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Abstract This study investigates the effect of fine-scale clay drapes on tracer trans-
port. A tracer test was performed in a sandbar deposit consisting of cross-bedded
sandy units intercalated with many fine-scale clay drapes. The heterogeneous spa-
tial distribution of the clay drapes causes a spatially variable hydraulic conductivity
and sorption coefficient. A fluorescent tracer (sodium naphthionate) was injected in
two injection wells and ground water was sampled and analyzed from five pumping
wells. To determine (1) whether the fine-scale clay drapes have a significant effect
on the measured concentrations and (2) whether application of multiple-point geo-
statistics can improve interpretation of tracer tests in media with complex geological
heterogeneity, this tracer test is analyzed with a local three-dimensional ground-water
flow and transport model in which fine-scale sedimentary heterogeneity is modeled
using multiple-point geostatistics. To reduce memory needs and calculation time for
the multiple-point geostatistical simulation step, this study uses the technique of di-
rect multiple-point geostatistical simulation of edge properties. Instead of simulating
pixel values, model cell edge properties indicating the presence of irregularly shaped
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surfaces are simulated using multiple-point geostatistical simulations. Results of a
sensitivity analysis show under which conditions clay drapes have a significant effect
on the concentration distribution. Calibration of the model against measured concen-
trations from the tracer tests reduces the uncertainty on the clay-drape parameters.
The calibrated model shows which features of the breakthrough curves can be at-
tributed to the geological heterogeneity of the aquifer and which features are caused
by other processes.

Keywords Multiple-point geostatistics · Training image · Groundwater · Sorption ·
Tracer test · Upscaling

1 Introduction

Many ground-water flow and solute transport modeling, laboratory and field stud-
ies have demonstrated the sensitivity of solute transport to fine-scale structural het-
erogeneities (Güven et al. 1985; Ptak and Teutsch 1994; Vereecken et al. 2000;
Huysmans and Dassargues 2009; Ronayne et al. 2010). Clay drapes or mud drapes
are a very specific type of fine-scale sedimentary heterogeneities. Clay drapes are
thin continuous or discontinuous layers of low-permeability material that are of-
ten observed in different types of sedimentary deposits (Reineck and Singh 1973).
They are usually only a few centimeters thick (Houthuys 1990; Stright 2006) but sev-
eral studies indicate that they may significantly influence the spatial distribution of
permeability and, consequently, subsurface flow (Ringrose et al. 1993; Willis and
White 2000; Morton et al. 2002; Mikes 2006; Stright 2006; Li and Caers 2011;
Huysmans and Dassargues 2012). The effect of these clay drapes on solute trans-
port has been studied by a modeling approach (Huysmans and Dassargues 2009), but
large-scale field tests for exploring the effect of clay-drape distribution and parame-
ters on solute transport have not yet been performed. Additionally, the possible effects
of heterogeneous sorption resulting from clay drapes has not been investigated before.
Therefore a field-scale ground-water tracer test was performed in a deposit display-
ing a complex distribution of clay drapes. This test aims at quantifying the effect of
the presence of clay drapes on measured concentration breakthrough curves. Mon-
itoring and modeling solute transport in the presence of clay drapes also raises the
question of the effect of sorption on transport in such an environment. Tracer tests
are often modeled with advective-dispersive transport alone (Ronayne et al. 2010).
Additionally, as far as environmental purposes are concerned (i.e. protection zones
delineation around pumping wells), sorption or other processes creating a delay in so-
lute arrival are often neglected (Rentier et al. 2002; Derouane and Dassargues 1998;
Dassargues 1994). In other studies, a non-negligible effect of sorption is observed
if clay minerals are present (Vereecken et al. 2000). The present study investigates
whether sorption related to clay drapes is an important process. Also investigated is
whether sorption can be modeled using uniform values or whether the spatial distri-
bution of sorption parameters should be taken into account.

