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Abstract 

Reporting standards and critical appraisal tools serve as beacons for researchers, reviewers, 

and research consumers. Parallel to existing guidelines for researchers to report and evaluate 

group-comparison studies, single-case experimental researchers are in need of guidelines for 

reporting and evaluating single-case experimental studies. A systematic search was conducted 

for quality standards for reporting and/or evaluating single-case experimental studies. In total, 

11 unique quality standards were retrieved. In this article we discuss the extent to which there 

is agreement with regards to randomization and data-analysis of single-case experimental 

studies among the 11 proposed sets of quality standards. We provide recommendations 

regarding the inclusion of a randomization and data-analysis standard. 

Keywords: single-case experiment; single-subject experimental design; single subject 

research; effect size; statistical analysis; randomization; randomization test 

  



Randomization and Data-Analysis Items in Quality Standards for Single-Case Experimental 

Studies 

Introduction 

The popularity of single-case experimental (SCE) studies is growing in the field of 

special education. According to recent reviews (e.g., Shadish & Sullivan, 2011; Smith, 2012), 

SCE studies, for the most part, are published in special education and related research 

journals. Parallel to existing guidelines for researchers to report and evaluate group-

comparison studies (e.g., Des Jarlais, Lyles, & Crepaz, 2004; Schulz et al., 2010), SCE 

researchers are in need of guidelines for reporting and evaluating SCE studies. Reporting 

standards help researchers to increase the accuracy, transparency, and completeness of their 

publications (Equator Network, n.d.). Unclear reporting of a study’s methodology and 

findings can limit effective dissemination and hinder critical appraisal of the study, while 

inadequate reporting can bring along the risk that flawed and misleading study results are 

used by special education practitioners and policy makers (Simera, Altman, Moher, Schulz, & 

Hoey, 2008). Critical appraisal tools help reviewers and practitioners to distinguish sound 

from poor SCE studies and delineate what it takes for a treatment to be considered empirically 

supported (Schlosser, 2009). 

Recently, reporting standards and critical appraisal tools for SCE studies have been 

developed, showing that SCE research is taken seriously, and that SCE research is seen as a 

valid source of scientific knowledge. Wendt and Miller (2012) discussed seven critical 

appraisal tools with regards to seven major design components: describing participants and 

setting, dependent variable, independent variable, baseline, experimental control and internal 

validity, external validity, and social validity. In this article, we will discuss the extent to 

which there is agreement among proposed sets of quality standards for SCE studies (i.e., 

reporting standards and critical appraisal tools) with regards to randomization and data-



analysis. Our focus on randomization and data-analysis is inspired by (a) the increasing 

acknowledgement of the importance of randomization for drawing valid conclusions from 

SCE design research, and (b) recent advances in data-analysis procedures for SCE designs. 

Methods 

We systematically searched for papers published up to January 1, 2013, describing 

quality standards (QSs) for reporting and/or evaluating SCE studies, operationalized in the 

form of a comprehensive set of guidelines, a checklist, a scale, or an evaluation tool. If 

separate papers presented different versions of the same QS, we included the paper presenting 

the most recent and comprehensive version of the QS. If separate papers presented exactly the 

same QS, we only included the original paper. 

Our systematic search process consisted of four steps. First, we searched the databases 

CINAHL, Embase, ERIC, Medline, PsycINFO, and Web of Science using the following 

search string: (“single subject” OR “n of 1” OR “single case” OR “single system” OR “single 

participant”) AND (“reporting guidelines” OR “reporting standards” OR “critical appraisal” 

OR “methodological quality” OR “quality rating” OR “quality evaluation” OR “quality 

assessment”) AND (“instrument” OR “scale” OR “checklist” OR “standards” OR “tool” OR 

“rating”). Second, the reference lists of all the papers that were identified as relevant in the 

first step, were searched for other relevant references (i.e., ‘backward search’). Third, we 

retrieved more recent references through searching four citation databases: we traced which 

papers cited the papers that were already identified as relevant in steps one and two (i.e., 

‘forward search’). We consulted three indices included in the Web of Science database: the 

Arts & Humanities Citation Index, the Science Citation Index Expanded (SCI), and the Social 

Sciences Citation Index (SSCI). Additionally, we conducted a forward search by means of a 

fourth citation database: Google Scholar. Fourth, as a check for missing QSs we searched the 

engines Google Scholar and ScienceDirect. 



<Insert Table 1 about here> 

Retrieved Quality Standards 

In total, 11 unique QSs were retrieved. Table 1 provides an overview of the 11 QSs. 

