
Implementation Aspects of
Security and Privacy in
Embedded Design

Josep Balasch

March 2014

Implementation Aspects of
Security and Privacy in
Embedded Design

Josep Balasch

March 2014

Copyright © Josep Balasch, 2014

D/2014/7515/39
ISBN 978-94-6018-815-2

Implementation Aspects of Security and
Privacy in Embedded Design

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. S.C.J.J. Kortmann
volgens besluit van het college van decanen

en ter verkrijging van de graad van doctor in de ingenieurswetenschappen
aan de KU Leuven

op gezag van rector prof. dr. R. Torfs
in het openbaar te verdedigen op dinsdag 11 maart 2014

om 10:30 uur precies

door

Josep M. Balasch Masoliver

geboren op 3 juli 1982
te Vic, Spanje.

Promotoren:

Prof. dr. Ingrid Verbauwhede
KU Leuven, Belgium

Prof. dr. Bart P.F. Jacobs

Manuscriptcommissie:

Prof. dr. Lejla Batina

Prof. dr. Claudia Diaz
KU Leuven, Belgium

Dr. Benedikt Gierlichs
KU Leuven, Belgium

Prof. dr. Rudy Lauwereins
KU Leuven, Belgium

Prof. dr. François-Xavier Standaert
Université Catholique de Louvain, Belgium

Prof. dr. Eric R. Verheul

Prof. dr. Yves Willems
KU Leuven, Belgium

Implementation Aspects of Security and
Privacy in Embedded Design

Doctoral Thesis

to obtain the degree of doctor
from Radboud University Nijmegen

on the authority of the Rector Magnificus, prof. dr. S.C.J.J. Kortmann,
according to the decision of the Council of Deans

and to obtain the degree of doctor of engineering science
from KU Leuven

on the authority of rector prof. dr. R. Torfs
to be defended in public on Tuesday, 11 March 2014

at 10:30 hours

by

Josep M. Balasch Masoliver

born in Vic, Spain
on 3 July 1982.

Supervisors:

Prof. dr. Ingrid Verbauwhede
KU Leuven, Belgium

Prof. dr. Bart P.F. Jacobs

Doctoral Thesis Committee:

Prof. dr. Lejla Batina

Prof. dr. Claudia Diaz
KU Leuven, Belgium

Dr. Benedikt Gierlichs
KU Leuven, Belgium

Prof. dr. Rudy Lauwereins
KU Leuven, Belgium

Prof. dr. François-Xavier Standaert
Université Catholique de Louvain, Belgium

Prof. dr. Eric R. Verheul

Prof. dr. Yves Willems
KU Leuven, Belgium

To the memory of my father

Acknowledgments

After seemingly endless months of typing and correcting, the time has come to
write the last part of this thesis. I will take this opportunity to thank several
people who, in one way or another, have greatly influenced the journey leading
to this dissertation.

First of all, great appreciation goes to my supervisors Prof. Ingrid Verbauwhede
and Prof. Bart Jacobs for giving me the chance to pursue a joint PhD degree.
I am grateful for the freedom I have been given during my research, and the
guidance and advice provided when needed.

I would like to extend my gratitude to Prof. Rudy Lauwereins, Prof. Lejla Batina
and Prof. Claudia Diaz, my assessors during the PhD study, for many valuable
advice along the way. My appreciation also to Prof. François-Xavier Standaert,
Dr. Benedikt Gierlichs, Prof. Yves Willems and Prof. Eric Verheul for kindly
accepting to be members of my Doctoral Examination Committee.

It has been (and still is) a pleasure to be part of a research group like COSIC.
I will not attempt to do a one-by-one enumeration of colleagues and friends
to whom I am indebted. Instead, I want to thank my multiple office and lab
mates, for making working hours more enjoyable; the one o’clock Alma crew, for
sharing lunches and stories; the occasional Friday beer gathering, for providing
a fun space outside work; and the COSIC futsal team, for that ever present
reminder that not everything is about winning. A particular thanks goes to
Péla and Elsy for the countless times they have helped me with bureaucratic
and financial issues.

Throughout my PhD I had the luck to work together with excellent researchers
and to learn a lot from them. I am indebted to many co-authors with whom I
share the credit of my works. I am particularly grateful to Carmela, Benedikt,
Alfredo and Claudia not only for the close collaboration we had during our days
in COSIC, but also for guiding me during the always difficult first stages of
research life. My appreciation goes also to Prof. Bart Preneel for allowing me

i

ii ACKNOWLEDGMENTS

to join the COSIC research group in the first place, before the start of my PhD.

Last but definitely not least, I would like to thank my family, including in-
laws, for their encouragement and support during my stay abroad. Also to my
childhood friends back in Avinyó, for reminding me that no matter the distance,
home will always be home. And finally to Sarah, for constantly being there in
good and in bad times and for her unconditional support along the way.

To all of you, moltíssimes gràcies!

Josep M. Balasch Masoliver
March 2014

Abstract

Embedded devices are nowadays largely represented across the compute
continuum. From mobile phones to smart cards and RFID tags, digital
devices are becoming increasingly ubiquitous, mobile and integrated with their
environment. This gradual shift towards pervasive computing envisions many
benefits in sectors as diverse as financial, entertainment, health care, information
access, or automotive. Along with these possibilities however, there are also
inherent risks to be addressed. It is in this context that this dissertation is
situated. It provides contributions to the security of embedded devices and the
privacy of the humans interacting with them.

The first part of the thesis is devoted to physical security. Many existing and
future applications have built-in security capabilities which rely on keeping
cryptographic keys secret. Typical examples include payment tokens, digital
identity documents, or access control cards. As these devices operate in hostile
environments, they need protection against physical attacks. Among these, side
channel attacks and fault attacks represent two of the major threats in the
security of embedded devices.

Our contributions in this area encompass three different but related aspects.
First, we provide an in-depth analysis of vulnerabilities that lead to physical
attacks. In particular, we characterize the effects of fault injections based
on setup-time violations on a low-end microcontroller. Second, we show how
physical attacks are still a prominent threat for secure devices by successfully
attacking a widely used family of secure memories. And third, we devise and
thoroughly evaluate a high-level mitigation against side channel attacks. More
specifically, we employ the inner product construction to design a masking-based
countermeasure implementable at any order.

The second part of the thesis deals with privacy aspects. Systems such as
location-based services, health-care monitoring, or smart homes rely on the
collection and processing of fine-grained information about users. Hazards

iii

iv ABSTRACT

derived from mining, sharing or misusing collected data are numerous, e.g.
from discrimination, persecution or reputation damage for end users to large
scale surveillance of individuals. Privacy-preserving methods to minimize the
processing and/or disclosure of personal data is paramount for the acceptance
of these systems.

We select Electronic Toll Pricing (ETP) as case study, a major representative
of location-based services. This envisioned system allows governments to levy
taxes on the use of public roads by deploying in-vehicle On-Board Units (OBUs).
Our main contribution is the design, analysis and implementation of PrETP,
a privacy-preserving ETP solution. The privacy guarantees of our system are
achieved by letting OBUs compute their road fees locally. At the same time,
we provide means for service providers to ensure that OBUs carry out correct
computations.

Samenvatting

Van mobiele telefoons tot smartcards en RFID-tags, digitale apparaten
zijn alomtegenwoordig, mobiel en geïntegreerd met hun omgeving. Deze
geleidelijke verschuiving in de richting van pervasive computing leidt tot vele
voordelen in diverse sectoren zoals de financiële, entertainment, gezondheidszorg,
informatietoegang, of de automobielsector. Naast deze mogelijkheden zijn er
echter ook inherente risico’s die gemitigeerd dienen te worden. Deze risico’s en
hoe ze aangepakt kunnen worden vormen het onderwerp van dit proefschrift.
Het behandelt de veiligheid van ingebedde apparaten en de privacy van de
gebruikers van zulke apparaten.

Het eerste deel van deze thesis handelt over fysieke beveiliging. Vele bestaande
en toekomstige toepassingen hebben ingebouwde beveiligingscapaciteiten die
steunen op de geheimhouding van cryptografische sleutels. Typische voorbeelden
hiervan zijn betalingstokens, digitale identiteitsdocumenten of kaarten voor
toegangscontrole. Aangezien deze apparaten werken in een vijandige omgeving,
hebben ze bescherming nodig tegen fysieke aanvallen. Nevenkanaalaanvallen
en foutaanvallen vormen de twee grootste bedreigingen in de beveiliging van
ingebedde apparaten.

De bijdragen in dit proefschrift omvatten drie verschillende, maar verwante,
aspecten. Ten eerste analyseren we de kwetsbaarheden die leiden tot fysieke
aanvallen. In het bijzonder karakteriseren we de effecten van foutinjecties
gedurende de setup van een low-end microcontroller. Ten tweede tonen we
aan hoe fysieke aanvallen nog steeds een belangrijke bedreiging vormen voor
beveiligde apparaten door een succesvolle aanval uit te voeren op een veel
gebruikte familie van beveiligde geheugens. Tenslotte ontwerpen en analyseren
we een hoog-niveau beveiliging tegen nevenkanaalaanvallen. Meer specifiek
gebruiken we een constructie gebaseerd op het inwendig product om een
maskeringsgebaseerde tegenmaatregel te ontwerpen die implementeerbaar met
een willekeurig aantal delen.

v

vi SAMENVATTING

Het tweede deel van deze thesis handelt over privacy-aspecten. Systemen zoals
locatie-gebaseerde diensten, monitoring voor gezondheidszorg, of slimme huizen
steunen op de verzameling en verwerking van fijnkorrelige informatie over de
gebruikers. De gevaren die voortkomen uit het analyseren, delen of misbruiken
van zulke gegevens zijn bijvoorbeeld discriminatie, vervolging of reputatieschade
voor eindgebruikers tot het observeren van individuen op grote schaal. Privacy-
bewarende methoden die het bewerken en/of vrijgeven van persoonlijke gegevens
minimaliseren zijn van groot belang om deze systemen in praktijk te aanvaarden.

Als voorbeeld van een locatie-gebaseerde dienst beschouwen we elektronische
tolheffing. Dit systeem laat overheden toe om belastingen te heffen op het gebruik
van openbare wegen door middel van een ingebedde eenheid in het voertuig.
Onze belangrijkste bijdrage is het ontwerp, de analyse en de implementatie
van PrETP, een privacy-bewarende oplossing voor elektronische tolheffing.
De garanties die ons systeem biedt op vlak van privacy worden bereikt door
de ingebedde eenheden in staat te stellen om de correcte wegentol lokaal te
berekenen. Tegelijkertijd zijn de dienstverleners in staat om te controleren dat
de ingebedde eenheden de juiste berekeningen uitvoeren.

Abbreviations

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

APDU Application Protocol Data Unit

CMOS Complementary Metal-Oxide-Semiconductor

CFA Collision Fault Analysis

CPA Correlation Power Analysis

CPU Central Processing Unit

CRT Chinese Remainder Theorem

DEMA Differential Electromagnetic Analysis

DES Data Encryption Standard

DFA Differential Fault Analysis

DoM Difference of Means

DPA Differential Power Analysis

DRAM Dynamic Random-Access Memory

DRP Dual-Rail Precharge

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

EEPROM Electronically Erasable Programmable ROM

EM Electromagnetic

ETP Electronic Toll Pricing

vii

viii ABBREVIATIONS

FIB Focused Ion Beam

FF Flip-Flop

FPGA Field-Programmable Gate Array

GPS Global Positioning System

GSM Global System for Mobile Communications

HD Hamming Distance

HW Hamming Weight

HW/SW Hardware/Software

ICT Information and Communication Technologies

IFA Ineffective Fault Analysis

IO Input/Output

IoT Internet of Things

ITS Intelligent Transport Systems

MCU Microcontroller Unit

MI5 Military Intelligence, Section 5

MIA Mutual Information Analysis

NSA National Security Agency

OBU On-Board Unit

OP Optimistic Payment

PAYD Pay As You Drive

PETs Privacy-Enhancing Technologies

POI Point of Interest

PUF Physical Unclonable Function

RAM Random-Access Memory

RFID Radio-Frequency Identification

RISC Reduced Instruction Set Computing

RNG Random Number Generator

ROM Read-Only Memory

ABBREVIATIONS ix

RSA Rivest-Shamir-Adleman Algorithm

SABL Sense Amplifier Based Logic

SEA Safe-Error Analysis

SEM Scanning Electron Microscope

SEMA Simple Electromagnetic Analysis

SHA Secure Hash Algorithm

SNR Signal to Noise Ratio

SPA Simple Power Analysis

SPN Substitution-Permutation Network

SSL Secure Sockets Layer

TC Toll Charger

TSP Toll Service Provider

WDDL Wave Dynamic Differential Logic

Contents

Abstract iii

Abbreviations vii

Contents xi

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 About this Thesis . 9

2 An Insight into Physical Vulnerabilities 15

2.1 Side Channel Attacks . 15

2.1.1 An Overview of Side Channels 16

2.1.2 Side Channel Leakage in Integrated Circuits 19

2.1.3 Exploitation of Traces 24

2.2 Fault Attacks . 33

2.2.1 Fault Analysis . 34

2.2.2 Fault Injection . 38

xi

xii CONTENTS

2.2.3 Fault Attacks based on Setup Time Violations 40

2.3 Countermeasures . 58

2.3.1 Against Side Channel Attacks 59

2.3.2 Against Fault Attacks 60

2.4 Conclusions . 61

3 A Motivating Example 63

3.1 Introduction . 64

3.2 Related Work and Background 66

3.3 Developing an Attack Path . 69

3.3.1 Experimental Setup . 70

3.3.2 Initial Investigation of Power Traces 71

3.3.3 Overcoming Authentication Attempt Counters 73

3.4 Power Analysis Attack . 75

3.5 Implications and Countermeasures 77

3.6 Conclusions . 78

4 Masking at Algorithm Level 79

4.1 Introduction . 79

4.2 Masking Block Ciphers . 80

4.2.1 1st-Order Masking . 81

4.2.2 Higher-Order Attacks 82

4.2.3 Higher-Order Masking 84

4.3 Inner Product (IP) Masking . 85

4.3.1 Construction of IP Masking. 86

4.3.2 Security Evaluation . 91

4.3.3 Performance Evaluation 95

4.4 A 1st-order Attack Against (IP) Masking 98

CONTENTS xiii

4.5 Conclusions . 99

5 Enabling Privacy in Embedded Design 101

5.1 Introduction . 101

5.2 Privacy-Preserving Systems . 102

5.3 Use Case: Electronic Toll Pricing 104

5.3.1 PrETP: Privacy-Preserving Electronic Toll Pricing . . . 106

5.4 Conclusions . 124

6 Conclusions and Open Problems 125

Bibliography 129

Curriculum 155

List of Figures

1.1 The black-box security model. 3

1.2 The grey-box security model. 4

1.3 The embedded design space. 7

1.4 Centralized architecture for exemplary monitoring systems. . . 8

1.5 Thesis organization and link to embedded design space. 10

2.1 CMOS inverter. Transition table (left), charge circuit (center),
discharge circuit (right). 19

2.2 Typical non-invasive side channel measurement setup. 20

2.4 Transitions on the data bus of a CMOS device. 23

2.6 General overview of DPA. 27

2.7 Initial flow of operations in AES. 28

2.8 Results of single-bit DPA attack on AES for the correct key
hypothesis (left) and a wrong key hypothesis (right). 30

2.9 Timing Constraints in Synchronous Logic. 41

2.10 Experimental Setup . 43

2.11 Injection of a glitch in the clock signal 44

2.12 Glitch generation using high-frequency signal. 44

2.13 Glitch generation using phase-shifted signals. 45

2.14 Pipeline in AVR controllers (source: ATMega163 datasheet). . 46

xv

xvi LIST OF FIGURES

2.15 Code example for NOP (I). 47

2.16 Code example for NOP (II). 48

2.17 Code example for NOP (III). 48

2.18 Code example for NOP (IV). 49

2.19 Code example for BREQ. 50

2.20 Code example for single-cycle instructions. 52

2.21 Difference of means for different executions of LD 53

2.22 Code example for LD. 54

2.23 Number of erroneous transitions in the data bus when decreasing
the glitch width. 55

2.24 Code example for LPM. 55

3.1 Atmel CryptoMemory Family. 64

3.2 Atmel cipher. 67

3.3 CryptoMemory mutual authentication protocol. 68

3.4 Generation of authenticators (ar, at) andKs given inputs (nt, nr, k). 69

3.6 I/O and power traces during the transmission of nr in
authentication command. Interesting peaks are marked with
*. 73

4.1 Mutual information (log10) over increasing noise standard
deviation σ for different masking schemes. 94

5.1 Straightforward model for Electronic Toll Pricing. 105

5.2 PriPAYD-based architecture for Electronic Toll Pricing. 107

5.3 PrETP enforcement spot-check model. 110

List of Tables

4.1 Complexity of IP masked operations and comparison to dth order
boolean masked operations and polynomial masked operations
in the literature. 91

4.2 Performance evaluation (in clock cycles) of AES round trans-
formations and AES encryption with IP masking scheme with
n = 2. 98

5.1 Protocol between OBU and TSP during taxing phase 115

5.2 Length of the parameters (in bits) 118

5.3 Execution times (in seconds) for an hour journey of 24 km, for
all possible security scenarios. 121

5.4 Timings (in seconds) for the execution of VerifyPayment() in the
TSP. 122

5.5 Number of OBUs supported by a single TSP. 122

xvii

Chapter 1

Introduction
Security and Privacy Aspects of Embedded Systems

With roots dating back to the ancient civilizations, cryptography - the art
of concealing written information - is a well-studied area that has developed
through the ages in an arms race with its counterpart cryptanalysis - the art of
analyzing and breaking codes. Both disciplines, encompassed under the science
of cryptology, have historically addressed military and diplomatic demands for
secret communications. From the simple substitution ciphers of the Roman
Empire to the complex rotor machines used in World War II, cryptosystems and
cryptodevices have evolved through history in parallel with technology. In the
last decades, the advent of Information and Communication Technologies (ICT)
has triggered major advances in the field. The historical goal of ensuring secrecy
over an insecure channel has been updated and extended to support secure
communication protocols in the Internet era. Today, confidentiality, message
integrity, and entity authentication provide security pillars that enable online
applications such as e-mail, e-commerce, or e-banking.

The current paradigm of pervasive computing constitutes an ongoing shift
towards a scenario in which billions of ubiquitous and inter-connected devices
are being deployed worldwide. Mobile phones, radio-frequency identification
tags (RFIDs), medical electronics, automotive components, home appliances,
and a myriad of other embedded devices are representative of this trend. With
physical constraints in resources, size, and computing power, these devices not
only inherit the complex security requirements of networked devices, but face
a whole range of new problems due to their embedded nature. Attack points
are no longer restricted to insecure communication channels, as cryptodevices
themselves operate in hostile environments and in physical possession of potential

1

2 INTRODUCTION

adversaries. Credit cards, electronic IDs and passports, or multimedia players are
examples of ideal targets for malicious users or organizations aiming at financial
fraud, identity theft, or product counterfeiting. Adding sound protection
mechanisms to such already constrained devices goes beyond the design of
secure cryptosystems, opening a challenging and active research area in the
field of physical security.

The foreseen interconnection of billions of uniquely identifiable and addressable
smart devices in the so-called Internet of Things (IoT) not only involves new
security challenges. The deployment of monitoring systems with abilities
to collect, process, and communicate data about themselves and their close
environment is already raising privacy concerns, as this may reveal personal
information about the person to whom the device is associated. While this
information can be used to the user’s benefit, for instance to improve and
personalize services, it can also be shared or misused to build user profiles
that can result in discrimination, persecution or reputation damage. Ignoring
privacy concerns may result in undesired consequences for service providers, as
illustrated by the recent revocation of the Dutch smart metering bill [77]. The
integration of Privacy-Enhancing Technologies (PETs) into these envisioned
services is a complex problem that requires balancing technical aspects with
social, legal, and even ethical concerns.

The Black-Box Security Model

One of the first enabling foundations of modern cryptography was the work of
Auguste Kerckhoffs in the second half of the 19th century [133]. In his article
La Cryptographie Militaire, Kerckhoffs gave a series of recommendations for the
design of military ciphers. Amongst them, the so-called Kerckhoffs’ principle
states that the security of a cryptosystem should not rely on the secrecy of
the employed algorithms, but only on the secrecy of the key(s). This axiom
has been long embraced by the cryptographic community to support the need
for open cryptographic design, and has laid down the basis for the black-box
security model depicted in Figure 1.1.

The cipher is an abstract mathematical object composed by two algorithms:
encryption under key K, denoted as EK , is the process of converting an input
message P (the plaintext) to an unreadable string C (the ciphertext); decryption
under key K ′, denoted as DK′ , is the complementary operation to revert an
input ciphertext C to the original plaintext P . The keys need to be accordingly
distributed between the communicating parties, i.e. an encryption key K must
be in possession of the sender, whereas the corresponding decryption key K ′

INTRODUCTION 3

must be in possession of the receiver. When the key used for both encryption
and decryption is the same we talk about symmetric-key cryptography, whereas
when the keys are different - although somehow related - we talk about public-key
cryptography. Block ciphers such as DES [5] or AES [6] and stream ciphers such
as Trivium [82] are exemplary of the former category, whereas cryptosystems
such as RSA [189] or ECC [163, 138] are representative of the latter.

P = (P1, . . . , PN) C = (C1, . . . , CN)C = EK(P)

P = DK′(C)

Figure 1.1: The black-box security model.

The black-box model provides a framework to assess the mathematical security
of a cryptographic algorithm against an attacker whose goal is typically the
extraction of either of its secret key(s) K or K ′. The adversary is assumed to
have knowledge of both encryption E and decryption D functions. Additionally,
he is given the ability to query the black-box by providing a set of plaintexts P
(resp. ciphertexts C) and analyze the encryption (resp. decryption) results of the
black-box under the key K (resp. K ′). Depending on the message selection and
the control the adversary has on setting them, the literature often distinguishes
between different forms of black-box cryptanalysis. Ciphertext-only attacks,
known-plaintext attacks, chosen-plaintext attacks, chosen-ciphertext attacks,
adaptive chosen-plaintext attacks, and adaptive chosen-ciphertext attacks [158]
are the most common ones.

The security assessment of cryptographic primitives depends also on their type.
Symmetric-key algorithms rely on their resistance to probabilistic methods
such as linear cryptanalysis [154] or differential cryptanalysis [41]. Public-key
algorithms on the other hand are based on the computational intractability
of certain mathematical problems such as integer factorization in RSA or the
elliptic curve discrete logarithm problem in ECC. Independently of the approach
followed, a cryptographic primitive is considered secure as long as the best
known attack is the exhaustive search of the key, i.e. check plaintext/ciphertext
pairs against all key space. If the search space is such that it exceeds the
computational resources of an adversary, then the algorithm is assumed to be
computationally secure.

4 INTRODUCTION

The Grey-Box Security Model

In the late 90s, the diversification of cryptographic services and applications
towards the world of low-end embedded devices triggered the appearance of
a whole new range of threats often referred to as physical attacks. Contrary
to black-box attackers, physical adversaries do not target the mathematical
strength of cryptographic algorithms by solely analyzing input/output messages.
Rather differently, they exploit additional leakage sources that stem from the
particular implementation of the algorithms and/or from the embedded essence
of the target device.

A cryptographic implementation on an integrated circuit is inherently subject
to physical phenomena of various natures: temporal, electrical, electromagnetic,
or optical, to name a few. Measurable quantities linked to internal states
and operations performed by a circuit are naturally emanated through these
channels. As such, they constitute a rich source of information that can be
passively captured and analyzed by adversaries aiming to break the device’s
security properties. In addition to this, most of these physical channels can be
actively altered and exploited by adversaries in possession of the circuits. By
disrupting or manipulating the expected behavior of the device, it is possible to
trigger errors that open the door to unexpected vulnerabilities. The grey-box
model depicted in Figure 1.2 takes these considerations into account to provide
an assessment framework for practical realizations of cryptography.

P = (P1, . . . , PN) C = (C1, . . . , CN)

F = (F1, . . . , FN)

L = (L1, . . . , LN)

C = EK(P)

P = DK′(C)

K

K ′

Figure 1.2: The grey-box security model.

The capabilities of a physical adversary are extended by two new interfaces.

INTRODUCTION 5

A first channel denoted by L models any measurable leakage source that can
be naturally captured from the device under attack. These leakage data, in
what follows called side channel information, can be later exploited by side
channel analysis. A second channel denoted by F models any physical alteration
performed by an adversary on the cryptographic device, typically with the aim
of disturbing its computation(s). The outcome of this disruption is often
the reception of a set of corrupted outputs C̃ (resp. P̃) such that C̃ 6= C
(resp. P̃ 6= P). The faulty information collected as a result of this external
manipulation may be subsequently exploited using fault analysis techniques.

Adversarial Models

Classifying the type of adversaries and their abilities is critical to determine the
security requirements of a system. In the following we provide a widely accepted
taxonomy originally introduced by IBM [8] and later adopted by Anderson and
Kuhn [16] to the case of tamper-resistant embedded devices. It groups physical
adversaries into three classes depending on their strength:

• Clever Outsider (Class I). An often very intelligent attacker, but
constrained in terms of budget, time, and expertise. He possesses only
limited information on the system under attack, e.g. publicly available
documents. Adversaries in this category are likely to exploit known
weaknesses rather than creating new ones.

• Knowledgeable Insider (Class II). A skilled specialist with vast experience
and prior technical training. He possesses a wide knowledge of the targeted
system, often a result of inside information. While his resources are not
unlimited, he is likely to have access to advanced equipment.

• Funded Organisation (Class III). The most powerful adversarial model.
It is often composed of a team of specialists backed by great funding
resources, for instance, a country, a large corporation, or even a criminal
organisation. Because of this, this adversary is capable of carrying out
highly sophisticated attacks that require the possession - or even the
design - of professional tools.

Taxonomy of Attacks

The wide range of existing physical attacks gives rise to multiple categorization
options. Time, cost, or expertise, are just a few factors that can enable different
partitions of the attack space. In the following, and as commonly accepted in
the field, we categorize physical attacks according to two criteria [151].

6 INTRODUCTION

The first criterion allows to divide physical attacks according to how an adversary
manipulates the target device under the grey-box model. We denote passive
attacks those in which the cryptographic device operates according to its
functional specifications and the adversary simply collects data by monitoring
the physical information channel L. Side channel attacks fall in this category.
In contrast, we denote active attacks those in which the expected normal
functioning of the target device is intentionally manipulated through the channel
F with the goal of inducing an erroneous or unexpected behavior. Fault attacks
are part of this category. Note that these attack approaches are not mutually
exclusive, and therefore can be carried out simultaneously by an adversary. This
is commonly referred to as combined attacks.

Orthogonally to the previous classification, a second criterion allows to divide
physical attacks according to the level of intrusion performed on the circuit.
Non-invasive attacks are those in which no physical alterations are performed
on the device. In other words, the adversary operates the circuit in its original
manufacturing form. Semi-invasive attacks on the other hand involve a certain
degree of physical intrusion on the device, typically conditioned to the passivation
layer not being damaged. In practice, all approaches based on decapsulation, i.e.
eroding the chip surface by mechanical or chemical means, fall in this category.
Finally, invasive attacks are not subject to any limitations and typically involve
access to the inner elements and circuitry of the target device.

Besides providing a more granular taxonomy, the latter classification gives an
intuition of the cost of the attack, i.e. the higher the degree of intrusion, the
higher the cost of the equipment required to mount the attack. Invasive attacks
may involve expensive equipment such as Scanning Electron Microscopes (SEM)
or Focused Ion Beams (FIB). Due to this, they are out of reach to most physical
adversaries including those in Class I.

Embedded Design for Physical Security

The grey-box model underlines the importance of securing embedded systems.
In fact, the selection of computationally secure cryptographic primitives and
protocols is only one of many steps. Integrating countermeasures against
physical attacks is critical to obtain robust systems. Along with throughput,
area, or energy consumption, security must be considered as a dimension of the
design space [191]. For designers, this implies to follow a systematic approach
considering all abstraction layers of the embedded design space, as illustrated
in Figure 1.3.

INTRODUCTION 7

The system/protocol layer specifies the security properties of the system, e.g.
confidentiality, integrity, entity/data authentication, or non-repudiation. These
are derived from the functionality and/or goals of the end application, and
they are achieved through secure cryptographic protocols. The algorithm layer
contains the building blocks required to instantiate the secure cryptographic
protocols. These may include cryptographic primitives such as public-key
algorithms, symmetric-key ciphers, and hash functions. The architecture layer
determines the platform in which cryptographic algorithms are implemented.
Depending on the system requirements, these may be developed in software
(executed on a microcontroller), in hardware (executed on a dedicated co-
processor), or even in a partitioning of both approaches represented by
hardware/software co-design space [190]. Finally, the circuit layer provides
the mapping of the architecture level at transistor level.

Figure 1.3: The embedded design space.

Mitigations against physical attacks can be instantiated at any of these levels
of the design space. However, it is important to highlight at this point that
no perfect solution exists to counter all physical attacks. While one mitigation
strategy may be suitable against a certain class of attacks, it is often the case
that its security may be compromised when considering other approaches. In
practice, chip manufacturers and smart card developers often opt for a suitable
combination of countermeasures against a well-defined adversary. A product is
considered secure when the amount of resources needed for breaking it outweighs
the capabilities of the attacker. In practice, the resistance of security-related
products against physical attacks is evaluated by specialized labs prior to
obtaining a security certificate.

8 INTRODUCTION

Embedded Design for Privacy

Nowadays, most deployed monitoring systems are implemented following a
centralized architecture as depicted in Figure 1.4. Users (data subjects) provide
information about themselves or their direct environment to the service provider
(data controller), who can later process, analyze, and store it in order to provide
the service. This data can range from the vital signs registered by body sensors,
to the electrical consumption measurements of a smart meter or the location
data collected by smartphones and in-vehicle tolling devices. From a practical
perspective this kind of centralized architectures are easy to design and deploy.
The intelligence and core functionality of the system resides in the domain of
the data controller, which is the central element in the system. This results in
minimal computing requirements for the monitoring devices and, subsequently,
cheaper development costs.

Figure 1.4: Centralized architecture for exemplary monitoring systems.

From a privacy perspective however, these type of architectures suffer from a
major downside. The data controller is assumed to be a trusted party who acts
as a well-behaved keeper of users’ personal information. If that is not the case,
then the information disclosed by users is not secret and privacy assurances
do not hold. Malicious service providers have the motivation and ability for
exploiting the collected data, for instance, in order to obtain advantageous
business positions. Other attack scenarios include external adversaries - or even
rogue employees - accessing or sharing the collected data driven by economical
incentives. Overall, it is easy to see that a central entity storing all collected
information represents a single point of failure. Furthermore, its existence opens
the possibility of personal information being systematically accessed by national
law enforcement agencies, see for instance the NSA Prism program [7]. This
leads to a scenario in which customers’ privacy is not only violated, but in fact
individuals are subject to massive surveillance.

ABOUT THIS THESIS 9

The development of architectures offering strong privacy guarantees is an active
area of research. The goal of these approaches is to integrate Privacy-Enhancing
Technologies (PETs) as part of the system. Following the lines in [86], we define
PETs as a series of technological solutions aiming to the elimination of the single
point of failure inherent to centralized architectures and to the application of data
minimization principles in the system’s flow of information. Such guarantees
can be achieved by applying a data pre-processing in the monitoring device,
in such a way that only the minimum amount of information required for the
provision of the service is actually disclosed to the data controller. Intuitively,
this implies to de-centralize (part of) the computing functionalities from central
servers to the embedded devices, resulting in potentially higher deployment
costs. In contrast, the reduction of personal data within their databases may
benefit data controllers. First, by reducing maintenance costs. And second, by
lowering the risk of financial impact and damage to their reputation due to
potential privacy breaches.

Practical deployments of privacy-preserving architectures are nevertheless not
straightforward, and multiple system aspects have to be considered. Data
minimization techniques must be applied without being detrimental for the
provision of the service. As there is no generic mechanism or set of rules
to be applied, every system requires a careful balance between its functional
requirements and the privacy of users. Moreover, the integration of PETs in
the system should not open the door to security vulnerabilities. This requires
to perform careful threat analyses considering, among others, the applicability
of physical attacks on the monitoring devices. Finally, the proposed solutions
should rely on realistic assumptions and its deployment cost should not be
prohibitive for the service provider.

1.1 About this Thesis

This thesis deals with implementation aspects of security and privacy into
embedded systems. Its contents can be mapped to the embedded design
pyramid [191] as illustrated in Figure 1.5. The focus of the first part of
the dissertation is devoted to physical attacks and covers three main aspects:
analysis of low-level vulnerabilities, exploitation of physical attacks, and design
of mitigation techniques. Because of the broad nature of the field, our latter
studies are restricted to the exploitation of non-invasive techniques and to the
design of high-level countermeasures.

On the exploitation side our choice originates from vulnerability assessment. As
non-invasive attacks can be carried out with relatively inexpensive equipment

10 INTRODUCTION

and limited specialized training, weaknesses identified by attackers and brought
to the public knowledge can consequently be reproduced at large scale by a
myriad of potential adversaries. This poses a serious threat to the security of
real world embedded systems. On the mitigation side our choice arises from the
fact that security provided by high-level countermeasures can often be formally
proven. In other words, mitigations for physical attacks can be designed while
acknowledging the physical vulnerabilities of the low-level layers.