Incorporating the heterogeneity of hydraulic conductivity and sorption parame-
ters induced by clay drapes in flow and transport models is a difficult task. Clay
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drapes are thin and may display complex shapes and spatial distributions. Multiple-
point geostatistics is a technique that has proven to be very suitable for simulat-
ing the spatial distribution of complex sedimentary structures (Strebelle 2000, 2002;
Caers and Zhang 2004; Hu and Chugunova 2008; Huysmans and Dassargues 2009;
Comunian et al. 2011; dell’Arciprete et al. 2012). In the field of ground-water hy-
drology, application of multiple-point geostatistics for simulating the geometry and
properties of geobodies or hydrofacies in heterogeneous media has become an ac-
tive research topic in recent years. Several recent studies apply the method to syn-
thetic cases (Feyen and Caers 2006) or use multiple-point geostatistics to build re-
alistic (hydro)geological models based on field observations on geological outcrops
and logs (Ronayne et al. 2010; Huysmans and Dassargues 2009; Bayer et al. 2011;
Comunian et al. 2011; Le Coz et al. 2011; dell’Arciprete et al. 2012). For large-
scale three-dimensional grids multiple-point geostatistics may be computationally
very intensive. Several studies therefore focus on improved implementations of
the multiple-point statistics techniques to make the algorithms more powerful and
computationally efficient (Mariethoz et al. 2010; Huysmans and Dassargues 2011;
Straubhaar et al. 2011; Comunian et al. 2012). In the present study, multiple-point
geostatistics is used to simulate heterogeneity of hydraulic conductivity and sorption
parameters in a geologically consistent way, taking the observed spatial distribution
of clay drapes into account. A fine-scale heterogeneous model with a geologically
realistic distribution of clay drapes is built. The calculated breakthrough curves from
this model with clay drapes are compared with the measured breakthrough curves and
the calculated breakthrough curves from a more simple homogeneous model. In this
way, this study will show whether multiple-point geostatistics can improve the inter-
pretation of tracer tests in media with complex clay-drape distributions. This paper
is organized as follows. First, the field tracer test is described. Then, the modeling
approach and the multiple-point geostatistical simulation procedure are explained.
Afterwards, the resulting breakthrough curves and the modeling results including
calibration and sensitivity analyses are shown and finally discussion and conclusions
are presented.

2 Field Tracer Test

A field tracer test was executed at the drinking water well field Huiskens in Korbeek-
Lo (Belgium) operated by the Belgian water company De Watergroep. The test site
is situated approximately 3 km southeast of the city of Leuven (Fig. 1). A site spe-
cific geological profile was established on the basis of 15 local drillings with a depth
between 20 and 28 m (Fig. 2). Three different geological layers are distinguished in
this geological profile. The upper unit, six to eight meters thick, corresponds to Qua-
ternary deposits consisting of coarse sands with boulders and cemented concretions
and dark brown to black peat and loam. Below the Quaternary deposits, Middle-
Eocene Brussels Sands with a varying thickness between 12 and 20 m are found. The
Brussels Sands formation is a major ground-water reservoir in Belgium. The sands
are deposited as a tidal sandbar deposit, resulting in a complex geological hetero-
geneity which is extensively described in Houthuys (1990), Huysmans et al. (2008),
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Fig. 1 Map of Belgium showing Brussels Sands outcrop and subcrop area (shaded part) modified af-
ter Houthuys (1990) and inset showing tracer test site map of the drinking water well field Huiskens in
Korbeek-Lo (Belgium)

Fig. 2 Site specific geological profile

Houthuys (2011) and Possemiers et al. (2012). A very typical feature of these sands is
the abundant occurrence of clay drapes. Below the Brussels Sands, fine-grained, rel-
atively impermeable Ieper deposits are found (Huysmans and Dassargues 2006). On
the test site, ground water is pumped from 17 pumping wells and monitored in two
piezometers. The average ground-water production rate during the tracer test period
was about 2400 m3/day.