The first QS was published in 2003, the second in 2005, and the nine other QSs were 

published between 2007 and 2011. Next to six QSs that can be used for all SCEs, two QSs 

were developed for evaluating specific designs (SCEs evaluating one treatment versus two or 

more treatments; Schlosser, 2011; Schlosser et al., 2009), and three for evaluating SCEs 

published in a specific substantive research domain: for SCEs on psychosocial interventions 

for individuals with autism (Smith et al., 2007), for SCEs on young children with autism 

(Reichow et al., 2008), and for SCEs on social skill training of children with autism (Wang & 

Parrila, 2008). In the remainder of the article, we will focus on randomization and data-

analysis items included in the 11 QSs. 

Randomization for SCE Studies 

Shadish, Cook and Campbell (2002) differentiate between experimental designs such 

as randomized experiments and quasi-experiments, and non-experimental designs. Whereas in 

experimental studies an intervention is deliberately introduced to observe its effects, in non-

experimental or observational studies no manipulation is used by the researcher: the size and 

direction of relationships among variables are simply observed (Shadish et al., 2002). Within 

the group of experimental studies, in randomized experiments the units are assigned to 

conditions by a random process, whereas in quasi-experiments the units are not randomly 

assigned to conditions (Shadish et al., 2002). As such, although the manipulation of the 

independent variable(s) by the experimenter is an essential feature of experimental studies, the 

random assignment of units to conditions is not an essential feature. For group-comparison 

studies, randomization concerns the random assignment of the participants to the control and 

the experimental group(s) (cf. randomized controlled trials). For SCEs, randomization is 



applied within the participant: it involves the random assignment of the measurement 

occasions to the treatments. 

In SCE studies where randomization is feasible and logical, it brings along important 

advantages. A first advantage is that it can be used to reduce or eliminate internal validity 

threats. Two major internal validity threats for SCE research are ‘history’ and ‘maturation’. 

‘History’ refers to the influence of external events (e.g., weather change, big news event, 

holidays) that occur during the course of an SCE that may influence the participant's behavior 

in such a way as to make it appear that there was a treatment effect, and ‘maturation’ deals 

with changes within the experimental participant (e.g., physical maturation, tiredness, 

boredom, hunger) during the course of the SCE (Edgington, 1996). In SCEs, random 

assignment of measurement occasions to treatments yields statistical control over these 

(known and unknown) confounding variables and facilitates causal inference (Kratochwill & 

Levin, 2010; Onghena & Edgington, 2005). Using randomization renders experimental 

control over the SCE design and as such enhances the methodological quality and scientific 

credibility of the SCE study. 

In SCE studies where randomization is feasible and logical, it brings along a second 

advantage: the opportunity to apply a statistical test based on the randomization as it was 

implemented in the SCE design (see e.g., Edgington & Onghena, 2007; Koehler & Levin, 

1998; Levin & Wampold, 1999; Todman & Dugard, 2001; Wampold & Worsham, 1986). The 

randomization test (RT) is the most direct and straightforward application of statistical tests to 

randomized SCE designs: using an RT enhances the statistical conclusion validity of an SCE. 

Advantages of RTs are (a) that the p value can be derived without making assumptions about 

population distributions (as would be needed for most parametric tests) and (b) without 

degrading the scores to ranks, as is done for other nonparametric tests such as the Kruskal-

Wallis test and the Wilcoxon-Mann-Whitney test. However, limitations are (a) that the 



validity of RTs is only guaranteed when measurement occasions are randomly assigned to the 

experimental treatments before the start of the SCE and (b) that the SCE design might have 

too little statistical power. For example, it is easy to see that a .05 level RT has zero power if 

less than 20 assignments are possible (because the smallest possible p value in that case would 

be always larger than 1/20). Furthermore, with very few assignments the distribution of p 

values is highly discrete with a sparse number of possible values. 

Because randomization requires the SCE researcher to randomly assign the 

measurement occasions to the treatments before the data are collected, it imposes several 

practical restrictions to the implementation of the SCE study. In some cases, randomization is 

feasible and logical. In other cases, randomization might jeopardize the basic logic of the SCE 

design. For instance, in response-guided designs the number of observations in each phase 

depends on the emerging data: the researcher can extend baseline phases when there is much 

variability, a trend, or a troubling outlier, and can extend treatment phases when there is much 

variability, the effect is delayed, the effect occurs gradually, or the effect is relatively small 

(Ferron & Jones, 2006). An in-between solution is restricted random assignment (Edgington, 

1980) with, for instance, randomization being introduced after stability of the baseline is 

achieved. 