The focus of the second part of the dissertation is devoted to privacy. Here,
we show how the integration of PETs in a system can lead to strong privacy
guarantees for end users. As a use case for our study, we select a high impact
representative application of monitoring systems: Electronic Toll Pricing (ETP).
This envisioned system is expected to be deployed in the European Union to
enable variable vehicle taxing. As this system requires to process fine-grained
location data about citizens, ensuring privacy protection becomes a critical
design condition.

Figure 1.5: Thesis organization and link to embedded design space.

Outline and Summary of Contributions

This thesis is structured in six chapters. A description of their content and our
personal contributions within each of them follows:

Chapter 1. The first chapter gives a brief introduction to the topics of
embedded design for physical security and privacy. We first describe and
compare the security assessment frameworks provided by the black-box and the
grey-box models. Then, we introduce a taxonomy for physical adversaries and
physical attacks, and we introduce the characteristics of the embedded design
space. Next, we analyze how architectures for monitoring systems may lead to

ABOUT THIS THESIS 11

an invasion of users’ privacy and how the integration of PETs can address this
issue. We finish by defining the scope of this thesis and by summarizing the
contents and contributions of each chapter.

Chapter 2. The second chapter entitled “An Insight into Physical
Vulnerabilities” dives deeper into the topic of physical attacks. It explores
which particularities of embedded devices and/or their implementations result
in vulnerabilities. The goal of the chapter is to gain insight into the origin
of physical security issues, particularly, what type of information leakage is
exploited in side channel analysis and which type of induced errors enable fault
analysis. A review of state-of-the-art countermeasures against physical attacks
is also provided.

Our contribution within this chapter is a complete study and characterization
of the effects of fault injections based on setup-time violations. These results
are presented by Balasch, Gierlichs and Verbauwhede [23] at the workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC 2011).

Chapter 3. The third chapter entitled “A Motivating Example” describes
a combination of non-invasive attacks against a widely used family of secure
EEPROM memories. The goal of this chapter is twofold. First, to illustrate
the threat that even nowadays is posed by non-invasive physical attacks; and
second, to clearly motivate the need for sound mitigation techniques.

Our contribution within this chapter is a security evaluation of the Atmel Cryp-
toMemory family of secure EEPROMs against physical attacks. These results
are presented by Balasch, Gierlichs, Verdult, Batina and Verbauwhede [24] at
the Cryptographers’ Track at the RSA Conference (CT-RSA 2012).

Chapter 4. The fourth chapter entitled “Masking at Algorithm Level” dives
into the topic of high-level countermeasures, in particular, mitigations based
on masking. As these techniques can be implemented at algorithm level
and their security formally proven, they represent an active research area
of countermeasures. We provide a comprehensive review of both state-of-the-art
masking techniques and higher-order side channel attacks.

Our contribution within this chapter is the design and implementation of a
novel masking scheme based on the inner product that can be implemented
at any order. These results are presented by Balasch, Faust, Gierlichs and
Verbauwhede [22] at the Annual International Conference on Theory and
Application of Cryptology and Information Security (ASIACRYPT 2012).

Chapter 5. The fifth chapter entitled “Enabling Privacy in Embedded Design”
focuses on the topic of privacy integration on monitoring systems. After

12 INTRODUCTION

reviewing common issues with currently deployed architectures, we discuss how
the use of PETs can guarantee certain privacy properties for end users.

Our contribution within this chapter is the design, analysis, and implementation
of PrETP, a privacy-preserving scheme for envisioned ETP applications.
These results are presented by Balasch, Rial, Troncoso, Geuens, Preneel and
Verbauwhede [26] at the USENIX Security Symposium (USENIX 2010).

Chapter 6: The last chapter concludes this thesis and discusses open security
and privacy issues in the field of embedded systems.

Other Contributions

This dissertation includes only a selection of our published works in the fields of
security and privacy. In the following we summarize our remaining contributions
which are not included in the core of this thesis. The publications are grouped
according to their main topic.

Attacks on Cryptographic Devices.

Gone in 360 Seconds: Hijacking with Hitag2, presented by Verdult,
Garcia and Balasch [222] at the USENIX Security Symposium (USENIX 2012).
The work introduces a series of vulnerabilities in the Hitag2 transponders, a
family of vehicle immobilizers widely used in the automotive industry. Hitag2
allows replaying reader data to the transponder, provides an unlimited keystream
oracle, and uses only one low-entropy nonce to randomize a session. When
wireless access to the vehicle and key is available, these weaknesses can be
exploited by adversaries to recover the secret key within seconds. If only a single
communication with the vehicle is possible, the running time of the attack is
still less than six minutes. All proposed attacks are demonstrated in practice
by experimenting with more than 20 vehicles of various makes and models.

Cryptographic Implementations.

Teaching HW/SW Co-Design With a Public Key Cryptography
Application, presented by Uhsadel, Ullrich, Das, Karaklajic, Balasch,
Verbauwhede and Dehaene [218] in IEEE Transactions on Education. The
work describes a lab session-based course on hardware/software co-design. The
goal of the course is twofold. First, to illustrate the multiple alternative solutions
available in the embedded design space. And second, to teach the fundamental
concepts of hardware/software co-design. The sample application for the course

ABOUT THIS THESIS 13

project is a basic public-key application based on RSA. The project follows a
step wise approach with assignments that build on each other. Students are
required to make their own decisions as to the partitioning between hardware and
software, the design of a communication interface, and the optimization goals.
Besides imparting hard skills in embedded design, students gain several soft
skills often overlooked in engineering, particularly, decision making, presentation
skills, teamwork, and design creativity.

Compact Implementation and Performance Evaluation of Hash
Functions in ATtiny Devices, presented by Balasch, Ege, Eisenbarth,
Gérard, Gong, Güneysu, Heyse, Kerckhof, Koeune, Plos, Pöppelmann,
Regazzoni, Standaert, Van Assche, Van Keer, van Oldeneel tot Oldenzeel
and von Maurich [21] at the Smart Card Research and Advanced Application
Conference (CARDIS 2012). The work provides a study on the software
performance of multiple hash functions including the SHA-3 finalist candidates,
SHA-256, recent lightweight proposals, and constructions based on block ciphers.
All designs are implemented in software using an Atmel AVR ATtiny45 target
platform, with the goal of minimizing code size and memory utilization. Using
a common interface, the performance of all implementations is evaluated based
on three main metrics: code size, RAM usage, and cycle counts for different
message sizes.

Privacy-Preserving Systems.

A Privacy-Preserving Buyer–Seller Watermarking Protocol Based on
Priced Oblivious Transfer presented by Rial, Balasch and Preneel [186] in
IEEE Transactions on Information Forensics and Security. The work proposes
a novel approach for the design of privacy-preserving buyer-seller watermarking
protocols. In the proposed system, the seller authenticates buyers without
learning which items are purchased. As buyers are not anonymous, customer
management is eased and currently deployed methods of payment can be utilized.
We define an ideal functionality for privacy-preserving copyright protection
protocols. To realize our functionality, a protocol must ensure that buyers
pay the right price without disclosing the purchased item, and that sellers are
able to identify buyers that released pirated copies. We construct a protocol
based on priced oblivious transfer and on existing techniques for asymmetric
watermark embedding. Furthermore, we implement and evaluate the efficiency
of our protocol, and we explain how to extend it in order to achieve optimistic
fair exchange.

An Embedded Platform for Privacy-Friendly Road Charging Ap-
plications presented by Balasch, Verbauwhede and Preneel [27] in Design,

14 INTRODUCTION

Automation and Test in Europe (DATE 2010). The work presents a practical
and functional ETP system based on PriPAYD [215]. We develop a functional
on-board-unit capable of processing location data in real-time, while minimizing
overheads required to ensure security and privacy. The performance of our
software-based prototype is tested and proves that the deployment of a privacy-
friendly solution can be achieved within a minimum cost increment compared
to existing schemes.

PriPAYD: Privacy Friendly Pay-As-You-Drive Insurance (Journal
version) presented by Troncoso, Danezis, Kosta, Balasch and Preneel [214] in
IEEE Transactions on Dependable and Secure Computing. This works is an
updated and extended publication resulting from merging the original PriPAYD
proposal in [215] and our work in [27].

Chapter 2

An Insight into Physical
Vulnerabilities
Understanding Leakage Sources on Embedded Devices

The aim of this chapter is to give an overview of the works in the research area
of physical attacks. We divide the contents of the chapter in three main blocks:
side channel attacks, fault attacks, and countermeasures. The two former focus
on historical and state-of-the-art aspects related to attacks on cryptographic
implementations, including descriptions of the origins of leakages exploited by
physical adversaries. The latter block gives an overview of mitigation techniques
currently employed to secure cryptographic devices.

2.1 Side Channel Attacks

A side channel attack is a particular type of physical attack carried out
by a passive adversary. Its core idea is to exploit leakage sources present
in cryptographic implementations of computationally secure mathematical
algorithms. This leaked information - often referred to as side channel - stems
from observable and measurable phenomenons caused by the physical essence
of digital circuits. As such, its origin is often unintentional and in most cases
difficult to prevent, resulting in a major threat for the security of practical
realizations of cryptography.

One of the first successful applications of side channel attacks to break

15

16 AN INSIGHT INTO PHYSICAL VULNERABILITIES

cryptographic devices is documented by former MI5 scientist Peter Wright
in his memoirs [228]. Among others, the book relates the efforts of the British
secret services during 1965 to intercept the communications of the Egyptian
embassy, which were encrypted by a Hagelin rotor machine under a daily updated
key. Wright suggested to place a microphone close to the cipher machine in
order to record the sound of the rotors when new keys were being set. This
additional information, together with the possession of an exact replica of the
Hagelin machine, enabled MI5 to deduce the position of a few rotors, facilitating
the extraction of the Egyptian secret keys.

In addition to its historical relevance, this story provides a perfect illustration
of the powerful nature of side channel attacks. An adversary limited by his
computational power in front of a computationally secure cipher, may use other
sources of information to simplify cryptanalysis.

The rest of this section deals with the topic of side channel attacks. We start
by reviewing the most common types of side channels reported in the open
literature, distinguishing whether they can be accessed non-invasively or, in
contrast, they require a certain degree of invasion on the device. Then, we dive
deeper into the study of leakage in CMOS devices. We provide some insight on
the source of these vulnerabilities and describe the most relevant attacks in the
field.

2.1.1 An Overview of Side Channels

2.1.1.1 Non-Invasive Side Channels

Execution Time. The first side channel attack published in the open
literature dates from 1996 and is due to Paul Kocher [140]. The leakage source
targeted in this seminal work is the variable execution time of cryptographic
implementations. Because of optimizations in the underlying software libraries,
certain arithmetic operations require more or less time to execute given
different input parameters. Kocher showed how timing variances in modular
multiplications allow an adversary to recover private keys used in cryptosystems
such as Diffie-Hellman [87] and RSA [189] after applying some statistical analysis.

Follow-up works such as Dhem et al. [85] demonstrated the applicability of
timing attacks on portable cryptographic tokens, while Brumley and Boneh [56]
successfully targeted RSA implementations running on a local OpenSSL-based
web server.

Power Consumption. Three years after the introduction of timing attacks,

SIDE CHANNEL ATTACKS 17

Kocher, Jaffe and Jun [141] published a yet more threatening form of side
channel: the power consumption. Kocher et al. showed that the instantaneous
power consumption of a circuit over time is linked to the intermediate values
and operations being processed, and presented two attacks capable of evaluating
this dependence:

• Simple Power Analysis (SPA) exploits key-dependent patterns in the
power consumption present in one (or very few) leakage measurements,
often by simple visual inspection. Although the interpretation of power
measurements requires some expertise and/or knowledge on the circuit
and on the implementation, this form of attack is particularly devastating
for algorithms where power patterns can be directly linked to key-bit
dependent operations or branches.

• Differential Power Analysis (DPA) exploits the leakage present on a larger
set of leakage measurements. As opposed to SPA, it does not require
knowledge on implementation details and its basic principles are not
algorithm dependent. The first step in a DPA attack consists in building
a model to estimate the power consumption of the device given a set of
possibilities on a computationally suitable (sub-)key space. The second
step consists in evaluating the dependence between the power model and
the leakage measurements using a statistical distinguisher that yields the
strongest dependency for the correct key guess.

Electromagnetic Emanations. The electromagnetic (EM) side channel was
independently proposed by Gandolfi et al. [101] and Quisquater and Samyde [182]
in the early 2000s. Every changing current or voltage within a circuit generates
an electromagnetic field. Measurements of this field over time inherently carry
information about the circuit’s internal behavior, which may in turn relate to
the execution of a cryptographic algorithm.

Due to their similar leakage origin, attacks exploiting the EM side channel
are analogous to the ones exploiting power consumption, namely Simple EM
Analysis (SEMA) and Differential EM Analysis (DEMA). Note however that
while power consumption is typically tied to global observations of a circuit, the
electromagnetic field allows to focus on local elements over its surface.

Other Non-invasive Side Channels. While execution time, power
consumption, and EM emanations are often acknowledged as the most relevant
and threatening side channels, other leakage sources that can be potentially
exploited in a non-invasive manner have been introduced in related works:

18 AN INSIGHT INTO PHYSICAL VULNERABILITIES

• Temperature. Brouchier et al. [55] show how it is possible for concurrent
processes running on a computer to exploit the temperature side channel,
i.e. heat dissipation of the CPU, in order to gain knowledge on internal
computations. Access to this side channel can indirectly be done by
software commands querying the speed of the CPU fan. A recent work
by Hutter and Schmidt [123] characterizes the temperature side channel
on embedded microcontrollers and identifies a (low-frequency) linear
relationship between heat radiation and circuit activity.

• Visual. Kuhn [146] delineates a mechanism to eavesdrop contents displayed
by a cathode-ray tube monitor at a distance, using off-the-shelf components
such as a photomultiplier tube and a computer equipped with a fast analog-
to-digital converter.

• Acoustic. Along with the previously mentioned attack of Wright [228],
a study by Shamir and Tromer [203] demonstrates that some patterns
of operations can be recognized by the sound emanated by a CPU. This
low-frequency side channel stems from mechanical stress due to continuous
heating and cooling effects.

2.1.1.2 (Semi-) and Invasive Side Channels

The previous side channels can be accessed in the vicinity of the target device,
i.e. without need of tampering with its physical structure. However, it may
be the case that adversaries can profit from a certain level of intrusion if it is
within their capabilities. For instance, a semi-invasive approach based on chip
decapsulation allows to bring the EM coil close to the passivation layer and
therefore improve the signal to noise ratio of the leakage measurements [101].

Ferrigno and Hlavác [97] recently introduced the optical side channel, exploiting
the number of photons that are emitted by transistors of an integrated circuit
when changing their state. Access to such information not only requires
techniques to thin down and polish the silicon layer on the backside of the
die, but also specialized equipment to measure emitted photons. Recent works
by Schlosser et al. [193] and Kramer et al. [144] have shown how this side
channel can be exploited similar to SPA and DPA techniques, respectively,
while proposing alternatives to lower the cost of the equipment.

A particular type of invasive attacks is based on (micro-)probing techniques [143].
These attacks target inner elements of a circuit that store or transport sensitive
information, for instance, secret cryptographic key(s). By placing a thin needle
on top of such elements adversaries can directly read out values processed by
the circuit. Due to this, probing based attacks are often not considered as

SIDE CHANNEL ATTACKS 19

side channel attacks, but rather a particular case of passive invasive attacks.
Needless to say, access to such fine grained information requires expensive
equipment and thus its applicability is bounded to specialized labs or attackers.

2.1.2 Side Channel Leakage in Integrated Circuits

Complementary Metal-Oxide-Semiconductor (CMOS) is the predominant
technology used nowadays in integrated circuits. One of the characteristics of
CMOS, which justifies its dominance in the field, is its low energy usage. In
fact most of the energy consumption of CMOS devices occurs dynamically as
the circuit changes its state, while the static power consumption of the device
is only significantly increasing in deep submicron technologies. Logic cells in a
circuit are typically implemented using complementary transistors, i.e. there
exist a pull-up network composed of P-transistors connected to VDD and a
pull-down network of N-transistors connected to GND.

For illustrative purposes let us consider the case of one of the simplest
CMOS cells: an inverter, whose input/output transition table is depicted
in Figure 2.1 (left). When there is no input transition the inverter circuit
remains idle, and only the (rather low) static component of the current flows
through the conducting transistor. When there is an input transition from
high to low (1→ 0), the pull-up network of the circuit (P-transistor) becomes
active. A dynamic current flows through the circuit in order to charge the load
capacitance, as shown in Figure 2.1 (middle), effectively generating an output
transition from low to high (0 → 1). Finally, when the input transition goes
from low to high (0→ 1) the pull-down network becomes active. In this case
there appears a short-circuit current that causes the load capacitance to be
discharged, producing an output transition from high to low (1→ 0).

Vin Vout Current

0→ 0 1→ 1 static

1→ 1 0→ 0 static

1→ 0 0→ 1 charge

0→ 1 1→ 0 discharge

Figure 2.1: CMOS inverter. Transition table (left), charge circuit (center),
discharge circuit (right).

20 AN INSIGHT INTO PHYSICAL VULNERABILITIES

The previous example highlights the inherent information leakage behavior of
CMOS cells: dynamic current reveals information about inner transitions. As
digital circuits are comprised of many logic cells, this effect can be observed at
a global scale. Note however that several aspects influence and determine this
leakage, for instance, the total number of logic cells, their interconnections, or
the manufacturing process, among others.

2.1.2.1 Access to Side Channel Data

How to access and measure the leakage of CMOS devices is the first issue
a side channel adversary must tackle. Figure 2.2 depicts the typical main
elements of a measurement setup, namely a computer, an oscilloscope, and
a target cryptographic device. The computer acts as the central element of
the setup. It communicates with the cryptographic device, e.g. to provide
commands/plaintexts and to collect ciphertexts, as well as with the oscilloscope,
e.g. to retrieve digitized side channel measurements. The oscilloscope is required
to acquire and record side channel signals from the target device while executing
a cryptographic operation. Note however that oscilloscopes can only measure
voltages, so the adversary needs to provide a means to “convert” the side channel
of interest, i.e. power consumption or EM emanations, into a voltage signal.

Figure 2.2: Typical non-invasive side channel measurement setup.

The instantaneous power consumption of the circuit over time can be measured
by probing the voltage drop over a shunt resistor - typically of a few Ohms -
placed into the VDD or GND line of the target device. From Ohm’s Law it
follows that the voltage drop over this resistor is proportional to the current
that flows through it, which corresponds to the current drawn by the device.

SIDE CHANNEL ATTACKS 21

This, in turn, is proportional to the device’s instantaneous power consumption.
Alternatively, one can directly employ current probes internally equipped with
circuitry to convert the current in the VDD or GND lines to voltage.

The electromagnetic field caused by the electrical activity of the circuit can be
measured by means of H-field or E-field probes placed over the surface of the
target device. These probes provide a voltage signal proportional to the field’s
amplitude. The size of the coil determines the granularity of the measurements;
it can cover larger or smaller areas of the target device.

Independently of the leakage source selection, it is clear that the cost for building
a non-invasive side channel measurement setup is rather low, particularly when
compared to the equipment necessary to carry out invasive attacks. It is
important to remark that timing side channels are also captured with such
measurement setup, as oscilloscopes inherently measure over time.

2.1.2.2 Inspection of Traces

A trace captured by an oscilloscope during the execution of a cryptographic
operation carries several types of information of interest to an adversary: the
existence of patterns within the measurement is related to the structure of its
implementation; the amplitude of the curve peaks carries information about
the type of operation being performed and the data being processed; and the
timing allows to distinguish variations in the program flow.

In order to illustrate these effects, let us consider an adversary in possession of a
cryptographic device that performs bulk encryption. Let us further assume that
specifications of the device, i.e. hardware or software implementation, processor
type, etc., are not known to the attacker. Using a suitable measurement setup,
the adversary captures a trace as shown in Figure 2.3. A quick observation
of the global trace in Figure 2.3a reveals a series of patterns (highlighted by
dotted lines) that stem from the structure of the algorithm’s implementation. In
particular, one can easily identify nine identical patterns followed by a shorter,
yet rather similar one. Such a construction is consistent with the 128-bit version
of the Advanced Encryption Standard (AES-128), composed of 10 encryption
rounds with the particularity that the last round omits one operation.

Zooming into the rounds as illustrated in Figure 2.3b allows to visualize
their inner structure. The round operations of AES - SubBytes, ShiftRows,
MixColumns and AddRoundKey - give rise to four distinguishable patterns.
Notice that the amplitude of some peaks within the SubBytes and MixColumns
computations is slightly higher than the rest. As these operations are often
implemented by means of look-up tables in memory, one can infer that memory

22 AN INSIGHT INTO PHYSICAL VULNERABILITIES

(a) Full execution of AES-128.

(b) First two rounds of AES-128.

(c) A few cycles during the execution of AES-128.

Figure 2.3: A trace of an AES execution on an embedded device (a), zooming
into first rounds (b), and zooming of a few cycles (c).

access operations consume more power than e.g. atomic operations in the
Arithmetic Logic Unit (ALU).

Finally, a further zoom into a few clock cycles is depicted in Figure 2.3c. One
can clearly notice here the charging/discharging effects of the CMOS cells within
the circuit. The dotted lines denote the separation between consecutive clock
periods; the two peaks within a single cycle indicate this particular circuit
performs activities at both the rising and falling clock edges.

SIDE CHANNEL ATTACKS 23

2.1.2.3 Modeling Traces

The information contained in a single point of a trace is often modeled as the
sum of four main components [151]:

Ptotal = Pop + Pdata + Pnoise + Pconst.

The two first components - Pop and Pdata - denote the operation-dependent
and data-dependent contributions, respectively; Pnoise corresponds to electrical
noise inherently caused by the measurement setup, and can be modeled as a
normal distribution [151]; finally, Pconst represents a constant independent of
the operation or data processed.

Quantifying the data-dependent component Pdata of a circuit is one of the first
goals of an adversary, as this can help enhancing attacks at a later stage. One
of the most employed models in the literature is the Hamming Weight (HW)
model. It basically assumes that the data-dependent power consumption of
a digital circuit is directly correlated to the number of bits equal to one in
the data being processed. In other words, the power consumption of a device
processing a variable Y on a certain clock cycle is proportional to HW (Y).

Other models, such as the Hamming Distance (HD) model, take into account
data transitions within consecutive clock cycles. In this case the power
consumption of a device when switching from a value X to a value Y is
given by HD(X,Y) = HW (X ⊕ Y). Figure 2.4 depicts a series of traces
obtained from a CMOS device when performing data transitions on an 8-bit
data bus. For each power trace, two random 8-bit values ranging from 0 to 255
are consecutively loaded from RAM to CPU registers. We average all traces
with equal Hamming distance in order to remove the effects of the noise. By
doing this, one can easily verify that the data-dependency of this device follows
a Hamming distance model: the number of bit transitions between memory
operations determines the amplitude of the measurement peak.

Figure 2.4: Transitions on the data bus of a CMOS device.

24 AN INSIGHT INTO PHYSICAL VULNERABILITIES

Further leakage models proposed in the literature aim to consider different bit
transition leakages [171]. The research area of profiled attacks, which will be
discussed later in the chapter, uses advanced statistical tools to fully characterize
a device’s leakage [63, 192].

2.1.3 Exploitation of Traces

So far we have introduced the type of information observed and/or expected in
power and EM measurements. In the following we review the most common
types of power analysis attacks proposed in the literature. Note that these
attacks can be carried out with EM measurements instead of power traces.

2.1.3.1 Simple Power Analysis

Simple Power Analysis (SPA) was introduced in the seminal work by Kocher et
al. [141]. The core idea of this attack is the direct exploitation of key-dependent
leakages present in one or a small number of power traces. Its application
is often based on heuristic analyses of visually identifiable leakages within
traces. Because of this, and contrary to its name, it often requires experienced
adversaries with detailed knowledge of the cryptographic implementation and
the architecture of the target device.

The first class of SPA attacks, as well as the most exemplary, targets key-
dependent patterns within power curves. This is particularly troubling in
public-key cryptosystems with algorithms containing conditional statements
directly dependent on secret key bits. A typical example of such constructions
is given by binary modular exponentiations [158], one of the core algorithms in
public-key cryptography. Algorithm 1 depicts the left-to-right binary algorithm
for point multiplication, a basic operation in ECC based cryptosystems. This
algorithm iterates over each bit of the exponent and always performs a point
doubling operation. If the scanned bit equals one a point addition operation is
as well executed.

One can visually derive the leakage in this algorithm: the sequence of point
doublings and point additions in a single power trace directly yields the value of
the scalar k. If the point multiplication is carried out for instance in the context
of ECDSA - the elliptic curve version of the Digital Signature Algorithm (DSA)
- then knowledge of the ephemeral scalar k easily leads to the recovery of the
secret key [155].

For illustrative purposes, we have performed an SPA attack against an
implementation of Algorithm 1 on a 160-bit standard compliant elliptic

SIDE CHANNEL ATTACKS 25

Algorithm 1 Left-to-right binary algorithm for ECC point multiplication.
Input: Base point P ∈ E(Fq), scalar k = (kt−1, . . . , k0)2
Output: Point Q = k · P
Q←∞
for i = t− 1 to 0 do
Q← 2Q
if ki == 1 then
Q← Q+ P

end if
end for

curve (secp160r1) using affine coordinates. Our target device is an 8-bit
platform extended with two cryptographic co-processors to speed up modular
multiplications and modular inversions. A power trace collected when running
this algorithm can be seen in Figure 2.5. Although a global inspection of the
curve does not reveal much information, zooming into a few loop iterations allows
to clearly distinguish the different patterns corresponding to point doubling and
point addition. A mapping of these patterns to Algorithm 1 directly yields the
value of the scalar k.

(a) Full execution of the left-to-right binary algorithm for ECC point multiplication.

(b) First iterations of the left-to-right binary algorithm for ECC point multiplication.

Figure 2.5: A power trace of an execution of Algorithm 1 on an 8-bit controller
with co-processors (a) and zooming into its first iterations (b).

26 AN INSIGHT INTO PHYSICAL VULNERABILITIES

While the effects of the previous attack are devastating from a security point of
view, it is nowadays rather uncommon to find such vulnerable cryptographic
implementations. Algorithms such as the always-double-and-add [73] or the
Montgomery Power Ladder [129] eliminate key-dependent operations in the
point multiplication flow of operations. Alternatively, the use of unified formulae
for point doubling and point addition [54] can also serve as a protection against
an SPA side channel adversary.

A second class of SPA attacks targets information visible in the amplitude of
certain peaks within a power trace. The adversarial model in this type of
attacks is however quite powerful. Not only is he assumed to know which peaks
correspond to which operations, but he has also the ability to deduce e.g. the
Hamming weight of the processed value within that peak.

An exemplary SPA attack falling in this category is due to Mangard [150]. The
attack targets the inputs and the outputs of S-Box lookups during the AES
key expansion. If the adversary is able to determine through the peaks in the
power traces the Hamming weight of the processed values, he can then use
this information to considerably reduce the key search space. Similar attacks
against the key schedule of AES [220], Serpent [72] or Camellia [229] have been
proposed as well in the literature.

A third class of SPA attacks targets cycle de-synchronizations within a set
of traces. These techniques can be seen as an advanced form of timing
attacks, enabled by the timing granularity inherently provided in measurements.
Rather than obtaining aggregated timing leakages at the end of cryptographic
operation, an SPA adversary can detect time de-synchronizations within a set
of intermediate operations. A potential SPA attack of this type is proposed by
Koeune and Quisquater [142]. It targets non-constant time implementations of
the MixColumns step of the AES.

2.1.3.2 Differential Power Analysis

In contrast to SPA, DPA attacks can be carried out with little knowledge on
implementation details or target device characteristics. The core idea behind
DPA is to perform a joint statistical processing of multiple power traces in order
to retrieve the secret key of the cryptographic device.

A general overview of the steps followed in the execution of a DPA attack
is depicted in Figure 2.6. The goal of the adversary is to extract the secret
key K from the cryptographic device. It is assumed that the adversary has
knowledge (or control) over input plaintexts Pi, which he can send to the device
in order to obtain ciphertexts Ci = EK(Pi). The first step in a DPA attack

SIDE CHANNEL ATTACKS 27

is the collection of power traces Li. Each trace results from a cryptographic
execution in the target device when given an input Pi, and therefore can be
represented as Li = f(Pi,K), where f represents the leakage function of the
device, Pi the plaintext corresponding to that execution, and K the constant
secret key of the device. Each power traces is composed of T samples such that
Li = [li1 , . . . , liT].

k̃j

Pi

l̂i,j = f̂(g̃(pi, k̃j)) Li = f(Pi,K)

K

k̃j = k

Ci = EK(Pi)

Figure 2.6: General overview of DPA.

After trace collection, the adversary must select an intermediate operation in
the cryptographic algorithm. We denote this target selection as g̃(pi, k), where g̃
is an intermediate computation in the cryptographic algorithm that depends on
a part of the plaintext pi (and potentially other algorithm constants) and a part
of the secret key k. In the literature, these intermediate values are often referred
to as sensitive variables. For the DPA attack to be feasible, it is required that
k is enumerable by an adversary, i.e. in order to compute statistics over all
possible sub-keys.

One of the critical issues faced by a DPA adversary is the selection of a suitable
power model to map intermediate values to hypothetical power consumption
values. We denote such power model by f̂ . The adversary applies the power
model to the target selection parametrized by the sub-key space. That is, he
computes a matrix of hypothesized leakage points l̂i,j = f̂(g̃(pi, k̃j)), where i
and j represent the trace number and sub-key hypothesis, respectively. Each
column of the matrix is a vector of hypothesized leakage values resulting from
applying the target selection to a known plaintext pi and a potential sub-key
k̃j .

As a final step, the DPA adversary employs a statistical test to quantify the
dependence between the hypothesized leakage vector of each sub-key k̃j and the

28 AN INSIGHT INTO PHYSICAL VULNERABILITIES

observed leakages from the target device. Basically, this implies to test each
column j of the matrix l̂i,j with the leakage samples of power curves li,t at each
point in time t. Iterating over all T samples is necessary to find the point in
time when the device computes the target selection. The hypothesis yielding a
stronger dependency is assumed to be the correct sub-key of the target device.

2.1.3.2.1 An Illustrative Attack: Single-bit DPA

The term single-bit DPA is commonly used to refer to the DPA attack
introduced by Kocher et al. [141]. Although the target algorithm in [141] is an
implementation of DES, in the following we apply the same attack to break a
straightforward implementation of the AES running on an 8-bit microprocessor.

The initial flow of operations in AES is depicted in Figure 2.7. The 128-bit
input plaintext P is viewed as an array of 16-bytes, ranging from p1 to p16.
The first operation of the cipher consists in XORing each plaintext byte with
one byte of the secret key, yielding a new state array where each byte is of the
form pi ⊕ ki. After this, each byte goes independently through a non-linear
transformation corresponding to the SubBytes operation, which can be seen
as a look-up table S. Each byte of the resulting state Y is thus computed as
yi = S(pi ⊕ ki).

Let us assume the adversary chooses the calculation of the first state byte y1 as
sensitive variable. In other words, he selects g̃(p1, k̃1) = S(p1 ⊕ k1) as target
selection. This operation fulfills two of the common requirements of suitable
DPA targets. First, the output of this operation strongly combines all input
bits in a non-linear manner. And second, the sub-key space of this operation is
only 8 bits.

P

Y

Figure 2.7: Initial flow of operations in AES.

SIDE CHANNEL ATTACKS 29

The adversary collects a set of N power measurements (L1, . . . , LN) correspond-
ing to multiple AES encryptions under the same secret key K. Note that these
traces contain multiple samples as previously illustrated in Figure 2.3a, and
contain one (or multiple) points in time where the target operation g̃(p1, k̃1) is
performed. Iterating over all 28 possible values of k1, allows an adversary to
construct a matrix of hypothesized values for the target variable. Each column
of the matrix contains the expected values of ỹ1 under a key hypothesis k̃1.

The next step consists in mapping the hypothesized values to a power
consumption model, i.e. to compute the matrix l̂i,j in Figure 2.6. The original
DPA attack in [141] is based on the assumption that power samples at the
point when an operation is performed depend on the values of the bits being
processed. Let us focus on the least significant bit of the hypothesized values of
ỹ1, namely b0. It follows that the power samples due to a variable with b0 = 1
being processed are higher than due to a variable with b0 = 0.

For each key hypothesis k̃1, the adversary partitions the N power traces in
two sets S0 and S1 according to whether the least significant bit b0 of ỹ1 is
equal to zero or to one. Once these sets are created for each key hypothesis
the adversary proceeds to the evaluation phase. The statistical test employed
in single-bit DPA is the Difference of Means (DoM). That is, an adversary
averages the traces in each set S0 and S1 and then computes a differential trace
by subtracting them. This yields a total of 28 differential traces, one for each
key hypothesis k̃1.

The results of the attack are illustrated in Figure 2.8. For the correct key
hypothesis, the average power consumption of the traces in the set S1 is
expected to be slightly larger that in the set S0 at the points in time where
the bit b0 is processed. Consequently, the resulting differential trace obtained
contains noticeable differences at the points in time where the bit b0 of ỹ1 is
manipulated. In contrast, the partitions of the adversary into the sets S0 and S1
for the rest of (incorrect) key hypothesis do not correspond to reality. Averaging
each set S0 and S1 effectively removes the effect of the bit b0. As a result, the
differential trace does not yield any specific differences.

