

A (more) human approach to localization tasks

Niccoló Tosi, CEA LIST Herman Bruyninckx, KULeuven Olivier David, CEA LIST

Motivation

- FACT: A reliable scene model is fundamental for contact avoidance and operator assistance
- NEED: Enhance the ability to calibrate 3D scene models coping with:
- control errors
- uncertainties on objects' pose
- camera obstructions

Collision Checking

- Anti-collision on the MODEL is active:
- Demonstration of a faise collision detection:
 - The virtual robot touches the front Panel of the mock-up while real robot has no reasons to collide

Force sensing proved useful, especially in harsh environments

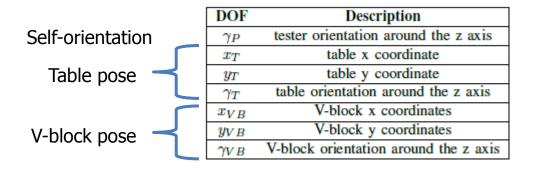
Human Blind Localization Experiment

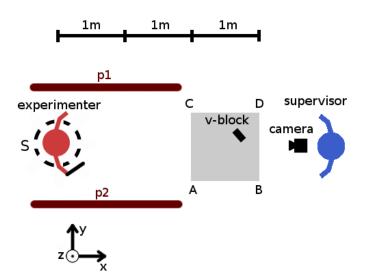
Objective: to observe human beings facing a calibration and localization task in a structured environment

- 30 adult subjects
- 30 seconds to look at the scene, then cover eyes and spin once
- Sensor shut down: eye-cover, thick glove, headset

TEST 1: v-block on the table **TEST 2**: v-block on the right edge

task: localize the v-block and release the stick on top of it

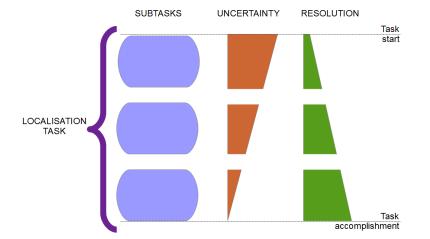




Experiment: Results

	Step	Chosen Action	DOF(s)	Test 1	Test 2
	1	touch p1 or p2	γ_P	6/30	5/30
	2	touch AC	$\gamma_T x_T$	26/30	25/30
	3	touch AB or CD	y_T	16/30	21/30
	4	table-compliant	z_{VB}	21/30	22/30
	5	T exploration	$x_{VB} y_{VB}$	30/30	30/30
	6	V exploration	γ_{VB}	30/30	30/30

Same


actions chosen

Sequence of

Experiment: Analysis

- Subjects chose the same sequence of actions
- Direct link between action and DOFs
- Resolution increased on control and estimation as uncertainty was reduced

ICRA 2013

DOF-Decoupled Active Sensing

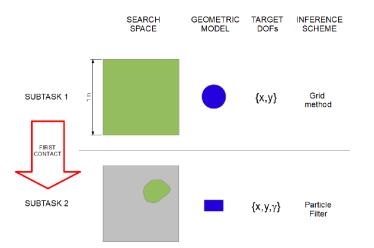
- Task divided into subtasks, each of them focused on a DOFs subset
- Decision-making about what to sense next formulated as a constrained optimization within each subtask

$$\operatorname*{argmax}_{a} r(b,a) = w_{I}I(b,a) - w_{m}C_{m}(b,a) - w_{c}C_{c}(b,a)$$

r = reward b = belief a = action $\{w_{l_{c}}w_{m_{r}}w_{c}\} =$ weights I = info gain (KL distance or Entropy difference) $C_{m} =$ motion cost $C_{c} =$ computational cost

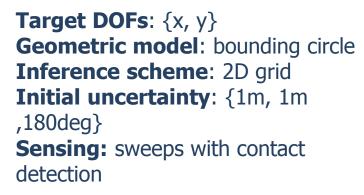
CRA 2013

DOF-Decoupled Active Sensing: first example

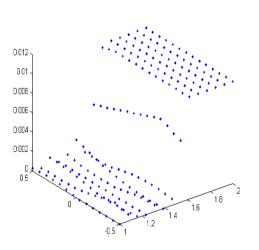

Task: localization of a rectangle on the table

Simplifying assumptions:

- 1. Pre-defined sub-task sequence (taken as-is from the experiment)
- 2. Decision making solved with a preprogrammed sequence of actions within each subtask


Implementation:

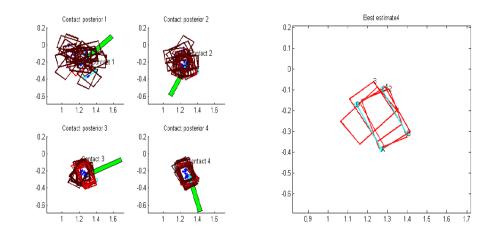
- Matlab simulation
- Staubli RX90 (under development)


Rectangle localization: subtask 1

Further to the experiment, the sequence of sweeps is preprogrammed to cover the table surface.

Sensing

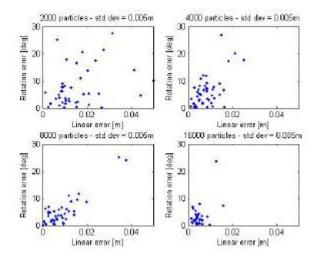
Posterior distribution



Rectangle localization: subtask 2

Target DOFs: {x, y, γ} **Geometric model**: rectangle **Inference scheme**: 3D particle filter **Initial uncertainty**: {0.3m, 0.3m ,180deg} **Sensing:** sweeps with contact detection

Four sweeps are defined with respect to the best-estimate.



Rectangle localization: results

- Localization performed with high initial uncertainty (1m in translation and 180deg uin rotation)
- Feasible solutions for on-line applications
- Negligible overhead when doubling the initial uncertainty
- Decision making improvable: best-estimate approach does not guarantee a touch on each sweep

(??? benchmark to estimate the computational cost of using rectangles and 3D particle filter????)

Next steps

- Robot implementation of the rectangle localization
- Decision making for both subtasks as constrained optimization
- Application of DOF-Decoupled Active Force Sensing to more-complex geometries
- 6DOF localization

Contacts

Niccoló Tosi, Olivier David

CEA, LIST, Interactive Robotics Laboratory DIGITEO Labs – Bâtiment 660 Rue Noetzlin, 91190 Gif Sur Yvette, France <u>niccolo.tosi@cea.fr</u>, <u>odavid@cea.fr</u>