Randomization can be incorporated in SCE reversal, alternating treatment, and 

multiple baseline designs (e.g., Kratochwill & Levin, 2010; Levin, Ferron, & Kratochwill, 

2012; Onghena & Edgington, 2005). Special education researchers interested in designing and 

analyzing randomized SCEs can use one of the free software packages, such as the packages 

developed by Koehler and Levin (2000), Todman and Dugard (2001), and Bulté and Onghena 

(2008, 2009). Recently, researchers have explored ways to integrate RTs with visual analysis 

of SCE data and SCE effect sizes (cf. section below on Data-Analysis for SCE Studies). For 

instance, Ferron and Jones (2006) worked on the integration of RTs and visual analysis of 



SCE data: the authors present a method that ensures control over the Type I error rate for 

researchers who visually analyze the data from response-guided multiple baseline designs. 

Heyvaert and Onghena (in press) worked on the integration of RTs and SCE effect sizes: in 

order to not only determine the (non)randomness of an intervention effect, but also the 

magnitude of this effect, the authors propose to use an effect size index as a test statistic for 

the RT. 

Randomization Items in the Retrieved Quality Standards for SCE Studies 

Only 2 out of the 11 retrieved QSs include an item on randomization (Schlosser et al., 

2009; Task Force, 2003). However, the item on randomization included in the Task Force 

(2003) QS is problematic: randomization is discussed with regard to ‘how participants (e.g., 

individuals, schools) were assigned to control and intervention conditions/groups’. The 

options for scoring this item are ‘Random after matching, stratification, blocking’, ‘Random, 

simple (includes systematic sampling)’, ‘Nonrandom, post hoc matching’, ‘Nonrandom, 

other’, ‘Other’, ‘Unknown/insufficient information provided’, and ‘N/A (randomization not 

used)’. However, in SCEs one participant is exposed to all levels of the independent variable. 

As such each participant is exposed to control (e.g., A phases in an ABAB design) as well as 

treatment (e.g., B phases in an ABAB design) conditions in SCEs. The ‘units’ that are 

randomly assigned to treatments or conditions for SCEs are ‘measurement occasions’, and not 

‘participants’ like in group-comparison studies. 

In the Schlosser et al. (2009) QS, randomization is mentioned in the item ‘The design 

along with procedural safeguards minimizes threats to internal validity arising from sequence 

effects’, with the description “(…) Mark “yes” if sequence effects are controlled through 

simultaneous presentation of conditions within the same sessions combined with procedural 

safeguards such as counterbalancing or randomizing the order. (…)”. The authors do not 

emphasize randomization for the benefit of later data-analysis and statistical conclusion 



validity. They are only concerned with how to control for sequencing effects when the order 

of the alternating treatments is decided. 

In Kratochwill et al. (2010), Romeiser-Logan et al. (2008), and Tate et al. (2008) the 

possibility to include randomization in SCEs is mentioned in the text that accompanies the 

QS, but no items in the QS concern randomization. Tate et al. (2008) report that 

‘randomization of treatment sequences’ was an item initially considered for inclusion in the 

QS, but subsequently excluded because the items included in their QS are the ‘minimum core 

set’ criteria for SCEs. However, Tate et al. recognize that randomization permits causal 

inferences to be made and thereby elevates the SCE design from a quasi-experimental 

procedure to one using ‘true experimental methodology’. We will return to the idea of 

‘minimum core set’ criteria in the Discussion. 

Romeiser-Logan et al. (2008) explicitly mention that the methodological quality of 

SCEs can be enhanced when randomization is introduced because this minimizes internal 

validity threats to drawing valid causal inferences. In a table with important study design 

elements for SCEs and group-comparison studies, they list the design element ‘random 

allocation’ and operationalize this for SCEs as ‘random allocation of subjects, settings, or 

behaviors in multiple baseline design; random allocation of intervention in N-of-1 and 

alternating treatment designs’. However, no items in their final QS concern randomization. 

Kratochwill et al. (2010) refer to the article by Kratochwill and Levin (2010) and say 

that randomization can improve the internal validity of SCEs, but that these applications are 

still rare. The authors recognize that randomization can be introduced in phase designs and 

alternation designs, as well as in replicated SCEs like multiple baseline designs. Out of the 11 

QSs, this is the only QS that explicitly mentions the possibility of using RTs as statistical 

significance tests when randomization is introduced in SCE designs. 



The six other retrieved QSs do not mention the possibility to include randomization in 

SCEs: neither in the QS, nor in the text that accompanies the QS. 

Data-Analysis for SCE Studies 

Two broad groups of methods are applied to analyze and interpret SCE data: visual 

analysis and statistical analysis. Traditionally, SCE researchers have been using visual 

analysis for evaluating behavior change. Visual analysis consists of the inspection of graphed 

SCE data for changes in level, variability, trend, latency to change, and overlap between 

phases in order to judge the reliability and consistency of treatment effects (Horner, 

Swaminathan, Sugai, & Smolkowski, 2012; Kazdin, 2011). When the changes in level and/or 

variability are in the desired direction and when they are immediate, readily discernible, and 

maintained over time, it is concluded that the changes in behavior across phases result from 

the implemented treatment and are indicative of improvement (Busse, Kratochwill, & Elliott, 

1995). Demonstration of a functional relationship between the independent and dependent 

variable is compromised when there is a long latency between manipulation of the 

independent variable and change in the dependent variable, when level changes across 

conditions are small and/or similar to changes within conditions, and when trends do not 

conform to those predicted following introduction or manipulation of the independent variable 

(Horner et al., 2005; Kazdin, 2011). 