2.1.3.2.2 On Power Models and Statistical Distinguishers

The choice of power model and statistical distinguisher in DPA attacks is not
arbitrary. Quite differently, it represents one of the key factors determining the
success probability of an attack. The study and improvement of power models
to capture the leakage present in power traces as well as statistical tests to
optimally exploit the relationship between model and reality, have been the

30 AN INSIGHT INTO PHYSICAL VULNERABILITIES

Figure 2.8: Results of single-bit DPA attack on AES for the correct key
hypothesis (left) and a wrong key hypothesis (right).

main focus of many works in the field of side channel attacks.

Messerges et al. [161] proposed the application of multi-bit DPA, in which traces
are separated in two sets according to whether all bits in a word are set to zero
or to one. While this leads to a better signal-to-noise ratio in the differential
traces, i.e. the leakage of all bits is exploited as part of the signal, it requires to
discard all traces that do not fall into either of these two sets. More efficient
attacks, in terms of required power traces, can be devised by selecting a subset
of bits rather than the whole word processed.

Because the leakage of digital circuits can be nicely characterized using Hamming
weight and Hamming distance models, most follow-up works have focused
on such approaches. Assuming a target device with an 8-bit architecture,
intermediate variables can be classified in 9 sets ranging from 0 to 8. The
generalized multi-bit DPA by Messerges et al. [162] proposes to define a certain
threshold d allowing to split traces in two groups depending on whether their
HW or HD is higher or lower than d.

Brier et al. [53] propose Correlation Power Analysis (CPA). This attack builds
on the Hamming distance model assuming the power consumption is directly
dependent on HD(X,Y), where X and Y correspond to the values of variables
manipulated in two consecutive cycles. This leads to a power consumption model
of the form a ·HD(X,Y) + b, where a is a gain scalar for bit transitions and b
comprises effects unrelated to the transition. By using Pearson’s correlation
coefficient as statistical distinguisher, the estimation of the linear relation
between model and actual traces is optimally exploited.

Gierlichs et al. [108] propose Mutual Information Analysis (MIA). This attack
applies an information-theoretic method as distinguisher, namely the mutual
information. Because of its ability to detect arbitrary dependencies, this
technique allows the application of the most generic power model available: the
identity function. Using this power model, one reduces the risk that the attack

SIDE CHANNEL ATTACKS 31

fails because of incorrect assumptions about the power model, at the cost of a
limited increase in computation and data complexity.

2.1.3.3 Collision Attacks

Collision attacks were introduced by Schramm et al. [199] in 2003. They exploit
the fact that two runs of a cryptographic algorithm with different inputs can
yield the same intermediate result at a certain point in time. More formally, two
executions with different inputs p1 and p2 and same secret key k, can produce
an intermediate result z = f(p1, k) = f(p2, k), where f is an intermediate
operation. Collisions are inherent to cryptographic algorithms with an iterative
structure in which the same transformations are repeatedly executed. In this
type of algorithms an intermediate value can even collide at multiple points in
time during a single encryption process.

In terms of power analysis, a collision can be found when parts of power traces
have a high similarity during a time span. The length (and shape) of such
interval depends on multiple aspects, e.g. algorithm, implementation, target
device, etc., ranging from single cycle operations to a sequence covering multiple
cycles. An adversary capable of detecting such patterns can exploit the side
channel information provided by the collision.

While the original collision attacks by Schramm et al. [199] were targeted to DES
implementations, follow-up works by Schramm et al. [197] and Bogdanov [49]
have studied their application to AES. More recently, an improved collision
attack by Moradi et al. [164] has been shown to break protected implementations
of AES. Witteman et al. [227] have applied collision attacks to break protected
RSA implementations.

2.1.3.4 Profiled Power Analysis

The techniques described so far attempt key extraction without any (or much)
prior knowledge about the side channel leakage of an implementation. Profiled
attacks on the other hand make use of a learning step to obtain ’a priori’
information about the device’s leakage. The better an adversary is able to
characterize the leakage of a device, the higher his success probability will be.
The profiling stage relies on the assumption that an adversary has access to
a device identical (or at least very similar) to the one under attack. In some
cases, a further requirement is that the adversary can change secret keys on
the training device. While these conditions might be difficult to meet in real
scenarios, profiled attacks are among the most powerful side channel techniques.

32 AN INSIGHT INTO PHYSICAL VULNERABILITIES

Template attacks, introduced by Chari et al. [63], have been shown to be
the strongest side channel attack possible from an information theoretical
point of view, under the assumption that the noise follows a multivariate
Gaussian distribution. During profiling, an adversary produces a multivariate
characterization of the noise in a measurement consisting of T points. This
characterization, referred to as template, consists of a mean vector and a
covariance matrix (m,C). During the profiling phase, the adversary uses the
training device to collect different power traces for different input data Pi and
(possibly) keys Ki. Then, he groups the traces corresponding to a certain pair
(pi, ki) and calculates all corresponding templates (m,C)(pi,ki). During the
attack stage, the adversary obtains a trace L from the device under attack.
He then evaluates the probability density function of the multivariate normal
distribution using each template (m,C)(pi,ki) and the measurement L. More
formally, he computes the following probability:

p(L|(m,C) = 1√
(2π)T · det(C)

· exp(−1
2 · (L−m)′ · C−1 · (L−m)). (2.1)

This probability indicates how much each measurement fits a template, i.e.
the higher the probability, the better the match. Once all probabilities are
computed, the adversary applies a maximum-likelihood decision rule to find the
correct template, which at the same time yields the value of the correct key.

In practice there are several issues that need to be dealt with when using
templates. For instance, the size of the covariance matrix C grows quadratically
with the number of points in the power trace. For the attack to be
computationally feasible it is thus important to reduce the number of points,
and only consider those which carry useful information. Finding points of
interest (POI) inside power traces is key to successfully carry out a template
attack, but unfortunately no optimal mechanism exists that allows to do this.
In [63] the sum of pairwise differences of the average measurements is used
to highlight and select interesting points, but other alternatives such as the
sum of squared pairwise t-differences have been proposed [109]. Rechberger
and Oswald [184] use DPA as means to identify suitable points for building
templates, while Reparaz et al. [185] use the mutual information as criteria for
point selection. Other issues often found when dealing with template attacks
include ways to efficiently compute Equation 2.1. For instance, it is typical
to apply logarithms to avoid the exponentiation, or to use the identity matrix
instead of the covariance matrix to avoid computing the matrix inversion.

Stochastic attacks, proposed by Schindler et al. [192], model each point in
a power curve Lt(p, k) as a stochastic variable composed of two parts such

FAULT ATTACKS 33

that Lt(p, k) = ht(p, k) + Rt. The data-dependent part ht(p, k) is a function
depending on the input, known data p and subkey k, while Rt is assumed to be
a stochastic variable representing zero mean noise. The profiling step is divided
in two parts. The first part consists in finding an approximation ĥt(p, k) of the
data-dependent component in a suitable u-dimensional chosen vector subspace
Fu;t, for each instant t. The second part consists in calculating a multivariate
density of the noise at relevant time instants. In the attack phase, a maximum
likelihood principle is used for key recovery. Stochastic attacks are more efficient
than template attacks during the profiling step, but they achieve less precision
in the classification step.

2.2 Fault Attacks

In the context of embedded systems a fault attack is performed by an active
adversary in physical control of a cryptographic device. It consists of two closely
related phases. First, the deliberate induction of a malfunction during the
computation of a cryptographic algorithm; and second, the exploitation of the
faulty outcome (or a set thereof) to gain information about secret cryptographic
keys. The former phase deals mostly with practice-oriented aspects on fault
injection mechanisms, whereas the latter follows a more theoretical approach
by devising specific cryptanalytic fault analysis techniques.

Securing cryptographic devices and implementations against fault attacks is
an active research area in the field of embedded cryptography, with multiple
overview publications and dissertations [131, 221, 130], one extremely focused
and dedicated yearly workshop (FDTC), and a first book completely devoted to
the topic due to Joye and Tunstall [128]. Considered one of the major threats
by the smart card industry, fault attacks are nowadays an essential step in
security evaluation and testing of security-related products.

This section introduces the most relevant works in the area of fault attacks. We
start by enumerating existing fault analysis techniques that have been proposed
in the literature to attack implementations of several cryptosystems. Then, we
review techniques for fault injection and their observed effects on integrated
circuits. Here we present our contributions to the study of setup time violations
on pipelined microcontrollers. Finally, we briefly describe some of the most
common countermeasures against fault attacks at different design abstraction
layers.

34 AN INSIGHT INTO PHYSICAL VULNERABILITIES

2.2.1 Fault Analysis

The public research on fault analysis was started by the seminal work of
Boneh, DeMillo and Lipton [50] in 1996. Their proposal, often referred to as
Bellcore attack, targets implementations of RSA that use the Chinese Remainder
Theorem (RSA-CRT) [181], e.g. for signature generation. A straightforward RSA
implementation computes an RSA signature as a single group exponentiation
s = md mod n, where m is the input message, d the private key exponent,
and n = pq the RSA modulus resulting from the multiplication of two prime
numbers p and q. In contrast, RSA-CRT takes advantage of p and q being
known to the device and breaks the computational effort as follows:

mp = m mod p,

mq = m mod q,

sp = mdP
p mod p,

sq = m
dQ
q mod q,

s = (((sq − sp) · pinv) mod q) · p+ sp,

where dP , dQ and pinv are precomputed parameters.

The Bellcore attack assumes an active adversary able to corrupt the intermediate
computation on either of the two CRT-branches, i.e. during the computation
of sp or sq. The fault model considered is rather generic, in the sense that the
only constraint on the attacker’s corruption is to inject any fault in sp or sq
leading to s̃ 6= s. Boneh et al. showed that knowledge of both s and s̃ allows to
directly factorize the RSA modulus by computing gcd(s− s̃, n).

Although this seminal work did not report practical experiments, the devastating
effects of the attack quickly caught the interest of the cryptographic community
and triggered the appearance of a new field of research. Comparison between
fault analysis attacks is often difficult, not only due to differences in the necessary
amount of faults and/or off-line computation requirements, but also on the
assumptions that are placed on the fault effects in the circuit, i.e. the so-called
fault model.

2.2.1.1 Fault Models

Roughly speaking, a fault model can be defined as the mathematical
representation of a fault injection’s outcome. It comprises a series of

FAULT ATTACKS 35

characteristics that determine which variables can be corrupted and the effects
of the fault on the processed data [131]

• The number of affected bits determines the granularity of the fault. The
most fine-grained attack considers single bit manipulations, while more
coarse ones assume the disturbance of a byte or a word. Depending on
the assumed implementation platform, word can refer to 8, 16, 32, or any
number of bits.

• The modification of affected bits specifies the observable outcome of the
fault. A stuck-at fault implies all targeted bits can be set to a fixed value.
The typical assumption is that bits can be set to 0 or 1, giving rise to the
so-called stuck-at-zero and stuck-at-one models. A flip fault results in the
targeted bits being complemented. Finally, a random fault over n bits
results in a uniformly distributed value between 0 and 2n − 1.

• The control of the fault determines the capabilities in inducing an error
at a certain location and at a certain time. An adversary with precise
control is able to affect specific bits within variables at accurate points
in time. An adversary with loose control on the other hand can target
specific variables as a whole, but over a set of operations or clock cycles.
Finally, an adversary with no control will affect an arbitrary variable at
any random point in time.

• The duration of the fault refers to the life-span of the induced error.
Most faults are considered to be transient, meaning that their effect is
only temporary. In contrast, permanent faults have a fixed effect and
cannot be reversed.

Some fault analysis techniques assume a rather relaxed fault model. This is
the case for instance of the Bellcore attack, which simply requires a transient
corruption within a large interval of time. Other attacks however require extreme
levels of precision that are sometimes difficult to argue in practical settings.

2.2.1.2 Fault Analysis of Public-Key Cryptosystems

The security of public-key cryptosystems is based on the intractability of certain
mathematical problems. RSA for instance is based on the hardness of factoring
very large integers. This is illustrated by the fact that adversaries knowing an
RSA public modulus n are unable to find its two prime factors p and q.

Most fault analysis techniques on public-key cryptosystems are based on injecting
a fault that results in a “shortcut” to solve its underlying mathematical problem.

36 AN INSIGHT INTO PHYSICAL VULNERABILITIES

A perfect example of such approach is the Bellcore attack: corrupting one of the
branches of an RSA-CRT implementation allows an adversary to factor n given
a pair of correct and faulty signatures (s, s̃). The same outcome can be achieved
by using only one faulty signature s̃ and computing gcd(s̃e −m,n) [125], where
e corresponds to the public RSA key.

The first fault analysis attack against straightforward implementations of RSA
was already proposed by Boneh et al. [50] and it requires an adversary capable
of flipping a bit of the RSA private key during binary exponentiation. Similar
attacks targeting private exponents are proposed in [29, 127]. Injection of faults
on the public modulus can lead to forged signatures being accepted by an RSA
verification process [200], and also to the recovery of the private key [52, 39, 37].

Similarly to RSA, fault analysis attacks against ECC often seek to inject faults
resulting in the exposure of mathematical vulnerabilities. As the security of ECC
cryptosystems depends on the choice of elliptic curve E, a natural adversarial
approach is to induce faults such that computations are moved to a different,
often weaker, curve E′. This can be done by corrupting parameters such as the
base point, intermediate points, or curve parameters [40, 67, 98]. An alternative
consists in exploiting faulty points on the original curve E, as for instance the
sign change fault attack in [46].

Safe-Error Analysis (SEA). Originally introduced by Yen and Joye [230],
safe-error attacks represent a particular branch of fault analysis techniques that
do not require the analysis of faulty ciphertexts. The idea behind this powerful
class of attacks is to observe whether an injected fault results in an erroneous
computation. Because the relevance of some operations in certain public-key
algorithms depends on bit values of the key, knowing whether a fault is able to
induce an error suffices to gain information about cryptographic keys.

Safe-error attacks are often classified in two categories: C-type attacks [233]
and M-type attacks [230, 135]. The former relies on the ability of the adversary
to inject computational faults into the ALU of a device, whereas the latter
targets memory locations or registers used by the implementation. Attacks of
C-type are particularly devastating in implementations that employ dummy
operations, as for instance the always-double-and-add algorithm for ECC point
multiplication. Originally introduced to thwart SPA attacks, this algorithm
performs a dummy point addition when the scalar bit is equal to zero. A
computational fault resulting in the corruption of this operation clearly has no
effect on the overall result of the point multiplication. Yet from an attacker
perspective, knowing this information reveals the actual value of the scalar bit
that is processed in this iteration [233]. Attacks of M-type on the other hand
target memory locations and/or registers used by an implementation. Their
core idea consists in corrupting a memory element and observe whether the error

FAULT ATTACKS 37

is propagated to the output or cleared during the execution of the algorithm,
e.g. due to the memory location being overwritten with a new value. Similar
to C-type attacks, this information suffices to learn the value of the key bit in
that particular iteration.

2.2.1.3 Fault Analysis of Symmetric-Key Cryptosystems

Differential Fault Analysis (DFA). Not long after the publication of the
Bellcore attack, Biham and Shamir [42] introduced the first fault analysis attack
against symmetric-key implementations. The principle behind this technique,
named Differential Fault Analysis, is to exploit differences between faulty and
correct ciphertexts in order to gain information about the device’s secret key. The
core of the attack is similar to classical differential cryptanalysis [41], in which an
adversary constructs and solves a series of differential equations to discriminate
key guesses. The main difference is that while differential cryptanalysis relies
on finding appropriate combinations of plaintexts/ciphertexts, DFA employs
faults to obtain combinations of correct and faulty ciphertexts.

The original attack in [42] was targeted at implementations of DES, and assumed
an adversary capable of flipping one bit of the right half of the DES state during
one of the last rounds of the algorithm. Subsequent proposals to attack middle
rounds of DES - considering several fault models resulting in different attack
complexities - were first proposed in [11] and generalized in [187].

Following the selection of Rijndael [78] as the AES, the research focus on
DFA attacks naturally shifted from DES to AES. Piret and Quisquater [172]
introduced a powerful attack based on the corruption of one byte in the last
rounds. This attack, applicable to other block ciphers using Substitution-
Permutation Networks (SPN) structures, required only a few correct and faulty
ciphertexts while assuming a rather generic random byte fault model. Following
this work, a myriad of DFA attacks on AES have been presented [91, 47, 111,
217].

Collision Fault Analysis (CFA). A variant of DFA suitable to attack
early rounds of block ciphers is the so-called Collision Fault Analysis due
to Hemme [121]. Originally targeted to DES and 3-DES implementations, CFA
assumes a stuck-at fault model, i.e. the result of some computation is set to a
certain value known to the attacker, typically zero. The first step in a CFA
attack is to obtain a faulty ciphertext corresponding to some arbitrary input
value. Assuming a chosen plaintext scenario, the adversary then iterates over a
part of the input space, for instance a byte, until a (fault-free) output collision

38 AN INSIGHT INTO PHYSICAL VULNERABILITIES

is found. The plaintexts of the collision pair can be then analyzed to infer
information about the first round key.

Ineffective Fault Analysis (IFA). An alternative to the previous techniques
that does not require analysis of the faulty outputs is given by Ineffective
Fault Analysis [47, 69]. Its core idea resembles that of safe-error attacks, albeit
with two main differences: it applies to symmetric-key cryptosystems and a
stuck-at fault model is assumed. Given a correct plaintext/ciphertext, the goal
of IFA is to inject a fault at some point of the execution that has no effect
on the ciphertext. This implies that the stuck-at value caused by the fault
corresponds to the actual value of the inner computation. Thanks to this, the
adversary is able to learn intermediate values of the computation, which can
yield information about the key.

2.2.2 Fault Injection

During the late 70s, researchers from the aerospace industry became aware
that cosmic rays, i.e. high-energy α-particles particularly found in outer space,
were able to inflict damage on semiconductor electronics [234]. The particular
effect these particles had on RAM memories was simulated by characterizing
them as randomly induced errors in memory cells. This allowed to determine
their overall effect at system level, and subsequently look for ways to protect
aerospace equipment against this phenomena. Even though this research was
not carried out in the context of cryptographic implementations, it is often
cited as one of the first observations that faults can be injected on integrated
circuits.

Nowadays, several techniques exist to induce errors in electronic devices are
known. Depending on their level of intrusion, they are often classified into non-
invasive or (semi-) and invasive mechanisms. The former is based on tampering
with the interfaces and/or close environment of the device, while the latter
requires to expose internal parts of the chip before tampering. In the following
we enumerate the most common techniques reported in the literature as well as
their effects on cryptographic implementations.

2.2.2.1 Non-Invasive Mechanisms

Clock manipulations. The first successful application of faults to overcome
the security provided by cryptographic devices predates the publication of the
Bellcore attack. In fact, it was originally deployed by the US pay TV hacking
community in the beginning of the nineties [15, 16]. The early generation of pay

FAULT ATTACKS 39

TV systems based on smart cards had security flaws that were exploited by the
hacking community to reprogram these tokens and obtain unlimited channel
subscriptions. In an attempt to disable all hacked devices, the pay TV service
provider broadcast a firmware update that resulted in tampered cards entering
an infinite loop on power up, rendering them useless. The reply of the hacking
community was the design of a piece of hardware - known as unlooper - that
allowed the cards to regain their functionality [205].

The secret recipe behind unloopers was in fact a fault injection whose outcome
was the skipping of certain firmware instructions, in this particular case, the
branch command within the infinite loop construction. The fault mechanism
employed was the insertion of glitches in the clock supplied to the smart card.
A glitch is a temporary increase of the nominal frequency given to a device.
Because the updating of the program counter in a branch instruction is often set
late in the clock cycle, the insertion of clock glitches resulted in such operation
being skipped.

Due to its role as pioneering attack, the potential effects of clock glitches on
software implementations in embedded CPUs were rapidly explored by earlier
works [143]. Potential attack scenarios include for instance its usage to extend
the runtime of loops in communication routines to see more of the memory after
the output buffer [15], to reduce the number of loop iterations in cryptographic
contexts, e.g. to convert a secure iterated block cipher into weaker single-round
variant [16], and to inject any other fault. In hardware implementations clock
glitches have been successfully applied to break implementations of AES [10] as
well as other standardized block ciphers [99].

Voltage manipulations. In parallel to these attacks, manipulations on the
power line have also been extensively studied. The insertion of voltage spikes,
i.e. short but high variations of voltage levels, has been reported to result in the
skipping of the instructions or in the modification of the data manipulated by
the processor [30]. This has been exploited to reduce the number of rounds of an
AES implementation on a PIC16F877 smart card [66], and to skip subroutine
calls in RSA implementations based on square and multiply [194] and on
the Chinese Remainder Theorem [134] on AVR processors. Attacks based
on constantly under-powering target devices have been studied on hardware
implementations of AES [201] and on 32-bit ARM processors [31].

Temperature variations. Altering the environmental conditions around the
target device is another possibility for non-invasive fault adversaries. Global
increases of temperature have been used to reproduce the Bellcore attack on an
8-bit controller executing RSA-CRT [123] and to induce multiple bit errors in
DRAM memory modules [116]. Low-temperature attacks on the other hand

40 AN INSIGHT INTO PHYSICAL VULNERABILITIES

enable cold boot attacks [120] by freezing data stored in memory cells for later
recovery.

Electromagnetic pulses. The effect of injecting faults via the EM channel
has also been explored in the literature. Quisquater and Samyde [183] employ
a camera flash-gun to inject a high voltage into the coil of an active probe.
The resulting magnetic field generates an eddy current on the surface of the
chip, which leads to memory errors. Schmidt and Hutter [195] make use of a
spark-gap transmitter to generate a strong electromagnetic burst and radiation,
and apply this technique to break an RSA-CRT implementation on an 8-bit
microcontroller. More recently, Dehbaoui et al. [84] investigate the injection of
localized electromagnetic pulses on hardware and software implementations of
the AES.

2.2.2.2 Semi-Invasive and Invasive Mechanisms

Optical attacks. As electronic circuits are intrinsically sensitive to light, brief
and intense optical pulses can result in transistors having a faulty behavior.
The idea to exploit this characteristic for fault injection purposes is due to
Skorobogatov and Anderson [204]. The white light emitted by a low-cost camera
flash, focused through a precision microscope, was shown to cause switching
in memory cells, even single bit flips. This attack required a semi-invasive
intrusion on the device based on the removal of its package.

An enhancement of optical injection mechanisms consists in the usage of a
laser beam. Its precise nature allows the injection of localized faults targeting
particular areas of the exposed chip, e.g. SRAM cells, registers, buses, etc.
Exemplary attacks against cryptographic implementations using this fault
injection mechanism include for instance [9, 219].

Other attacks. The most accurate fault injection technique requires the use
of a Focused Ion Beam (FIB). The precision of this equipment allows attackers
to modify the structure of circuits or even cut existing wires, resulting in
devastating effects for physical security mechanisms. Despite being a powerful
attack tool, the high price and required specialized training makes FIBs a threat
only when considering adversaries with large budget.

2.2.3 Fault Attacks based on Setup Time Violations

Most digital circuits today are characterized by having information storage
and processing synchronized to one (or more) global signal: the clock. An

FAULT ATTACKS 41

abstraction of the mode of operation of these circuits is given in Figure 2.9. It
consists of two D-type flip-flop registers (FF) controlled by a common clock
signal (CLK). Data traveling between these registers is processed and modified
by a combinational logic block. At the rising edge of the clock, each of the
flip-flops captures the value at its input D and makes it available at its output
Q.

Figure 2.9: Timing Constraints in Synchronous Logic.

The nominal period Tn of this circuit corresponds to its maximal operating
frequency, and it is determined by the time required to propagate data between
the two flip-flops. A careful study of the delays in the circuit yields the following
restriction:

Tn > tCLK→Q + tlogic + tsetup − δ, (2.2)

where tCLK→Q is the propagation time of the flip-flop necessary to make the
signal available at the output Q; tlogic is the delay to propagate the signal
through all gates, multiplexers, latches, etc. conforming the combinatorial logic;
and tsetup is the time margin within which data must be held steady at the
input D. The parameter δ denotes the skew due to spatial variations in the
CLK line.

Non-invasive fault injection techniques often seek to violate the synchrony
condition of integrated circuits given in Equation 2.2. Glitches or bursts in
the clock line result in temporary decreases of the clock period Tn, while
low-voltage attacks and temperature manipulations result in an increase of
the data propagation delays tlogic. More recently, the effects observed by
injecting localized electromagnetic pulses have also been ascertained to setup
time violations [84].

42 AN INSIGHT INTO PHYSICAL VULNERABILITIES

2.2.3.1 Characterization of Clock Glitches on 8-bit Pipelined Microcon-
trollers'

&

$

%

Publication data
J. Balasch, B. Gierlichs, and I. Verbauwhede, “An in-Depth and Black-
Box Characterization of the Effects of Clock Glitches on 8-bit MCUs”,
In Fault Diagnosis and Tolerance in Cryptography - FDTC 2011, pages
105-114. IEEE, 2011.

Contribution
Main author.

In the following we present our work on the study of the effects of setup time
violations on smart card microcontrollers. While there exist a lot of works in the
literature exploiting this type of faults, most of them target custom hardware
implementations of cryptographic algorithms [201, 99, 10]. In the context of
software-based implementations, the potential effects of setup time violations
have been often enumerated in the literature [15, 16, 30], but without providing
technical details on how to perform actual attacks or on the type of CPU
architectures considered. Some follow-up works have successfully reproduced
some of these attacks on cryptographic implementations running on PIC [66]
and on AVR controllers [134, 194], but their focus is on fault exploitation rather
than characterizing their effect.

Our original work aims to fill this gap in the literature by providing a complete
study and characterization of setup time violations on a legacy smart card
architecture. Rather than focusing on the exploitation of fault injection, our
research is driven to answer questions such as how, when, and under which
circumstances setup time violations result in computation faults. We select a
commercial 8-bit AVR controller operating with a two-stage pipeline, and we
provide a complete study of how clock glitches affect its normal functioning. Our
experiments are carried out in a black-box setting, without advanced debugging
tools or complete knowledge of the device’s internal workings. Yet we are able to
put forward a more concrete foundation for future work in setup time violation
attacks by highlighting which type of faulty behaviour can be expected and/or
exploited as a result of these techniques.

In the rest of this section we provide a description of our experimental setup and
our target platform, and we introduce our testing framework. Then, we describe
and characterize the effects of fault injection on the program flow and on the

FAULT ATTACKS 43

data flow of an illustrative software application. We finish by summarizing our
findings and by enumerating potential adversarial exploitations of the observed
faults.

2.2.3.1.1 Experimental Setup

The experimental setup used in this work is depicted in Figure 2.10. We have
implemented a custom ISO/IEC 7816-3 compliant smart card reader with a fully
controllable clock signal using a Virtex-II Pro XC2VP30 FPGA. The interface
with the smart card at the link and physical layers follows the ISO/IEC 7816-3
standard, while the communication is performed via Application Protocol Data
Units (APDUs) as specified in ISO/IEC 7816-4. The computer, acting as a user
interface, communicates with the FPGA via an RS-232 interface.

Figure 2.10: Experimental Setup

The FPGA behaves as an off-the-shelf smart card reader. The clock signal
provided to the smart card has a fixed nominal frequency in accordance to
the controller’s specifications. The APDU commands exchanged between the
computer and the smart card during communication are simply forwarded by
the FPGA to the end receiver. Note that the T0 and T1 protocols specified in
ISO/IEC 7816-3 are based on request/response commands, i.e. the computer is
always the device that triggers an action by the smart card.

Glitch generation. The effect of injecting a glitch in the clock signal is
depicted in Figure 2.11. We denote the nominal period of the clock signal as Tn
and the period (or duration) of a glitch as Tg. The idea of injecting a glitch is
to temporarily overclock the smart card, i.e. to insert a clock period such that
Tg << Tn that potentially causes a transient malfunction of the microcontroller.
Notice that after injecting a glitch, the following clock period is reduced from
Tn to Tn − Tg in our setup. However, given that Tg << Tn, this “post-glitch”
period does not affect the normal behavior of the microcontroller.

44 AN INSIGHT INTO PHYSICAL VULNERABILITIES

Figure 2.11: Injection of a glitch in the clock signal

We have developed two different mechanisms to introduce glitches in the clock
signal. In the first mechanism, illustrated in Figure 2.12, the FPGA generates
the output CLK fed to the smart card using a combination of two reference
signals denoted as nominal CLK (with period Tn) and high-freq. CLK (with
period Tg). Glitches in the frequency of output CLK are injected when indicated
by the selection signal. For the sake of reproducibility, both nominal CLK and
high-freq. CLK signals have to be perfectly phase-aligned. This can be easily
achieved by generating the nominal CLK signal from the high-freq. CLK signal,
which in turn determines the granularity of the glitch width. For instance, by
fixing the frequency of the nominal CLK to 1 MHz (such that Tn is 1µs), the
possible frequency values of the high-freq. CLK are tied to be multiples of
2 MHz. In other words, the set of possible glitch periods is given by Tg (in µs)
= 1/2i, where i = 1, 2, 3, The accuracy of the glitch period has a standard
deviation of 60 ps.

Figure 2.12: Glitch generation using high-frequency signal.

In the second mechanism, shown in Figure 2.13, we use a similar approach
as in [10]. In this case, a glitch in output CLK is generated by switching
between three signals with the same period Tn but with different phases. The
advantage of this mechanism with respect to the first one is that it provides
more granularity in the glitch period, in particular for low frequencies. We
can increase the glitch period in steps of approximately 1 ns such that the set
of possible glitch periods is given by Tg (in ns) = i, where i = 1, 2, 3, The
standard deviation of the glitch period for this mechanism is 70 ps.

FAULT ATTACKS 45

Figure 2.13: Glitch generation using phase-shifted signals.

As a final comment, note that the selection signal in these mechanisms allows
a wide range of glitch injection patterns, which are by no means restricted to
one glitch per trial execution. The selection of all parameters involved in the
generation of the output clock signal (e.g. glitch mechanism, nominal period Tn,
glitch period Tg, glitch position, etc.), is completely configurable by the user
via commands send from the PC to the FPGA, thus obtaining a highly-flexible
yet automatized experimental setup to carry out our study.

2.2.3.1.2 Target Platform.

We choose as target platform a microcontroller belonging to the 8-bit Atmel
AVR family, namely an ATMega163 microcontroller in smart card packaging.
There are several reasons for this choice. First, and most important, this device
operates on an external clock signal, such that it is possible to inject faults to
the device using this interface. Second, the characterization of the effects of
fault injection on AVR microcontrollers is a challenging task: AVR controllers
have a modified Harvard architecture, i.e. although access to program code
(flash memory) and data (internal RAM) is physically separated in the chip
(strict Hardvard architecture), the CPU can concurrently use both buses in
a clock cycle. This characteristic, combined with a RISC architecture with
most of the instructions executing in a single-cycle, allows to obtain a two-stage
pipeline: while one instruction is being executed, the next one is pre-fetched
from program memory as shown in Figure 2.14. Consequently, fault injections
can have multiple and complex effects. Third, these devices are available in
smart card form, making them a good representative of security devices. Finally,
Atmel AVR controllers are known devices largely used in the related literature,
not only in fault analysis but also in side channel attacks.

Prior to our work, no study has been made to fully characterize and understand

46 AN INSIGHT INTO PHYSICAL VULNERABILITIES

Figure 2.14: Pipeline in AVR controllers (source: ATMega163 datasheet).

the reaction of these devices to fault injection via clock glitches. The following
sections fill this gap. Note that although Atmel offers a family of AVR
microcontrollers specifically designed for security applications, the smart cards
used in our tests have no security claims whatsoever. Our research motivation
is not to evaluate the level of resistance of such microcontrollers to fault attacks,
but rather to understand and characterize the effects of fault injection via clock
glitches on one model of the low-cost family. Note that the analysis is done in a
black-box setting, i.e. we only have access to the publicly available data sheets.

2.2.3.1.3 Testing Framework

The approach followed in our experiments consists in decreasing the glitch
period Tg, starting with a value such as 125 ns (or 8 MHz) for which the
microcontroller functions correctly, until 15 ns. This lower bound is determined
by the switching speed of the FPGA board’s I/O pins as well as some external
analogue circuitry of our experimental setup. When faults start occurring, we
analyze them in order to be able to characterize the chip’s behaviour. Our
experiments show that the critical path (i.e. maximum frequency tolerated by
the microcontroller) is determined by the access to Program Memory. In other
words, the first effect noticed when decreasing the glitch period is an erroneous
behaviour of the pre-fetching stage.

In the following we will make a distinction between which pipeline stage is
affected by the glitch. We will begin by focusing on the effects of clock glitches
on the pre-fetching stage, analysing how it is possible to inject faults such that
the program flow is altered. After this, we will focus on the effects of the glitches
on the execution stage, studying how the expected data flow of a program is
changed. In our experiments we have used five ATMega163 smart cards to
verify that they all respond to fault injection in a very similar way.

