zero mean are used for the remaining period effects, and a

mean-reverting process with mean zero is used for the cohort effect.

The papers mentioned above all use a random walk with constant drift for the first period effect, and

often also for the other period effects. However, different calibration periods are used and projections

based on a random walk with constant drift are potentially highly sensitive towards the calibration

period, see e.g. Booth et al. (2002) and Denuit and Goderniaux (2005). Furthermore, factors like

medical advances (Bots and Grobbee (1996)) and health system reforms (Moreno-Serra and Wagstaff

(2010)) can have an impact on the speed of the mortality improvements. Dropping the assumption of a

random walk with a constant drift may therefore be a way to improve model performance.

Regime switching models

Milidonis et al. (2011) calibrate the Lee-Carter model on US data for the ages 0-100 in the years 1901-

2005 (males and females combined). They propose a regime switching model with two regimes for the

differenced series of κt. The two regimes are allowed to have a different mean as well as a different

variance, and the estimation reveal that the variance differs substantially between the two regimes.

Based on information criteria and a likelihood ratio test they conclude that for the data set considered

the regime switching model outperforms the random walk with drift.

Hainaut (2012) extends the regime switching model to model M1A applied to French data for the

ages 20-100 in the years 1946-2007 (males and females separately), and concludes that the improvement in

loglikelihood is significant compared to the standard Lee-Carter model and the extension from Milidonis

et al. (2011).

Structural changes in trend stationary models

Li et al. (2011) calibrate the Lee-Carter model on England & Wales and US data for the ages 0-99 in

the years 1950-2006 (males and females combined). They perform a unit root test on the time series

κt, which means that they test the null hypothesis of a random walk with constant drift versus the

alternative hypothesis of a broken-trend stationary model. The broken-trend stationary model implies

that the mortality trend κt fluctuates around a deterministic trend. The deterministic trend is piecewise

linear and is estimated by regressing κt versus t and an intercept. Dummy variables are included in the

regression such that the trend may change once in the data set, but the different trends do not have to

be connected. For both data sets they conclude that a broken-trend stationary model is preferred over

a random walk with constant drift model, and they use the latest trend for predictions. Since this is a

trend stationary process, predictions from this model do not lead to confidence intervals which become

wider over time.

Sweeting (2011) calibrates the original CBD-model (M5) on England & Wales data for the ages 60-89

in the years 1841-2005. He assumes a broken-trend stationary model as in Li et al. (2011), but he allows

for multiple structural changes and imposes the different trends to connect. He then fits distributions

to the frequency and the severity of the changes in the trend and uses these distributions for forecasting

mortality. Structural changes are tested for significance using the Chow test (Chow (1960)).
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Structural change in difference stationary models

Coelho and Nunes (2011) consider the Lee-Carter model for a variety of countries, both for males and

females for the ages 0-99 in the years after 19503. They perform a unit root test as suggested by Harvey

et al. (2009) and Harris et al. (2009) that allows for a single structural change both in the trend stationary

and in the difference stationary model, where Li et al. (2011) only allow for a single structural change

in the trend stationary model. They perform this analysis for 18 countries both for males and females.

From all these data sets, the trend stationary model with possibly a structural change is rejected 33 out

of 36 times in favour of a difference stationary model with possibly a structural change. Further, for 21

out of 36 data sets a structural change is detected.

O’Hare and Li (2012) investigate the impact of a single structural change on mortality models

beyond Lee-Carter. They apply the methodology for difference stationary time series to the models M1

(Lee-Carter), M5 (CBD), M9 (Plat) and M13 (O’Hare and Li). They find that in mortality models

other than the Lee-Carter model a structural change is often detected as well, and that allowing for a

structural change can substantially improve the quality of forecasts, measured in Mean Absolute Error

and Root Mean Squared Error.

3 Proposed forecasting method

3.1 Forecasting period effects

When regime switching models are applied to mortality models, it is known beforehand that mortality

dynamics observed in the past will occur in the future. Changes in mortality dynamics may be a result

of changes in lifestyle, healthcare systems, etc. For example, in the Netherlands changes in smoking

habits have been an important driver in changes in mortality, which resulted in increasing (1950-1970)

and decreasing (from 1970 onwards) mortality rates. Since we find it difficult to predict whether and how

historical changes in mortality may occur again in the future, we will not use regime switching models.

Instead, we use recent information on mortality dynamics, but we use the entire calibration period

to estimate the variability in the mortality dynamics. Following the findings from Coelho and Nunes

(2011) and the fact that a random walk with drift is most prominent in the mortality literature, we focus

on the difference stationary process. However, we extend the approach of Coelho and Nunes (2011) and

the work of O’Hare and Li (2012) such that multiple structural changes can be detected, as multiple

events in the past may have affected the speed of mortality improvements.