Sodium naphthionate was injected into the ground water in the two on-site
piezometers (wells 59 and 60b) on April 6th 2011. Sodium naphthionate (C10H8
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NNaO3S) is a colorless fluorescent tracer with a detection limit of 0.2 mg/m3 un-
der optimal conditions (Leibundgut et al. 2009). In piezometer 59, with a screened
interval extending from 8 to 12 m below ground surface, 2 kg of sodium naphthion-
ate diluted in 20 l of water was injected followed by a native water injection of 70 l
during 15 minutes. In piezometer 60b with a depth of approximately 5 m, 2.45 kg
of sodium naphthionate diluted in 20 l of water was injected. Groundwater was sam-
pled automatically in five ground-water abstraction wells (wells 44, 45, 49, 56 and
57 in Fig. 1) at a depth of approximately 9 m, from April 2011 until July 2011, using
automatic water samplers (Teledyne ISCO 6712 Full-Size Portable Sampler). Sam-
ples were taken every hour in the beginning of the monitoring period and sampling
frequency decreased to one sample per day towards the end of the 86-day long mon-
itoring period. All monitoring wells have screens in the permeable Brussels Sands
with screened intervals whose length varies between 14 and 17 m. Wells 49 and 57
have an additional limited one-meter-long screen in the Quaternary deposits. The well
bottoms correspond largely with the bottom of the permeable Brussels Sands. Sodium
naphthionate concentrations were measured in 1034 ground-water samples by fluo-
rescence spectroscopy using the HITACHI F-2500 spectrofluorometer with optimal
wavelengths for excitation and emission (320 and 415 nm, respectively). This resulted
in measured concentration breakthrough curves versus time for the five observation
wells.

3 Modeling Approach

A two-step nested modeling approach was applied. First, a large-scale model with
layers of uniform flow and transport properties was built and calibrated on the com-
bined dataset of measured heads in 59 observation wells and 1034 measured naph-
thionate concentrations during the tracer test in five wells. Second, a fine-grid model
with heterogeneous hydraulic conductivity and distribution coefficient was run using
the calculated heads from the large-scale model as boundary conditions. The assump-
tions and characteristics of both models are summarized in Table 1. Nested models
can have different degrees of coupling. The models in this work were only loosely
coupled by assigning calculated heads from the larger model as a Dirichlet boundary
condition on the vertical boundaries of the smaller model. Other approaches are char-
acterized by a higher degree of coupling to ensure continuity of fluxes and hydraulic

Table 1 Assumptions and characteristics of the large-scale and fine-scale model

Large-scale model Fine-scale model

Size 11.5 km by 8.1 km by 78 m 150 m by 150 m by 24.5 m

Grid cell size 1–100 m 0.3–9 m

Hydraulic conductivity Homogeneous per layer Heterogeneous

Distribution coefficient Homogeneous per layer Heterogeneous

Clay drapes Not included Explicitly included

Calibration data 59 head measurements and 1034
concentration measurements

61 concentration measurements
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heads at the contact of the two grids, for example Giudici et al. (2001), Mehl and Hill
(2002), Romano et al. (2002), Keating et al. (2003) and Mehl et al. (2006).

3.1 Calibration of Large-Scale Flow and Transport Model

The large-scale transient flow and transport model is based on a general stationary
ground-water flow Modflow model from Ongena (2008). It is a three-dimensional
model of 11.5 km by 8.1 km with a total thickness varying between 11 and 78 m
(Fig. 3). The model consists of 205 rows and 269 columns. The largest grid cell
dimension is 100 m. Four different pumping well fields are included in the model.
Progressive grid refinement occurs around all pumping wells where the side length
of grid cells is 20 m, and around the injection and monitoring wells used for the
tracer test where grid cells are refined to dimensions of 1 m by 1 m. The numeri-
cal model consists of three model layers representing the Quaternary deposits (upper
layer) and the Brussels Sands (middle and lower layer). The top of the Ieper Clay de-
posits represent the impermeable bottom of the model due to the low permeability of
this deposit. The Dijle River constitutes the west boundary of the model (Fig. 3). The
northern model boundary is considered an impermeable boundary since dominant
regional ground-water flow is parallel to this boundary. East and south boundaries
are prescribed head boundaries deduced from nearby hydraulic head measurements.
Aquifer recharge is dependent on land use and varies between 150 and 295 mm/year
based on a WetSpass simulation (Batelaan and De Smedt 2007). In the model 93
pumping wells are included using the Modflow well package. Three small rivers are
incorporated using the Modflow river package and several ponds are inserted in the
model using the general head boundary package. Conductance values for the rivers
and ponds were calibrated by Ongena (2008) and are not further adjusted in the
present study. Initial heads are taken from the stationary ground-water flow model
from Ongena (2008) calibrated on long-term average measured heads. The differen-
tial equations describing ground-water flow were solved by Modflow (McDonald and
Harbaugh 1988), a block-centered finite-difference method-based software package.