We have implemented several test applications in assembly language and
executed them a large number of times in order to obtain and analyze the

FAULT ATTACKS 47

effects of clock glitches. In order to make the interpretation of the results more
clear, we provide some exemplary code fragments. Although such tests do not
correspond to any particular cryptographic implementation, the results obtained
can be easily extrapolated to the general case.

Finally, note that by targeting a device with a two-stage pipeline and without
access to details of the inner workings of the microcontroller, the analysis of
the faults’ outcome becomes an arduous task. The only information available
for the interpretation of the faults’s effects consists of an array of output data.
Before running a test, we bring the microcontroller to a state A such that all
possible variables (RAM values, program memory, registers, flags, and even room
temperature) are fixed and known. A normal execution of the test application
brings the microcontroller to an “expected” state B, whereas a faulty execution
brings it to an “incorrect” state B′. Manually reverse-engineering the chain of
events that explains the transition from state B to state B′ is far from trivial.

2.2.3.1.4 Effects of Clock Glitches on Program Flow

The AVR instruction set consists of 130 commands, most of them executing
within a single clock cycle. Instruction opcodes are typically encoded and stored
in Program Memory in 16-bit words. Although being an 8-bit device, the AVR
microcontroller has a 16-bit Program Bus. This means that in the pre-fetching
phase, the 16-bit opcode pointed to by the Program Counter (PC) is loaded at
once. In turn, the PC is also incremented in this stage, such that the next opcode
is correctly loaded in the following clock cycle. The behaviour of multi-cycle
instructions differs from that of single-cycle instructions; these differences will
be discussed later.

NOP: No Operation

We start our analysis by testing the effects on the most simple command
available, namely NOP. As this instruction does not perform any operation in
the execution phase, glitches will only affect the pre-fetching stage. Our first
test is depicted in Figure 2.15, where Inst refers to any of the available AVR
instructions. By injecting a glitch in clock cycle i (when NOP is being executed),
one can possibly cause an erroneous behaviour in the pre-fetching phase.

Cycle Instruction Opcode (bin)
i NOP 0000 0000 0000 0000

i+1 Inst -

Figure 2.15: Code example for NOP (I).

48 AN INSIGHT INTO PHYSICAL VULNERABILITIES

For testing purposes, let us assume that Inst is the command EOR R15,R5
(Exclusive OR) as illustrated in the top part of Figure 2.16. When injecting a
glitch with period smaller than or equal to 59 ns in clock cycle i, we observe
that EOR R15,R5 is never executed. Intuitively, one can assume that the
microcontroller does not have time to load the next command from Program
Memory as consequence of the glitch. So a reasonable explanation is that the
opcode being executed at the time of the glitch (e.g. NOP in cycle i) is executed
again in cycle i+1, as shown in the lower part of Figure 2.16. Note however,
that the PC is not affected by the glitch and is correctly incremented. Otherwise,
the microcontroller would simply pre-fetch the command EOR R15,R5 in cycle
i+1 and execute it in cycle i+2.

Glitch Cycle Instruction Opcode (bin)period
- i NOP 0000 0000 0000 0000
- i+1 EOR R15,R5 0010 0100 1111 0101

≤ 59 ns i+1 NOP 0000 0000 0000 0000

Figure 2.16: Code example for NOP (II).

Suppose now that Inst is the command SER R18 (Set Bits in Register) as
illustrated in Figure 2.17. In this case, we observe that depending on the glitch
period the command SER R18 is substituted by instructions other than NOP.
In particular, for a glitch period equal to 61 ns the command LDI R18,0xEF
(Load Immediate to Register) is executed. Decreasing the glitch period to 60 ns
produces the appearance of the command SBC R12,R15 (Subtract with Carry).
Finally, for any glitch period smaller than or equal to 59 ns, we observe the
same effect as shown in Figure 2.16, namely, NOP is executed.

Glitch Cycle Instruction Opcode (bin)period
- i NOP 0000 0000 0000 0000
- i+1 SER R18 1110 1111 0010 1111

≤ 61 ns i+1 LDI R18,0xEF 1110 1110 0010 1111
≤ 60 ns i+1 SBC R12,R15 0000 1000 0010 1111
≤ 59 ns i+1 NOP 0000 0000 0000 0000

Figure 2.17: Code example for NOP (III).

These results shown in Figure 2.17 illustrate the transition in which the
microcontroller internally updates the opcode to be executed. As one can
notice, there is a progression from the expected command (SER R18) to the
previous command (NOP), in the sense that more bits of the erroneous opcodes
are degraded to zero as the glitch period decreases. Strictly speaking, at this
point it is not fully correct to describe the effect of the glitch as skipping an

FAULT ATTACKS 49

instruction; rather differently, as another command is executed instead of the
expected instruction, a more accurate description of the glitch effect would be
replacing an instruction.

Note that when LDI or SBC are executed instead of SER, some registers are
overwritten with the values resulting from the execution of such commands;
thus, a single fault injection disrupts at the same time both the program flow
and the data flow.

The effects depicted in Figure 2.17 are observed in all five ATMega163 smart
cards, although there are some slight differences. First, the glitch periods for
which instructions are replaced can vary from card to card. And second, it is
possible that instructions different than those in Figure 2.17 appear in cycle
i+1. We have however verified that for glitch widths smaller than approximately
52 ns a NOP is always effectively executed in all cards.

A particularly interesting case in the test is observed when the command Inst
has a 32-bit opcode. Consider, as shown in Figure 2.18, that this instruction
is LDS R22,0x0128 (Load Direct From Data Space). As the program bus of
the AVR is 16-bit wide, LDS requires an extra cycle to fetch the second half of
the opcode, i.e. the value 0x0128, from Program Memory. By injecting a clock
glitch with period 59 ns in cycle i, LDS is replaced by NOP in cycle i+1. However,
as the skipped command has a 32-bit opcode, the value 0x0128 is pre-fetched
from Program Memory in cycle i+1 and interpreted as a command in cycle
i+2. As a result, a completely wrong instruction is inserted in the program flow.
For this particular example, the instruction corresponding to opcode 0x0128 is
MOVW R4,R16 (Copy Register Word), which moves a 16-bit word from a pair of
registers to another pair of registers in a single cycle.

Glitch Cycle Instruction Opcode (bin)period

-
i NOP 0000 0000 0000 0000

i+1 LDS R22,0x0128 1001 0001 0110 0000
i+2 0000 0001 0010 1000

≤ 59 ns i+1 NOP 0000 0000 0000 0000
i+2 MOVW R4,R16 0000 0001 0010 1000

Figure 2.18: Code example for NOP (IV).

If the second half of the 32-bit opcode is not a valid command, for instance, LDS
R22,0x0060, the microcontroller will execute the opcode 0x0060 in cycle i+2
as a consequence of the fault. However, the execution of illegal opcodes in AVR
microcontrollers is carried out without affecting the program flow; in fact, they
have the same effect as NOPs. Note that it is possible that other microcontrollers
behave differently when interpreting an invalid opcode, for example, resetting

50 AN INSIGHT INTO PHYSICAL VULNERABILITIES

the chip. For the AVR controllers we have used this is however not the case
observed.

Branching instructions

For the second set of experiments we target branching instructions. These
commands do not have an execution phase that directly affects data; instead,
they modify the value of the PC according to a tested condition. Consider the
code example shown in the top part of Figure 2.19. In cycle i, the TST command
checks whether register R12 holds a value equal to zero. If so, it sets the Zero
flag in the Status Register (SREG); otherwise, the flag is cleared. In cycle i+1,
the BREQ (Branch if Equal) command checks the value of the Zero flag: if the
flag is set, it modifies the value of the PC in order to branch to a different code
segment; otherwise, PC is incremented such that the next instruction is SER R26.
The former option requires two cycles to complete, while the latter executes in
a single cycle.

If the Zero flag is cleared, BREQ simply increments the PC in a single cycle, thus
behaving similarly to a NOP. By injecting a fault in cycle i+1 one would expect
a faulty behaviour such as in the previous experiments. However, as shown in
Figure 2.19, the amount of faulty instructions executed instead of SER R26 and
the glitch periods for which errors appear are quite different.

Glitch Cycle Instruction Opcode (bin)period

-
i TST R12 0010 0000 1100 1100

i+1 BREQ PC+0x02 1111 0000 0000 1001
i+2 SER R26 1110 1111 1010 1111

≤ 57 ns i+2 LDI R26,0xEF 1110 1110 1010 1111
≤ 56 ns i+2 LDI R26,0xCF 1110 1100 1010 1111
≤ 52 ns i+2 LDI R26,0x0F 1110 0000 1010 1111
≤ 45 ns i+2 LDI R16,0x09 1110 0000 0000 1001
≤ 32 ns i+2 LD R0,Y+0x01 1000 0000 0000 1001
≤ 28 ns i+2 LD R0,Y 1000 0000 0000 1000
≤ 27 ns i+2 LDI R16,0x09 1110 0000 0000 1001
≤ 15 ns i+2 BREQ PC+0x02 1111 0000 0000 1001

Figure 2.19: Code example for BREQ.

In the range 57 ns ≤ Tg ≤ 28 ns the opcode values describe a clear transition
towards zero, i.e. stuck-at-zero pattern. The first erroneous command to be
executed (LDI R26,0xEF) differs from the expected (SER R26) in that bit 8
is zero instead of one; for the second command (LDI R26,0xCF) bit 9 is also
cleared. This progression is observed until for LD R0,Y a total of 11 bits are
cleared compared to those of SER R26.

By decreasing the glitch period further than 27 ns, one would expect to obtain

FAULT ATTACKS 51

an erroneous opcode consisting of only zeroes. However, results show that after
LD R0,Y (with only two bits set to one), there is a transition to LDI R16,0x09
(with five bits set to one). Finally, for a glitch period equal to 15 ns, the
command BREQ PC+0x02 is executed again instead of SER R26.

At this point it is clear that the figure shows a transition from the expected
opcode to the previous opcode, most probably going through an intermediate
all-zero state. Depending on the period of the glitch injected, the instruction
executed in cycle i+2 is a degraded version of either the expected opcode (SER
R26) or the previous opcode (BREQ PC+0x02). Once again, although the general
behaviour observed in other cards is the same, the faulty instructions and the
glitch periods for which they are observed might vary with respect to the ones
given in Figure 2.19.

Single-cycle instructions

In order to prevent effects on the data flow, skipped instructions should ideally
be replaced by either NOPs, illegal commands, or even testing commands (such
as TST). However, the amount of variables that determine the final shape of
the faulty opcode, as well as the differences observed for different ATMega163
cards, make it very difficult to characterize and determine the outcome of the
fault.

One way to obtain a rough estimation of the probability that faulty commands
affecting the data flow appear, consists in running a series of tests similar to
the one depicted in Figure 2.20. This code fragment includes only single-cycle
instructions, such that a pre-fetching is performed in each clock cycle. By
injecting a fault in each cycle of these test programs, one can count how many
times the data flow is affected, i.e. how many times the faulty instruction affects
internal data variables. We have generated several of these tests, changing
parameters such as the order of the instructions and the source/destination
registers in order to maximize the variation of the opcodes. The results obtained
indicate that around 50% of the time, the injection of a clock glitch with period
57 ns ≤ Tg ≤ 28 ns results in the insertion of a faulty command whose execution
alters the data flow.

Multi-cycle instructions

As mentioned earlier, multi-cycle instructions have a different behaviour than
single-cycle commands in the sense that they do not follow exactly the two-
stage pipeline as shown in Figure 2.14. Some of these instructions perform the
pre-fetching in the last execution cycle. In such cases, it possible to inject faults
with a similar effect as observed earlier, i.e. the following instruction is replaced
by another instruction. This is the case for commands such as RET (Return

52 AN INSIGHT INTO PHYSICAL VULNERABILITIES

Glitch Cycle Instruction Opcode (bin)period

-

i SUB R7,R5 0001 1000 0111 0101
i+1 ADD R8,R4 0000 1100 1000 0100
i+2 LSL R15 0000 1100 1111 1111

. . .
i+20 MOV R27,R6 0010 1101 1011 0110

Figure 2.20: Code example for single-cycle instructions.

from Subroutine) or branching instructions such as BREQ (Branch if Equal).

We have however noticed that not all multi-cycle instructions behave like this.
For instance, we have not been able to replace instructions executed after
commands such as LD (Load From Data Space), LPM (Load from Program
Memory) or RCALL (Relative Call to Subroutine), independently of the glitch
width and of the cycle in which the fault is injected.

2.2.3.1.5 Effects of Clock Glitches on Data Flow

Until now we have exclusively focused on how clock glitches affect the program
flow of certain commands. However, given the two-stage pipeline of our target
microcontroller, it might be possible to affect also the execution stage of certain
instructions such that the resulting computation is corrupted. In this section
we address the feasibility and the conditions under which these faults occur.

Single-cycle instructions

We have observed that it is possible to affect the execution stage of single-
cycle instructions operating on data (e.g. arithmetic, logic, and bit operations).
However, there are some issues that make it difficult to characterize the effect
of such fault injections. First, the glitch period for which corrupted values start
appearing depends on the specific instruction being executed; second, the source
and destination registers used as operands also influence the outcome of the
fault; and third, the fact that a single fault affects both pipeline stages at the
same time makes the interpretation of the fault more complex.

In general, a minimum glitch period of approximately 27 ns is required to affect
the execution stage of most instructions. The first effect observed by decreasing
the glitch period is that one or more bits of the correct result are stuck-at-zero.
For smaller glitches, the result of the operation becomes an erroneous value
independent of the correct result or the previous value in the register. This
behaviour should however not be taken as a generalization. As mentioned, there

FAULT ATTACKS 53

are too many parameters that influence the exact outcome of the fault.

An important observation is that the value of the corrupt result does not vary
for an arbitrary number of executions using the exact same microcontroller and
glitch parameters. In other words, given a state A and a fixed glitch sequence,
the effect of the fault is constant. This observation implies that the result of
the fault injection should not be referred to as random, but rather deterministic
for a series of fixed executions.

Multi-cycle instructions

Given the complexity of the results obtained for single-cycle instructions, one
might wonder whether it is easier to target the execution stage of multi-
cycle instructions. In this section we focus on two of the more relevant such
instructions, namely, LD and LPM.

The LD (Load from Data Space) instruction requires two clock cycles to execute.
It loads the value pointed to by either register X, Y, or Z into any destination
register in the microcontroller. In order to better understand the internal
behaviour of this instruction, we have collected and analyzed different groups
of power measurements while executing LD in the AVR controller. The result
is illustrated in Figure 2.21, in which the execution of LD corresponds to time
samples 80 to 180. The dashed curve indicates the difference of means of
two sets of measurements for which a fixed value is loaded from two different
memory positions. A peak is noticeable at the rising edge of the second cycle,
thus verifying that the RAM address is updated at this time. The solid curve
indicates the difference of means of two sets of measurements loading different
values from a fixed RAM address. A peak is visible at the falling edge of the
second cycle, indicating that the RAM value is loaded in the data bus at this
time.

Figure 2.21: Difference of means for different executions of LD

In order to evaluate the effects of clock glitches on the LD instruction, we run the

54 AN INSIGHT INTO PHYSICAL VULNERABILITIES

test in Figure 2.22 for a fixed value in the pointer Z. We ensure that potential
effects of the destination register on the outcome of the glitch are also taken
into account by considering all possible cases.

Glitch Cycle Instruction Opcode (bin)period

-

i LD R0, Z 1000 0000 0000 0000
i+2 LD R1, Z 1000 0000 0001 0000
...

i+50 LD R25, Z 1000 0111 1001 0000

Figure 2.22: Code example for LD.

For the first cycle, faulty values start to appear for glitch periods smaller than
24 ns. A clock glitch in this position produces an error in the value of the
RAM pointer; as a result, a value stored in another RAM address is loaded. We
have verified this assumption by filling the RAM space with known values. By
repeating the same test multiple times we verify that a large percentage of the
erroneous values come from this pre-filled RAM space. We have not been able
however to characterize how the pointer is affected by the glitch, i.e. the exact
relation between the correct RAM address, the faulty RAM address, and the
glitch period.

For the second clock cycle we begin to observe erroneous results when the glitch
period is approximately 64 ns. In the low period of this cycle, the RAM value is
transferred via the data bus. In AVR platforms the data bus is not pre-charged,
meaning that the last value that uses the data bus is kept until overwritten.
A glitch injection in the second cycle of LD prevents the value in the data bus
from being updated. In particular, depending on the glitch period it is possible
to prevent one or more bit transitions from happening.

Figure 2.23 shows the number of bit transitions that are avoided in function
of the glitch width. The first effect produced by the fault is to prevent the
transition of a single bit from 0 to 1. Our experiments show that bit number
4 is first affected. This implies that, considering that the previous value on
the data bus is 0x00, if we try to load the value 0xFF while injecting a glitch,
the outcome is the value 0xEF being loaded. Note that for the opposite case
(previous value in the bus being 0xFF and trying to load 0x00), the glitch does
not affect the result. This is because bit transitions are in this case from 1 to 0.
As we decrease the width of the glitch more erroneous 0→ 1 transitions appear,
until at around 55 ns no such transition is possible anymore.

Focusing on the other bit transition, namely 1→ 0, we observe that the faulty
behaviour starts at around 54 ns. The first bit affected in our experiments is
once again bit number 4. Similarly to the 0→ 1 transition, more erroneous bit

FAULT ATTACKS 55

Figure 2.23: Number of erroneous transitions in the data bus when decreasing
the glitch width.

transitions appear by decreasing the glitch period. Finally, when Tg is around
46 ns, no bit transitions are possible at all. At this point the effect of the glitch
is that the erroneous value being effectively loaded corresponds to the previous
value that was on the bus. In other words, if we inject a glitch with period
equal to or smaller than 46 ns in cycle i+3 in Fig. 2.22, the value that ends up
in register R1 is the same as was previously loaded into R0.

Once again, although the transition in the data bus is clearly visible in all five
ATMega163 cards tested, the results for a particular glitch period might vary.
However, we have verified that for glitch widths smaller than or equal to 44 ns
no bit transitions in the data bus are possible in any card; also important, the
first transition affected corresponds to bit number 4 in all cards.

The LPM instruction (Load from Program Memory) requires three clock cycles
to execute. It loads the value in Program Memory pointed to by register Z into
any of the registers in the microcontroller. In order to evaluate the effect of the
clock glitch on the LPM instruction, we run the test in Figure 2.24 such that the
effects on each destination register are also taken into account.

Glitch Cycle Instruction Opcode (bin)period

-

i LPM R0, Z 1001 0000 0000 0100
i+3 LPM R1, Z 1001 0000 0001 0100
...

i+78 LPM R25, Z 1001 0001 1001 0100

Figure 2.24: Code example for LPM.

56 AN INSIGHT INTO PHYSICAL VULNERABILITIES

By injecting a glitch with period smaller than 25 ns in the first cycle of LPM
we observe that an erroneous value is loaded into the destination register. In
this cycle, the LPM instruction sets the address to the program memory from
which the value has to be loaded. The glitch alters the value of the address in a
way that an erroneous code memory location is pointed to, thus resulting in a
wrong value being stored into the register. We tested this hypothesis by filling
the free space in Program Memory with known values (e.g. 0x4444, 0x5555,
etc.). By repeating the tests multiple times, we observe that a large percentage
of the values loaded corresponds to these pre-set constants, thus verifying our
hypothesis.

In the second execution cycle of LPM, erroneous values start appearing for
glitches smaller than or equal to 47 ns. We have observed that these faulty
values correspond to one of the bytes of the next opcode in Program Memory.
For instance, consider that we inject a glitch in cycle i+2 in the code example
shown in Figure 2.24. The following opcode corresponds to the instruction LPM
R1,Z, and its value is 0x9014. If the least significant bit of pointer Z is set to
one when executing LPM R0,Z, then the erroneous value that ends up loaded in
R0 is the upper byte of the next opcode, i.e. 0x90. If the least significant bit of
the pointer Z is cleared, then the value that is loaded corresponds to 0x14.

This behaviour can be explained by the fact that, although the Program Bus is
16-bit wide, the value loaded by LPM is only 8-bits. Thus the least significant
bit of the pointer Z is used to determine whether the upper byte or the lower
byte is to be loaded into the destination register. By injecting a fault in the
second cycle of LPM, the address to Program Memory is not updated with the
value of pointer Z, such that it remains pointing at the following opcode to be
loaded. That is the reason why the outcome of the fault consists in loading this
particular erroneous value.

2.2.3.1.6 Summary and Applications of the results

Faults in program flow.

We have observed that we can affect the fetching of the next opcode such that
it is replaced by another instruction. Accurate timing would ideally allow to
fetch an all-zero opcode (NOP), i.e. to effectively “skip” a command. However,
controlling the opcode transition turns out to be highly complex. So typically,
a faulty version of the old or the new opcode with some 1 bits set to 0 will be
fetched depending on the glitch timing. In this case it is difficult to control
the fault’s effect, since the faulty opcode can represent one of many valid
instructions that manipulate data or program flow. Moreover, the transition

FAULT ATTACKS 57

steps (faulty opcodes executed) vary depending on the smart card used and
the specific microcontroller state. Using very short glitch periods, we can
potentially prevent the fetching of a new opcode entirely such that the old
opcode is executed twice. However, when using such short glitch periods the
fault also affects the execution stage of the current instruction. This is in
particular problematic if the current opcode is a single-cycle command, as the
fault affects both program flow and data flow at the same time. This leads
to a more complex fault, possibly affecting data in several registers resp. at
several memory addresses. We have estimated that around 50% of the times, a
faulty command that does not affect the data flow appears as a replacement
for the skipped instruction. So variations on the glitch period might allow to
inject faults with potential for exploitation. However, we find it easier to replace
instructions without disturbing the data flow for some multi-cycle instructions
such as branching or return commands, i.e. when no data is manipulated and
the pre-fetching of the new opcode happens in the last execution cycle.

These observed faults in the program flow should allow the typical applications:
to skip checks and to prevent counters from increasing or decreasing, e.g. round
counters or counters in I/O routines. In addition, new (somewhat trivial yet
powerful) attacks can be mounted to attack cryptographic implementations.
For illustrative purposes only, we will provide an example using AES [6].

Suppose the four main operations of the cipher (SubBytes, ShiftRows,
MixColumns and AddRoundKey), and possibly the key schedule, are implemented
as subroutines that the main function simply calls as required using RCALL.
Consider that the SubBytes subroutine has been called in the last round and
is executing the final RET instruction to return to the main function. We can
easily inject a fault into the last cycle of the four-cycle RET instruction that
affects the fetching of the new opcode (it would be the next RCALL instruction,
here calling ARK for the last time) and replaces it with an invalid opcode or
with NOP, effectively skipping the subroutine call. An XOR of the obtained
faulty ciphertext and the correct ciphertext yields the full last round key. Note
that even if the implementation is organized differently, i.e. unrolled instead
of using RCALLs, the fact that our setup supports the injection of faults into
any arbitrary sequence of cycles still allows to perform the attack. For instance,
we can then inject a series of consecutive faults into all cycles following the
last SR operation to effectively skip each and every instruction performing the
last ARK. Varying the glitch period might help the attacker in distinguishing
whether faulty opcodes changing the data flow have been inserted. We have
fully implemented and tested this trivial attack in all five smart cards in several
repetitions, thus confirming its feasibility.

58 AN INSIGHT INTO PHYSICAL VULNERABILITIES

Faults in data flow.

We have further observed that it is possible to inject faults into the execution
of instructions. For single-cycle instructions, the required glitch period affects
also the fetching of the following opcode as explained above, thus leading to
an even more complex fault. Such faults can probably be exploited only if
not too many cryptographic transformations or non-critical instructions follow.
Otherwise, the not well understood fault becomes too complicated to exploit.
For multi-cycle instructions however, the glitch does not necessarily affect the
fetching of the new opcode. We obtained the best and most stable results for
multi-cycle instructions with memory access, e.g. LD and LPM. Depending on
the glitch period, we can rather accurately prevent a given number of bits on
the data bus from flipping, although the by far easiest option is to prevent any
transition, i.e. to prevent the data bus from updating at all. The effect of such
a glitch is that the instruction loads the last value that has been transferred
to/from memory.

A typical and straightforward application of the fault results obtained in memory
access instructions, again using AES encryption as an example, would be to
glitch S-box lookups (typically implemented with LD and LPM commands) to
apply some of the well known DFA, CFA or IFA fault analysis techniques in
the literature.

2.3 Countermeasures

Mitigations against physical attacks can be implemented at multiple layers
of the design space. In principle, low-level solutions can tackle the origin of
the vulnerabilities at its root, and thus represent an ideal option to counter
certain type of attacks. These solutions are also advantageous for cryptographic
developers, as they allow to focus on further implementation constraints other
than security. In practice however, low-level solutions tend to result in large
area overheads. As such, their real-world deployment is not always feasible due
to the budget limitations faced by hardware manufacturers.

High-level solutions on the other hand can take advantage of the mathematical
structures of cryptographic algorithms to deploy effective and reliable
countermeasures. An advantage of this approach is that countermeasures can
benefit from formal security proofs. The protection level of high-level solutions
depends however on a good modeling and understanding of the behaviour
of the underlying layers. Consider the case for instance of countermeasures
against timing leakages. Intuitively, timing leakages can simply be overcome
by ensuring high-level cryptographic computations run in a constant amount

COUNTERMEASURES 59

of time. However, the application of this straightforward mitigation is rather
complex to achieve in practice - particularly for software implementations - due
to microarchitectural features present in digital processors. Cache memories
in general purpose CPUs [34] and early-terminating multipliers on ARM
processors [117], are examples of low-level features that can thwart the security
of a supposedly time-constant implementation.

In the following we enumerate several countermeasures often mentioned in
the literature to counteract physical attacks. Keeping track of state-of-the-art
developments in the arms-race between attacks and countermeasures is often a
challenging task. Moreover, a countermeasure crafted against a particular type
of attack may unintentionally enable another attack. A survey of this effect for
ECC countermeasures is given by Fan and Verbauwhede [95].

2.3.1 Against Side Channel Attacks

Countermeasures against side channel attacks are classified into two main groups:
hiding and masking. Hiding techniques aim to break the direct link between
the observations in a power trace and the data processed by the circuit. This
can be achieved by manipulating either of the two dimensions of power traces,
namely time or amplitude, in such a way that from an attacker’s perspective the
device seemingly consumes either random or equal amounts of power in each
clock cycle. Masking techniques on the other hand aim to break the relation
between algorithmic sensitive values and processed values. As opposed to hiding
techniques, this is achieved by randomizing the actual processing of sensitive
variables within the execution of a cryptographic algorithm.

Low-level protections can implement either of these two approaches. Hiding
techniques in the temporal domain can be achieved for instance by adding
random effects in the clock line. This includes the skipping of clock pulses,
variations in the clock frequency, or the existence of multiple switching clock
domains. In the amplitude domain, one often seeks to reduce the Signal to Noise
Ratio (SNR) of the side channel leakage. The addition of parallel hardware
blocks acting as noise generators or the insertion of filters/regulators in the
power line can lead to an increase of the adversarial effort necessary to exploit
side channels.

One of the well-studied family of low-level protections aims to tackle the
CMOS leakage at its root by employing alternative logic styles with different
power consumption behavior. Dual-rail precharge (DRP) for instance encodes
each logic signal as two complementary wires, in such a way that circuit
transitions are the same for each clock cycle independently of the values on
the wires. Sense Amplifier Based Logic (SABL) [211] and Wave Dynamic

60 AN INSIGHT INTO PHYSICAL VULNERABILITIES

Differential Logic (WDDL) [212] are two exemplary proposals in this area of
hiding techniques. Masking countermeasures can be also applied within logic
styles. Random Switching Logic (RSL) [208], Dual-rail Random Switching Logic
(DRSL) [65], and Masked Dual-rail Precharge Logic (MDPL) [175, 174] are the
most representative techniques that have been proposed in the literature.

High-level mitigations based on hiding are implemented in the time domain.
One possible technique consists in the addition of random delays within the
execution of a cryptographic algorithm [70]. Alternatively, a similar effect can be
achieved by shuffling the order of certain operations [223]. Techniques based on
masking are are perhaps one of the most well-studied and interesting techniques
to counter side channel attacks at algorithm level. The state-of-the-art review
including our contributions to this area of countermeasures will be covered in
Chapter 4.

Finally, a natural countermeasure that can be implemented at protocol/system
level consists in frequently updating the session keys used by the cryptographic
device. Because DPA attacks in particular require the processing of multiple
power traces captured when operating with a fixed key, such a countermeasure
inherently limits the applicability of these attacks. Techniques based on fresh
re-keying [139, 157, 156] are a perfect example of such an approach.

2.3.2 Against Fault Attacks

The majority of low-level protections against fault attacks are based on the
addition of physical countermeasures to prevent fault injection mechanisms [30].
The insertion of glitches or spikes on external interfaces can be mitigated by
adding on-chip filters. Alternatively, the use of internally generated clock signals
and voltage regulators may prevent these signals to be externally tampered with.
Unstable clocks may lower the control an adversary has on injecting precise
faults. The use of active sensors, e.g. to detect light or temperature variations,
may similarly lessen the applicability of some techniques. Metal shield layers
over the active circuitry are often employed to limit the applicability of (semi-)
and invasive approaches.

Redundancy techniques can also be implemented at low-level layers to detect
the insertion of faults. Dual-rail logic styles provide some robustness against
certain fault attacks due to their structure, as changing one bit of a valid data
encoding can result in entering one of the metadata states. Alternatively, one
can consider the addition of redundancy in underlying hardware blocks. Parity
checks in sensitive elements of the digital circuit, e.g. ALU, instruction decoders,
memory data buses, etc. may be able to detect faults injected on the processed
data.

CONCLUSIONS 61

High-level mitigations against fault attacks are often classified in two main
groups: error detection and infective computation. The former is based on
adding some sort of redundancy within the cryptographic algorithm in order to
detect the injection of a fault and prevent the leakage of exploitable information.
The latter on the other hand, adds a series of intermediate steps to make the
effect of injected faults highly complex by generating a faulty output that does
not reveal information about the cryptographic keys.

The most common technique for error detection consists in the addition of
one or more re-computation steps. A straightforward deployment of this idea
is given by the so-called doubling method, which is based on running two
consecutive (or complementary) executions of the same algorithm and comparing
the results. More efficient approaches based on the use of error correction
codes [36, 132, 149] or digest values [104] have been explored in the context of
block ciphers, particularly for AES.

Infective computation mechanisms were originally proposed by Yen et al. [232]
to secure implementations of RSA-CRT. The core idea of this technique is to
spread the effect of a fault into both CRT-branches, rendering the output value
unexploitable. Although several infective computation techniques have been
proposed in the last years to protect public-key algorithms [45, 68, 38, 196, 96],
most of them have been broken [231, 226, 38, 96].

In the context of symmetric-key algorithms, infective computation has been
applied to block ciphers by using multiplicative random masking structures [148]
and dummy rounds [110]. However, both systems have been recently shown to
contain exploitable weaknesses [32].

Because most fault analysis attacks require the analysis of one (or more)
correct/faulty ciphertext pairs, a natural high-level countermeasure consists
in preventing repetitive computations with the same key. Fresh re-keying
mechanisms [139, 157, 156] can be for instance applied in such scenarios.

2.4 Conclusions

In this chapter we have given a broad introduction to the world of physical
security. First, we have analyzed the vulnerabilities that enable the two most
common physical threats: side channel attacks and fault attacks. For the former
we have presented which particularities of CMOS devices result in exploitable
leakages; for the latter we have enumerated the most common approaches for
fault injection.

62 AN INSIGHT INTO PHYSICAL VULNERABILITIES

Our contribution to this area is a detailed study of the effects of clock glitches
on legacy 8-bit microcontrollers. The existence of a two-stage pipeline, together
with the lack of knowledge about the chip’s internal working, limits the level of
detail of the characterization of the observed faults. Yet, we have identified faults
with a stable behaviour in our experiments. We have shown that instructions
can be replaced rather than perfectly skipped, and that the effects of faults
are deterministic and reproducible. The easiest targets, both for glitching the
fetching and the execution stage, are multicycle instructions as it is possible to
inject faults that do not affect the full pipeline at the same time. We have shown
that such faults can be combined with known attacks, and we have illustrated
a straightforward attack that is essentially based on injecting one or a sequence
of faults in a single execution.

Chapter 3

A Motivating Example
Extracting Secret Keys from Secure EEPROMs

In this chapter we highlight the threat that even nowadays - more than 15 years
after the seminal publications - is posed by implementation attacks. We show
how a simple combination of low-cost and non-invasive techniques allows to
extract the secret authentication keys from a widely used family of embedded
secure memories. In the following we provide some background information
about the device under attack - Atmel CryptoMemory - we briefly sketch its
security functionalities, and we describe all steps that ultimately lead us to
recover secret keys. We finish by elaborating on the implications of the attack
and by enumerating potential countermeasures.

'

&

$

%

Publication data
J. Balasch, B. Gierlichs, R. Verdult, L. Batina, and I. Verbauwhede,
“Power Analysis of Atmel CryptoMemory - Recovering Keys from
Secure EEPROMs”, In Topics in Cryptology - CT-RSA 2012, The
Cryptographers’ Track at the RSA Conference, Volume 7178 of Lecture
Notes in Computer Science (LNCS), pages 19-34. Springer-Verlag, 2012.

Contribution
Main author.