Our starting point is the assumption that the period effects all follow a random walk with a piecewise

constant drift. We follow the steps as outlined below to detect the presence of structural changes, and

to project the time dependent parameters.

1. Check for structural changes in each time series individually, and determine the break points if

any;

2. Fit a (uni/multi)variate random walk with piecewise constant drift, given the break points deter-

mined in step 1;

3. Simulate paths from the time series model, given the parameter estimates from step 2.

To determine the break points, we follow the methodology introduced in Bai and Perron (2003). Suppose

we have at our disposal a time series κt (t = 1, . . . , T ) and define the first-order differences by ∆κt =

3The data set depends on the data availability per country.
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κt − κt−1. We estimate a random walk with a piecewise constant drift:

∆κt =



β1 + εt, t ≤ t1
. . .

βi + εt ti−1 < t ≤ ti
. . .

βm+1 + εt, tm < t

(3)

where εt ∼ N(0, σ2
ε) are independent over time. We estimate this model using OLS, hence, we minimise

the sum of squared residuals (SSR):

SSR(t1, . . . , tm) =

m+1∑
i=1

ti∑
t=ti−1+1

[∆κt − βi]2 (4)

where t0 = 1 and tm+1 = T . In the model specification above, we distinguish m break points, which

divide the time series into m+ 1 periods with different drifts. Both the number of break points and the

date of the break points are unknown.

Let β(Tm) denote the estimates {β1, . . . , βm+1} based on a given m-partition (t1, . . . , tm) denoted

Tm. If we substitute these parameter estimates β(Tm) into (4), then the estimated break points

(t̂1, . . . , t̂m) are such that (t̂1, . . . , t̂m) = argmint1,...,tmSSR(t1, . . . , tm), where the minimisation is taken

over all partitions (t1, . . . , tm) for which ti − ti−1 ≥ h. The parameter h corresponds to the minimum

period that a regime should last, and is to be chosen up front. Bai and Perron (2003) describe an efficient

algorithm to determine the optimal break points for a given m.

If we set h too low it is possible that spurious effects are picked up, which is undesirable. On the

other hand, if we set h too high, then it is possible that we miss break points because they are not

allowed. We take h = 5 which is in line with Zeileis et al. (2003) and Harvey et al. (2009), who suggest

to set h equal to 10% of the sample.

Given the method described above, we can determine the optimal break points (t1, . . . , tm) for an a

priori given number of break points m. We then have to determine what the optimal number of break

points, say m∗, is. In general there are two ways to choose the optimal number of break points: (i)

using an information criterion like the BIC, and (ii) performing F -tests to test the significance of the

improvement in fit when adding one or multiple break points.

If the information criterion is used, then one determines the BIC for all m ∈ {0, . . . , 5}4, see Zeileis

et al. (2003). Denote BIC(m) as the BIC corresponding to the optimal break points for a given m. The

optimal number of break points is then defined by m∗ = arg max BIC(m).

As in Bai and Perron (1998, 2003), we may consider two F -tests. The first is the sequential test

of m = l versus m = l + 1 break points. This is a sequential procedure: one starts with the null

hypothesis of m = 0 versus the alternative hypothesis of m = 1 break points. If the null hypothesis of

no break points is rejected, then one continues testing for the significance of two break points versus

the null hypothesis of one break point, and so on. The F -statistic is a function of the restricted sum of

squared residuals (RSSR) and the unrestricted sum of squared residuals (USSR), the null and alternative

hypothesis, respectively:

F =
(RSSR−USSR) /(p1 − p0)

USSR/(n− p1)
, (5)

where p0 is the number of parameters in the model under the null hypothesis, p1 the number of parameters

in the model under the alternative hypothesis, and n is the number of observations. Since the dates of

4We consider at most five structural changes. In the analysis performed there was no reason to allow for more structural

changes.
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the structural changes are unknown, we cannot use the standard critical values of the F -distribtion as

used in Sweeting (2011), but critical values have to be obtained through simulation (see Andrews (1992)).

If the break point is significant, then this break point is fixed and one searches for a new break point.

The old break point is not allowed to move, which may be suboptimal when searching for more than one

break point. Therefore, we shall not use the sequential F -test.