Fig. 3 Model area (white area) of large-scale model showing boundary conditions and piezometer loca-
tions
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Transport of sodium naphthionate was modeled as transport by advection, dis-
persion and sorption, and simulated with MT3DMS (Zheng and Wang 1999) using
the high-order finite volume TVD solver. Visual Modflow, developed by Schlum-
berger Water Services, was used as pre- and post-processor. The maximum value
of the numerical Courant number used for the determination of the time step for
transport calculations is 0.75. Calibration of hydraulic conductivity of the Quater-
nary deposits and the fine and coarse facies of the Brussels Sands was performed
using PEST. Combined calibration using head and concentration measurements was
applied. Time-averaged hydraulic head was available in 59 head observation wells
and measured sodium naphthionate concentrations versus time from the tracer tests
that were available in five wells. The weights for the head and the concentrations
measurements were taken equal to the inverse of the squared average of measured
values. Effective porosity, longitudinal dispersivity and distribution coefficient were
calibrated using the measured sodium naphthionate concentrations. Transverse dis-
persivity was taken one order of magnitude smaller than longitudinal dispersivity
(Zheng and Bennett 1995).

3.2 Fine-Scale Flow and Transport Modeling with Heterogeneous Hydraulic
Conductivity and Sorption

The size and resolution of the large-scale model are too large to incorporate hetero-
geneity of hydraulic conductivity and sorption parameters related to the clay-drape
presence. Therefore a local fine-scale fine-grid flow and transport model was built.
This model is a 150 m by 150 m by 24.5 m three-dimensional model in which sub-
meter scale clay drapes are incorporated in a manner consistent with local field data.
In the inner central zone of the model where all injection and observation wells are
situated, a very small grid cell size of 0.3 m × 3 m × 0.3 m is adopted so that in-
dividual clay drapes can be explicitly incorporated in the model in this zone. The
spacing along the y direction is ten times greater than along the x and z directions
since the sedimentary structures are assumed to be continuous along that direction
(Sect. 3.2.1). Clay drape occurrence was simulated in this fine-scale model using
multiple-point geostatistics. The next sections describe the details of this procedure
which consists of the following steps. First, a field-based training image of clay-drape
occurrence was constructed. Secondly, this training image was upscaled by convert-
ing from a pixel representation to an edge representation of the clay drapes. Next, this
upscaled training image was used as and input image to SNESIM to simulate clay-
drape occurrence. This simulated field was translated into a spatially variable field of
heterogeneous hydraulic conductivity and distribution coefficient to be used as input
in the fine-scale flow and transport model.

3.2.1 Training Image Construction

A training image depicting spatial patterns of clay-drape occurrence was constructed
based on in situ mapping. The Brussels Sands outcrops in a nearby quarry were used
as an analog for the Brussels Sands found in the subsurface at the tracer test site.
This outcrop of approximately 1200 m2 was mapped in detail with regards to the
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Fig. 4 (a) Vertical two-dimensional training image of 30 m by 30 m in NNE direction: sand facies (white),
clay-rich facies (black) modified from Huysmans and Dassargues (2009) and (b) the corresponding edge
training image modified from Huysmans and Dassargues (2011)

spatial distribution of sedimentary structures and permeability in Huysmans et al.
(2008). A two-dimensional fine-scale training image along the NNE-direction was
constructed based on this field mapping. This training image shows an alternation
of sand-rich and clay-rich zones (Fig. 4). In the third dimension perpendicular to
the two-dimensional training image used in this study, layering and clay drapes are
very continuous. While the NNE-oriented faces of the outcrops display complex pat-
terns of cross-bedding and inclined mud drapes, the perpendicular faces mainly show
continuous horizontal layering. Therefore all layers and sedimentary structures are
assumed to be continuous in that direction. The incorporation of three-dimensional
simulations based on several two-dimensional training images in different directions
following the approaches discussed in Comunian et al. (2012) could be interesting
future work. More details about construction of this training image can be found in
Huysmans and Dassargues (2009). In the next section, multiple-point statistics are
inferred from this training image to simulate realizations of clay-drape occurrence to
be used as input for the local ground-water flow model.