Attractive features of using visual analysis methods are that they do justice to the 

richness of the data, are quick, easy, and inexpensive to use, and that they are widely accepted 

and understood. Another advantage lies in their “conservatism”: only visually salient effects 

are detected (Parsonson & Baer, 1978). Visual inspection of graphed SCE data is 

straightforward when the treatment effects are large and when the baseline is stable. However, 

it is advisable to complement visual analysis with statistical analysis of the SCE data when 

there is a significant trend or variability in the baseline, in case of weak or ambiguous effects, 



when changes are small but important and reliable, and to control for extraneous factors 

(Kazdin, 2011). Although SCE researchers agree on the importance of visual analysis, a 

remaining challenge is the lack of consensus on the process and decision rules for visual 

analysis (Horner et al., 2012). 

The second group of methods applied to analyze and interpret SCE data are statistical 

analysis methods. Statistical significance tests can be used to test hypotheses about treatment 

effects in SCEs. Parametric statistical significance tests traditionally used for analyzing 

group-comparison studies (e.g., t- and F-test) are often not appropriate to analyze SCEs 

because assumptions of normality are frequently violated for SCE data, SCE data are often 

autocorrelated, and these tests are insensitive to trends that occur within a phase (Houle, 2009; 

Smith, 2012). Parametric analysis options that are more appropriate to analyze (and 

synthesize) SCE data are multilevel and structural equation modeling (see e.g., Shadish, 

Rindskopf, & Hedges, 2008; Van den Noortgate & Onghena, 2003). Also, interrupted time 

series analysis (ITSA; e.g., Crosbie, 1993; Jones, Vaught, & Weinrott, 1977) methods (e.g., 

autoregressive integrated moving average models) are proposed for analyzing SCE data 

because of their ability to handle serial dependency. However, drawbacks are that ITSA 

requires a large number of measurement occasions per phase, and that several problems are 

reported with the process of identifying a suitable model to describe the nature of the 

autocorrelation in the data (Houle, 2009; Kazdin, 2011). Furthermore, because nonparametric 

tests are valid without making distributional assumptions, several of these tests have been 

recommended for analyzing SCEs (e.g., Kruskal-Wallis test, Wilcoxon-Mann-Whitney test, 

RTs; cf. supra). 

Next to the use of inferential techniques for analyzing SCE data, such as statistical 

significance tests and confidence intervals, statistical analysis also includes descriptive 

statistics, such as effect size measures. One group of SCE effect size measures are closely 



related to visual analysis: the ‘nonoverlap statistics’. These measures are indices of data 

overlap between the phases in SCE studies. Examples of nonoverlap statistics are PND 

(percent of nonoverlapping data), PZD (percentage of zero data points), PEM (percent of data 

points exceeding the median), IRD (improvement rate difference), and PAND (percent of all 

nonoverlapping data) (see e.g., Parker, Vannest, & Davis, 2011, for a review of several 

nonoverlap statistics). General advantages of nonoverlap statistics are their ease to calculate 

and interpret, and their accordance with visual analysis. However, different advantages and 

disadvantages are noted for different nonoverlap statistics (e.g., deficient performance in the 

presence of data outliers in the baseline phase, insensitivity to data trends and variability in 

the data, insensitivity to differences in the magnitude of effect), and for now each available 

nonoverlap statistic is equipped to adequately address only a relatively narrow spectrum of 

SCE designs (see e.g., Maggin et al., 2011; Smith, 2012; Wolery, Busick, Reichow, & Barton, 

2010). A second group of SCE effect size measures is based on the standardized mean 

differences (SMD) effect sizes used for group-comparison designs (e.g., Cohen’s d, Glass’s Δ, 

Hedges’ g). The difference between computing these SMDs for group-comparison and SCE 

designs is that for the former the variation between groups is used, and for the latter the 

within-case variation. Due to this computational difference, the obtained SCE effect sizes are 

not interpretively equivalent to SMDs for group-comparison designs. Advantages are their 

ease of use and their familiarity to applied researchers; drawbacks are that SMDs were not 

developed to contend with autocorrelated data (as is often the case for SCE data), that the 

interpretational SMD benchmarks for group-comparison designs cannot automatically be used 

for SCEs, and that SMDs are insensitive to trends (that are often present in SCE data) 

(Maggin et al., 2011; Smith, 2012). However, Hedges, Pustejovsky, and Shadish (2012) 

recently developed an SMD effect size for SCEs that is directly comparable with Cohen’s d. 