63

64 A MOTIVATING EXAMPLE

3.1 Introduction

CryptoMemory, originally released in 2002 as part of the Atmel AT88SCxxxxC
series [18], is a family of secure memories with authentication. As shown
in Figure 3.1, they are commercially available either in plastic IC packages
or as smart cards, and are essentially composed of three elements: a piece
of non-volatile EEPROM memory, access control logic, and a cryptographic
unit. Reading and writing permissions to EEPROM are only granted to a
host after a valid authentication, ensuring that memory contents cannot be
accessed by unauthorized parties. A series of Authentication Attempt Counters
(AACs) monitors failed authentications, effectively locking the device after
four consecutive failed attempts. At the core of the cryptographic unit lies a
proprietary stream cipher with secret specification, that we refer to as Atmel
cipher. This cipher is employed during the mutual authentication protocol, in
which a host and a CryptoMemory device authenticate each other by proving
knowledge of a 64-bit shared secret key. A session key resulting from the mutual
authentication can be further used to provide authenticated encryption of the
communication channel.

Figure 3.1: Atmel CryptoMemory Family.

CryptoMemory devices provide from 1 Kbit to 256 Kbits of memory divided
into several user zones that are individually configurable with different access
control policies. A separate configuration zone, customizable during the device
personalization phase, is used to store such policies. A set of security fuses can
be blown after the personalization phase in order to lock the configuration zone.
CryptoMemory offers a total of three different security policies:

INTRODUCTION 65

a) In password mode, a host simply needs to provide a 24-bit password to gain
access to the zone. This mode offers a limited level of security, as all exchanged
data (including passwords) is transmitted in the clear, i.e. it is vulnerable to
eavesdropping and replay attacks.

b) In authentication mode, up to four 64-bit keys (in the following denoted by
k) can be set during the personalization phase as shared secrets between host
and device. An 8-bit AAC associated to each key controls the number of failed
authentication attempts. The protected user zone(s) become inaccessible once
AAC is set to x001. Data transmitted to/from protected memory in this mode
is in the clear but replay attacks do not apply.

c) In encryption mode, the communication channel between host and device is
protected by authenticated encryption. A 64-bit shared session key Ks that is
updated after each run of the mutual authentication protocol is used. Entering
encryption mode requires the device to be already in authentication mode.

CryptoMemory’s security features, low cost, and ease of deployment have
allowed these devices to be widely used in plenty of commercial and military
applications [19]. A typical example is the use of the AT88SCxxxxC series to
store High Bandwidth Digital Content Protection (HDCP) keys in products
such as NVIDIA graphics cards [168], Labgear digital satellite receivers [4],
or the Microsoft Zune player [176]. CryptoMemory devices are also used to
strengthen security in systems vulnerable to counterfeiting schemes. They are
for instance used in printers and printer cartridges manufactured by Dell, Ricoh,
Xerox, and Samsung [1]. Other potential applications include appliances with
smart batteries, set top boxes, video game consoles, video game cartridges,
PDAs, GPS, and any system with proprietary algorithms or secrets[20]. In
smart card form, CryptoMemory devices are mainly used in vendor-specific
electronic payments, e.g. in laundromats or parkings [2]. Further applications
recommended by the manufacturer include ID and access cards, health care
cards, loyalty cards, internet kiosks, energy meters, and e-government [33].

Security Claims. Atmel’s marketing documentation states that CryptoMem-
ory devices “can secure data against all the most sophisticated attacks, including
algorithmic attacks, systematic attacks, and physical attacks.” [17]. In particular,
physical attacks are counteracted by the use of tamper-proof features that
includes metal shield layers over the active circuitry, encrypted internal buses,
high-security test procedures, and defenses against timing and power supply
attacks (to be understood as active tampering attacks, e.g. fault injection via
glitching).

1In the most restrictive mode the maximum number of authentication attempts is set to
four. The decreasing values of AAC are (xFF,xEE,xCC,x88,x00). A correct authentication
automatically restores the value of AAC to xFF.

66 A MOTIVATING EXAMPLE

CryptoMemory also provides anti-tearing functionalities, i.e. in the event of a
power loss during an EEPROM writing cycle, data can be recovered at the next
power-up and written to the intended address. This feature is however optional,
and it needs to be requested by the host prior to a write operation. A typical
scenario in which this mechanism enhances security is payment systems, e.g. a
malicious customer could try to remove a CryptoMemory-based card from the
terminal slot before a decreased balance has been written to memory.

Surprisingly, we could not find a single reference to countermeasures
against power analysis attacks in Atmel’s marketing material and technical
documentation. However, given the effort made to protect against invasive
probing attacks and non-invasive tampering attacks, it is reasonable to assume
that also power analysis attacks were considered. After all, it is claimed that
“CryptoMemory is designed to keep contents secure, whether operating in a
system or removed from the board and sitting in the hacker’s lab.” [14]. In our
view, it is likely that Atmel relies on the secrecy of the Atmel cipher and the
AACs as countermeasures against basic power analysis attacks.

3.2 Related Work and Background

As it has previously occurred with other products using proprietary crypto-
graphic algorithms [48, 102, 167], the security of CryptoMemory devices took a
hit in 2010 when Garcia et al. [103] reverse-engineered the Atmel cipher and the
authentication protocol used in the CryptoMemory family. The authors also
cryptanalyzed these mechanisms and showed that an adversary could recover
CryptoMemory authentication keys in 252 cipher ticks using 2640 eavesdropped
keystream frames. Biryukov et al. recently proposed an improved attack [43]
that requires 30 eavesdropped keystream frames and 250 cipher ticks to recover
authentication keys. Other attacks against systems using CryptoMemory are
known [147, 224], but they exploit weaknesses in poorly designed protocols
and mistakes during deployment rather than vulnerabilities of CrypoMemory
devices.

Atmel cipher. In the following, and for the sake of completeness, we briefly
sketch the main functionality of the Atmel cipher. For a more formal and
complete specification we refer the reader to [103].

Figure 3.2 depicts the inner structure of the Atmel stream cipher. The cipher
state s is an element of F117

2 composed by a total of 4 shift registers. We denote
these elements as left register l, middle register m, right register r, and feedback
register f. In particular:

RELATED WORK AND BACKGROUND 67

Figure 3.2: Atmel cipher.

1. left register: l = (l0, l1, ..., l6) ∈ (F5
2)7

2. middle register: m = (m0,m1, ...,m6) ∈ (F7
2)7

3. right register: r = (r0, r1, ..., r4) ∈ (F5
2)5

4. feedback register: f = (f0, f1) ∈ (F4
2)2

At each tick, the cipher state s = (l,m, r, f) is transformed into a successor
state s′ = (l′,m′, r′, f ′) going through an intermediate state ŝ = (l̂, m̂, r̂, f̂).
During this whole process the cipher takes a single input a ∈ F8

2 and produces
an output keystream nibble output(s′) ∈ F4

2.

Mutual authentication protocol. The mutual authentication protocol
between a CryptoMemory device and a host is illustrated in Figure 3.3. Let
nr ∈ (F8

2)8 be a host nonce, nt ∈ (F8
2)8 be a CryptoMemory device nonce, and

k ∈ (F8
2)8 be a shared secret key. We denote ar and a′r ∈ (F8

2)8 the host challenge
authenticators, and at and a′t ∈ (F8

2)7 the device challenge authenticators. Both
values are computed after feeding the values (nr, nt, k) into the Atmel cipher.

In the first phase of the protocol, the host reads the device randomness nt
and uses it, together with its own randomness nr and the shared key k, to
compute the authenticators (ar, at). In the second phase, the host sends an
authentication command to the device, namely auth(nr, ar), including the value
nr and the first authenticator ar. The device computes its own authenticators
(a′r, a′t), and checks whether the provided ar equals the calculated a′r. If the
check fails, the value of AAC is decreased; otherwise, it is set to xFF. The device

68 A MOTIVATING EXAMPLE

(nr, k)
↓

HOST

(nt, k)
↓

DEVICE
read(nt)−−−−−−−−−−−−−−→

nt←−−−−−−−−−−−−−−
(ar, at) = f(nt, nr, k) auth(nr, ar)−−−−−−−−−−−−−−→

(a′r, a′t) = f(nt, nr, k)

a′r
?= ar

read(nt)−−−−−−−−−−−−−−→
nt = AAC ‖ a′t

nt←−−−−−−−−−−−−−−
AAC = nt0

?=xFF

at
?= a′t = nt(1...7)

Figure 3.3: CryptoMemory mutual authentication protocol.

also updates the value of nt by concatenating the 8-bit AAC with the 56-bit
authenticator a′t. In the final phase, the host reads the recently updated value
of nt. It first checks whether the authentication was successful (i.e. whether
AAC holds the value xFF), and later compares the authenticator at with the
provided a′t. If all checks are correct, then the mutual authentication protocol
succeeds.

The procedure to compute the authenticators (ar, at) resulting from feeding
the values (nt, nr, k) into the Atmel cipher is intuitively depicted in Figure 3.4.
Each of the states si indicates one tick of the cipher for which an input byte a is
given and an output nibble output(s′) is obtained. At the start of the protocol
all registers of the internal state are initialized to zero. In a first phase, ranging
from states s0 to s55, the three parameters (nt, nr, k) are scrambled into the
cipher state. The output keystream nibbles generated by the cipher are for the
moment ignored. In a second phase, from states s56 to s125, all input bytes
are set to zero. The output nibbles obtained after some of the ticks are used
to form the authenticators ar and at. In the final phase, the session key Ks is
computed during states s126 to s141.

DEVELOPING AN ATTACK PATH 69

State Input bytes Output nibbles
(s0−6) nt0 nt0 nt0 nt1 nt1 nt1 nr0 - - - - - - -
(s7−13) nt2 nt2 nt2 nt3 nt3 nt3 nr1 - - - - - - -
(s14−20) nt4 nt4 nt4 nt5 nt5 nt5 nr2 - - - - - - -
(s21−27) nt6 nt6 nt6 nt7 nt7 nt7 nr3 - - - - - - -
(s28−34) k0 k0 k0 k1 k1 k1 nr4 - - - - - - -
(s35−41) k2 k2 k2 k3 k3 k3 nr5 - - - - - - -
(s42−48) k4 k4 k4 k5 k5 k5 nr6 - - - - - - -
(s49−55) k6 k6 k6 k7 k7 k7 nr7 - - - - - - -
(s56−62) 0 0 0 0 0 0 0 - - - - ar0 ar1 -
(s63−69) 0 0 0 0 0 0 0 - - - - ar2 ar3 -
(s70−76) 0 0 0 0 0 0 0 - - - - ar4 ar5 -
(s77−83) 0 0 0 0 0 0 0 - - - - ar6 ar7 -
(s84−90) 0 0 0 0 0 0 0 - - - - ar8 ar9 -
(s91−97) 0 0 0 0 0 0 0 - - - - ar10 ar11 -
(s98−104) 0 0 0 0 0 0 0 - - - - ar12 ar13 -
(s105−111) 0 0 0 0 0 0 0 - - - - ar14 ar15 -
(s112−118) 0 0 0 0 0 0 0 at0 at1 at2 at3 at4 at5 at6
(s119−125) 0 0 0 0 0 0 0 at7 at8 at9 at10 at11 at12 at13

(s126−132) 0 0 0 0 0 0 0 Ks0 Ks1 Ks2 Ks3 Ks4 Ks5 Ks6

(s133−139) 0 0 0 0 0 0 0 Ks7 Ks8 Ks9 Ks10 Ks11 Ks12 Ks13

(s140−141) 0 0 Ks14 Ks15

Figure 3.4: Generation of authenticators (ar, at) and Ks given inputs (nt, nr, k).

3.3 Developing an Attack Path

Attack goal. The aim of an adversary targeting CryptoMemory devices may
vary depending on the deployment setting, but typically the objective will be
to either read protected information (e.g. to manufacture cloned chips) or to
overwrite memory contents (e.g. to increase the balance in payment scenarios).

In the following we will assume an adversary who possesses a CryptoMemory
device configured either in authentication mode or encryption mode. Note
that the first security operation in either of these modes is always the mutual
authentication protocol. In other words, their security relies on the secrecy
of the authentication key (or keys) k. If an attacker knew k, he could easily
compute session keys Ks and encrypt/decrypt valid communications. Therefore,
we define the goal of the adversary as the recovery of k.

Attack approach. Previous work has already pointed out cryptographic

70 A MOTIVATING EXAMPLE

weaknesses in the Atmel cipher, but the most efficient attack still requires
substantial computational effort, e.g. two to six days computation on a cluster
with 200 cores [43]. We focus on power analysis attacks as they are often
more practical. Note that in the case of deployed CryptoMemory devices,
eavesdropping the communication line for later cryptanalysis requires physical
access to the target device. Thus, physical access for power analysis does not
imply an additional requirement.

Target devices. We have tested three different models of the CryptoMemory
family, namely the chips AT88SC0404C, AT88SC1616C, and the newer
AT88SC0808CA. These devices differ in the amount of user zone slots and/or
size available to the end application, but the protocol to carry out the mutual
authentication is identical for all of them.

Given that CryptoMemory devices do not contain a microcontroller, we can
assume that the cryptographic unit, including the Atmel cipher, is fully
implemented as a hardware module. We further assume that the implementation
computes one cipher tick in one or two clock cycles, which gives us an idea of
the type of pattern to look for in the power traces.

In the following we describe the experimental setup used in our analysis and
the steps followed to evaluate the smart card versions of CryptoMemory. We
summarize the slightly different approach required for CryptoMemory ICs,
leading to the same results, at the end of the section.

3.3.1 Experimental Setup

The main element of our experimental setup is a Virtex-II FPGA that
communicates with a PC (user interface) and a target device (CryptoMemory).
The FPGA can be configured to communicate with either of the CryptoMemory
device forms, i.e. as a T=0 compatible smart card reader or as a TWI master
device. Apart from the communication channel, the FPGA fully controls all
external signals provided to the target device. For instance, the reset signal
(RST), the external clock (CLK), and even the power supply (VCC) can be
manipulated at will and at any point in time. A 50 Ohm resistor is inserted
in series in the ground (GND) line of the target device. We use a Tektronix
DPO7254 oscilloscope to measure the voltage drop over this resistor, thus
obtaining a trace proportional to the device’s power consumption. Note that
we do not exhaust the capabilities of the oscilloscope and that a low-cost model
could be used just as well. For all experiments we used a moderate sampling
rate of 100 MS/s and 20 MHz bandwidth. In addition to the power consumption
the oscilloscope also monitors the RST, CLK, and I/O lines.

DEVELOPING AN ATTACK PATH 71

3.3.2 Initial Investigation of Power Traces

The first step in a power analysis attack is to determine in which part of
the protocol the secret key is used by the target device, i.e. at which points
in time are the key bytes fed as input to the Atmel cipher. An overview
of the I/O and a power trace obtained during the processing of a mutual
authentication command is shown in Figure 3.5. Figure 3.5a represents a
successful authentication, Figure 3.5b represents a failed authentication, and
Figure 3.5c represents an authentication attempt when the AAC is set to x00.

(a) Measurements for a successful authentication.

(b) Measurements for a failed authentication.

(c) Measurements for a not allowed authentication.

Figure 3.5: I/O and power trace for a successful authentication (a), a failed
authentication (b), and a not allowed authentication (c).

The leftmost part of the figures starts with the host sending 5 bytes corresponding
to an authentication command. After receiving these bytes, the card can reply
either with an acknowledgement ACK, indicating that it accepts the command,
or with a negative acknowledgement NACK, refusing to process the command.
The latter is shown in Figure 3.5c, where the CryptoMemory device has locked
access to the associated user zones. If the device acknowledges the command
then the host sends the payload data, i.e. 16 bytes corresponding to the values
nr and ar. Upon reception, the card performs a series of operations to determine

72 A MOTIVATING EXAMPLE

whether the authenticator provided by the host is correct. Finally, the card
sends a response to the host indicating the outcome of the authentication
attempt.

The most interesting part of the figure corresponds to the card calculations
upon reception of the payload data. One can clearly notice that the calculation
interval in Figure 3.5b is significantly shorter than in Figure 3.5a. Further, a
clearly distinguishable pattern with higher power consumption appears twice
for the valid authentication and only once for the invalid authentication. This
pattern corresponds to EEPROM writings in configuration memory: the first
one, present for both valid and invalid attempts, corresponds to decreasing
the value of AAC; the second one, only present for the valid authentication,
corresponds to writing the new value of nt and the session key Ks. Note that
writing a new value nt implies a valid authentication, and thus AAC is restored
back to xFF.

Although not visible in these overview plots, we noticed that the cryptographic
unit appears to run at a clock frequency slower than that we provided externally.
Further investigations showed that the device internally derives this slower clock
signal by dividing the external clock by approximately a factor 200.

The card’s calculation of the values (a′r, a′t) must happen before the second
EEPROM write operation, simply because the nt cannot be updated without
having computed a′t beforehand. Our experiments have shown that the device
computes the authenticators (a′r, a′t) on-the-fly, i.e. while the payload data
(nr, ar) is being received from the host. Similarly, the calculation of the session
key Ks is performed between the two EEPROM writings, only after the device
has authenticated the host by verifying that ar and a′r are equal.

Figure 3.6 shows a zoomed version of the I/O and power traces during
the transmission of the value nr = (nr0 , . . . , nr7) to the card. A clearly
distinguishable peak in the power trace is visible at the end of each byte
transmission, while a total of six high peaks are also identifiable during the
transmission of a byte. As explained in Section 3.2 the calculation of (a′r, a′t)
requires 126 cipher ticks. The pattern in the power traces has a perfect mapping
with the cipher behavior illustrated in Figure 3.4 considering a hardware
implementation. In fact, the first peak in Figure 3.6 corresponds to the state s6,
i.e. when the value nr0 is fed to the cipher. The following six peaks correspond
to states s7 to s12, in which the card uses its own randomness (values nt2
and nt3) as inputs. Once nr1 has been received over the I/O line, a new
peak corresponding to state s13 appears in the power trace, and the pattern
is repeated for every transmitted byte. In summary, each of the 50 peaks
highlighted in Figure 3.6 corresponds to a cipher state ranging from s6 to s55
in Figure 3.4.

DEVELOPING AN ATTACK PATH 73

Figure 3.6: I/O and power traces during the transmission of nr in authentication
command. Interesting peaks are marked with *.

Since the key k is scrambled into the cipher states s6 to s55, the device might leak
sensitive information through its power consumption. We could not immediately
identify a visible pattern in the power consumption that could relate to k (SPA
leak) but we also did not expect that from a hardware implementation of a
stream cipher. Therefore, we focused our attention on attacks that use statistical
post-processing of the collected power traces. Recall that DPA attacks require
the processing of multiple power traces corresponding to multiple authentication
attempts. For each attempt the device must use the same (unknown) k and
varying input data.

3.3.3 Overcoming Authentication Attempt Counters

Even though we have identified the parts in the power traces that correspond
to processing of the secret key k, an important practical issue still remains. In
our adversarial model, the adversary possesses a CryptoMemory device that
is already configured. Thus, he does not know the secret key k. In order
to run the mutual authentication protocol, an adversary needs to provide an
authenticator ar to the device. However, as the attacker cannot compute this
value correctly, the CryptoMemory device will not authenticate the host and, as
a consequence, it will decrease the associated AAC. Given that the user zones
become inaccessible to the host after four failed authentication attempts, an
adversary can collect at most three power traces before permanently locking
the device. The issue is that three traces are clearly not sufficient to carry out
a successful DPA attack.

There are several ways to try to deal with this limitation. If the application
under attack were to use the same key in all deployed CryptoMemory devices,
then it would suffice to collect power measurements from several devices. One
could also try to take many measurements from a single device, effectively
sacrificing it. But as can be seen in Figure 3.5c, once the AAC value is set to
x00 the device no longer computes the authenticators and measurements would

74 A MOTIVATING EXAMPLE

thus be worthless. Therefore, an adversary could obtain at most four power
traces per device tested. However, a scenario in which all devices share a single
key k seems unlikely to be found in secure deployments2.

An alternative could be to use template attacks as introduced by Chari et al. [63].
The devices provided by Atmel in evaluation kits, completely configurable by
the user, could be used to build such templates. We expect template attacks to
require very few power traces from the target device, but it is not clear if three
traces would suffice, due to the large cipher state. We did not investigate this
approach further as we were interested in more simple attack paths.

We followed a more intuitive approach to overcome the limitation imposed by the
AACs. Recall from Figure 3.5 that all the information required to perform DPA,
i.e. key-dependent information in power measurements, is obtained while the
value nr is being sent to the card. In other words, the information is available to
the attacker before the card actually decreases the value of AAC. Our approach
consists in injecting a negative pulse in the RST signal of the device before the
new value of AAC is written into configuration memory. Doing so forces the
device to reset its state before beginning the EEPROM write operation.

A successful implementation of this simple procedure is shown in Figure 3.7.
Besides the I/O and power traces, the figure also shows the RST signal input
to the device. Injecting a pulse on the RST line right after sending the payload
data successfully resets the device. This can be observed on the I/O line, as the
device sends its Answer-To-Reset (ATR) value to the host device right after the
rising edge in RST. Note also that the first EEPROM write pattern indicating
AAC being decreased does not appear in the power trace.

Figure 3.7: I/O, RST, and power traces during interrupted authentication.

The timing of the RST pulse is far from critical as the adversary can inject it
at any point after the reception of nr and before the first EEPROM writing, i.e.
during the transmission of the value ar. Recall that the transmission of a bit in
the I/O line requires 372 clock cycles, and a byte transmission requires a total
of 12 bits (1 start bit, 8 data bits, 1 parity bit, and 2 stop bits) [3]. Taking that

2Atmel actually recommends to diversify keys in all CryptoMemory deployments by
combining the configurable device ID with a unique master key, e.g. using a hash function.

POWER ANALYSIS ATTACK 75

into account, the adversary has an interval of 35 712 clock cycles in which the
RST pulse can be sent to the card.

Note that resetting the device before the EEPROM writings implies that the
value nt can never be updated. As a consequence, all power measurements
collected using this approach will correspond to the same device randomness nt.
Although in other scenarios this characteristic could be problematic, in our case
it does not limit the success or applicability of DPA attacks. This is because an
attacker can still provide varying values of nr for each authentication attempt,
which is fed into the Atmel cipher some ticks before the key k.

Differences with CryptoMemory packaged ICs. Besides some partic-
ularities caused by the use of TWI instead of T=0, the overall behavior of
CryptoMemory packaged ICs resembles what we have presented until now.
Most important is the fact that the calculation of the parameters (a′r, a′t) is
done in exactly the same way as in the smart card, i.e. on-the-fly while the
host sends the values (nr, ar). It is thus possible to identify which zones of the
power measurements correspond to which states of the Atmel cipher during the
feeding of the values (nt, nr, k).

The main physical difference between CryptoMemory packaged ICs and smart
cards is that the former do not have an external RST pin. This could have been
a problem, but an “equivalent” mechanism to overcome the AACs consists in
cutting the supply voltage (VCC) before the counters are decreased. Similarly
to the RST mechanism the timing accuracy to cut the voltage is not critical,
and the adversary has plenty of time to perform it3.

Once the power traces are obtained, the attacks on CryptoMemory in smart
card form and in IC form are identical and lead to very similar results.

3.4 Power Analysis Attack

We obtained a set of 1000 power traces sampled during executions of the mutual
authentication protocol, for which we provided random nonces nr to the device
and, each time, reset it as described above.

We processed the traces with a simple routine that extracts the peaks highlighted
in Figure 3.6, yielding a new set of highly compressed and well aligned traces.
Contrary to typical attacks on block cipher implementations, the key bytes can

3CryptoMemory packaged ICs require the host to perform acknowledge polling after
sending a mutual authentication command. If the host does not send any polling command
the IC is effectively idle, which gives enough room for an adversary to switch off the supply
voltage.

76 A MOTIVATING EXAMPLE

not be recovered independently but should be recovered in the order in which
they are fed into the Atmel cipher implementation, i.e. first k0, then k1, etc.

We first investigated the feasibility of basic DPA attacks that recover k one
byte at a time. We used a Hamming distance power model on the full cipher
state, i.e. the total number of bit flips in the transition from state s to state s′,
and Pearson’s correlation coefficient as distinguisher [53].

As explained in Section 3.2, each key byte is fed into the cipher three times in
consecutive cipher ticks. Our basic attack worked best when we attacked the
last cipher tick that fed in a given key byte, e.g. for byte k0 the transition from
state s29 to s30.

Figure 3.8 exemplarily shows the results we obtained when attacking k6 (the
worst case). The left part of the figure shows the correlation coefficients for all
256 hypotheses, plotted over “time”, computed using all 1000 measurements.
The right part of the figure shows the evolution of the maximum and minimum
correlation peaks per key hypothesis, plotted over the number of traces used.
We verified that all key bytes can be recovered in this way using less than 500
traces.

Figure 3.8: Results of basic DPA attack. Correlation coefficients per key
hypothesis (left), and evolution of correlation peaks per key hypothesis (right).

Our slightly more elaborate attack additionally exploits two simple facts. First,
we know exactly which sample in the power traces corresponds to which cipher
tick. Thus, the attack focuses on the correct sample in the traces and ignores
all other samples that appear as noise. Second, each key byte is fed into the
cipher three times. Thus, the attack targets all three transitions and adds up
the obtained correlation coefficients, per key hypothesis.

In addition, the attack further exploits that the dependence of the cipher state
on k grows only slowly and byte per byte. Similar to the strategy described
in [94], the attack does not aim to immediately identify the exact value of a key

IMPLICATIONS AND COUNTERMEASURES 77

byte, but it maintains a list of the best candidate values and re-evaluates them
when attacking the next key bytes.

We verified that this enhanced attack recovers the correct key k using less
than 100 measurements. We note that both attacks, from measurements to full
key recovery, can be carried out in less than 20 minutes on a standard laptop.
Algebraic side channel analysis would perhaps allow to work with even fewer
traces, but it requires to build templates.

3.5 Implications and Countermeasures

We have shown that an adversary can easily extract the secret authentication
key(s) k from CryptoMemory devices using basic, well-understood power analysis
techniques. As a consequence, the adversary can perform all actions that any
authenticated host could perform. This includes reading the memory, which
allows to clone the device, and manipulating its memory contents at will.

The success of our attack is due to two design flaws in CryptoMemory. First,
the implementation of the Atmel cipher is not protected by countermeasures
against power analysis attacks, except for the AACs that limit the number of
traces that can be obtained from a device before it locks itself to at most three.
And second, an inadequate handling of the AACs that allows an adversary to
bypass this limitation and to obtain any number of measurements from a given
device without locking it.

A simple way to prevent our attack would be to modify the handling of
the AACs. As learned from our experiments, CryptoMemory performs the
authentication procedure as follows: compute the authenticators, decrease
the value of AAC, compare the authenticators, and update the value of AAC
according to success/failure when writing nt in memory. This sequence can
also be extracted from Figures 3.5a and 3.5b. Atmel explicitely states that this
procedure is used “to prevent attacks” [18]. In fact, the method protects only the
comparison operation and is often used e.g. in SIM cards during PIN verification.
Our attacks do, however, not target the comparison operation but the time
instants when the secrets are manipulated. Since CryptoMemory manipulates
the secret key(s) before it decreases AAC, the counters can be easily bypassed
with a reset. A more secure handling of the AACs could be to decrease the
counter right upon reception of a mutual authentication command, and prior
to the reception of the payload data and computation of the authenticators.

Protecting against more sophisticated attacks than ours may require to
implement some of the countermeasures against power analysis attacks

78 A MOTIVATING EXAMPLE

enumerate in Chapter 2, e.g. noise generators and power filters at the hardware
level, or masking, random delays, and shuffling at the circuit level.

3.6 Conclusions

In this chapter we have illustrated the powerful nature of physical attacks by
attacking a real-world device with security functionalities. Moreover, we have
carried out this attack with the capabilities of a Class I adversary.

After reviewing the features, primitives and protocols employed by CryptoMem-
ory, we have developed an attack path aiming to the extraction of its secret
key. Starting from a custom made and flexible experimental setup, we have first
identified the time instants in power traces carrying key-related information.
After this, we have devised an approach to overcome the limitation posed by the
AACs. Ultimately, we have applied well-understood power analysis techniques
to extract the secret cryptographic key of the device.

Our results in this chapter highlight the difficulty of preventing physical attacks
at every layer of the embedded design space. CryptoMemory uses fuses to
lock access control policies, access control to protect memory contents, and
AACs to strengthen access control. Therefore, a large part of CryptoMemory’s
physical security relies on the AACs, that we have identified as a not sufficiently
protected point of failure.

Chapter 4

Masking at Algorithm Level
Higher-Order Masking based on the Inner Product

This chapter focuses on data randomization techniques that can be applied at
algorithm level to counteract power analysis attacks. After briefly introducing
the approaches devoted to protect public-key primitives, the focus of the chapter
turns to the application of masking techniques for protecting block ciphers.
This topic is currently one of the most active within the research area of side
channel countermeasures. We formalize the concept of masking and provide a
chronological overview of developments on both attacks and countermeasures,
ultimately leading to our contributions in the field.

4.1 Introduction

The goal of data randomization techniques, commonly known as masking,
consists in randomizing any sensitive variable that appears during the processing
of a cryptographic algorithm. Formally speaking, a variable is said to be
sensitive if it can be expressed as a deterministic function of the plaintext (resp.
ciphertext), the secret key, and possibly other parameters that are not constant
with respect to the key [188]. Said variables are commonly the target in power
analysis attacks.

Because of their mathematical structure, data randomization techniques are
commonly integrated into public-key cryptosystems. Most proposals in the
literature aim to protect modular exponentiation algorithms, and are thus
generic for RSA and ECC. These techniques can either be applied by randomizing

79

80 MASKING AT ALGORITHM LEVEL

input messages, e.g. message blinding [140], or by randomizing exponents, e.g.
exponent blinding [73] or exponent splitting [71]. In the context of ECC, one
may resort as well to the randomization of projective coordinates [73].

Protecting symmetric key primitives on the other hand requires more effort.
Block ciphers have iterative constructions combining a series of transformations
within multiple rounds. Linear transformations such as bit permutations
are in general well suited to combine with masking techniques. Non-linear
transformations (commonly S-boxes) require more effort and can lead to large
efficiency bottlenecks. Furthermore, applying data randomization to fully
prevent side channel leakages has proven to be a non-trivial task, and it
often depends on the nature of the final implementation, i.e. software-based or
hardware-based. These issues are further discussed in the following sections.

4.2 Masking Block Ciphers

The generic principle of masking [62] consists in randomly splitting all
intermediate variables X processed by a cipher into n shares such that
X = x1 � x2 � . . . � xn−1 � xn. The operator � corresponds to a group
operation (or a combination thereof) and its selection determines the type of
masking. Classical examples include boolean masking (based on the exclusive-or
or XOR operand) and arithmetic masking (based on modular addition). When a
type of masking is adapted to protect a particular cryptographic implementation
or a set of operations, one talks about a masking scheme.

A masking scheme defines a construction that specifies how to propagate all
shares through the cipher transformations while ensuring intermediate results
remain independent of sensitive variables. Assuming the masks are uniformly
distributed, a side channel adversary can in principle only observe leakage
components L(xi). As these are statistically independent of the sensitive
variable X, their leakage distribution cannot be effectively exploited by a side
channel adversary.

The minimum number of shares d+1 required to reconstruct a sensitive variable
determines the security level of the masking scheme. This is commonly referred
to as dth-order masking. While it is often the case that n = d+ 1, i.e. all shares
are required to fully reconstruct X, recent proposals are not subject to this
constraint. In the following we employ a more generic notation introduced by
Prouff and Roche [180] and refer to a masking construction as (n, d)− sharing.

MASKING BLOCK CIPHERS 81

4.2.1 1st-Order Masking

The (n = 2, d = 1) − sharing of the form X = x1 � x2 is the most common
and representative of 1st-order masking constructions. It provides a sound
countermeasure against classical univariate power analysis attacks, i.e. those
targeting atomic leakages of sensitive variables at a single point in time.
Examples of attacks falling into this category are the classical versions of
DPA [141], CPA [53], and MIA [108].

The earlier application of 1st-order masking is due to Goubin and Patarin [115].
Originally named “duplication method”, the construction devised in [115] uses
boolean masking to protect implementations of DES. Each intermediate value
X in the computation is split into two shares x1 and x2 such that x = x1 ⊕ x2.
Propagating and correcting these shares through most operations of the DES
algorithm, i.e. bit permutations, expansions, rotations, and exclusive-or, is
straightforward due to their linearity with respect to the masking construction.
The main difficulty lies in dealing with the non-linear step of the cipher, in this
case the DES S-boxes.

The technique proposed in [115] consists in generating two new S-boxes S′1 and
S′2, such that the shares are propagated as x′1 = S′1(x1, x2) and x′2 = S′2(x1, x2).
The first S-box S′1 is a randomly chosen transformation from a 12-bit input to
a 4-bit output, while S′2 is computed as S′2(x1, x2) = S(x1 ⊕ x2)⊕ S′1(x1, x2).
Here S refers to either of the original DES S-Boxes, mapping a 6-bit input to
4-bit output. This approach requires to store 32 KBytes of data corresponding
to masking the 8 different DES S-boxes, although the paper elaborates on
alternative, more memory-efficient techniques.