3.2.2 Clay Drapes Simulation Using Multiple-Point Geostatistical Simulation of
Edge Properties

In multiple-point geostatistics, patterns are inferred from the training image and re-
produced in the simulation domain (Guardiano and Srivastava 1993; Strebelle and
Journel 2001; Caers and Zhang 2004). More information about the theory behind
multiple-point geostatistics can be found in Strebelle (2000) and Strebelle (2002).
Description of the different multiple-point algorithms can be found in the follow-
ing papers: SNESIM (Strebelle 2002; Liu 2006), FILTERSIM (Zhang et al. 2006;
Wu et al. 2008), SIMPAT (Arpat and Caers 2007), HOSIM (Mustapha and Dimi-
trakopoulos 2010) and the Direct Sampling method (Mariethoz et al. 2010). In this
study, the technique of direct multiple-point geostatistical simulation of edge prop-
erties (Huysmans and Dassargues 2011) is used to incorporate clay drapes showing
patterns similar to the training image of Fig. 4 in the ground-water flow and transport
model. This technique was designed to simulate thin complex surfaces such as clay
drapes with a smaller CPU and RAM demand than the conventional multiple-point
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Fig. 5 Fine-scale groundwater flow and transport model grid and edge realization

statistical methods. Instead of pixel values, edge properties indicating the presence of
irregularly shaped surfaces are simulated using multiple-point geostatistical simula-
tion algorithms. The training image is upscaled by representing clay drapes as edge
properties between cells instead of representing them as objects consisting of several
cells. The concept of the edge of a flow model and the associated edge properties was
introduced in the work of Stright (2006) as an additional variable. The edge properties
are assigned to the cell faces. The cell property used in this study is the presence of
clay drapes along cell faces. More details about the method can be found in Huys-
mans and Dassargues (2011). The fine-scale training image has a grid cell size of
0.05 m and represents the clay drapes as consisting of pixels with a different pixel
value than the background material. The upscaled edge-based training image has a
grid cell size of 0.30 m and represents the clay drapes as edge properties that indicate
the presence of clay drapes along the edges of all grid cells. The upscaled 30 m by
30 m training image is used as input to SNESIM from SGeMS (Remy et al. 2009) in
order to simulate a clay-drape realization to be imported in the inner central zone of
the model where individual clay drapes are incorporated. Vertical two-dimensional
realizations of 92.4 m by 15 m are generated. Figure 5 shows the random clay-drape
realization that is incorporated in the ground-water flow and transport model.
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3.2.3 Fine-Scale Ground-Water Flow and Transport Model

The ground-water flow and transport model is a three-dimensional local model of
150 m × 150 m × 24.5 m, including the injection and observation wells for which a
significant sodium naphthionate concentration was measured (Fig. 5). The fine-scale
model is oriented along the N22.5°E direction which is parallel to the direction of the
main geological structures including most clay drapes. The top of the Ieper Clay de-
posits represents the impermeable bottom of the model due to the low permeability of
this unit (Huysmans and Dassargues 2006). Constant hydraulic heads are assigned to
all vertical boundaries with values equal to the computed values from the large-scale
ground-water flow model. In the centre of the model where all injection and observa-
tion wells are situated, a very small grid cell size of 0.3 m × 3 m × 0.3 m is adopted
so that individual clay drapes can be explicitly incorporated in the model in this zone.
The model consists of 323 × 50 × 52 = 839,800 cells. Initial values for hydraulic
conductivity, recharge, effective porosity and dispersivity are adopted from the large-
scale calibrated model. The mass of injected sodium naphthionate for each injection
well is incorporated as specified flux conditions. The pre- and post-processor Process-
ing Modflow for Windows (PMWIN) (Chiang and Kinzelbach 2001) for MODFLOW
and MT3DMS was used for the flow and transport modeling.