The second F -test is based on the null hypothesis of no break point (m = 0) versus the alternative

hypothesis of m = k break points. To determine the optimal number of break points, we determine the

F -statistic as defined in (5) for all k ∈ {1, . . . , 5} which we denote by F (k). We then define the UDmax

test statistic as the maximum value of those F -statistics:

UDmax = max
k

F (k) (6)

Since the number and dates of the break points are unknown, critical values have to be obtained through

simulation. If the observed UDmax test statistic is larger than the critical value, then the number of

break points is equal to k∗ = arg maxF (k). If the test statistic is smaller than the critical value, then

there is insufficient proof for a structural change.

The latter F -test is close to using the BIC, because an optimal model is chosen while considering all

model specifications. Yao (1988) shows that the number of break points that follows from optimising the

BIC is a consistent estimator of the true number of break points, and Bai and Perron (2003) note that

the BIC performs well in the absence of serial correlation. We will therefore use the BIC to choose the

number of break points. In the following paragraph we illustrate the method to Dutch male mortality.

Illustration - the Lee-Carter model

We consider the period effect of the Lee-Carter model, estimated on Dutch male mortality data for the

period 1960 to 2008, for the ages 60 to 89. The top left graph in Figure 1 shows the parameter estimates

for κ
(2)
t . A random walk with constant drift does not seem appropriate, because of apparent structural

changes around 1972 and 2000. This is confirmed in the bottom left graph. The black lines correspond

to projections from a random walk with constant drift and these projections suggest that κ
(2)
t had values

above its expected value in all years 1960-2008. The blue lines correspond to projections when one

structural change is allowed; the break point is dated at 1993, between the two dates expected by visual

inspection. These projections are not unreasonable, but the drift of the period effect does not appear

to be piecewise constant before and after the break point. If we allow for multiple structural changes,

then we obtain the projections represented by the red lines. The break points are estimated at 1972

and 2002. The projections look reasonable, because the drift of the period effect is piecewise constant

between the different break points, and the lines connecting the break points are not always below or

above the observed values.

The graphs on the right-hand side of Figure 1 show the projections for the period effect using

different calibration periods. We compare scenarios without structural changes, with a single structural

change and with multiple structural changes. Allowing for a single structural change leads to more

robust projections with respect to the calibration period, and if we allow for multiple structural changes,

projections become even more robust.

Figure 2 shows the first order differences of the estimated period effect from Figure 1 (top left).

From the upper right graph we observe that the first break point is accurately estimated, since the

confidence interval5 (shown by the red line) is narrow. The lower left graph in Figure 2 shows the

confidence intervals for the case of two break points. The second break point (around the year 2002) is

estimated accurately, but the confidence interval corresponding to the first break point is wide. This can

5See Bai and Perron (1998) for a description how these confidence intervals are derived.
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Figure 1: Top left: parameter estimates of κ
(2)
t in the Lee-Carter model, calibrated on data from Dutch

males aged 60-89 in the period 1960-2008. Bottom left: projections for the period effect using different

projection methods. Top right through bottom right: projections of the period effect for different cali-

bration periods without allowing for structural changes, allowing for one structural change and allowing

for multiple structural changes. Dots are estimated parameters, solid lines are the 50th percentile and

dotted lines are the 5th and 95th percentiles of the projections.

be explained by the outliers before and after the year 1972. However, allowing for the second break point

leads to an improvement in fit over the whole observation period. This is illustrated by the differences

between the green and blue lines in Figure 2. The bottom right graph shows the confidence intervals for

the case of three break points. The confidence intervals overlap and they are much larger than for the

case of two break points.

3.2 Forecasting cohort effects

Section 2.2 contains an overview of different approaches to project the cohort effect. Imposing an ARIMA-

specification up front can lead to biologically unreasonable forecasts. Therefore, we use the BIC, but we

only consider ARIMA(p, d, q)-specifications for d ∈ {0, 1} and (p, q) ∈ {0, 1, 2}. We do not consider the

case d = 2, because from Cairns et al. (2011) we conclude that using a second order differencing model

leads to implausibly large confidence intervals.

4 Results

In this section we calibrate the mortality models from Table 1 to Dutch and Belgian mortality data.

Then we perform an out-of-sample backtest to investigate the predictive properties of the models while

allowing for no, a single or multiple structural change(s).
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Figure 2: Confidence intervals for estimated break points for κ
(2)
t in the Lee-Carter model, calibrated

on Dutch males aged 60-89 in the years 1960-2008. In the plots (i) BP’s vs. (i + 1) BP’s the green

lines represent the mean of ∆κ
(2)
t for the different periods when (i) BP’s are allowed, and the blue lines

represent the mean of ∆κ
(2)
t when (i + 1) BP’s are allowed. The red lines represent the confidence

intervals corresponding to the break points.