Masking non-linear functions at the cost of larger memory complexities is
commonly known as table re-computation. This technique was originally hinted
by Chari et al. [62] and further formalized by Messerges [159] as follows. Assume
an S-Box T described by a non-linear function f : F2

n → F2
m such that

T [a] denotes the image of a by the corresponding function f . Masking such
construction can be generically done by selecting two masks rin and rout and
computing a masked S-Box such that T ′[a] = T [a⊕ rin]⊕ rout for all a ∈ F2

n.

Alternative techniques to propagate the mask through non-linear transfor-
mations have been mostly applied to AES. Because the non-linear step in
AES consists in performing a multiplicative inversion in GF (28), Akkar and
Giraud [13] propose to protect it by means of a multiplicative mask such
that X = x1 ⊗ x2. This approach requires to switch between boolean and
multiplicative masks at the input (resp. the output) of the AES S-Box lookup,
and it is referred to as adaptive masking. As pointed out by Golic and
Tymen [113] however, straightforward multiplicative masking only protects

82 MASKING AT ALGORITHM LEVEL

non-zero values, i.e. a byte equal to zero cannot get masked because of the
nature of the multiplicative masking. This characteristic makes the method of
Akkar and Giraud [13] vulnerable to classic DPA. Follow-up works on 1st-order
adaptive masking of the AES have been introduced by Trichina et al. [213] and
Genelle et al. [105], although the former has been broken by Akkar et al. [12].

Finally, several other methods to mask the AES S-Box without relying on table
re-computation or adaptive masking techniques have as well been suggested.
Among them, the use of homographic functions [76], decomposition into a square-
and-multiply algorithm [44], or the use of tower field representations [170, 59]
are the most relevant ones.

4.2.2 Higher-Order Attacks

The concept of higher-order attacks was first suggested by Kocher et al. [141],
formalized by Chari et al. [62], and brought to practice by Messerges [160].
The main application of these attacks is to overcome the security provided
by masking techniques. While univariate attacks focus on atomic leakages
at single points in time, higher-order attacks - in the following referred to as
multivariate attacks - exploit joint statistical properties of several time samples
in power curves. As a general rule, a dth-order masking scheme can always be
theoretically broken by a d-variate attack combining the leakage distributions
of d shares.

In practice, most multivariate techniques in the literature perform a pre-
processing step to adapt a multivariate statistical problem to a univariate
one [225], i.e. atomic leakages at different points in time are first aggregated
by using a combining function and subsequently exploited by performing a
classical univariate attack such as DPA or CPA. In contrast to this approach,
multivariate MIA [107, 177] is able to exploit leakages in multiple time samples
without need of such a pre-processing step, which has been shown to inherently
carry a loss of information [62].

Let us illustrate how an exemplary bivariate attack is able to break a 1st-
order boolean masking scheme in which intermediate variables are processed
as X = Xm ⊕ m. Note that such construction is equivalent to our original
definition of 1st-order boolean masking X = x1 ⊕ x2, by denoting Xm = x1
and m = x2. Exploiting the leakage of either the masked variable L(Xm)
or the mask L(m) independently using a univariate attack does not lead to a
successful attack. This is because L(Xm) depends on an unknown and uniformly
distributed random mask, while the leakage of L(m) is independent on the
secret keys. The approach followed by a bivariate attack is to merge the leakages
L(Xm) and L(m) into a single variable by means of a combination function

MASKING BLOCK CIPHERS 83

C = f(L(Xm), L(m)), and then exploit the combined leakage by means of a
univariate attack.

The success rate of a bivariate (and in general multivariate) attack relies on
a suitable selection of the combination function. In the literature two of such
functions have been formally studied. The first one is the absolute difference
combining method due to Messerges [160], and later formalized by Joye et
al. [126]. It is based on aggregating the leakage components by computing

C = |L(Xm)− L(m)|.

The second one is the product combining method originally introduced by Chari
et al. [62]. It is based on computing

C = L(Xm)× L(m).

Variants of this function are proposed by Waddle and Wagner [225] in the
particular case that both L(Xm) and L(m) leak at the same time instant. Under
these conditions, squaring the power traces allows to break the implementation
by carrying out a univariate attack. A further variant by Prouff et al. [178]
adds a normalization step to the product combining method yielding:

C = (L(Xm)− E[L(Xm)])× (L(m)− E[L(m)]).

Bivariate attacks building upon these combination methods have been shown
to be successful in defeating implementations protected by 1st-order masking.
See for instance [160, 169, 210].

In addition to bivariate attacks, 1st-order masking techniques have been shown
to be vulnerable to univariate attacks when implemented in hardware rather
than in software. As shown by Mangard [152], the existence of glitches on masked
gates leads to side channel leakage. Glitches are switching operations of logic
gates caused by timing properties of gates and interconnection delays [153]. In
CMOS technology, the power consumption of a circuit is highly correlated to the
number of glitches that occur. Most masking schemes process masks and masked
values within the same combinational circuitry. Glitches inherently combine
information of both shares, and this leads to univariate leakage appearing in
the power traces. Limiting this source of side channel leakage can be done by
using synchronization elements [174], or tackling the problem at algorithm level.
Threshold implementations due to Nikova et al. [166] represent a particular case
of masking schemes that take into account the effect of glitches on hardware-

84 MASKING AT ALGORITHM LEVEL

based implementations, although so far their application is limited to counter
first-order attacks.

4.2.3 Higher-Order Masking

The design of higher-order masking countermeasures is of practical interest
due to two main reasons. First, it was shown by Chari et al. [62] that the
number of power samples required to retrieve information about an unmasked
variable is lower bounded by an exponential function of the masking order whose
base is related to the noise standard deviation. In other words, the number of
power traces required to break an (n, d) − sharing grows exponentially on d
given a sufficient amount of noise. In practice, noise can be added by physical
noise generators or algorithmic countermeasures based on shuffling or time
randomization. And second, multivariate attacks need to search over d + 1
tuples of time samples in order to identify and exploit the leakages corresponding
to all shares, meaning that the complexity of attacks grows combinatorially in
the attack order. These two characteristics impose a limitation to the practical
application of a multivariate attack in terms of computation effort.

The first proposal for a higher-order masking scheme at any order d is due to
Ishai et al. [124]. The technique, based on boolean masking, is tailored to secure
hardware implementations of circuits where internal operations are carried out
over F2. Basically, it implies to transform a circuit composed by NOT and
AND gates to a secured version in which no subset of d wires gives information
about sensitive variables. Despite its theoretical relevance, a practical downside
of this technique is the large overhead it requires in terms of area.

A generalization of the method by Ishai et al. [124] to secure any finite field is
given by Rivain and Prouff [188]. Using boolean masking, this work devises a
series of masked operations particularly tailored to software implementations
of the AES. The results of this work have been recently improved by Kim et
al. [136] in the context of hardware implementations by combining boolean
masked operations with tower field representations. Protecting S-boxes at any
order by means of boolean masking techniques has been presented by Carlet et
al. [60].

Alternatively to boolean masking, the use of multi-party computation techniques
based on Shamir’s secret-sharing [202] has been proposed by Goubin and
Martinelli [114] and Prouff and Roche [180]. Both schemes, commonly referred
to as polynomial masking, delineate a series of masked operations at any order
d. However, the secure multiplication routine in the former scheme has recently
shown to be vulnerable to univariate attacks by Coron et al. [75].

INNER PRODUCT (IP) MASKING 85

Along with this generic masking techniques that work at any order of d, other
works have tackled the issue of higher-order masking. Schramm and Paar [198]
devised a higher-order masking scheme to secure AES, but Coron et al. [74]
showed that the scheme was only secure for d ≤ 2. Techniques to switch between
boolean and multiplicative masking at any order d have been introduced by
Genelle et al. [106].

To conclude, the remaining efficient (n, d)−sharing constructions at any order d
in the literature are the boolean masking scheme by Rivain and Prouff [188] and
the polynomial masking scheme by Prouff and Roche [180], which additionally
provides security against glitches.

4.3 Inner Product (IP) Masking
'

&

$

%

Publication data
J. Balasch, S. Faust, B. Gierlichs, and I. Verbauwhede, “Theory and
Practice of a Leakage Resilient Masking Scheme”, In Advances in
Cryptology - ASIACRYPT 2012, Volume 7658 of Lecture Notes in
Computer Science (LNCS), pages 758-775. Springer-Verlag, 2012.

Contribution
Shared work between authors.

Our contribution to the research area of data randomization countermeasures is
the design, evaluation, and implementation of a practical higher-order masking
scheme based on inner product constructions. Originally proposed in the area of
leakage resilient cryptography [93], the greater algebraic complexity of the inner
product has been suggested to yield better resistance against side channel attacks
than, for instance, boolean masking. However, the original theoretical security
analysis requires strong security because it assumes any efficient adversary and
against a broad class of leakages, thus preventing it to be efficiently implemented
in practice.

The core of our work consists in bringing the inner product masking - in the
following IP masking - to practical scenarios. To this end, we devise a complete
set of algorithms for carrying out operations in the masked domain. Some
of these operations result from modifying and simplifying the original scheme
according to practice-oriented security models. An efficiency comparison with

86 MASKING AT ALGORITHM LEVEL

other state-of-the art higher-order masking schemes shows that our constructions
for non-linear operations, e.g. multiplication, clearly outperform schemes based
on polynomial-based masking solutions [180, 114] that enjoy similar algebraic
complexity. At the same time, our practical security analysis reveals that
the information leakage of IP masking is more than two orders of magnitude
smaller than that of boolean masking [188], for low levels of noise and the
same number of shares. As a final contribution, we provide a methodology to
implement the AES block cipher using the IP masking scheme. A software-
based implementation for d = 3 shares is provided together with performance
results. This not only verifies the correctness of our proposal, but also confirm
its feasibility in embedded contexts.

4.3.1 Construction of IP Masking.

Circuit model. Following the model of Dziembowski and Faust [93, 92], we
consider that the target device running the masked computations contains two
separate processors. Each of these processors, in the following referred to as
left processor (PL) and right processor (PR), executes a part of the masked
operations. Communication between processors is performed via a bidirectional
data bus. Such a model is introduced in order to provide a framework to analyze
the security of the masking scheme. As will be further explained in the following
sections, its main purpose is to facilitate the assumption that PL and PR have
completely independent side channel leakage, i.e. an adversary can only retrieve
information specific to each physical processor. Notice that from a practical
point of view, the required independent side channel leakage can be obtained
by temporal (rather than physical) separation of the masked computations, e.g.
in the context of sequential software implementations on a single processor.

Overview. The IP masking scheme can be instantiated to secure operations
in any finite field |F| ≥ 2, such that all elements and operations in F can be
mapped to and performed in the masked domain. This feature is extremely
useful in the context of securing cryptographic applications, as the underlying
field of the masking scheme can be adapted according to the characteristics
of the cryptographic algorithm and/or the target platform. Without loss of
generality, and driven by our goal to implement the AES, we provide in the
following an efficient instantiation of the IP masking scheme for the field F28 of
characteristic two.

Notation. We represent field elements with upper-case letters, e.g. X ∈ F28 ,
and we use ⊕ to denote field addition and ⊗ to denote field multiplication.
Vectors are represented with bold upper-case letters, e.g. X ∈ Fn28 such that

INNER PRODUCT (IP) MASKING 87

X = (X1, . . . , Xn). For two vectors X,Y ∈ Fn28 we denote by X ⊕ Y the
vector addition in Fn28 calculated as (X1 ⊕ Y1, . . . , Xn ⊕ Yn). The inner product
〈X,Y〉 ∈ F28 is calculated as

⊕n
i=1 Xi ⊗ Yi.

Construction. In the IP masking scheme each sensitive variable X ∈ F28 is
split into an even number of 2n shares such that:

X = L1 ⊗R1 ⊕ . . .⊕ Ln ⊗Rn. (4.1)

We denote L = (L1, . . . , Ln) as left vector and R = (R1, . . . , Rn) as right
vector. A variable X is represented in the masked domain as (L,R), and can be
recovered by calculating the inner product of these two vectors, e.g. X = 〈L,R〉.
In order to prevent a practically exploitable bias between the shares and the
masked value, it is required that elements of L belong to F28 \ {0}. We define
n ≥ 2 as the security parameter of our masking scheme.

Note that IP masking is a generalization of previously published masking
schemes. Indeed, one can trivially derive boolean masking [188] from Eq. (4.1)
by setting all elements in L (resp. R) to one. Multiplicative masking [13] can
be achieved by setting n = 2 and either of the shares L2 and/or R2 (resp. L1
and/or R1) to zero. Affine masking, described in [100] as V = (A⊗X)⊕B, can
be obtained by fixing n = 2, L1 = L2 = A−1, R1 = V , and R2 = B. Finally, as
a secret variable in polynomial masking [180, 114] is given by an interpolation
polynomial in the Lagrange form, such masking scheme can be obtained by
considering all elements in L to be public Lagrange coefficients.

Algorithm 2 depicts the procedure IPMask() to convert a variable X into the IP
masked domain as two vectors (L,R) of size n. The function rand() returns a
random element in F28 , whereas the function randNonZero() returns a random
element in F28 \ {0}. The function IPUnmask() to convert a masked variable
(L,R) of size n back to X consists in calculating the inner product X = 〈L,R〉.

Algorithm 2 Masking a variable: (L,R)← IPMask(X)
Input: variable X ∈ F28

Output: masked variable (L,R)
Ensure: X = 〈L,R〉
L1 ← randNonZero()
for i = 2 to n do
Li ← randNonZero();Ri ← rand()

end for
R1 ← (X ⊕

⊕n
i=2 Li ⊗Ri)⊗ L

−1
1

88 MASKING AT ALGORITHM LEVEL

4.3.1.1 Operations in the masked domain

After introducing how to convert variables between F28 and the IP masked
domain, we need to provide a set of higher-level functions that allows us
to operate directly on the masked variables. In order to fulfill our security
requirements, computations regarding the left vector L of masked variables
should be executed in the left processor PL, whereas calculations regarding
R should be carried out in the right processor PR. Moreover, the condition
that elements of the vector L are different from zero must be inherited by all
operations in order to avoid output masked values from being biased.

In the following we make use of a special operation called IPHalfMask(), which
on input a variable X and a vector L calculates the corresponding vector R such
that X = 〈L,R〉. It is thus a simplified version of Algorithm 2 for which the
left vector L is already given and thus elements Li do not need to be sampled.

Another operation that will be often used is IPRefresh(). This operation,
depicted in Algorithm 3, takes as input a masked variable (L,R) and returns
a new one (L′,R′) such that 〈L,R〉 = 〈L′,R′〉. The purpose of the refreshing
is to pump new randomness into the masking scheme. Algorithm 3 is tailored
particular to work for the field F28 . For a generalization we refer the reader
to [93].

Algorithm 3 Refresh vector: (L′,R′)← IPRefresh(L,R)
Input: vector L in processor PL, vector R in processor PR
Output: vector L′ in processor PL, vector R′ in processor PR
Ensure: 〈L,R〉 = 〈L′,R′〉

PL PR

A ∈R Fn28

L′ = L⊕A A−−−−−−→ X = IPUnmask(A,R)
X←−−−−−−

B = IPHalfMask(X,L′) B−−−−−−→ R′ = R ⊕B

Although not clearly specified in Algorithm 3, it is necessary that the vector
A sampled by PL is such that the resulting elements of L′ are non-zero. In
other words, we need to ensure that Ai 6= Li for all 1 ≤ i ≤ n. Details on
how to implement this step efficiently, in constant time and flow are given in
Section 4.3.3.

Addition. The procedure IPAdd() to calculate the addition of two masked
variables is depicted in Algorithm 4. This algorithm requires a three vector

INNER PRODUCT (IP) MASKING 89

additions, two joint executions of IPRefresh(), one of IPUnmask(), and one of
IPHalfMask().

Algorithm 4 Masked addition: (X,Y)← IPAdd((L,R), (K,Q))
Input: vectors L and K in processor PL, vectors R and Q in processor PR
Output: vector X in processor PL, vector Y in processor PR
Ensure: 〈X,Y〉 = 〈L,R〉 ⊕ 〈K,Q〉

PL PR
(A,B)←IPRefresh(K,Q⊕R)⇐==========================⇒
(C,D)←IPRefresh(L⊕K,R)⇐==========================⇒

Z←IPUnmask(C,D)⇐==========================⇒
Y←IPHalfMask(Z,A)⇐==========================⇒

X = A Y = Y⊕B

Notice that it might be the case that the component L ⊕ K in the second
execution of IPRefresh() has elements equal to zero. While this is a source of
first-order leakage in IP masking, i.e. the probability Pr(Z = 0|(Li ⊕Ki) = 0)
is twice than that for any other value of Z, it is in this particular case not
exploitable by an attacker. This is because Pr(〈X,Y〉|Z = 0) is uniformly
distributed, i.e. knowing that the intermediate value Z is zero does not give any
information about the sensitive output value (X,Y).

Addition of a constant. The procedure IPAddConst() to add a constant
Z ∈ F28 to a masked variable (L,R) can be carried out more efficiently than
Algorithm 4. Let (L,R) and Z be the input operands, and (X,Y) the output
masked variable. Addition of a constant can be simply calculated by letting
X = L and Y = R, except for the first element Y1 = (R1 ⊕ Z)⊗ L−1

1 .

Multiplication. The procedure IPMult() to calculate the multiplication of
two masked variables is depicted in Algorithm 5. This algorithm requires 2n2

initial field multiplications, one execution of IPRefresh() with input/output
vectors of size n2, one execution of IPUnmask() with input vectors of size n2−n,
one execution of IPHalfMask(), and one final vector addition.

Multiplication by a constant. The procedure IPMulConst() to multiply a
masked variable (L,R) by a constant Z ∈ F28 is efficiently computed in IP
masking. Let (L,R) and Z be the input operands, and (X,Y) be the output
masked variable. Multiplication by a constant can be performed by letting
X = L and calculating Y = (R0 ⊗ Z, . . . , Rn ⊗ Z). For this operation it is not
necessary to execute IPRefresh() after IPMulConst().

90 MASKING AT ALGORITHM LEVEL

Algorithm 5 Masked multiplication: (X,Y)← IPMult((L,R), (K,Q))
Input: vectors L and K in processor PL, vectors R and Q in processor PR
Output: vector X in processor PL, vector Y in processor PR
Ensure: 〈X,Y〉 = 〈L,R〉 ⊗ 〈K,Q〉

PL PR

for i = 1 to n do for i = 1 to n do
for j = 1 to n do for j = 1 to n do
Ũ(i−1)∗n+j ← Li⊗Kj Ṽ(i−1)∗n+j ← Ri⊗Qj

(U,V)←IPRefresh(Ũ,Ṽ)⇐=============================⇒
A = (U1, . . . , Un) B = (V1, . . . , Vn)
C = (Un+1, . . . , Un2) D = (Vn+1, . . . , Vn2)

Z←IPUnmask(C,D)⇐==============================⇒
Y←IPHalfMask(Z,A)⇐==============================⇒

X = A Y = Y⊕B

Squaring. The procedure IPSquare() can be carried out quite efficiently in
the masked domain given that we work over a field of characteristic 2. Let the
input masked variable be (L,R). The output masked variable (X,Y) can be
calculated by squaring all elements of each vector independently, i.e. Xi = (Li)2

and Yi = (Ri)2. The masked squaring operation does not require refreshing the
masks, and can be thus carried out with only 2n field squarings.

4.3.1.2 Complexity of operations

The complexity of the main operations in the IP masked domain, namely addition
and multiplication, is given in Table 4.1. We also provide a comparison with some
masked operations that can be implemented at any order d, recently published
in the literature for boolean and polynomial masking schemes, namely [188, 180,
114]. The complexity numbers are given in terms of d for all the schemes, where
d indicates the number of random values in each masked variable. Recall that
in IP masking, this number of random values is given by d = 2n− 1, with n ≥ 2.
Therefore, note that the following comparison is only valid for odd numbers of
d, i.e. any value d ∈ {2, 4, . . . } does not allow to generate the necessary vectors
(L,R) of size n for the case of IP masking.

As shown in Table 4.1, the complexity of the addition operation in IP masking
is slightly larger than in the other proposed methods. This is mainly due
to the internal use of the IPRefresh() operation which, as opposed to the
other masking schemes, involves several field multiplications. However, the

INNER PRODUCT (IP) MASKING 91

Table 4.1: Complexity of IP masked operations and comparison to dth order
boolean masked operations and polynomial masked operations in the literature.

Masked Operations in F28

Operation Scheme ⊕ ⊗ x−1 Rand

ADDITION

Boolean [188] d + 1 - - -
Polynomial [114] d + 1 - - -
Polynomial [180] d + 1 - - -

Inner Product (13d + 1)/2 3d + 3 3 (7d + 3)/2

MULTIPLICATION

Boolean [188] d2 + d + 1 2d2 + 2d - (d2 + d)/2
Polynomial [114] 2d3 + 7d2 + d 2d3 + 5d2 + 5d - 2d2 + d

Polynomial [180] 4d3 + 8d2 + 7d + 2 4d3 + 8d2 + 3d - 2d2 + d

Inner Product (5d2 + 12d− 9)/4 (5d2 + 10d + 5)/4 2 (3d2 + 8d− 3)/4

results obtained for the multiplication operation are favourable for IP masking.
In particular, both polynomial masked multiplications have complexity O(d3)
while IP masked multiplications have complexity O(d2). The boolean masked
multiplication has a similar complexity but, as we will show in the next sections,
the masking construction itself leaks considerably more information that the
inner product construction.

4.3.2 Security Evaluation

In this section we evaluate the SCA resistance of IP masking and compare it
to that of other masking schemes that can be implemented at any order, e.g.
boolean masking and polynomial masking. We focus the analysis on the masking
schemes themselves, i.e. we analyze the leakage of the shares of one masked
value. We will show in the next section that the security relevant properties of
IP masking carry over to the basic operations in the masked domain.

Attack order. We begin the evaluation by deriving the minimum order for an
attack against IP masking. For this we need the following definitions:

Definition 1: We say that a variable is sensitive, if it is an intermediate result
in an implementation that leaks through side channels, and if it is a function of
the input (resp. output), the key and possibly other parameters that are not
constant with respect to the key [188].

Definition 2: We say that a masking scheme is dth order SCA secure, if
every tuple of d or less shares is independent of the variable that is masked.
Accordingly, a masked implementation of an algorithm is dth order SCA secure,
if every tuple of d or less intermediate variables is independent of any sensitive
variable.

92 MASKING AT ALGORITHM LEVEL

1st order SCA resistance. Clearly, IP masking with n ≥ 2 is 1st order SCA
secure. This is a simple consequence of the fact that, even if the value of one of
the shares in L or R is known (in the worst case one Ri is known to be zero such
that Li ⊗Ri = 0), the value of the variable that is masked is still information
theoretically hidden by the ⊕ with n−1 terms that are all uniformly distributed
over F28 .

2nd order SCA resistance. IP masking with n = 2 is not 2nd order SCA
secure. This is because the product of two values is determined to be zero if
one of the values is zero. Multiplicative masking [13] suffers from the same
problem [113]. Suppose that the values of R1 and R2 are known to be zero.
Then, L1 ⊗ 0 ⊕ L2 ⊗ 0 = s = 0. This leads to a bias in the distribution
p(S = s|R1 = r1, R2 = r2), and the mutual information I(s; (R1, R2)) is
non-zero.

dth order SCA resistance. IP masking with 2n = d+1 is SCA secure up to n−1th

(or d+1
2 −1th) order, but not secure against nth (or d+1

2
th) order SCA. Following

the above examples, as long as the product of one pair (Li, Ri), i ∈ {1, . . . , n}
is unknown, the value of the variable s that is masked is still information
theoretically hidden. On the other hand, if ∀i ∈ {1, . . . , n} the value of Ri
is known to be zero, then the value of s is known to be zero. However, the
probability that this case occurs is small and decreases rapidly with increasing
n. More precisely, it is (2−8n).

In summary, IP masking with 2n = d + 1 can, in theory, be broken by a nth
order SCA. On the other hand, similar to polynomial masking, it creates a
much more complex relation between the shares than boolean masking, which
is known to be more difficult to exploit. Hence, we expect IP masking with
2n = d+ 1 to provide much higher security in practice than boolean masking of
order d+ 1, i.e. with the same number of random masks. Following this line,
we opt to consider the leakage of all 2n or d+ 1 shares in the following analysis,
since an attack exploiting all shares is more powerful in an information theoretic
sense, unless the noise levels are extremely high.

In polynomial masking half of the shares are non-zero public constants and
the other half are random and secret masks. In particular, there is no direct
correspondence to the notion of a masked variable. In what follows we refer
only to the random and secret shares, and their number determines the masking
order. For example, polynomial masking of order d − 1 uses d random and
secret shares, and can theoretically be broken by a dth order SCA. We will
compare polynomial masking of order d− 1 with boolean masking of order d
(d+ 1 shares, d masks) and with IP masking of order 2n = d+ 1 (d+ 1 shares,
d masks). One could expect IP masking with 2n = d+ 1 to provide a similar
level of security as polynomial masking of order d− 1, i.e. both schemes should

INNER PRODUCT (IP) MASKING 93

provide similar security when they use the same number of random and secret
masks.

Information Leakage. As motivated and done in previous works [206, 100,
207, 180], we use the mutual information between a variable and the leakage
of all shares of its masked representation as a figure of merit. We estimate
it using simulations. For IP masking, we set n = 2 and let R2 ∈R F28 and
L1, L2 ∈R F28 \ {0} such that S = L1 ⊗ R1 ⊕ L2 ⊗ R2. Boolean masking
uses d + 1 shares (M1, . . . ,Md, V) where the Mi ∈R F28 and V is computed
such that S = M1 ⊕ . . . ⊕Md ⊕ V holds. We evaluate boolean masking for
d ∈ {1, 2, 3}. Polynomial masking uses d shares (Y1, . . . , Yd) with Yi ∈R F28 and
d public Lagrange coefficients (β1, . . . , βd) with βi ∈R F28 \ {0} and pairwise
distinct [114]. We evaluate polynomial masking for d ∈ {2, 3}.

To quantify the amount of information leaked, we need to model the relation
between the value of a variable and its physical leakage. We follow the approach
that is usual in the literature [100, 180, 207]: we model that a variable leaks
its Hamming weight, that each share leaks independently of all other shares,
and that the leakage of each share is affected by independent Gaussian noise.
The latter serves to mimic the noise effects that affect physical measurements.
Putting this together, we model the leakage of IP masking as

Leak(L,R) = (HW(L1) + n1,HW(R1) + n2,HW(L2) + n3,HW(R2) + n4) ,

the leakage of boolean masking as

Leak(M1, . . . ,Md, V) = (HW(M1) + n1, . . . ,HW(Md) + nd,HW(V) + nd+1)

and the leakage of polynomial masking as

Leak(Y1, . . . , Yd) = (HW(Y1) + n1, . . . ,HW(Yd) + nd)

where the ni are independent Gaussian variables with mean zero and
standard deviation σ. The mutual information is then I(S;Leak(L,R)),
I(S;Leak(M1, . . . , Md, V) resp. I(S;Leak(Y1, . . . , Yd)). The number of
measurements that a Template Attack [63], i.e. the worst case scenario of
a profiled attack, requires to achieve a given success probability is directly
related to this mutual information via c ·I(·; ·)−1, where the constant c is related
to the success probability [207].

Figure 4.1 shows plots of the mutual information (log10) between S and the
information leaked by all shares of its masked representation, over increasing

94 MASKING AT ALGORITHM LEVEL

noise levels σ, for all masking schemes considered1 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−6

−5

−4

−3

−2

−1

0

1

Noise standard deviation σ

Lo
g 10

(m
ut

ua
l i

nf
or

m
at

io
n)

bool. d=1 bool. d=2 bool. d=3 IP n=2 poly. d=2 poly. d=3

Figure 4.1: Mutual information (log10) over increasing noise standard deviation
σ for different masking schemes.

The figure shows that IP masking with n = 2 leaks consistently less than
boolean masking with d ∈ {1, 2, 3} across the range of tested noise levels,
which confirms our expectation. The advantage is more pronounced for low
noise levels, where e.g. for σ = 0.2 the information leakage of IP masking
is about 2.5 orders of magnitude(!) smaller than that of boolean masking.
As expected, polynomial masking with d = 2 leaks consistently more than
IP masking with n = 2. Polynomial masking with d = 3 provides a level of
security very similar to IP masking with n = 2 for low noise levels. However,
contrary to what one could expect, for high noise levels, polynomial masking
with d = 3 leaks less than IP masking with n = 2. There are several possible
explanations for this observation. For instance, IP masking with n = 2 involves
two field multiplications while polynomial masking with d = 3 involves three
field multiplications, i.e. the algebraic complexity of the masking is greater.
Furthermore, IP masking with n = 2 is 1st order SCA secure while polynomial
masking with d = 3 is 2nd order SCA secure. It is known that leakage of lower
order is easier to exploit, in particular with increasing noise [207]. We leave the
careful analysis of the observed difference in information leakage as an open
question for future research.

1Note that the mutual information values we computed for boolean masking are consistent
with Figure 1 in [100] and Figure 3 in [180]. One has to take into account that the Y-axis in
those figures is erroneously labeled log10 while it should be logn.

2For polynomial masking with d = 3, reasonably accurate estimation of the mutual
information values for high noise levels is beyond our computational budget.

INNER PRODUCT (IP) MASKING 95

Discussion. Our evaluation shows that IP masking with n = 2 provides high
security even if there is little noise. However, although the simulated scenario
(Hamming weight leakage, independent leakage of each share, Gaussian noise)
is standard in the practice-oriented literature, it is synthetic and in particular
meets the requirement of the masking schemes for independent leakage perfectly.
It can be hard to achieve this for real-world implementations that are affected
by effects such as coupling (we show in the next section that glitches do not
affect the security of IP masking). Clearly, our evaluation does not allow to
blindly assume that an implementation of IP masking is secure. What it shows
is the level of security that a secure implementation of IP masking can provide.
An interesting topic for future research is to analyze the security provided by
a real-world implementation, and to analyze how violating a requirement, e.g.
independent leakage, affects practical security.

4.3.3 Performance Evaluation

In this section we evaluate the performance and correctness of IP masking. We
provide a general overview on how to implement the IP masking building blocks
on an 8-bit embedded platform, and describe how to use them to protect an
implementation of the AES.

4.3.3.1 Implementation of masked operations

The 8-bit Atmel AVR ATMega128 is chosen as target platform. This device
provides an advanced RISC architecture with 133 low-level instructions and it
offers 128 kBytes of flash program memory and 4 kBytes of internal SRAM. The
independent side channel leakage required by our model is in our implementation
achieved by temporal separation, i.e. instead of using two physically separated
processors PL and PR, we use a single 8-bit processor and we ensure independent
leakage by not overlapping their respective operations.

For the sake of optimization, we have implemented all operations in
assembly language. The ATMega128 does not provide an internal random
number generator to implement the rand() and randNonZero() functionalities.
Therefore, and only for the purposes of evaluating the implementation, the
required random bytes are provided to the microcontroller externally previous to
the encryption process. We note that a real-world implementation of IP masking
would require a platform capable of generating such randomness internally.

Addition in F28 is carried out in a single clock cycle via the available XOR
instruction, whereas the rest of field operations (multiplication, inversion,

96 MASKING AT ALGORITHM LEVEL

raisings to the power of 2) are implemented via lookup tables, requiring a
total of 1,536 bytes in program memory. Besides the squaring, we have also
implemented as lookup tables the rising to the powers of 4 and 16 required in
the power function of the AES SubBytes step. On devices with limited program
memory these raisings can be alternatively carried out by consecutive squarings,
effectively saving 512 bytes of program memory.

Special care has been taken in order to make the implementation not only
time-constant, but flow-constant i.e. conditional execution paths, which can
be a potential source of side channel leakage, have been avoided. A typical
example of a function with conditional execution is the multiplication in F28

using log/alog tables. This method only works when both input operands are
different than zero; otherwise, the result of the multiplication must be equal
to zero. Implementing this routine in constant flow requires to calculate the
potential outputs of all conditional paths, and thus it ends up requiring 22
clock cycles.

Worth mentioning is the implementation of the first part of Algorithm 3 for
mask refreshing, namely sampling a vector A such that Ai 6= Li for 1 ≤ i ≤ n.
This step is carried out as follows for each element Ai. First, we sample two
elements A′i ∈ F28 and A′′i ∈ F28 \ {0}. If A′i 6= Li we simply set Ai = A′i;
otherwise, we assign Ai = A′i ⊕ A′′i . Independently of the sampled values A′i
and A′′i , this conditional statement ensures that i) the final value Ai is different
than Li, and ii) the final value of Ai is uniformly distributed over F28 . Needless
to say, such implementation is also performed in constant flow execution to
prevent conditional execution branches.

4.3.3.2 Applying IP masking to the AES

The AES operates on a 128-bit state, arranged as a 4 x 4 array of bytes in F28 ,
and denoted by (Si,j)0≤i,j≤3. During encryption the AES state goes through
a series of rounds, each performing a total of four individual transformations:
AddRoundKey, SubBytes, ShiftRows, and MixColumns. In order to secure
AES with IP masking we must ensure that we are working on the same field
F28 ≡ F2[x]/(x8 + x4 + x3 + x+ 1), i.e. multiplication in F28 must be modulo
the irreducible polynomial x8 + x4 + x3 + x + 1 as defined in [6]. After this,
each byte element of the state Si,j needs to be transformed and operated in
the IP masked domain, correctly adjusting the round transformations to the
masking scheme.