A third group are regression-based effect size measures: regression techniques are used to 



estimate the effect size for an SCE by taking a trend into account. Examples are the piecewise 

regression approach of Center, Skiba, and Casey (1985-1986), the approach of White, Rusch, 

Kazdin, and Hartmann (1989), the approach of Allison and Gorman (1993), and multilevel 

models (e.g., Van den Noortgate & Onghena, 2003). Important advantages of regression-

based effect size measures are their ability to account for linear or nonlinear trends in the data 

as well as for dependent error structures within the SCE data (Maggin et al., 2011; Van den 

Noortgate & Onghena, 2003). A possible limitation is that most applied researchers are not 

familiar with the calculation and interpretation of these SCE regression-based effect size 

measures, and that these approaches may be far more technically challenging than nonoverlap 

statistics and SMD effect sizes for SCEs. Recently, Monte Carlo simulation studies have been 

conducted in order to evaluate SCE effect size measures (e.g., Manolov & Solanas, 2008; 

Manolov, Solanas, Sierra, & Evans, 2011). One of the conclusions of the simulation study of 

Manolov et al. (2011) is that data features are important for choosing the appropriate SCE 

effect size measure: the authors provide a flowchart to guide the effect size measure selection 

according to the visual inspection of the SCE data. 

Altogether, over the last decades a substantial number of statistical methods for 

analyzing SCEs have been proposed and studied, but there is currently no clear consensus on 

which method is most appropriate for which kind of design and which data. Analyzing data 

from SCE designs using multilevel models seems to be one of the most promising statistical 

methods (cf. Shadish et al., 2008). Remaining challenges and directions for future research in 

this field concern statistical power, autocorrelation, applications to more complex SCE 

designs, extensions to other kinds of outcome variables and sampling distributions, and the 

valid parameter estimation (especially of variance components) given the very small number 

of observations that may be encountered in SCE research (see Shadish, Kyse, & Rindskopf, 

2013; Shadish & Rindskopf, 2007). Also in the development of SCE effect size measures 



there is much yet for the field to learn. As described by Horner and colleagues (2012) an ideal 

SCE effect size index would be comparable with Cohen’s d (making it easily interpreted and 

readily integrated into meta-analyses that also include group-comparison studies), would 

reflect the experimental effect under analysis (e.g., all phases of an SCE study are used to 

document experimental control), and would control for serial dependency (a challenge with 

parametric analyses) as well as score dependency (a challenge for analyses using Chi Square 

models). The index proposed by Hedges et al. (2012) provides an answer to the first 

requirement (i.e., comparability with Cohen’s d), but there is still work to do (e.g., this index 

is not yet adapted for more complex situations). With regards to SCE data-analysis in general, 

a remaining challenge is an accepted process for integrating visual and statistical analysis 

(Horner et al., 2012). 

Data-Analysis Items in the Retrieved Quality Standards for SCE Studies 

The visual inspection of SCE data is – either implicitly or explicitly – included in all 

11 retrieved QSs. This consistency among the 11 proposed sets of QSs may serve as an index 

of content validity. Unfortunately, most QSs do not include specific guidelines for visually 

analyzing the data. An exception is the QS of Kratochwill et al. (2010): based on the work of 

Parsonson and Baer (1978) four steps and six variables (i.e., level, trend, variability, 

immediacy of effect, overlap/non-overlap, and consistency of data across phases) of visual 

analysis are outlined. This results in the categorization of each outcome variable as 

demonstrating ‘Strong evidence’, ‘Moderate evidence’, or ‘No evidence’. Also Horner et al. 

(2005) discuss all six variables described by Parsonson and Baer (1978) for the visual analysis 

of SCE data. The nine other QSs refer to only some of these six variables (mostly level and 

trend). Another QS that includes specific guidelines for visually analyzing SCE data is the one 

developed by the Task Force (2003): evaluating outcomes through visual analysis is based on 

five variables (i.e., change in levels, minimal score overlap, change in trend, adequate length, 



and stable data) and results in the ratings ‘Strong evidence’, ‘Promising evidence’, or ‘Weak 

evidence’. 