4.1 Model fit

We calibrate the models on male mortality data6 from the Netherlands and Belgium for the years 1950

to 2008. Earlier data is excluded such that there are no world wars in the data set. We consider the

ages 20-89, because mortality rates for younger ages are not relevant for insurers and pension funds,

and mortality rates for ages above 89 are less reliable and are therefore excluded. If mortality rates are

needed for higher ages, multiple techniques are available to close mortality tables; see e.g. Vaupel (1990),

Lindbergson (2001) and Denuit and Goderniaux (2005).

We present the estimation results for Dutch and Belgian males7 for ages 20-89 in Table 2 and for

ages 60-89 in Table 3. These tables contain the effective8 number of parameters that is estimated in

each of the models, and the corresponding BIC that we define as BIC = logL− 1
2k · log n, where logL is

the loglikelihood, n is the number of observations, and k is the effective number of parameters. Higher

BIC’s mean better performance of the models.

For the age range 20-89, the models with a cohort effect and interaction between age and period

effects have the highest BIC. The ranking of the models for Dutch males is similar to the ranking for

Belgian males. However, some models that score well on the age range 20-89 score worse for the age

6Human Mortality Database is a joined project of the University of California, Berkeley (USA) and Max Planck Institute

for Demographic Research (Germany). Data are available at http://www.mortality.org.
7Similar results for Dutch and Belgian females are available upon request from the authors.
8The effective number of parameters is the total number of parameters that is included in the model minus the number

of parameter constraints that are used to identify the model.
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The Netherlands Belgium

Model Number of BIC Rank Number of BIC Rank

parameters parameters

M1 197 -22,623.00 10 197 -22,955.00 10

M1A 324 -20,559.09 8 324 -21,146.23 8

M2 385 -19,641.72 5 385 -20,345.36 6

M2A 513 -20,059.54 7 513 -20,615.64 7

M3 246 -19,724.25 6 246 -20,315.39 5

M9 327 -19,392.03 2 327 -19,918.98 2

M10 244 -20,676.05 9 244 -22,189.76 9

M11 422 -19,591.33 4 422 -20,143.62 4

M12 364 -19,439.22 3 364 -19,990.09 3

M13 327 -19,391.52 1 327 -19,906.79 1

Table 2: Estimation results for Dutch and Belgian male mortality rates, estimated on the age range 20

to 89 and calibration period 1950-2008.

The Netherlands Belgium

Model Number of BIC Rank Number of BIC Rank

parameters parameters

M1 117 -11,355.25 14 117 -10,741.05 14

M1A 204 -9,761.62 13 204 -10,222.80 12

M2 225 -9,411.94 4 225 -9,605.78 4

M2A 313 -9,675.49 11 313 -9,850.17 9

M3 166 -9,395.01 3 166 -9,555.03 2

M5 118 -9,667.92 10 118 -10,234.93 13

M6 196 -9,268.00 1 196 -9,470.91 1

M7 254 -9,428.90 5 254 -9,632.33 5

M8 198 -9,333.30 2 198 -9,572.43 3

M9 284 -9,527.90 8 284 -9,718.64 7

M10 204 -9,465.34 6 204 -9,905.13 11

M11 342 -9,705.58 12 342 -9,899.65 10

M12 284 -9,559.58 9 284 -9,777.92 8

M13 284 -9,524.37 7 284 -9,715.78 6

Table 3: Estimation results for Dutch and Belgian male mortality rates, estimated on the age range 60

to 89 and calibration period 1950-2008.
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The Netherlands Belgium

Model Ages Males Females Males Females

M8 60-89 60 60 60 60

M12 60-89 60 89 89 89

M12 20-89 20 89 20 26

Table 4: Optimal values for xc in M8 and M12 when xc ∈ {60, . . . , 89} or xc ∈ {20, . . . , 89}, based on

the calibration period 1950-2008.

range 60-89 (M9, M11, M12 and M13) and vice versa (M2 and M3). The ranking of the models for the

age range 60-89 is again similar for the Dutch and Belgian males.

Table 4 shows the results for optimisation over the parameter xc. Given the model specification of

M8 and M12, the importance of the cohort effect for different ages depends on the parameter xc. We

conclude that 4 out of 12 times the cohort effect mainly affects younger ages as it is estimated optimally

at the upper bound (x = 89), and 8 out of 12 times the cohort effect mainly affects the elderly.