The SubBytes step is computed by applying two consecutive transformations
to each state byte: i) the non-linear calculation of the inverse in F28 , and ii) an
affine transformation over F2. The calculation of the inverse has a multiplicative

INNER PRODUCT (IP) MASKING 97

structure, making it difficult to combine with the additive component of IP
masking, while the bit manipulations of the affine transformation cannot be
easily adapted for the field F28 . The full SubBytes step can be calculated using
the following equation defined over F28 , for a given input state byte X:

SubBytes[X] = {05} ⊗X254 ⊕ {09} ⊗X253 ⊕ {f9} ⊗X251 ⊕ {25} ⊗X247⊕
{f4} ⊗X239 ⊕X223 ⊕ {b5} ⊗X191 ⊕ {8f} ⊗X127 ⊕ {63}.

Note that this equation requires a lot of operations (specially multiplications)
to calculate the different powers of X. As masked multiplications are much
more inefficient than masked squarings or masked additions, we need to find an
alternative way to compute this transformation.

Our proposed solution is to perform the inner SubBytes transformations (inverse
and affine transformation) separately. Specifically, we first compute the inverse
using the following power function from [188]:

Inverse[X] = X254 =
(
(X2 ⊗X)4 ⊗ (X2 ⊗X)

)16 ⊗ (X2 ⊗X)4 ⊗X2.

As shown in [188], this equation computes the inverse using a lower bound of 4
multiplications, plus 7 squarings. The affine transformation, linear in F2, can
be defined as the following polynomial over F28 [165]:

AffTrans[X] = {05} ⊗X128 ⊕ {09} ⊗X64 ⊕ {f9} ⊗X32 ⊕ {25} ⊗X16⊕
{f4} ⊗X8 ⊕ {01} ⊗X4 ⊕ {b5} ⊗X2 ⊕ {8f} ⊗X ⊕ {63},

requiring 7 squarings, 8 additions, and 7 multiplications with a constant.

The MixColumns transformation operates on the AES state column-by-column.
In particular, each of the bytes in the 0 ≤ j ≤ 3 columns is replaced as:

s′0,j = {02} ⊗ s0,j ⊕ {03} ⊗ s1,j ⊕ s2,j ⊕ s3,j

s′1,j = s0,j ⊕ {02} ⊗ s1,j ⊕ {03} ⊗ s2,j ⊕ s3,j

s′2,j = s0,j ⊕ s1,j ⊗ {02} ⊕ s2,j ⊕ {03} ⊗ s3,j

s′3,j = {03} ⊗ s0,j ⊕ s1,j ⊕ s2,j ⊕ {02} ⊗ s3,j .

From these equations it follows that this step can be implemented using a
total of 12 masked additions and 8 masked multiplications by a constant,
for each column. In [79], the authors of AES suggest a more efficient way

98 MASKING AT ALGORITHM LEVEL

Table 4.2: Performance evaluation (in clock cycles) of AES round
transformations and AES encryption with IP masking scheme with n = 2.

AddRoundKey
SubBytes SubBytes

ShiftRows MixColumns Full AES
(Inverse) (Aff.Transf.)

8,796 45,632 72,128 200 27,468 1,912,000

to compute the MixColumns step by using the so-called xtime tables. Such
technique takes advantage of the fact that field addition is more efficient than
field multiplication in general purpose processors. Due to this, they suggest
an alternative approach that requires 15 additions and 4 multiplications by 02,
which can be simply performed as table lookups. This technique is however not
optimal for IPmasking since masked multiplications by a constant are way more
efficient than masked additions. In other words, the efficiency in our scheme
for the MixColumns transformation is achieved by minimizing the number of
masked additions.

As shown in Table 4.2, our implementation requires around 1.9 · 106 clock
cycles to perform a protected AES encryption (including on-the-fly key schedule
calculation).

We stress that these results should not be simply taken as an indicator to judge
the practicality of IP masking, as they are obtained using a legacy general-
purpose device without any type of hardware enhancements. If multiplication
in F28 was available in the instruction set of the controller our timing for AES
encryption would be instantly reduced to less than a million cycles. This could
be achieved e.g. by providing instruction set extensions to the target device.

4.4 A 1st-order Attack Against (IP) Masking

A recent work by Prouff, Rivain, and Roche [179] has identified 1st-order leakage
in the IPRefresh() and IPAdd() operations of the IP Masking scheme [22]. The
result of this evaluation implies that the original claim of generic (n−1)th-order
SCA security for any order d = 2n−1 is effectively reduced to 1st-order security
due to a flaw in these operations.

The 1st-order leakage comes from the computation of intermediate variables
using the inner product and can be exhibited as follows. Let A = (A1, . . . , An)
and B = (B1, . . . , Bn) be random vectors with elements in F28 , and let R =
(R1, . . . , Rn) be a random vector with elements in F28 \ {0}. We denote a and

CONCLUSIONS 99

b the variable a = 〈A,R〉 and b = 〈B,R〉 resulting from the inner product
calculations.

A study of the amount of information that a leaks on b yields the following:

Pr[A = a|B = b] =
{

1
256 + 1

256(255)n−2 if a is zero
1

256 −
1

256(255)n−1 if a is non-zero

This bias identified shows that when b is zero, the variable a is more likely to
be zero than any other value in F28 . Note however that this bias is increasingly
small as the size n of the vectors in IP masking increases.

Such a bias can be found in our proposed IPRefresh() and IPAdd() algorithms.
Focusing on the former, there exists an intermediate calculation of the form
x = 〈A,R〉 given an input value b = 〈B,R〉. Therefore, knowing that the
intermediate value x is zero, gives information about the sensitive masked
variable b that is input to the algorithm. A similar construction is also found in
IPAdd().

This bias is in contradiction to our claim in Definition 2 that every tuple of
d or less shares is independent of the variable that is masked (see Sect. 4.3.2).
However, it does not invalidate the security analysis of the information leakage
of IP masking, as this depends exclusively on the masking construction. Further
research is required to determine up to which extent the IPRefresh() and
IPAdd() algorithms can be re-designed to avoid such intermediate leakages, as
well as how complex is for a side channel adversary to practically exploit this
leakage.

4.5 Conclusions

In this chapter we have surveyed the landscape of masking based techniques to
protect implementations of block ciphers. Starting from the earlier proposals
to counter classic univariate attacks, the research scope has gradually moved
towards the design of masking schemes at any order. The review of works in
this research area poses an evident example of how the state-of-the-art advances
driven by an active arms-race between attacks and countermeasures.

As a contribution, we have presented an efficient higher-order masking scheme
based on the inner product construction. While non-linear masking constructions
have the potential to yield better resistance against power analysis attacks than
e.g. boolean masking, their complexity has so far limited their feasibility in

100 MASKING AT ALGORITHM LEVEL

practical settings. Despite the weaknesses identified in two of our constructions,
our work represents an important step towards achieving a practical masking
scheme at any order using non-linear constructions.

Chapter 5

Enabling Privacy in
Embedded Design
A Use Case for Electronic Toll Pricing

In this chapter we focus on aspects related to the integration of privacy in
embedded services and applications. We briefly enumerate some characteristics
and practical drawbacks commonly found in current systems relying on the
collection of personal data. After this, we motivate and illustrate how the use of
PETs can successfully lead to the design of alternative systems offering stronger
privacy guarantees. The core of the chapter is devoted to our contributions in
the design of a privacy-preserving system for Electronic Toll Pricing.

5.1 Introduction

Integrating privacy protection into a system is a complex task. From a legal
perspective, service providers have to follow a series of rules described in
regulations, policies, and codes of conduct. As legislation on data protection
varies from country to country, this results in different views on the actual
definitions of privacy protection. Nevertheless, one can often identify a series of
common drawbacks. Even though the concept of data minimization is typically
mentioned, there are no effective mechanisms to prioritize privacy-preserving
technologies over more invasive ones. In other words, it is rather challenging
to ensure the amount of collected data is kept to a minimum: providers can
simply justify that they only collect whatever is strictly necessary for the

101

102 ENABLING PRIVACY IN EMBEDDED DESIGN

provisioning of the service. While in practice clients agree to data collection
by accepting the terms of service, these are often not trivial to understand and
basically offer no opt-out alternatives to concerned users. Finally, most of the
enforcement mechanisms in privacy protection legislation are reactive, i.e. based
on sanctioning data controllers once an infraction is found.

In such scenarios, the privacy guarantees of the system exclusively rely on the
data controller playing the role of a trusted entity. As all collected personal data
is assumed to be fairly processed and safely stored by the service provider, the
privacy of users is safeguarded. However, one can argue whether this assumption
is valid in the real world. After all, service providers have incentives to exploit
collected data, e.g. to obtain advantageous business positions. Even if the data
is not misused, its centralized storage represents a single point of failure in
the system. Rogue employees, external adversaries or even law enforcement
agencies can try to access these databases. Damage to users cannot be reverted
when a data breach occurs, as their data has already been leaked at that point.

5.2 Privacy-Preserving Systems

The development of systems integrating both privacy and data protection
starting from their design stage is sometimes referred to as Privacy-by-Design.
This term, originally coined by Ann Cavoukian [61], has been proposed by policy
makers to denote a series of principles to achieve privacy-preserving services.
While these principles provide a comprehensive view of the challenges in privacy
protection, they are still too vague when actual practical designs have to be
implemented [119].

The interpretation of privacy can give rise to multiple meanings [81]. In this
dissertation we define privacy protection as the prevention of personal data
from being disclosed to external parties. This interpretation is suitable when
considering information based services such as monitoring systems. Users should
not be forced to trust their personal data to service providers. Rather differently,
service providers (or other external parties) should be perceived as potential
adversaries within the system. Departing from this view, the privacy properties
of the system can be laid out at design time. The use of PETs can help in
achieving the fulfillment of these requirements.

Privacy-Enhancing Technologies encompass a set of technologies to enforce
the protection of personal information. In particular, they provide a series
of properties that can lead to the protection of a user’s identity or actions
when using resources or services from one (or multiple) parties. Anonymity
allows users to communicate with a recipient without disclosing their identity;

PRIVACY-PRESERVING SYSTEMS 103

unlinkability allows users to communicate with a recipient multiple times while
ensuring these interactions cannot be linked together, i.e. traced back to the
same user; and pseudonimity allows users to hide their identity within a subset
of interactions under a certain pseudonym.

An exemplary application of how PETs guarantee privacy properties for the
provision of a service is given by anonymous E-Cash [64]. Proposed by David
Chaum in 1982, the goal of this system is to provide electronic means to mimic
the functionalities of traditional paper cash. To this end, the considered model
has three interacting parties: a customer, a merchant, and a bank. A customer
can withdraw a wallet of electronic coins from a bank, and he can later spend
these coins by purchasing goods from a merchant. At the end of the purchase,
the merchant can deposit all collected coins into his bank account.

From a privacy perspective, anonymous E-Cash satisfies similar properties found
in “off-line” real-world payments, namely anonymity and unlinkability. The
former is achieved by preventing a merchant from learning the identity of a
user during or after a purchase transaction. The later impedes a merchant from
determining whether two or more purchase transactions correspond to the same
or different user(s), as well as impeding the bank from concluding whether coins
withdrawn by a user correspond to coins deposited by a merchant.

From a security perspective, these privacy properties should obviously not
conflict with other generic security requirements of “off-line” real-world
payments, for instance prevention of coin double-spending and coin double-
depositing. Rather differently, anonymous E-Cash systems are designed such
that system misuse invalidates privacy assurances. For instance, users that
double-spend a coin are automatically detected and their anonymity is revoked.
Vendors that attempt to double-deposit a coin can be similarly detected and
identified.

Despite its interesting properties, anonymous E-Cash relies on rather complex
building blocks that have limited its feasibility in practical settings. User
payment tokens are portable hardware devices, resource constrained due to
their size, and therefore not suited to support such complex protocols. However,
the technological advances in embedded computing platforms and their current
widespread deployment is changing this landscape.

Among our contributions to the area of privacy-preserving systems, we have
proposed an efficient and practical anonymous E-Cash suited for mobile phone
applications [25]. Our system is a variant of the Compact E-Cash scheme due
to Camenisch et al. [57] that borrows some ideas from the Direct Anonymous
Attestation protocol due to Brickell et al. [51]. In particular, we consider a
model in which payment tokens combine untrusted but powerful execution

104 ENABLING PRIVACY IN EMBEDDED DESIGN

platforms (e.g. a mobile phone) with trusted but constrained secure elements
(e.g. a SIM card).

As exemplified by anonymous E-Cash, the integration of privacy guarantees
within a system is a complex task that requires to balance the use of privacy
technologies with multiple aspects. It requires a concise study of the functional
requirements of the system, the combination of data minimization techniques
with privacy-enhancing technologies, the fulfillment of other, commonly required
security properties and assurances, and the implementation, testing, and
validation of the design’s correctness and feasibility.

In the following we apply all these observations to design a privacy-preserving
solution for Electronic Toll Pricing (ETP) applications.

5.3 Use Case: Electronic Toll Pricing

In the field of car telematics, a new series of applications and services known as
Intelligent Transport Systems (ITS) are currently being developed and studied.
Among these, Electronic Toll Pricing solutions based on satellite localization are
of great interest. Two applications based on this system are either commercially
available or in the process of being deployed: Pay As You Drive insurances
(PAYD) and Public Electronic Toll Pricing. The former is currently being
offered by insurance companies all around the world, while the deployment of
the latter will soon be a reality in the European Union with the adoption of
the European Directive 2004/52/EC by Member States. Even though these
systems are managed by different entities - private insurance companies in
PAYD, central governments in Public Electronic Toll Pricing - they are both
based on the same idea: drivers should pay according to their road usage, as
opposed to the current flat yearly fees.

This approach benefits all actors involved. First, users pay an amount of money
proportional to the usage of their vehicle. Second, insurance companies are able
to offer fairer and targeted tariffs by charging an amount of money proportional
to the statistical risk of accidents in roads. Third, governments can achieve
mobility reduction in congested roads or cities by charging more money in peak
hours. And finally, the environment can benefit from a decrease of the pollution
levels due to traffic reduction.

A common requirement for these satellite-based road charging systems consists
in the installation of a monitoring device inside the vehicles. The minimum
functionalities of this device are to determine its own location and to
communicate with entities outside the vehicle. The former requirement can be

USE CASE: ELECTRONIC TOLL PRICING 105

achieved by using a Global Navigation Satellite System (GNSS) such as GPS,
while for the latter a mobile communications network such as GSM can be used.

The most typical and straightforward architecture for Electronic Toll Pricing is
depicted in Figure 5.1. It comprises three entities: an On-Board Unit (OBU), a
Toll Service Provider (TSP), and a Toll Charger (TC). The OBU is an electronic
device installed in vehicles subscribed to an ETP service. It is in charge of
collecting GPS data and sending it to the TSP, which is the entity offering the
ETP service. At the end of the tax period the TSP processes all location data
and derives the fee to be paid by the user. The TSP is responsible for providing
vehicles with OBUs and monitoring their performance and integrity. Finally,
the TC is the organization (either public or private) that levies tolls for the use
of roads and defines the correct use of the system. In agreement with the TC,
the TSP establishes prices for driving on each of the roads. Such pricing policy
can depend on the type of road (e.g., highways vs. secondary roads), its traffic
density, or the time of the day (e.g., rush hours vs. the middle of the night).
Additionally, prices can also depend on attributes of the vehicle or of the driver
(e.g., low-pollution vehicles, or discounts for retired people).

Figure 5.1: Straightforward model for Electronic Toll Pricing.

The downside in terms of privacy of this architecture is obvious: an external
server is able to collect precise location data of all vehicles in the system. Note
that a straightforward approach such as anonymizing the location data is in
this case fruitless, as it has been shown that analysis of location data allows
to re-identify drivers [122, 118, 145]. Therefore this application provides an
excellent use case to study and develop the integration of privacy-preserving
techniques based on data minimization.

106 ENABLING PRIVACY IN EMBEDDED DESIGN

5.3.1 PrETP: Privacy-Preserving Electronic Toll Pricing'

&

$

%

Publication data
J. Balasch, A. Rial, C. Troncoso, C. Geuens, B. Preneel, and I.
Verbauwhede, “PrETP: Privacy-Preserving Electronic Toll Pricing”, In
Proceedings of the 19th Usenix Security Symposium - USENIX Security
2010, pages 63-78. USENIX Association, 2010.

Contribution
Shared work between authors.

Our contribution is the design of PrETP, a privacy-preserving ETP system in
which, without making impractical assumptions, OBUs i) compute their road
fees locally, and ii) prove to the service provider that they carry out correct
computations while revealing the minimum amount of location data. PrETP
employs a cryptographic protocol, Optimistic Payment (OP), in which OBUs
send along with the final fee commitments to the locations and prices used in
the fee computation. These commitments do not reveal information on the
locations or prices to the service provider. Moreover, they ensure that drivers
cannot claim that they were at any other position, nor used different prices,
from the ones used to create the commitments.

In order to check the correctness of the committed values, we rely on the TSP
having access to a proof (e.g., a photograph taken by a road-side radar or a
toll gate) that a car was at a specific point at a particular time, as previously
suggested in [83, 173]. Upon being challenged with this proof, the OBU must
respond with some information proving that the location point where it was
spotted was correctly used in the calculation of the final fee. To this end, it
opens the commitment containing this location, thus revealing only the location
data and the price at the instant specified in the proof. This information suffices
for the provider to verify that correct input data (location and price) was used
to calculate the fee.

We perform a holistic analysis of PrETP. Along with the security, privacy,
and legal analyses, we build an OBU prototype on an embedded platform, as
well as a TSP prototype on a commodity computer, and we thoroughly test
the performance of both using real world collected data. The result of our
experiments confirms that our protocol can be executed in real time in an OBU
assembled with generic, off-the-shelf components.

USE CASE: ELECTRONIC TOLL PRICING 107

5.3.1.1 System Overview and Related Work

The design of PrETP builds on the PriPAYD solution originally devised by
Troncoso et al. [215] in the context of car insurance. This system is depicted in
Figure 5.2. The main difference of PriPAYD with respect to straightforward
ETP models is that all processing and storage of location data is done exclusively
in the OBU, without transmitting this information to any external entity. The
OBU is responsible for computing the fees corresponding to each trip. The
results are then aggregated in order to obtain the final fee, which is later sent to
the insurance company. Note that in this model the “intelligence” of the system
is put on the OBU rather than in the TSP. This means that both digital road
maps and a valid taxing policy need to be locally stored for computations, while
giving the insurance company the option to send secure updates.

Figure 5.2: PriPAYD-based architecture for Electronic Toll Pricing.

PriPAYD is designed in such a way that the driver is the only party that has
access to his own location data. For this purpose, the authors of [215] propose
the use of a dedicated interface from where location data stored in the OBU
can be securely retrieved by a portable memory device (e.g., a USB stick).
Three conditions need to be met: i) the location data records must be signed
by the OBU, ii) an authenticated encryption mechanism must be applied over
the location data in order to ensure confidentiality and integrity, and iii) the
encryption key used by this mechanism must be known exclusively by the OBU
and the driver.

One of our contributions not covered in the core of this dissertation is the
demonstration of a practical and functional ETP system based on PriPAYD [27].
In particular, we build an OBU that guarantees real-time processing of location

108 ENABLING PRIVACY IN EMBEDDED DESIGN

data while minimizing the overheads required to ensure security and privacy.
The performance of our software-based prototype is tested and proves that the
deployment of a privacy-friendly solution can be achieved within a minimum
cost increment compared to existing ETP solutions offering only soft privacy
guarantees. An extended and updated version of the original PriPAYD article,
including our demonstrator, is further given in [214].

Despite its attractive privacy properties, a limitation of PriPAYD is that it
does not provide means for the TSP and the TC to check the correctness of
the operations carried out in the OBU. In other words, there is no effective,
privacy-preserving solution for the TSP or the TC in detecting tampering
attacks, either on the OBU itself or on its interfaces (GPS or GSM). Note that
while these tampering attacks are carried out by adversaries in possession of
the OBU, they are different than the physical attacks as described in earlier
chapters. Their goal is not necessarily the extraction of secret cryptographic
keys. Instead, they may target non-cryptographic functionalities of the OBU,
e.g. by turning it off, preventing it from communicating, or manipulating the
expected processing of location data or fee computations.

In order to overcome these tampering attacks, a line of research has focused
on the design of secure multi-party protocols between the TSP and the OBUs
that allow TSPs to compute the total fee and detect malicious OBUs while
protecting location privacy. An efficient instantiation of this idea is given by
VPriv [173]. Its basic idea consists in sending the location data generated by a
driver sliced into segments to the TSP, in such a way that it remains hidden
among segments from multiple drivers. Then the TSP calculates the subfees
(fees of small time periods that add to the final fee) of all segments and returns
them to all OBUs. Each OBU uses this information to compute its total fee
and, without disclosing any location data, proves to the TSP that the total
fee is computed correctly, i.e., by only using the subfees that correspond to
the location data input by this particular OBU. Moreover, in order to prevent
malicious users from spoofing the GPS signal to simulate cheaper trips, VPriv
has an out-of-band enforcement mechanism. This mechanism is based on the
use of random spot checks that demonstrate that a vehicle has been at a location
at a time (e.g., a photograph taken by a road-side radar). Given this proof, the
TSP challenges the OBU to prove that its fee calculation includes the location
where the vehicle was spotted.

The protocol proposed in [173] has several practical drawbacks. First, it requires
vehicles to send anonymous messages to the server (e.g., by using Tor [89])
imposing high additional costs to the system. Second, the protocol only avoids
leaking any additional information beyond what can be deduced from the
anonymized database. As the database contains path segments, the TSP can
use tracking algorithms to recover paths followed by the drivers [122, 118, 145]

USE CASE: ELECTRONIC TOLL PRICING 109

and infer further information about them. Third, the scalability of the system
is limited by the complexity of the protocol on the client side, as it depends
on the number of drivers in the system. Practical implementations require
simplifications such as partitioning the set of vehicles into smaller groups, thus
reducing the anonymity set of the drivers. Fourth, VPriv only uses spot checks
to verify correctness of the location, and thus needs an extra protocol to verify
the correct pricing of segments. This extra protocol produces an overhead both
in terms of computation and communication complexity.

Our solution, similar to PriPAYD [27], does not require messages between the
OBU and the TSP to be anonymous as the computation of the fee is made
locally and no personal data is sent to the provider. Thus, no database of
personal data is created and we do not need to rely on database anonymization
techniques to ensure users’ privacy. Further, the OBU’s operations depend only
on the data it collects, independently of the number of vehicles in the system.
Finally, our protocol can be integrated into a stand-alone OBU without the
need of external devices to carry out the cryptographic protocols.

Another key advantage of PrETP is that it provides a sound mechanism to
protect the interests of both TC and TSP against fraud. Our threat model
considers malicious drivers capable of tampering with the internal functionality
of the OBU as well as with any of its interfaces. While protection against
physical attacks, e.g. side channel or faults, is ultimately required to ensure the
overall security of PrETP, in the following we focus on a subset of tampering
attacks which may not directly involve the use of cryptography. In particular,
we define the security goals of PrETP as the detection of:

Vehicles with inactive OBUs. Drivers should not be able to shut down their
OBUs at will to simulate they drove less.

OBUs reporting false GPS location data. Drivers should not be able to
spoof the GPS signal and simulate a cheaper route than the actual roads
on which they are driving.

OBUs using incorrect road prices. Drivers should not be able to assign
arbitrary prices to the roads on which they are driving.

OBUs reporting false final fees. Drivers should not be able to report an
arbitrary fee, but only the result from the correct calculations in the OBU.

In order to perform these detections, reliable information about the vehicle’s
whereabouts is required. We consider that the TC can perform random “spot
checks” that are recorded as proof of the time and location where a vehicle has
been seen. Such spot checks can be carried out by using an automatic license

110 ENABLING PRIVACY IN EMBEDDED DESIGN

plate reader, a police control, or even challenging the OBUs using short-range
communications. Without loss of generality in this work we assume that the
proof is gathered using an automatic license plate reader. This proof can be
used to challenge the vehicle’s OBU to verify its functioning. In order to be
able to respond to this challenge, the OBU slices the trajectories recorded in
segments, and computes the subfees corresponding to them, such that these
subfees add up to the final fee transmitted to the TSP. For each segment,
the TSP receives a payment tuple that consists of a commitment to location
data and time, a homomorphic commitment to the subfee, and a proof that
the committed subfee is computed according to the policy. These payment
tuples, explained in detail in the next section, bind the reported final fee to the
committed values such that the OBU cannot claim having used other locations
or prices in its computations. Furthermore, they are signed by the OBU to
prevent a malicious TSP from framing an honest driver.

The verification process, depicted in Fig. 5.3, is initiated when the TC gathers
a proof of location of a vehicle. Then it forwards this information to the TSP,
along with a request to check the correct functioning of the vehicle’s OBU. To
this end, the TSP challenges the OBU to open a commitment containing the
location and time appearing in the proof. The TSP verifies that both challenge
and response match, for instance as explained in [83, 173], and reports to the
TC whether or not the functioning of the OBU is correct. We assume that the
TC (e.g., the government in the EETS architecture) is honest and does not use
fake proofs to challenge OBUs.

Figure 5.3: PrETP enforcement spot-check model.

USE CASE: ELECTRONIC TOLL PRICING 111

To the best of our knowledge, the only protocol that so far employs spot checks
to verify both correctness of the location and of the fee calculation is due to
Jonge and Jacobs [83]. In this solution, OBUs commit to segments of location
data and their corresponding subfees when reporting the total fee to the TSP.
They employ hash functions as commitments. Upon being challenged to ratify
the information in the spot check, OBUs must provide the hash pre-image of
the corresponding segment, and demonstrate that indeed the location was used
to compute the final fee.

Jonge and Jacobs’ protocol is limited by the fact that using hash-based
commitments one cannot prove that the commitments to the subfees add
to the total fee. As solution, they propose that the OBU also commits to the
subfees corresponding to bigger time intervals following a tree structure. Each
tax period is divided into months, each month is divided into weeks, and so
forth, and subfees for each month, week, day,. . . are calculated and committed.
Then, instead of asking the OBU to open only one commitment containing
the instant specified in TC’s proof, the TSP asks the OBU to open all the
commitments in the tree that include that instant. This indeed proves that the
sum is correct at the cost of revealing much more information to the TSP.

PrETP avoids this information leakage. The reason is that, in our OP
scheme, commitments are homomorphic and thus allow TSP to check that
the commitments to the subfees add to the total fee without additional data.
The use of homomorphic commitments was also proposed and briefly sketched
in [83]. However, their scheme does not prevent the OBU from committing to a
“negative” price, which would give a malicious OBU the possibility of reducing
the final fee by sending only one wrong commitment, thus with an overwhelming
probability of not being detected by the spot checks.

5.3.1.2 Optimistic Payment

In this section we sketch the technical concepts necessary to understand the
construction of Optimistic Payment, and we outline our efficient implementation
of the protocol.

5.3.1.2.1 Technical Preliminaries

Signature Schemes. A signature scheme consists of the algorithms SigKeygen,
SigSign and SigVerify. SigKeygen outputs a secret key sk and a public key pk.
SigSign(sk, x) outputs a signature sx of message x. SigVerify(pk, x, sx) outputs
accept if sx is a valid signature of x and reject otherwise. A signature scheme

112 ENABLING PRIVACY IN EMBEDDED DESIGN

must be correct and unforgeable [112]. Informally speaking, correctness implies
that the SigVerify algorithm always accepts an honestly generated signature.
Unforgeability means that no p.p.t adversary should be able to output a message-
signature pair (x, sx) unless he has previously obtained a signature on x.

Commitment schemes. A non-interactive commitment scheme consists of the
algorithms ComSetup, Commit and Open. ComSetup(1k) generates the parame-
ters of the commitment scheme paramsCom. Commit(paramsCom, x) outputs a
commitment cx to x and auxiliary information openx. A commitment is opened
by revealing (x, openx) and checking whether Open(paramsCom, cx, x, openx) is
true. A commitment scheme has a hiding property and a binding property.
Informally speaking, the hiding property ensures that a commitment cx to x does
not reveal any information about x, whereas the binding property ensures that cx
cannot be opened to another value x′. Given two commitments cx1 and cx2 with
openings (x1, openx1) and (x2, openx2) respectively, the additively homomorphic
property ensures that, if c = cx1 ·cx2 , then Open(paramsCom, c, x1 +x2, openx1 +
openx2) is true.

Proofs of Knowledge. A zero-knowledge proof of knowledge is a two-party
protocol between a prover and a verifier. The prover proves to the verifier
knowledge of some secret values that fulfill some statement without disclosing
the secret values to the verifier. For instance, let x be the secret key of a public
key y = gx, and let the prover know (x, g, y), while the verifier only knows (g, y).
By means of a proof of knowledge, the prover can convince the verifier that he
knows x such that y = gx, without revealing any information about x.

5.3.1.2.2 Intuition Behind Our Construction

During each tax period tag, the OBU slices the trajectories of the driver
in segments formed by a structure containing GPS location data and time.
Additionally, this data structure can contain information about any other
parameter that influences the price to be paid for driving on the segment. We
represent this data structure as a tuple (loc, time). The TSP establishes a
function f : (loc, time)→ Υ that maps every possible tuple (loc, time) to a price
p ∈ Υ. For each segment, the OBU calculates f on input (loc, time) to get a
price p, and computes a payment tuple that consists of a randomized hash h on
the data structure (loc, time), a homomorphic commitment cp to its price, and
a proof π that the committed price belongs to Υ. The randomization of the
hash is needed in order to prevent dictionary attacks to recover (loc, time).

At the end of the tax period, the OBU and the TSP engage in a two-party
protocol. The OBU adds the fees of all the segments to obtain a total fee fee.

USE CASE: ELECTRONIC TOLL PRICING 113

The OBU adds all the openings openp to obtain an opening openfee. Next,
the OBU composes a payment message m that consists of (tag, fee, openfee)
and all the payment tuples (h, cp, π). The OBU signs m and sends both the
message m and its signature sm to the TSP. The TSP verifies the signature
and, for each payment tuple, verifies the proof π. Then the TSP, by using
the homomorphic property of the commitment scheme, adds the commitments
cp of all the payment tuples to obtain a commitment c′fee, and checks that
(fee, openfee) is a valid opening for c′fee. This check ensures that the final fee
is the sum of the committed prices, while the verification of the proof ensures
that the committed price belongs to the image of f .

When the TC sends the TSP a proof φ that a car was at some position at a given
time, the TSP relays φ to the OBU. The OBU first verifies that the request is
signed by the TC, and then it searches for a payment tuple (h, cp, π) for which
µ(φ, (loc, time)) outputs accept. Here, µ : (φ, (loc, time))→ {accept, reject} is
a function established by the TSP that outputs accept when the information
in φ and in (loc, time) are similar in accordance with some metric, such as the
one proposed in [173]. Once the payment tuple is found, the OBU sends the
number of the tuple to the TSP together with the preimage (loc, time) of h
and the opening (p, openp) of cp. The TSP checks that (p, openp) is the valid
opening of cp, that (loc, time) is the preimage of h and that µ(φ, (loc, time))
outputs accept.

Intuitively, this protocol ensures the four security properties enumerated in the
previous section. Drivers cannot shut down their OBUs, nor report false GPS
data as they run the risk of not having committed to a segment containing the
(loc, time) in the challenge φ. We note that after sending (m, sm) to the TSP,
OBUs cannot claim that they were at any position (loc′, time′) different from
the ones used to compute the message m. Similarly, OBUs cannot use incorrect
road prices without being detected, as the TSP can check whether the correct
price for a segment (loc, time) was used once the commitments are opened. The
homomorphic property ensures that the reported final fee is not arbitrary, but
the sum of all the committed subfees. Moreover, by making the OBU prove
that the committed prices belong to the image of f , we avoid that a malicious
OBU could decrease the final fee by sending only one wrong commitment to a
negative price in the payment message, which would give it an overwhelming
probability of not being detected by the spot checks. Additionally, the fact
that the OBU signs the payment message m ensures that no malicious TSP can
frame an OBU by modifying the received commitments, and that a malicious
OBU cannot plead innocent by invoking the possibility of being framed by a
malicious TSP. Similarly, the fact that the TC signs the challenge φ prevents a
malicious TSP sending fake proofs to the OBU, e.g. with the aim of learning
its location. Finally, the privacy of the drivers is preserved as the OBU does

114 ENABLING PRIVACY IN EMBEDDED DESIGN

not need to disclose more location information than that in the payment tuple
that matches the proof φ (already known to TSP).

5.3.1.2.3 Efficient Instantiation: High Level Specification

We now outline at high level our efficient instantiation of Optimistic Payment.
We employ the integer commitment scheme due to Damgård and Fujisaki [80]
and the CL-RSA signature scheme proposed by Camenisch and Lysyanskaya [58].
Both schemes use cryptographic keys based on special RSA modulus n of length
ln. A commitment cx to a value x is computed as cx = g0

xg1
openx mod n,

where the opening openx is a random number of length ln and the bases
(g0, g1) correspond to the commitment public parameters. Given a public key
pk = (n,R, S, Z), a CL-RSA signature has the form (A, e, v), with lengths
ln, le, and lv respectively, such that Z ≡ AeRxSv(mod n). To prove that a
price belongs to Υ, we use a non-interactive proof of possession of a CL-RSA
signature on the price. We also employ a collision resistant hash function
H : {0, 1}∗ → {0, 1}lc .