Four QSs include items on statistical analysis. First, the Kratochwill et al. (2010) QS 

instructs that for studies categorized as demonstrating ‘Strong evidence’ or ‘Moderate 

evidence’ based on the visual inspection of the data (cf. supra), effect size calculation should 

follow. In order to do so, several parametric and nonparametric statistical analysis methods 

are discussed. Subsequently, the following guidelines are provided (p. 24): (a) when the 

dependent variable is already in a common metric (e.g., proportions or rates) then this metric 

is preferred to standardized scales; (b) if only one standardized effect size estimate is to be 

chosen, a regression-based estimator is to be preferred; (c) it is recommended to do sensitivity 

analyses by reporting one or more nonparametric estimates (i.e., ‘nonoverlap statistics’) in 

addition to the regression estimator and afterwards compare results over estimators; and (d) 

summaries across cases (e.g., mean and standard deviation of effect sizes) can be computed 

when the estimators are in a common metric, either by nature (e.g., proportions) or through 

standardization. 

Second, Romeiser-Logan et al. (2008)’s QS includes the items ‘Did the authors report 

tests of statistical analysis?’ and ‘Were all criteria met for the statistical analyses used?’. The 

authors provide in the text a non-exhaustive list with descriptive (e.g., measures of central 

tendency, variability, trend lines, slope of the trend lines) and inferential (e.g., χ2 and t-tests, 

split-middle method, two- and three-SD band methods, C-statistic) statistical methods that can 

be used to analyze SCEs. 

Third, the Task Force (2003) QS mentions that although statistical tests are rarely 

applied to analyze SCEs, in many cases the use of inferential statistics is a valuable option. In 

judging the SCE evidence, they advise to consider effect sizes and power of the outcomes, 

and to consider outcomes to be statistically significant if they reach an alpha level of .05 or 



less. For reporting effect sizes the Task Force refers to the three approaches for calculating 

SMD effect sizes that were developed by Busk and Serlin (1992). 

Fourth, the Tate et al. (2008) QS includes the item ‘Statistical analysis’ that is 

described as ‘Demonstrate the effectiveness of the treatment of interest by statistically 

comparing the results over the study phases’. As noted by the authors, this item does not 

require that ‘appropriate’ statistical techniques are applied, merely that ‘some’ statistical 

analysis is conducted. Also for QSs group-comparison studies, it is not uncommon that an 

item merely states that ‘some’ statistical analysis is conducted, without requiring that an 

‘appropriate’ statistical techniques are applied (e.g., Maher, Sherrington, Herbert, Moseley, & 

Elkins, 2003). 

For two other QSs, the possibility to conduct statistical analyses is very briefly 

mentioned in the text that accompanies the QS, but not as an item in the QS. Horner et al. 

(2005) refer to Todman and Dugard’s (2001) book on RTs for SCEs. Smith et al. (2007) 

indicate that statistical methods for interpreting SCEs are available, but that the selection of 

the appropriate statistical method may be difficult. The five other retrieved QSs do not 

mention the possibility to conduct statistical analyses for SCE data. 

Discussion 

For the current study, a systematic search was conducted for standards for reporting 

and/or evaluating SCE studies. In total, 11 unique QSs were retrieved. We focused on 

randomization and data-analysis items included in these QSs. We found disagreement with 

respect to the inclusion of randomization of SCE studies among the 11 QSs. In the Task Force 

(2003) QS the importance of randomization of SCE studies is stressed, but the randomization 

approach for SCE studies is confused with the randomization approach for group-comparison 

studies (cf. supra). In the Schlosser et al. (2009) QS, randomization is proposed to control for 

sequencing effects when the order of the alternating treatments is decided, but not for the 



benefit of later data-analysis (e.g., using RTs). We agree with the QSs developed by 

Kratochwill et al. (2010), Romeiser-Logan et al. (2008), and Tate et al. (2008) that 

randomization should not be a ‘minimum core set’ criterion for SCEs: although the 

methodological quality of SCEs can be enhanced when randomization is introduced, 

randomization might simply not be desirable and feasible for certain SCE designs (e.g., 

response-guided designs). However, we think that randomization holds more promise than 

currently acknowledged in the retrieved QSs. In SCE studies where randomization is desirable 

and feasible, it brings along important advantages, such as the reduction of internal validity 

threats and the opportunity to use an RT. 

There is agreement among the 11 QSs with regards to the importance of the visual 

inspection of SCE data: it appears of utmost importance to SCE researchers. However, there 

is disagreement about the features that should be visually inspected. The QSs developed by 

Kratochwill et al. (2010) and Horner et al. (2005) discuss the six variables described by 

Parsonson and Baer (1978) for the visual analysis of SCE data: level, trend, variability, 

immediacy of effect, overlap/non-overlap, and consistency of data across phases. The nine 

other QSs refer to only some of these six variables (mostly level and trend). 