For illustration purposes we present the parameter estimates for M2 estimated on Dutch male

mortality data in Figure 3 since this model fits the data reasonably well for both age ranges. The

parameter estimates for the two age ranges are similar and the fitted mortality rates differ only marginally.

In order to project mortality, the parameter κ
(2)
t needs to be projected into the future, and for new

cohorts we also have to project the cohort effect γt−x. As the time-dependent parameters are different, it

is possible that mortality projections resulting from the two different age ranges are different, regardless

of the similar in-sample fit.

4.2 Out-of-sample performance

We now evaluate the predictive power of the models under consideration. We calibrate the models using

data from 1950 to 2000 and then simulate mortality rates for the years 2001 to 2008. This leads to a

predictive distribution for the stochastic mortality rates Mt,x for x = x1, . . . , xn and t = T +1, . . . , T +s.

As in Riebler et al. (2012), we obtain the mean E(Mt,x) and variance Var(Mt,x) of future mortality rates

from the simulated predictive distribution. With Dt,x ∼ Poisson(et,xMt,x) and using the law of total

expectation it follows that for t > T the expected death counts are

d̂t,x = E(Dt,x) = et,xE(Mt,x)

and the variance of the death counts is

σ2
t,x = Var(Dt,x) = E(Var(Dt,x|Mt,x)) + Var(E(Dt,x|Mt,x))

= E(et,xMt,x) + Var(et,xMt,x)

= et,xE(Mt,x) + e2t,xVar(Mt,x),

since we assume the population size et,x given9. In our evaluation of the out-of-sample performance we

consider the differences between observations and projections (hereafter: calibration of the projections),

and the width of the confidence intervals of the projections (hereafter: sharpness of the projections). We

compare the calibration of the mortality models using the root mean squared error (RMSE), both with

9We shall not simulate the population size, because then assumptions needs to be made on immigration and emigration.
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Figure 3: The first five panels show the parameter estimates for M2 calibrated on Dutch male mortality

in the years 1950 to 2008 on the ages 20-89 and 60-89. The last four panels show realised mortality rates

(dots) and fitted mortality rates for x = {25, 45, 65, 85} (calibrated on ages 20-89 and ages 60-89)

and without the possibility of structural changes:

RMSE =

√
1

n · s
∑
t,x

(
dt,x − d̂t,x

)2
. (7)

The RMSE only accounts for differences between observations and predictions, but not for differences

in scale. A typical problem for mortality data is to summarise the quality of the forecasts for different

ages and years in a single statistic. The death counts that we consider differ in scale for different ages

and years due to different mortality rates and population sizes. The Dawid-Sebastiani scoring rule (DSS)

introduced by Gneiting and Raftery (2007) is a statistic that evaluates the calibration and the sharpness

of the projections, and also takes the scale of the observations into account. We compute the average DSS

(DSS) as introduced by Riebler et al. (2012), which allows us to summarise the quality of the forecasts

into one statistic for all forecasted death counts:

DSS =
1

n · s
∑
t,x

(
dt,x − d̂t,x

σt,x

)2

+ log σ2
t,x. (8)

Table 5 and 6 show the backtesting results for Dutch and Belgian females for the ages 20-89 and

60-89 respectively, and Table 7 and 8 show similar results for Dutch and Belgian males. For some models

the statistics are lower when structural changes are incorporated (the bold figures in the tables), which

means that allowing for structural changes has improved the quality of the mortality forecasts; especially

the decrease in RMSE can be large. For other models however, the statistics are higher (the red figures),

which means that the quality of the forecasts has worsened. Allowing for structural changes has little

effect on the ranking of the models based on RMSE or DSS, but the ranking of the models based on the

backtest is markedly different from the ranking based on the fit of historical data in Table 2 and 3.
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Figure 4: Projections for the period effects of M12 applied to Dutch females aged 20-89 in the period

1950-2000. The structural change for κ
(1)
t is identified both if we allow for one and if we allow for multiple

structural changes.
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Figure 5: Mortality projections from M12 for x = {30, 60, 80} calibrated on Dutch females aged 20-89 in

the period 1950-2000. The black and red lines represent projections without and with multiple structural

changes, respectively, at the 5th, 50th and 95th percentile.

Figure 4 shows projections of the period effects for M12 applied to Dutch females aged 20-89 and

Figure 5 shows resulting mortality projections. The simultaneous jumps in the grey and red surfaces for

q30 and q60 are caused by the estimated cohort effect. This effect is not visible for q80 because for Dutch

females aged 20-89 we found xc = 89, which implies that the cohort effect hardly affects the highest ages.