The realization of clay-drape presence can be imported into the ground-water
flow code PMWIN using the Horizontal-Flow Barrier (HBF) package and the ver-
tical leakance (VCONT) array (Chiang and Kinzelbach 2001). The HBF package
simulates thin vertical low-permeability geological features, which impede horizon-
tal ground-water flow. They are situated on the boundaries between pairs of adja-
cent cells in the finite-difference grid (Hsieh and Freckleton 1993). A horizontal-flow
barrier is defined by assigning the barrier direction, which indicates the cell face
where the barrier is located, and the clay-drape parameter, which is the barrier hy-
draulic conductivity divided by the thickness of the barrier (Chiang and Kinzelbach
2001). Horizontal edges are inserted into MODFLOW by adapting vertical leakance
(VCONT array) between two model layers. In case a horizontal edge is present in
a model cell, the edge is inserted in the model as a semi-confining unit. Initially, it
is assumed that all clay drapes in the ground-water flow model have a thickness of
0.02 m and a hydraulic conductivity of 0.2 m/d (Huysmans and Dassargues 2012).
The relation between sorption and clay-drape presence is more complicated than the
relation between hydraulic conductivity and clay drapes. Linear sorption can be de-
scribed using the distribution coefficient or retardation coefficient

S = KdC,

R = 1 + ρ

n
Kd,

where S is the adsorbed solute concentration [mg/kg], Kd is the distribution coeffi-
cient [m3/kg], C is the solute concentration [mg/m3], R is the retardation coefficient
[–], ρ is the dry bulk mass density of soil [kg/m3] and n [–] is the porosity. Some
authors report weak negative correlations between distribution coefficient and hy-
draulic conductivity (Robin et al. 1991), others report positive correlations between
distribution coefficient and log transformed values of clay content (Vereecken et al.
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2000). In the case of the Brussels Sands, it is expected that clay drapes increase
sorption of naphthionate. Therefore, a heterogeneous distribution coefficient was as-
signed cell-by-cell so that cells bounded by clay drapes are assigned a higher distri-
bution coefficient than cells without clay drapes. Initially, a distribution coefficient of
2.9 × 10−9 m3/kg was assigned to the cells bounded by clay drapes while no sorp-
tion was assumed in the other cells. The value of the distribution coefficient was later
adapted during sensitivity analysis and calibration. For computational reasons, the
fine-scale model is ran for only one realization of clay-drape occurrence. One model
run on an Intel Quad-Core 2.20 GHz machine with 8 GB RAM took several days. In
order to quantify the effect of clay-drape parameters on tracer breakthrough curves,
a sensitivity analysis was carried out. The following parameters were subjected to
a sensitivity analysis: clay-drape conductivity, clay-drape thickness and distribution
coefficient.

4 Results

4.1 Tracer Breakthrough Curves

Figure 6a shows measured sodium naphthionate concentrations versus time in the
five monitoring wells. In three out of the five wells, significant concentrations are
observed. First arrivals are observed approximately 92 hours after injection. Highest
concentrations in the three wells are measured at, respectively, 23, 24, and 30 days af-
ter injection. The highest measured concentration in this tracer experiment is 135 ppb.
The measured concentrations show a particular behavior versus time. Instead of a
gradually increasing concentration followed by a gradually decreasing concentra-
tion, alternating high and low concentrations appear. The tracer test was performed
in actual exploitation conditions with irregular and automatic starting and stopping of
the pumps. Comparison of the measured concentrations with recorded pumping dis-
charges versus time in the abstraction wells where concentrations are measured shows
that the highest concentrations are measured when the pumps are shut down. On the
contrary, very low sodium naphthionate concentrations are measured when pumping
at a high discharge. The correlation coefficient between sodium naphthionate concen-
tration and pumping discharge is −0.51. It seems that some kind of mixing or dilution
occurs when pumping at a high rate, possibly because at that time ground-water is
also pumped from other more shallow thin sand layers in which some pumping wells
are also screened. Because we are interested in concentrations in the Brussels Sands,
the concentrations that were measured at high pumping discharge were removed from
the dataset for the remainder of this analysis. Also the wells where no significant con-
centrations were measured (piezometers 44 and 45) were removed from the dataset
for the fine-scale modeling. This was done because the fine-scale models could not be
made large enough to capture both tracer injections. Since the injection in well 59 did
not result in significant concentrations in any measurement well, only the injection in
well 60 with monitoring points 49, 56 and 57 was modeled with a fine-scale model.
Figure 6b shows the concentration measurements that are used for further compari-
son with modeling results. Although these concentration values show a more gradual
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Fig. 6 (a) Raw and (b) filtered measured sodium naphthionate breakthrough curves