Regarding the importance of statistical analysis of SCE data there is still disagreement 

among the 11 QSs. Only four QSs include items on statistical analysis. The recently 

developed QS of Kratochwill et al. (2010) discusses in most depth effect sizes and parametric 

and nonparametric statistical analysis methods for SCEs, and provides the most thorough 

guidelines. Extensive work has been focused on effect size measures and statistical models for 

analysis of SCEs in the past years. Accordingly, it is not surprising that some of the older QSs 

advise SCE researchers to use statistical analysis methods and effect size measures that are 

‘outdated’. For instance, the Task Force (2003) QS refers to the three approaches for 

calculating SMD effect sizes that were developed by Busk and Serlin (1992). However, 



meanwhile several weaknesses of these SMD effect sizes have been uncovered, and 

alternative SMD effect sizes have been developed for SCEs (cf. supra). Although it may not 

be feasible to prescribe the population of specific statistical techniques to adequately cover the 

diversity of data and every situation likely to be encountered (cf. Tate et al., 2008), we believe 

it is appropriate for a QS to suggest some valuable statistical analysis options with the 

accompanying references. 

With regards to data-analysis, it is very likely that we will move toward QSs that 

advise to analyze SCEs both via both visual and statistical methods. The visual inspection of 

SCE data offers a wealth of information. There is no statistical model currently proposed that 

simultaneously incorporates the information from all visual analysis variables. However, it is 

advised to complement visual analysis with statistical analysis of the SCE data when there is a 

significant trend or variability in the baseline, in case of weak or ambiguous effects, when 

changes are small but important and reliable, and to control for extraneous factors (cf. Kazdin, 

2011). Moreover, when an SCE study is evaluated both via visual and statistical analysis, the 

visual inspection of the SCE data can help in specifying the statistical model and checking the 

model assumptions. 

We are proponents of including ‘essential’ and ‘additional’ criteria in QSs for SCE 

studies. ‘Essential criteria’ are the set of criteria that should minimally be addressed for an 

SCE. For instance, (a) addressing a relevant research question; (b) the internal validity of the 

investigation (i.e., the degree to which study design, conduct, analysis, and presentation are 

not distorted by methodological biases); (c) the external validity of the investigation (i.e., the 

extent to which study findings can be generalized beyond the participants and settings 

included in the study); (d) the proper analysis and presentation of findings; and (e) the ethical 

dimensions of the intervention under investigation (cf. Barlow, Nock, & Hersen, 2009; Gast, 

2010; Jadad, 1998; Kazdin, 2011). ‘Additional criteria’ are criteria that might enhance the 



methodological quality of an SCE study, but that are not essential to an SCE study. ‘Random 

assignment of measurement occasions to the levels of the independent variable(s)’, ‘Use an 

appropriate statistical analysis’, and ‘Express the size of the effect’ are examples of additional 

criteria. When an SCE study meets these additional criteria, the study should receive a higher 

methodological quality rating: another layer of credibility and rigor is added. However, it 

might not always be desirable or possible to fulfill these criteria. For instance, sometimes the 

treatment scheduling will be entirely dependent on the data and random assignment in the 

SCE design will be considered impossible or undesirable. Another possibility is that the 

treatment scheduling is partially dependent on the data, like in an SCE with randomization 

being introduced after stability of the baseline or, in a changing criterion design, after the 

criterion for reinforcement is met (‘restricted random assignment’; Edgington, 1980). 

Regarding the criterion ‘Express the size of the effect’ we recommend effect size 

reporting because of various reasons. First of all, several leading scientific organizations 

stress the importance of reporting effect sizes for primary outcomes in addition to reporting p 

values (see e.g., American Psychological Association, 2010). Effect sizes indicate the 

direction and magnitude of the effect of an intervention. Because effect sizes can serve as 

measures of the magnitude of an effect in the context of a single study as well as in a meta-

analysis of multiple studies on one single topic, they are important for accumulating and 

synthesizing knowledge. In addition, they are also needed to guide the special education 

practitioner: statistical significance tests only concern statistical significance and should not 

be used as indicators of clinical significance. Effect sizes can be more useful when assessing 

the clinical significance of behavior change. However, the construct of clinical significance 

exceeds calculating effect sizes: it refers to the improvement in the dependent variable as well 

as to the practical importance of the effect of an intervention: whether it makes a ‘real’ 

difference to the person and/or to others with whom the person interacts in everyday life 



(Kazdin, 1999). We recommend special education researchers report effect sizes and 

additionally justify the choice of the metric (cf. supra for a discussion of nonoverlap effect 

sizes, SMD effect sizes, and regression-based effect sizes for SCEs). Researchers should also 

comment if underlying assumptions are met by their research designs and data. In addition, 

researchers should provide interpretational guidelines (e.g., metric X reveals 77% non-

overlap, accompanied by a statement whether this is medium or strong effect). 