From Figure 4 we observe that the projections of κ
(1)
t are more convincing if we allow for structural

changes, and in Figure 5 the mortality projections with structural changes are more convincing as well.

This is confirmed in Table 5 as both the RMSE and the DSS have improved substantially.

Similar results are shown in Figure 6 and 7 for model M9 applied to Dutch females aged 20-89. The

projections for κ
(2)
t are more plausible when structural changes are allowed, but the projections for κ

(3)
t are

still implausible. The last fitted cohort effect is the cohort 193510, and later cohort effects are projected

using an appropriate ARIMA-process. The cohort effect needed for projections for x = 30 are therefore

projected over 35 years into the future11, while for x = 60 the cohort effect is projected only few years

into the future and for x = 80 it is available from the model calibration. This explains the relatively

large confidence interval for q30 in Figure 7. The projections for q80 including the structural change

in κ
(2)
t do not capture the realised mortality improvements, while the projections without structural

changes do follow the realised mortality rates closely. Hence, even though the projected period effect

10For M9 and M13 the cohort effect is set equal to zero if there are no observations related to the age 60 or higher. For

the age range 20-89 and the calibration period 1950-2000 this means that the last estimated cohort is 2000− 65 = 1935.
11The cohort effect needed in 2001 for x = 30 is for the cohort 1971. The last estimated cohort effect is for the cohort

1935. Hence, the cohort effect for the cohort 1971 is projected 36 years from the last estimated cohort effect.
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Figure 6: Projections for the period effects of M9 applied to Dutch females aged 20-89 in the period

1950-2000. The structural change for κ
(2)
t is identified both if we allow for one and if we allow for multiple

structural changes.
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Figure 7: Mortality projections from M9 for x = {30, 60, 80} calibrated on Dutch females aged 20-89 in

the period 1950-2000. The black and red lines represent projections without and with multiple structural

changes, respectively, at the 5th, 50th and 95th percentile.

is more plausible when structural changes are accounted for, the resulting mortality projections can be

implausible for certain ages leading to worse backtesting results in Table 5.

The most interesting example is M7 applied to Dutch females aged 60-89. In Table 6 we see that

both the RMSE and DSS worsen if we allow for a single structural change, but the statistics improve if we

allow for multiple structural changes. Figure 8 shows the projections for the period effects while allowing

for no, one or multiple structural changes. The projections for κ
(1)
t with a single structural change are

less convincing than when no structural changes are allowed, because the last structural change has not

been identified. When we allow for multiple structural changes we are able to detect both structural

changes, and the projections for the period effects are more convincing. The projections for κ
(2)
t are also

most convincing if we allow for multiple structural changes. This example clearly illustrates the potential

added value from allowing for multiple structural changes.

5 Conclusion

In this paper we calibrate a selection of stochastic mortality models on historical mortality data from

the Netherlands and Belgium. To create mortality projections, we project the period and the cohort

effects. The cohort effects are projected using an ARIMA(p, d, q)-specification, where (p, d, q) are chosen

such that the BIC is optimal. The period effect is projected using a modelling strategy that allows for

objective detection of multiple structural changes in the difference stationary process.
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Figure 8: Projections for the period effects of M7 applied to Dutch females aged 60-89 in the period

1950-2000.

We compare the impact of not allowing for structural changes with allowing for a single or multiple

structural changes. We observe that mortality projections are most robust with respect to the calibration

period if we allow for multiple structural changes. Further, we find that allowing for structural changes

can lead to improved backtesting results. Often one structural change, and sometimes even multiple

structural changes are estimated. Allowing for structural changes does not always lead to improved

backtesting results, because apparent structural changes are not identified. For these apparent structural

changes the improvement in fit from including a structural change is not sufficient yet to to overcome

the penalty in BIC caused by the extra parameter.

In this paper, the mortality model and the time series models are estimated seperately. Ideally, all

sources of randomness should be addressed at once, which means that the Poisson likelihood and the

likelihood of the time series should be optimised simultaneously. However, this raises severe computa-

tional challenges since the conveniently simple structure of the logarithmic likelihood can no longer be

exploited in the same way as in the standard approach. This is therefore left as a subject for future

research.
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The Netherlands, females 20-89 Belgium, females 20-89