evolution in time than the raw dataset, some non-smooth behavior is still observed.
Further modeling in the next sections will investigate whether this non-smooth be-
havior can be attributed to local heterogeneity.

4.2 Calibration of Large-Scale Flow and Transport Model

The large-scale flow and transport model was calibrated using PEST. Combined cali-
bration using head and concentrations measurements was applied. Average hydraulic
head was available in 59 head observation wells and 1034 measured naphthionate
concentrations from five wells were available from the tracer test. Best calibration
results were obtained for the following parameter values. Hydraulic conductivity (K)
in the Quaternary deposits was set to an isotropic value of 3 m/day. Hydraulic con-
ductivity in the Brussels Sands was set to 18.29 m/day in the horizontal direction
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Fig. 7 Calculated versus
observed average heads (m) for
the large-scale model

Fig. 8 Calculated and observed sodium naphthionate concentrations (ppb) for the large-scale model

and 3.9 m/day in the vertical direction. Effective porosity was set to 5 %. Longitu-
dinal dispersivity was set to 15 m and the uniform distribution coefficient was set to
3.5×10−9 m3/kg. Figure 7 shows measured versus calculated heads (RMS = 1.7 m).
Figure 8 shows measured and calculated concentrations versus time. With this large-
scale model with homogeneous layers, not all concentration variations in time could
be reproduced. The parameters and calculated heads from the large-scale flow and
transport model were used as input parameters and boundary conditions for the fine-
scale heterogeneous model.
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4.3 Sensitivity Analysis of Heterogeneous K and Sorption

The fine-scale heterogeneous flow and transport model was run with different clay-
drape properties. First, the effect of sorption related to clay-drape presence was inves-
tigated. Figure 9 shows calculated breakthrough curves of the fine-scale model with
and without heterogeneous sorption. In the model with heterogeneous sorption, the
distribution coefficient of cells containing clay drapes was set to 2.9 × 10−9 m3/kg.
Clay drape sorption seems to have similar effects on the breakthrough curves as uni-
form homogeneous sorption: peak tracer concentration timing shifts to later times
(from 10 days to 25 days) and a much heavier late-time tail is observed when clay-
drape sorption is incorporated compared to a simulation without sorption. Second,
the effect of clay-drape hydraulic conductivity and thickness on the calculated break-
through curves was investigated. Figure 10 shows calculated breakthrough curves for
a clay-drape parameter (defined as conductivity of clay drape divided by thickness
of clay drape) of 20 day−1 and 2 day−1. Lower clay-drape permeability results in
a later tracer concentration peak (32 days instead of 24 days) and lower maximum
concentrations (130 ppb instead 175 ppb).

Fig. 9 Calculated breakthrough
curves without (solid line) and
with (dashed line)
heterogeneous sorption

Fig. 10 Calculated
breakthrough curves for
clay-drape parameters of
20 day−1 (solid line) and
2 day−1 (dashed line)
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Fig. 11 Observed and calculated sodium naphthionate breakthrough curves from the fine-scale heteroge-
neous model

4.4 Calibration of Fine-Scale Flow and Transport Model

Clay drape permeability, thickness and distribution coefficients were calibrated us-
ing the measured sodium naphthionate concentrations. The best fit was found for the
following parameter values: clay-drape parameter equal to 2 day−1 and distribution
coefficient for cells containing clay drapes equal to 2.913 × 10−9 m3/kg. The model
does succeed in reproducing peak timing and the order of magnitude of concentra-
tion but does not succeed in an accurate reproduction of all measured time-dependent
variations in the breakthrough curves (Fig. 11). It also seems that the modeled break-
through curves have a heavier late-time tail than the measured ones, although this is
difficult to assess since no tracer measurements are available in a large time interval
after the peak (32 to 76 days after injection).