Implications for the Practice of Special Education 

According to recent reviews (e.g., Heyvaert, Maes, Van den Noortgate, Kuppens, & 

Onghena, 2012; Heyvaert, Saenen, Maes, & Onghena, in press; Shadish & Sullivan, 2011; 

Smith, 2012), a large amount of studies published in the field of special education are SCE 

studies. The popularity of the SCE design in this field may have several reasons. First of all, 

the focus of SCE research on the individual case parallels intervention and instruction in 

special education. SCEs render results that are easily understood by practitioners who work at 

the level of the individual student. Additionally, a decision that is based on a sample of many 

students (i.e., a group-comparison study) may not be valid when applied to a specific student. 

Second, the limited availability of students may preclude the possibility of applying a group-

comparison design. SCE research is one of the only viable options if rare or unique conditions 

are involved, which is often the case in the field of special education. A third reason for the 

growing interest in SCE research in special education is its feasibility and flexibility. A fourth 

reason is its small-scale design: small-scale designs are less costly than large-scale designs 

and possible negative intervention effects are less harmful. For instance, it is indicated to first 

study the effects of a new educational curriculum, or of a new intervention for reducing 

challenging behavior, using a small-scale design. In several consecutive small-scale 

experiments, the researcher can adjust the curriculum or the intervention when it does not 

work in a satisfactory manner. Afterwards, when the results of the small-scale experiments are 



promising, the curriculum or the intervention can be implemented and evaluated at a larger 

scale. 

The current paper is of primarily interest for at least three groups of stakeholders in the 

field of special education. First, in order to enhance the quality of their studies and academic 

output, special education researchers are in need of accurate guidelines for reporting SCE 

studies. Second, special education practitioners are in need of critical appraisal QSs to 

distinguish sound from poor SCE studies and delineate what it takes for a treatment to be 

considered empirically supported (Schlosser, 2009). Third, special education policy makers 

need to minimize the risk that flawed and misleading study results are used on a large scale 

(Simera et al., 2008). 

Summarizing our paper, we formulate recommendations to the reader with regards to 

randomization and data-analysis of SCEs. In SCE studies where randomization is feasible and 

logical (i.e., it is possible and appropriate to randomly assign the measurement occasions to 

the treatments before the data are collected), we advise special education researchers to 

include randomization into their SCE designs, in order to reduce or eliminate internal validity 

threats (cf. supra). When complete randomization is not possible and/or desirable, it might be 

interesting for some SCE designs to make the treatment scheduling partially dependent on the 

data. When analyzing a randomized SCE design, one can use an RT to rule out the null 

hypothesis that there is no differential effect of the levels of the independent variable on the 

dependent variable. 

Concerning data-analysis, we advise special education researchers to engage in both 

visual and statistical analysis of the SCE data. All the retrieved QSs agree on the importance 

of visual inspection: it offers a wealth of information that is not covered by any statistical 

model. Particularly interesting for the special education researcher and practitioner are the 

QSs developed by Horner et al. (2005), Kratochwill et al. (2010), and Task Force (2003), 



because they offer concrete guidelines for visually analyzing SCE data. We advise special 

education researchers to complement the visual representation and analysis of the SCE data 

with the use of a statistical test or analysis, and to report an effect size estimate. 
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Table 1 

Characteristics of Quality Standards for SCE Studies 

Authors  Year Can be used for1 Randomi-

zation item 

included2 

Visual 

analysis item 

included 

Statistical 

analysis 

item 

included2 

Task Force on 

Evidence-Based 

Interventions in 

School Psychology 

2003 All SCEs Yes Yes Yes 

Horner et al. 2005 All SCEs No Yes Text 

Smith et al. 2007 For SCEs on 

psychosocial 

interventions for 

individuals with 

autism 

No Yes Text 

Reichow et al. 2008 For SCEs on young 

children with autism 

No Yes No 

Romeiser-Logan et 

al. 

2008 All SCEs Text Yes Yes 

Tate et al. 2008 All SCEs Text Yes Yes 

Wang & Parrila 2008 For SCEs on social 

skill training of 

children with autism 

No Yes No 

Schlosser et al. 2009 For SCEs evaluating 

two or more 

interventions 

Yes Yes No 

Smith et al. 2009 All SCEs No Yes No 

Kratochwill et al. 2010 All SCEs Text Yes Yes 

Schlosser 2011 For SCEs evaluating 

one intervention 

No Yes No 

1 Can the QS be used for all SCEs, or do the authors specify for which SCEs the QS can be used?  
2 ‘Yes’ if an item on randomization / statistical analysis is included in the QS; ‘Text’ if randomization / 

statistical analysis of SCEs is discussed in the text that accompanies the QS, but no items in the QS 

concern randomization / statistical analysis of SCEs; ‘No’ if no item on randomization / statistical 

analysis is included in the QS 
 

  
 