RMSE DSS RMSE DSS

Model 0 1 > 1 0 1 > 1 0 1 > 1 0 1 > 1

M1 63.0 63.0 63.0 7.92 7.92 7.92 63.4 63.4 63.4 7.55 7.55 7.55

M1A 64.7 64.7 64.7 7.78 7.78 7.78 58.5 58.5 58.5 7.50 7.50 7.50

M2 85.8 85.8 85.8 8.77 8.77 8.77 2069.8 2069.8 2069.8 8.36 8.36 8.36

M2A 65.9 64.7 64.7 7.61 7.67 7.67 53.9 53.8 53.8 7.33 7.42 7.42

M3 129.5 129.5 129.5 9.04 9.04 9.04 101.1 101.1 101.1 8.08 8.08 8.08

M9 100.5 141.0 141.0 8.57 9.17 9.17 84.7 74.2 74.2 8.43 8.59 8.59

M10 102.2 102.2 102.2 8.75 8.75 8.75 94.8 94.8 94.8 9.71 9.71 9.71

M11 98.6 98.6 98.6 8.30 8.30 8.30 59.7 59.7 59.7 7.10 7.10 7.10

M12 100.5 75.4 75.4 8.93 8.18 8.18 96.8 96.8 96.8 7.48 7.48 7.48

M13 106.9 106.9 106.9 8.61 8.61 8.61 82.8 83.1 83.1 8.16 8.28 8.28

Table 5: Results for Dutch and Belgian female mortality rates for the ages 20-89 calibrated on the years

1950-2000. Mortality forecasts are backtested for the years 2001-2008 using different forecasting methods

for the period effects.“0”, “1” or “> 1” means we allow for no, a single or multiple structural changes,

respectively. Bold numbers indicate improved backtesting results compared with no structural changes;

red numbers indicate worsened results compared with no structural changes.

The Netherlands, females 60-89 Belgium, females 60-89

RMSE DSS RMSE DSS

Model 0 1 > 1 0 1 > 1 0 1 > 1 0 1 > 1

M1 88.3 88.3 88.3 9.77 9.77 9.77 79.6 79.6 79.6 9.51 9.51 9.51

M1A 95.3 95.3 95.3 9.73 9.73 9.73 84.3 84.3 84.3 9.63 9.63 9.63

M2 112.7 112.7 112.7 10.09 10.09 10.09 84.1 84.1 84.1 9.66 9.66 9.66

M2A 112.6 90.7 90.7 9.75 9.74 9.74 90.4 65.5 65.5 9.80 9.71 9.71

M3 183.1 183.1 183.1 11.99 11.99 11.99 144.4 144.4 144.4 10.66 10.66 10.66

M5 135.9 135.9 135.9 12.79 12.79 12.79 106.2 106.2 106.2 13.32 13.32 13.32

M6 278.5 331.2 331.2 14.26 14.22 14.22 149.7 149.7 149.7 10.68 10.68 10.68

M7 471.4 590.1 327.2 18.95 21.38 15.35 376.4 434.8 385.3 15.11 14.93 13.46

M8 198.9 109.4 109.4 10.67 10.45 10.45 182.3 182.3 182.3 10.97 10.97 10.97

M9 110.1 110.1 110.1 10.03 10.03 10.03 83.7 83.7 83.7 9.51 9.51 9.51

M10 97.6 97.6 97.6 9.88 9.88 9.88 83.7 83.7 83.7 9.53 9.53 9.53

M11 102.8 102.8 102.8 9.96 9.96 9.96 68.2 68.2 68.2 9.35 9.35 9.35

M12 122.2 122.2 122.2 10.36 10.36 10.36 87.1 87.1 87.1 9.56 9.56 9.56

M13 121.2 171.2 171.2 10.07 11.35 11.35 84.1 84.1 84.1 9.45 9.45 9.45

Table 6: Results for Dutch and Belgian female mortality rates for the ages 60-89 calibrated on the years

1950-2000, backtested on the years 2001-2008. Notes: see Table 5.
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The Netherlands, males 20-89 Belgium, males 20-89

RMSE DSS RMSE DSS

Model 0 1 > 1 0 1 > 1 0 1 > 1 0 1 > 1

M1 240.9 220.9 220.9 20.65 20.30 20.30 126.4 126.4 126.4 10.36 10.36 10.36

M1A 186.0 186.0 186.0 12.79 12.79 12.79 96.9 86.6 86.6 9.08 9.02 9.02

M2 84.8 84.8 84.8 9.35 9.35 9.35 65.5 65.5 65.5 8.71 8.71 8.71

M2A 131.7 131.7 131.7 10.39 10.39 10.39 68.3 55.1 55.1 8.35 8.27 8.27

M3 131.2 131.2 131.2 10.13 10.13 10.13 72.8 72.8 72.8 9.01 9.01 9.01

M9 148.1 104.6 104.6 9.52 8.93 8.93 68.8 68.8 68.8 8.60 8.60 8.60

M10 165.7 132.4 132.4 10.34 9.67 9.67 100.7 78.8 78.8 9.25 9.50 9.50

M11 154.0 154.0 154.0 9.89 9.89 9.89 71.8 71.8 71.8 8.22 8.22 8.22

M12 150.7 105.2 105.2 12.43 11.21 11.21 50.0 50.0 50.0 8.64 8.64 8.64

M13 139.9 100.4 100.4 9.43 8.94 8.94 64.3 64.3 64.3 8.68 8.68 8.68

Table 7: Results for Dutch and Belgian male mortality rates for the ages 20-89 calibrated on the years