5 Discussion and Conclusions

A first aim of this study was to quantify the effect of the presence of clay drapes
on measured concentration breakthrough curves. The sensitivity analysis of clay-
drape parameters has clearly shown the effect of clay-drape parameters on calculated
breakthrough curves. Clay drapes with a lower hydraulic conductivity or a larger
thickness result in later peak tracer concentration timing and lower maximum con-
centrations. This confirms the finding of several earlier studies (Ringrose et al. 1993;
Willis and White 2000; Morton et al. 2002; Mikes 2006; Stright 2006; Huysmans
and Dassargues 2009; Li and Caers 2011; Huysmans and Dassargues 2012) that clay
drapes that are only a few centimeters thick can significantly influence subsurface
flow and solute transport. This study also aimed to investigate the role of sorption
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in the presence of clay drapes. Sensitivity analysis shows that peak tracer concen-
tration timing shifts to later times and that a much heavier late-time tail is observed
when clay-drape sorption is incorporated. Both the large-scale model and the hetero-
geneous fine-scale model show that sorption should be included to reproduce peak
concentration timing and the order of magnitude of tracer breakthrough concentra-
tions. This confirms the positive correlation between distribution coefficient and clay
content that was reported by Vereecken et al. (2000). In geological media with a sig-
nificant amount of clay drapes, tracer tests can thus not be modeled accurately with
only advective-dispersive transport.

This study also evaluated the application of multiple-point geostatistics for the
interpretation of tracer tests in a medium with complex geological heterogeneity.
It has been confirmed that multiple-point geostatistics is a suitable and efficient
technique for simulating the spatial distribution of such complex structures. Even
for simulating very fine-scale structures in a three-dimensional grid at field-scale,
multiple-point simulations are very efficient. The computation time needed for sim-
ulating heterogeneity using SNESIM is only a fraction of the computation time
needed to run the transport model. The main limitation of this approach is the com-
putation time of the fine-scale flow and transport model. Incorporating very fine-
scale clay drapes in a field-scale model results in a very large model with a rela-
tively fine-grid cell size. The computational requirements for such models are of-
ten so high that these detailed complex models become impractical and this limits
the possibilities for sensitivity analysis or calibration that require a large number of
model runs. Recent developments in computational statistics applied to flow prob-
lems seem very promising for tackling these issues. Recent advances suggest that the
amount of realizations can be significantly reduced by simulating a limited number
of simple and complex models in a joint procedure and that more simple models
can be used when models are designed for a specific purpose (Scheidt et al. 2011;
Aydin and Caers 2013). Application of these new principles and techniques on flow
and transport in clay-drape environments might be a very interesting path of further
research.

Although very detailed field-based geological heterogeneity was incorporated in
the modeling approach, not all variations observed in the measured breakthrough
curves could be reproduced with the model. Additionally, the late-time tail behav-
ior could not be reproduced satisfactorily. In this case, modeling the tracer test with
a detailed heterogeneous model only slightly improved the fit of the breakthrough
curves compared to a model with homogeneous hydraulic conductivity and sorp-
tion. It seems that not all features of the breakthrough curves can be attributed to the
geological heterogeneity of the aquifer. The time-dependent variations in the break-
through curves should be attributed to other processes, for example dissolution or
mixing with water from other sand layers, variations of the pumping discharge rates
or sampling issues. In order to use tracer test results for testing conceptualizations of
geological heterogeneity in future tests, we recommend that the test should be exe-
cuted on a site where pumping discharge can remain constant. Additionally, having
multiple injection and sampling points is definitely needed for this kind of analysis.
Interpretation of the tracer breakthrough curves would also be much more straight-
forward if all wells were only screened in one geological layer.
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