1950-2000, backtested on the years 2001-2008. Notes: see Table 5.

The Netherlands, males 60-89 Belgium, males 60-89

RMSE DSS RMSE DSS

Model 0 1 > 1 0 1 > 1 0 1 > 1 0 1 > 1

M1 265.2 265.2 265.2 15.50 15.50 15.50 138.5 138.5 138.5 11.15 11.15 11.15

M1A 248.0 248.0 248.0 14.33 14.33 14.33 140.3 140.3 140.3 10.81 10.81 10.81

M2 121.2 121.2 121.2 10.80 10.80 10.80 91.4 91.4 91.4 10.38 10.38 10.38

M2A 121.3 121.3 121.3 10.62 10.62 10.62 70.2 119.9 119.9 9.89 10.44 10.44

M3 172.3 172.3 172.3 11.67 11.67 11.67 88.2 88.2 88.2 10.22 10.22 10.22

M5 239.4 239.4 239.4 13.16 13.16 13.16 133.0 133.0 133.0 10.40 10.40 10.40

M6 198.1 198.1 198.1 13.13 13.13 13.13 129.1 129.1 129.1 10.36 10.36 10.36

M7 141.8 141.8 141.8 10.85 10.85 10.85 111.8 111.8 111.8 10.09 10.09 10.09

M8 328.1 242.5 242.5 14.53 13.45 13.45 170.0 170.0 170.0 10.95 10.95 10.95

M9 175.6 175.6 175.6 11.58 11.58 11.58 120.9 120.9 120.9 10.20 10.20 10.20

M10 238.7 238.7 238.7 13.00 13.00 13.00 130.2 130.2 130.2 10.34 10.34 10.34

M11 243.7 243.7 243.7 12.89 12.89 12.89 144.2 144.2 144.2 10.75 10.75 10.75

M12 283.6 186.4 186.4 13.31 11.89 11.89 123.2 123.2 123.2 10.25 10.25 10.25

M13 199.1 199.1 199.1 12.19 12.19 12.19 166.9 166.9 166.9 11.29 11.29 11.29

Table 8: Results for Dutch and Belgian male mortality rates for the ages 60-89 calibrated on the years

1950-2000, backtested on the years 2001-2008. Notes: see Table 5.
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A Parameter constraints

Some of the mortality models experience identifiability issues. Therefore, we impose parameter con-

straints. Table 9 provides an overview of the parameter constraints that are imposed on the models.

Model Constraints

M1
∑

x β
(2)
x = 1

∑
t κ

(2)
t = 0

M1A
∑

x β
(2)
x = 1

∑
t κ

(2)
t = 0

∑
x β

(3)
x = 1

∑
t κ

(3)
t = 0

M2
∑

x β
(2)
x = 1

∑
t κ

(2)
t = 0

∑
x β

(3)
x = 1

∑
t,x γt−x = 0

M2A
∑

x β
(2)
x = 1

∑
t κ

(2)
t = 0

∑
x β

(3)
x = 1

∑
t κ

(3)
t = 0

∑
t,x γt−x = 0

M3
∑

t κ
(2)
t = 0

∑
t,x γt−x = 0

M5 -

M6
∑

c γc = 0
∑

c cγc = 0

M7
∑

c γc = 0
∑

c cγc = 0
∑

c c
2γc = 0

M8
∑

t,x γt−x = 0

M9
∑

c γc = 0
∑

c cγc = 0
∑

t κ
(3)
t = 0

M10
∑

t κ
(1)
t = 0

∑
t κ

(2)
t = 0

∑
t κ

(3)
t = 0

M11
∑

c γc = 0
∑

c cγc = 0
∑

c c
2γc = 0

∑
t κ

(3)
t = 0

M12
∑

t,x γt−x = 0

M13
∑

c γc = 0
∑

c cγc = 0
∑

t κ
(3)
t = 0

Table 9: Overview of the parameter constraints imposed on the models.
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