Initialization. The pricing policy f : (loc, time)→ Υ, where each price p ∈ Υ
has associated a valid CL-RSA signature (A, e, v) generated by the TSP, the
cryptographic key pair (pkOBU, skOBU), the public key of the TSP (n,R, S, Z),
the public key of TC, and the public parameters (g0, g1) of the commitment
scheme are stored on the OBU. Similarly, the TSP possesses its own secret key
(skTSP) and knows all the public keys in the system.

Tax period. Table 5.1 depicts the calculations and interactions between the
OBU and the TSP under normal functioning during the tax period. We denote
the operations carried out by the OBU as Pay(), and the operations executed
by the TSP as VerifyPayment(). While driving, the OBU collects location data
and slices it in segments (loc, time) according to the policy. For each of the
N collected segments, the OBU generates a payment tuple (hk, cpk , πk). This
iterative step is broken down in lines 1 to 21 in Table 5.1. The most resource
consuming operation is the computation of πk, which proves the possession of
a valid CL-RSA signature on the price pk (lines 9 to 20). The length of the
random values used in this step are:

rx ← {0, 1}lx+lc+lz , ropenx ← {0, 1}ln+lc+lz

rw ← {0, 1}ln+lc+lz , ropenw ← {0, 1}ln+lc+lz

re ← {0, 1}le+lc+lz , rw·e ← {0, 1}ln+le+lc+lz

rv ← {0, 1}lv+lc+lz , ropenw·e ← {0, 1}
ln+le+lc+lz .

USE CASE: ELECTRONIC TOLL PRICING 115

OBU TSP
Pay() algorithm VerifyPayment() algorithm

1 // Main loop
2 For all 1 ≤ k ≤ N tuples do:
3 pk = f(lock, timek)
4 // Hash
5 hk = H((lock, timek))
6 // Commitment
7 openpk ← {0, 1}ln
8 cpk = g0

pkg1
openpk mod n

9 // Proof
10 openw, w ← {0, 1}ln
11 Ã = Ag0

w mod n

12 cw = g0
wg1

openw mod n OBUverify(pkOBU,m, sm)
13 rα ← {0, 1}lα // Main loop
14 tcpk = g0

rpk g1
ropenpk (m, sm)

−−−−−−−−→
For all 1 ≤ k ≤ N tuples do:

15 tZ = ÃreRrpkSrv (g−1
0)rw·e t′cpk

= cchpkg0
spk g1

sopenx

16 tcw = grw0 g
ropenw
1 t′Z = ZchÃseRspkSsv (1/g0)sw·e

17 t = crew (g−1
0)rw·e(g−1

1)ropenw·e t′cw = cchw g0
swg1

sopenw

18 ch = H(β||tcpk ||tZ ||tcw ||t) t′ = Csew (1/g0)sw·e(1/g1)sopenw·e

19 sα = rα − ch · α ch′ = H(β||t′cpk ||t
′
Z ||t′cw ||t

′)
20 πk = (Ã, cw, ch, sα) ch′? = ch

21 End for se ∈ {0, 1}le+lc+lz

22 // Fee reporting spk ∈ {0, 1}lp+lc+lz

23 fee =
∑N
k=1 pk End for

24 openfee =
∑N
k=1 openpk // Commitment validation

25 m = [tag, fee, openfee, c′fee =
∏N
k=1 cpk

(hk, cpk , πk)Nk=1] cfee = g0
feeg1

openfee mod n

26 sm = OBUsign(skOBU,m) cfee? = c′fee
α ∈ {pk, openpk , e, v, w, openw, w · e, openw·e}
β = (n||g0||g1||Ã||R||S||g−1

0 ||g
−1
1 ||cpk ||Z||cw||1)

Table 5.1: Protocol between OBU and TSP during taxing phase

116 ENABLING PRIVACY IN EMBEDDED DESIGN

At the end of the tax period the OBU generates and signs the payment message
m including the tag tag, the total fee, the opening openfee, and all the payment
tuples (hk, cpk , πk), lines 22 to 26. Finally it sends (m, sm) to the TSP.

Upon reception of a payment message, the TSP executes the VerifyPayment()
algorithm. First the TSP verifies the signature sm using the OBU’s public key
pkOBU. Next, it proceeds to the verification of the proof πk included in each
of the N payment tuples contained in m, lines 13 to 23. In each iteration it
performs a series of modular exponentiations, and uses the intermediate results
to compute the hash ch′. Then, it checks whether ch′ is the same as the value
ch contained in πk. If this verification, together with the two range proofs
in lines 21 and 22, is successful, the TSP is convinced that all the prices pk
used by the OBU are indeed a valid image of f . Finally, the TSP validates
the commitments cpk to ensure that the aggregation of all subfees add up to
the final fee (lines 24 to 26). For this, it calculates c′fee as the product of all
commitments cpk , and computes the commitment cfee using the values fee
and openfee provided by the OBU. If both values are the same, the TSP is
convinced that the final fee reported by the OBU adds up to the sum of all
subfees reported in the payment tuples.

Proof Challenge. We denote as OBUopen() and Check() the algorithms carried
out by the OBU and the TSP, respectively, when the former is challenged with φ.
When running the OBUopen() algorithm, the OBU searches for the pre-image
(lock, timek) of a hash hk containing the location and time satisfying φ, and
sends this information to the service provider along with the price pk and the
opening openpk .

Upon reception of this message, the TSP executes the Check() algorithm. First,
it verifies whether the segment (lock, timek) actually contains the location in
φ. Then, it computes the value h′k = H(lock, timek) and checks whether the
OBU had committed to this value in one of the payment tuples reported during
the tax period. Lastly, the TSP uses openpk to open the commitment cpk
and verifies whether p′k = f(lock, timek) equals the price pk reported by the
OBU during the OBUopen() algorithm. If all verifications succeed, the TSP is
convinced that the location data used by the OBU in the fee calculation and
the price assigned by the OBU to the segment (lock, timek) are correct.

5.3.1.3 PrETP Evaluation

In this section we evaluate the performance of PrETP. We start by describing
the test scenario and both our OBU and TSP prototypes. Next, we analyze the
performance of the prototypes for different configuration parameters. Finally,

USE CASE: ELECTRONIC TOLL PRICING 117

we study the communication overhead in PrETP, and compare it to existing
ETP systems.

5.3.1.3.1 Test Scenario

Policy model. The first step in the implementation of PrETP consists in
specifying a policy model in the form of the mapping function f : (loc, time)→ Υ.
We decide to follow the same criteria as currently existing insurance schemes,
i.e., road prices are determined by two parameters: type of road and time
of the day. More specifically, we define three categories of roads (‘highway’,
‘primary’, and ‘others’) and three time slots during the day. For each of the
possible nine combinations we assign a price per kilometer p and we create a
valid signature (A, e, v) using the TSP’s secret key. We note that the choice of
this policy is arbitrary and that PrETP, as well as OP, can accommodate other
price strategies.

Location data. We provide the OBU with a set of location data describing a
real trajectory of a vehicle, as this allows us to compare the same test scenario
for different configuration parameters. These data are obtained by driving with
our prototype for one hour in an urban area, covering a total distance of 24
kilometers. We note that such dataset is sufficient to validate the performance
of PrETP, since results for different driving scenarios (e.g., faster or slower) can
easily be extrapolated from the results presented in this section.

Parameters of the instantiation. The performance of OP depends directly
on the length of the protocol instantiation parameters, and in particular, on
the size of the cryptographic keys of the entities (ln). In our experiments we
consider three case studies: medium security (ln = 1024 bits), high security (ln
= 1536 bits), and very high security (ln = 2048 bits). The value lp is determined
by the length of the prices p, which in turn determines the value of le. Therefore,
both lengths are constant for all security cases. The value of lv varies depending
on the value of ln. Finally, the rest of parameters (lh, lr, lz, and lc) are set as
the output length of the chosen hash function primitive (see Sect. 5.3.1.3.2).
These lengths determine the size of the random numbers generated in line 13 in
Protocol 5.1. Table 5.2 summarizes the parameter lengths considered for each
security level.

OBU Platform. In order to make our prototype as realistic as possible, we
implement PrETP using as starting point the embedded design described in [27],
which performs the conversion of raw GPS data into a final fee internally. We

118 ENABLING PRIVACY IN EMBEDDED DESIGN

Table 5.2: Length of the parameters (in bits)

Parameter ln le lv lp lr,lh,lz,lc
Normal Sec. 1 024 128 1 216 32 160
High Sec. 1 536 128 1 728 32 160
Very high Sec. 2 048 128 2 240 32 160

extend and adapt this prototype with the functionalities of OP to make it
compatible with PrETP.

At high-level, the elements of our OBU prototype [27] are: a processing
unit, a GPS receiver, a GSM modem, and an external memory module.
We use as benchmark the Keil MCB2388 evaluation board, which contains
an NXP LPC2388 32-bit ARM7TDMI microcontroller. This microcontroller
implements a RISC architecture, it runs at 72 MHz, and it offers 512 Kbytes of
on-chip program memory and 98 Kbytes of internal SRAM. As external memory,
we use an off-the-shelf 1 GByte SD Card connected to the microcontroller.
Finally, we use a Telit GM862-GPS as both GPS receiver and GSM modem.

As our platform does not contain any cryptographic coprocessors, we implement
all functionalities exclusively in software. Although we could consider the
addition of a hardware coprocessor to the prototype in order to carry out
the most expensive cryptographic computations, we choose the option that
minimizes the production costs of the OBU. Besides, this approach allows
us to identify the bottlenecks in the protocol implementation, leaving the
door open to hardware-based improvements if needed. Similarly, note that
our implementations do not contain countermeasures against side channel or
fault attacks. The goal of this demonstrator is to give an intuition on the
cost and performance of an OBU prototype. We stress however that any
commercially deployed OBU should provide means to protect its cryptographic
implementations against physical attacks. Otherwise, other attack scenarios
may arise that compromise the security and privacy properties of the overall
system.

We have constructed a cryptographic library with the primitives required by
our instantiation of the OP protocol, namely: i) a modular exponentiation
technique, ii) a one-way hash function, and iii) a random number generator.
For the first primitive we use the ACL [28] library, a collection of arithmetic
and modular routines specially designed for ARM microcontrollers. As hash
function we choose RIPEMD-160 [90], with an output length lh of 160 bits. As
our platform does not provide any physical random number generator, we use
the Salsa20 [35] stream cipher in keystream mode as third primitive.

USE CASE: ELECTRONIC TOLL PRICING 119

In order to keep the OBU flexible and easily scalable, we arrange data in
different memory areas depending on their lifespan. Long-term parameters
(pkOBU, skOBU, pkTSP, commitment parameters) are directly embedded into
the microcontroller’s program memory, while short-term parameters (payment
tuples, (loc, time) segments) and updatable parameters (digital road map, policy
f) are stored separately on the SD Card. We note that our library provides a
byte-oriented interface with the SD Card, resulting in a considerable overhead
when reading/writing values.

TSP Platform. We implement our TSP prototype on a commodity computer
equipped with an Intel Core2 Duo E8400 processor at 3 GHz, and 4 Gbyte of
RAM. We use C as programming language, and the GMP library for large-integer
cryptographic operations.

5.3.1.3.2 Performance Evaluation

OBU performance. The most time-consuming operations carried out by
the OBU during the taxing phase are the Mapping() algorithm and the Pay()
algorithm. The Mapping() algorithm is executed every time a new GPS string
is available in the microcontroller. Its function is to search in the digital road
map the type of road given the GPS coordinates. When the vehicle drives for
a kilometer, the OBU maps the segment to the adequate price pk as specified
in the policy. At this point, the Pay() algorithm is executed in order to create
the payment tuple. For each segment, the OBU generates: i) a hash value hk
of the location data, ii) a commitment cpk to the price pk, and iii) a proof πk
proving that the price pk is genuinely signed by the TSP (and thus belongs
to the image of f). To protect users’ privacy we also require that no sensitive
data is stored in the SD Card in plaintext form. For this purpose we use the
AES block cipher in CCM mode with a key length of 128 bits. We denote this
operation as Ek. At the end of the taxing phase, the OBU adds all the prices
pk mapped to each segment to obtain the fee, and all the openings openk to
obtain openfee. Finally, the OBU constructs and signs the payment message m
and sends it to the TSP.

As it does not involve the key, the computing time of the Mapping() algorithm
is independent of the security scenario. Further, this time only depends on
the duration of the trip and is independent of the speed of the vehicle: the
Mapping() algorithm is always executed 3 600 times per hour, taking a total of
839.11 seconds in our prototype. However, for each of the segments this time
can vary depending on the number of points that have to be processed, i.e.,
depending on the speed of the vehicle. In our experiments it requires 76.10

120 ENABLING PRIVACY IN EMBEDDED DESIGN

seconds for the longest segment, i.e., the one where the vehicle spent more time
to drive one kilometer and thus (lock, timek) contains the larger number of
points.

Similarly, the execution time for hk and Ek depends exclusively on the length
of the segments (lock, timek), as it is proportional to the number of GPS points
in the segments. The amount of points per segment varies not only with the
average speed of the car but also depending on the length of the segments
defined in the pricing policy. In our experiments, computing hk and Ek take
0.08 seconds and 0.43 seconds, respectively, for the shortest and the longest
segments. For the Mapping() algorithm and both hk and Ek operations, more
than 90% of the time is spent in the communication with the SD card.

On the other hand, the execution time for cpk and πk is constant for all
segments, as it does not depend on the length of a particular slice (see lines
6 to 20 in the protocol depicted in Table 5.1). In order to calculate cpk , the
OBU needs to generate a random opening openpk and perform two modular
exponentiations and a modular multiplication. The computation of πk involves
the generation of ten random numbers and a hash value, and the execution of
fourteen modular exponentiations, nine modular multiplications, eight additions,
and eight multiplications. The bottleneck of both operations is determined
by the modular operations. Although we could take advantage of fixed-base
modular exponentiation techniques, we choose to use multi-exponentiation
algorithms [88], which have less storage requirements. Multi-exponentiation
based algorithms, which compute values of the form abcd(mod n) in one step,
allow us to considerably speed up the process. The average execution times for
computing cpk are 0.76 seconds, 2.25 seconds, and 5.69 seconds for medium,
high, and very high security respectively. For πk, these times are 6.20 seconds,
19.45 seconds, and 41.64 seconds, respectively.

Table 5.3 summarizes the timings for all OBU operations and routines for a
journey of one hour. We note that, even when 2048-bit RSA keys are used,
the OBU can perform all operations needed to create the payment tuples in
real time. While the trip lasted one hour, the Mapping() and Pay() algorithms
only required 1 982.41 seconds. The computation time is dominated by the
Pay() algorithm, which depends on the number of GPS strings in each segment
(loc, time). This number varies with the speed of the vehicle and the pricing
policy. If a vehicle is driving at a constant speed, policies that establish prices
for small distances result in segments containing less GPS points than policies
that consider long distances. Similarly, given a policy fixing the size of the
segments, driving faster produces segments with less points than driving slower.
In both cases, πk has to be computed fewer times and the Pay() algorithm runs
faster. Thus, the policy can be used as tuning parameter to guarantee the
real-time operation of the OBU.

USE CASE: ELECTRONIC TOLL PRICING 121

Table 5.3: Execution times (in seconds) for an hour journey of 24 km, for all
possible security scenarios.

Medium Security High Security Very high Security
Algorithm Segment Full trip Segment Full trip Segment Full trip
Mapping() 76.10 s 839.11 s 76.10 s 839.11 s 76.10 s 839.11 s

Pay()

7.88 s 183.91 s 22.13 s 528.47 s 47.79 s 1 143.30 s
hk 0.08 s 1.08 s 0.08 s 1.08 s 0.08 s 1.08 s
Ek 0.43 s 6.35 s 0.43 s 6.35 s 0.43 s 6.35 s
cpk 0.76 s 18.19 s 2.25 s 54.08 s 5.69 s 136.82 s
πk 6.20 s 158.09 s 19.45 s 466.96 s 41.64 s 999.05 s

Using the values in Table 5.3, for each of the levels of security we can calculate
the time our OBU is idle – in our case (3 600 − 839.11) seconds, with 839.11
seconds being the time required by the Mapping() algorithm. Then, considering
our current policy, we can estimate the number of times the Pay() algorithm
could be executed, which in turn represents the number of kilometers that
could have been driven by a car in one hour, i.e., the average speed of the
car. For normal security, our OBU could operate in real time even if a vehicle
was driving at 350 km/h. This speed decreases to 124 km/h when 1536-bit
keys are used, and to 57 km/h if the keys have length 2048 bits. Only when
using high security parameters our OBU would have problems to operate in
the field. However, as mentioned before, including a cryptographic coprocessor
in the platform would suffice to solve this problem whenever high security is
required. Moreover, in our tests we consider a worst-case scenario in which all
GPS strings are processed upon reception. In fact, processing fewer strings
would suffice to determine the location of the vehicle. As the execution time
required by the Mapping() algorithm would decrease linearly, OBUs would be
able to support higher vehicle speeds.

In the OBUopen() algorithm, only executed upon request from TC, the OBU
searches its memory for a segment (loc, time) in accordance to the proof sent
by the TSP. Here, the time accuracy provided by the GPS system is used
to ensure synchronization between the data in φ and the segment (loc, time).
The main bottleneck of this operation is the decryption of the location data
corresponding to the correct segment. On average, our prototype can decrypt
such a segment in 0.27 seconds.

TSP performance. The most consuming task the TSP must perform
corresponds to the VerifyPayment() algorithm, which has to be executed each
time the TSP receives a payment message. This algorithm involves three

122 ENABLING PRIVACY IN EMBEDDED DESIGN

operations: the verification of the proof πk for each segment, the multiplication
of all commitments cpk to obtain cfee, and the opening of cfee in order to check
whether it corresponds to the reported final fee. The most costly operation is
the verification of πk, in particular the calculation of the parameters (t′cm , t

′
Z ,

t′cw , t
′) which requires a total of eleven modular exponentiations (lines 14 to 22

in protocol depicted in Table 5.1).

Table 5.4 shows the performance of the VerifyPayment() algorithm for each of
the considered security levels when segments have length one kilometer. We
also provide an estimation of the time required to process all the proofs sent by
OBU during a month, assuming that a vehicle drives an average of 18 000 km
per year (1 500 km per month).

VerifyPayment() Segment One Month
Medium Sec. 0.0105 s 15.750 s
High Sec. 0.0295 s 44.250 s
Very high Sec. 0.0587 s 88.050 s

Table 5.4: Timings (in seconds) for the execution of VerifyPayment() in the
TSP.

These results allow us to extrapolate the number of OBUs that can be
supported by a single TSP in each security scenario for different segment
lengths. Intuitively, the capacity of TSP increases when segments are larger, as
the payment messages contain fewer proofs πk. The number of OBUs supported
by a single TSP is presented in Table 5.5. For a segment length of 1 km, the
TSP is able to support 164 000, 58 000, and 29 000 vehicles depending on the
chosen security level. Even when ln is 2048 bits, only 36 servers are needed to
accommodate one million OBUs. This number can be reduced by parallelizing
tasks at the server side, or by using fast cryptographic hardware for the modular
exponentiations.

Segment size Medium Sec. High Sec. Very high Sec.
0.5 km 82 000 29 000 14 000
0.75 km 123 000 43 000 22 000
1 km 164 000 58 000 29 000
2 km 329 000 117 000 58 000
3 km 493 000 175 000 88 000

Table 5.5: Number of OBUs supported by a single TSP.

USE CASE: ELECTRONIC TOLL PRICING 123

5.3.1.3.3 Communication Overhead

We now compare the communication overhead of PrETP with respect to
straightforward ETP implementations and VPriv [173]. Both in straightforward
ETP implementations and in VPriv the OBU sends all GPS strings to the
TSP. Let us consider that vehicles drive 1 500 km per month at an average
speed of 80 km/h. Then, transmitting the full GPS information to the the TSP
requires 2.05 Mbyte (considering a shortened GPS string of 32 bytes containing
only latitude, longitude, date and time). VPriv requires more bandwidth than
straightforward ETP systems, as extra communications are necessary to carry
out the interactive verification protocol. Using PrETP, the communication
overhead comes from the payment tuples that must be sent along with the
fee. For each segment, the OBU sends the payment tuple (h, cp, π) to the TSP.
When sent uncompressed, this implies an overhead of approximately 1.5 Kbyte
per segment, i.e., less than 2 Mbyte per month, for medium security (ln=1024
bits). Additionally, less than 50 Kbyte have to be sent occasionally to respond
a verification challenge after a vehicle has been seen at a spot check. We believe
this overhead is not excessive for the additional security and privacy properties
offered by PrETP.

The communication overhead in PrETP is dominated by the payment message
m sent by the OBU to the TSP, the length of which depends on the number
of segments covered by the driver. Therefore, the segment length can be
seen as a parameter of the system that tunes the tradeoff between privacy
and communication overhead. The smaller the segments, the larger the
communication overhead, because more tuples (hk, cpk , πk) need to be sent.
Allowing larger segments reduces the communication cost but also reduces
privacy because the OBU must disclose a bigger segment when responding a
verification challenge.

Further, the communication overhead can be almost eliminated by having the
OBU sending only the hash of the payment message at the end of each tax
period and leave the correct operation verification subject to random checks.
Following the spirit of the random “spot checks” used for checking the input
and prices, the OBUs could occasionally be challenged to prove its correct
functioning by sending the payment message corresponding to the preimage of
the hash sent at the end of a random tax period.

124 ENABLING PRIVACY IN EMBEDDED DESIGN

5.4 Conclusions

The disclosure of personal data in monitoring systems conflicts with the users’
right to privacy. Moreover, it can pose inconveniences and extra investments to
service providers, as the law demands that personal data is stored and processed
under strong security guarantees.

Security and privacy concerns are among the main reasons that discourage the
use of electronic communication services [137]. Users confronted to a prominent
display of private information prefer service providers that offer better privacy
guarantees [216]. Consequently, it is of interest for service providers to design
systems where the amount of personal information that users need to disclose
is minimized.

Electronic Toll Pricing schemes are soon becoming a reality. Because of its
application for public road taxing, this system is expected to have a significant
social and economical impact in the near future. It is therefore necessary
from the start to design solutions that take into account both the privacy of
users and the interests of the service provider. Previous work relies on too
expensive solutions or on unrealistic requirements, to fulfill both properties.
Our contribution fills this gap by presenting a system in which on-board units
can prove that they operate correctly while leaking the minimum amount of
information.

Chapter 6

Conclusions and Open
Problems

The integration of security and privacy into embedded systems is an active
research area that needs to keep track of technological developments. The
paradigm of the Internet of Things envisioning a new wave of computing devices
with interconnection capabilities is a clear exponent of the future challenges
that need to be addressed. While passive identification systems such as RFID
tags represent the beginning of this vision, further technologies are gradually
being integrated into the IoT paradigm.

On the one hand, monitoring devices are representative of a change of landscape
in which devices become active. Equipped with sensing, processing, and
communication capabilities, these technologies range from miniature elements
(i.e. smart dust) to larger in-home or in-vehicle devices. Integration of security
and privacy must be carefully balanced not only with common cost vs. speed
trade-offs but, particularly for small sensors, with increasingly tight constraints
on power and energy consumption.

On the other hand, the pioneering role of smartphones in ubiquitous connectivity
makes them a representative illustration of the trend towards the IoT. The
widespread adoption of these devices and the appearance of standard short-
range communication interfaces such as NFC, is stimulating the migration
of security-related applications (e.g. payment, identification) towards such
platforms. Traditionally, these applications involve the use of secure tokens
(e.g. credit cards, electronic IDs) in which a small number of cryptographic
operations is carried out in close, protected environments. The transfer of such

125

126 CONCLUSIONS AND OPEN PROBLEMS

functionalities to larger platforms, involving potentially untrusted/unsecure
operating systems and multiple third-party elements, requires the study and
analysis of new security models with a more global, system-wide view of the
problem.

Besides these envisioned changes in the landscape of embedded systems, in the
following we enumerate some foreseen security and privacy related issues that
have either not been covered in this dissertation and represent open challenges.

Fault Injection.

In the last years, the cost for acquiring (semi-) and invasive fault injection
setups based on laser beams has drastically decreased. Solutions equipped
with powerful multimode diode lasers with adaptive pulse lengths and power
modulations are already commercially available. Mounted on an XY stage,
these devices allow precise fault injection over accurate spots of a circuit.
Practical attacks injecting multiple faults within a single cryptographic execution
or even using two simultaneously operated lasers have been recently shown.
These possibilities open the door to more powerful adversarial models capable
of defeating traditional countermeasures based on e.g. double method re-
computation. Therefore, the design of suitable and efficient countermeasures
against such type of attacks has to be addressed.

The migration of security-related functionalities into larger platforms carries
within an inherent threat by providing adversaries with multiple attack points.
In addition to protecting the execution of cryptographic operations, one needs
to consider the potential effect of faults injected in the surrounding elements.
This not only includes neighboring hardware blocks or cores, but also operating
systems and other application-specific software components. Protecting these
elements requires a system-wide view of the problem, posing extra challenges
to the already complex issue of fault detection. A related research area to
evaluate such system-wide countermeasures consists in the design of automated
simulation tools to emulate the occurrence of randomly induced faults and
determine whether or not they can be successfully detected.

Higher-Order Masking Techniques.

Because of its proven soundness, the design of masking schemes implementable
at any order d is an active research topic of interest for both industry and
academia. It is long known that the cost of applying a d + 1-variate attack
against a masking scheme grows exponentially with the noise as the masking
order d increases. More recent works have shown that the leakage information

CONCLUSIONS AND OPEN PROBLEMS 127

of non-linear masking constructions, e.g. polynomial masking or IP masking,
are several orders of magnitude smaller than linear masking constructions, e.g.
boolean masking, for similar levels of noise. These characteristics illustrate the
potential of non-linear masking constructions to effectively defeat practical side-
channel attacks. Given a reasonable amount of shares and noise, the resources
required by an adversary (in terms of trace collection and data processing) may
yield leakage exploitation unfeasible in practice.

There are however two important issues that require further work. First, while
devising non-linear masking constructions is easy, the design of operations in
the masked domain secure at any order d is not. This is exemplified by the
recent attacks against IP masking [179] and polynomial masking [75] schemes.
Whether these schemes may be fixed is a topic for future research. Second,
existing operations in the masked domain incur significantly more computational
complexity than e.g. boolean masking schemes [188], resulting in close to
prohibitive overheads. In other words, the trade-off between provided security
and efficiency must be further balanced. This can be done by devising new, more
efficient algorithms or, alternatively, by adapting the underlying functionalities
of target devices to offer better support for these schemes. Exploring the
hardware/software co-design space can help extending generic architectures (e.g.
via instruction extensions) to add support for commonly used operations in
non-linear masking constructions. In the case of IP masking for instance, an
example of such operation is given by field multiplication.

Privacy-Preserving Systems.

As the amount of systems and applications in today’s ubiquitous society
continues to increase, so does people’s awareness of the problem posed by
massive data collection. The revocation of the Dutch smart metering bill [77]
or the controversy caused by the European FP7 project INDECT (INtelligent
information system supporting observation, searching and DEteCTion for
security of citizens in urban environment) [209] are examples of a paradigm
shift with respect to the views on privacy.

Efforts to develop guidelines on the integration of privacy protection as a design
requirement in a system’s lifecycle are being carried out. However, so far no
methodology has emerged and most proposals are based on particular use cases
such as Electronic Toll Pricing. As services have their own requirements and
goals, each case seems to require specific solutions adapted to the context in
which they will be deployed. Whether a generalization can emerge from all
these particular solutions is still an open question.

Bibliography

[1] AT88SC0204 ChipResetter. http://chipreset.atw.hu/6/index61.
html.

[2] Coinamatic. http://www.coinamatic.com.

[3] ISO/IEC 7816-3: Identification cards - integrated circuit(s) cards with
contacts - part 3: Electronic signals and transmission protocols (1997).

[4] Labgear HDSR300 High Definition Satellite Receiver. User Guide. http:
//www.free-instruction-manuals.com/pdf/p4789564.pdf.

[5] Data Encryption Standard (DES). Federal Information Processing
Standards (FIPS) Publication 46, 1977.

[6] Specification for the Advanced Encryption Standard (AES). Federal
Information Processing Standards (FIPS) Publication 197, 2001.

[7] NSA Prism program taps in to user data of Apple, Google and others.
The Guardian, 2013.

[8] D. G. Abraham, G. M. Dolan, G. P. Double, and J. V. Stevens. Transaction
Security System. IBM Systems Journal, 30(2):206–229, 1991.

[9] M. Agoyan, J.-M. Dutertre, A.-P. Mirbaha, D. Naccache, A.-L. Ribotta,
and A. Tria. How to flip a bit? In International On-Line Testing
Symposium - IOLTS 2010, pages 235–239. IEEE Computer Society, 2010.

[10] M. Agoyan, J.-M. Dutertre, D. Naccache, B. Robisson, and A. Tria. When
Clocks Fail: On Critical Paths and Clock Faults. In D. Gollmann, J.-L.
Lanet, and J. Iguchi-Cartigny, editors, Smart Card Research and Advanced
Application - CARDIS 2010, volume 6035 of Lecture Notes in Computer
Science, pages 182–193. Springer, 2010.

129

http://chipreset.atw.hu/6/index61.html
http://chipreset.atw.hu/6/index61.html
http://www.coinamatic.com
http://www.free-instruction-manuals.com/pdf/p4789564.pdf
http://www.free-instruction-manuals.com/pdf/p4789564.pdf

130 BIBLIOGRAPHY

[11] M.-L. Akkar. Attaques et méthodes de protections de systèmes
cryptographiques embarqués. PhD thesis, Université de Versailles Saint-
Quentin, 2004.

[12] M.-L. Akkar, R. Bevan, and L. Goubin. Two Power Analysis Attacks
against One-Mask Methods. In B. K. Roy and W. Meier, editors,
Fast Software Encryption - FSE 2004, volume 3017 of Lecture Notes
in Computer Science, pages 332–347. Springer, 2004.

[13] M.-L. Akkar and C. Giraud. An Implementation of DES and AES,
Secure against Some Attacks. In Çetin Kaya Koç, D. Naccache, and
C. Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2001, volume 2162 of Lecture Notes in Computer Science, pages 309–318.
Springer, 2001.

[14] D. Anderson. Understanding CryptoMemory - The World’s Only Secure
Serial EEPROM. http://www.atmel.com/atmel/acrobat/doc5064.
pdf.

[15] R. Anderson and M. Kuhn. Tamper Resistance: a Cautionary Note. In
2nd USENIX Workshop on Electronic Commerce, pages 1–11. USENIX
Association, 1996.

[16] R. Anderson and M. Kuhn. Low Cost Attacks on Tamper Resistant
Devices. In B. Christianson, B. Crispo, M. Lomas, and M. Roe, editors,
5th International Workshop on Security Protocols, volume 1361 of Lecture
Notes in Computer Science, pages 125–136. Springer, 1998.

[17] Atmel. CryptoMemory features. http://www.atmel.com/microsite_
cryptomemory/iwe/index.html?source=tout_other2.

[18] Atmel. CryptoMemory Specification. http://www.atmel.com/atmel/
acrobat/doc5211.pdf.

[19] Atmel. News Release. http://www.cryptomemorykey.com/pdfs/
AtmelPR.pdf.

[20] Atmel Corporation. Plug-and-Play Crypto Chip for Host-Side
Security. http://www.atmel.com/dyn/corporate/view_detail.asp?
ref=&FileName=Cryptocompanion_2_26.html&SEC_NAME=Product.

[21] J. Balasch, B. Ege, T. Eisenbarth, B. Gérard, Z. Gong, T. Güneysu,
S. Heyse, S. Kerckhof, F. Koeune, T. Plos, T. Pöppelmann, F. Regazzoni,
F.-X. Standaert, G. V. Assche, R. V. Keer, L. van Oldeneel tot Oldenzeel,
and I. von Maurich. Compact Implementation and Performance Evaluation
of Hash Functions in ATtiny Devices. In S. Mangard, editor, Smart Card

http://www.atmel.com/atmel/acrobat/doc5064.pdf
http://www.atmel.com/atmel/acrobat/doc5064.pdf
http://www.atmel.com/microsite_cryptomemory/iwe/index.html?source=tout_other2
http://www.atmel.com/microsite_cryptomemory/iwe/index.html?source=tout_other2
http://www.atmel.com/atmel/acrobat/doc5211.pdf
http://www.atmel.com/atmel/acrobat/doc5211.pdf
http://www.cryptomemorykey.com/pdfs/AtmelPR.pdf
http://www.cryptomemorykey.com/pdfs/AtmelPR.pdf
http://www.atmel.com/dyn/corporate/view_detail.asp?ref=&FileName=Cryptocompanion_2_26.html&SEC_NAME=Product
http://www.atmel.com/dyn/corporate/view_detail.asp?ref=&FileName=Cryptocompanion_2_26.html&SEC_NAME=Product

BIBLIOGRAPHY 131

Research and Advanced Applications - CARDIS 2012, volume 7771 of
Lecture Notes in Computer Science, pages 158–172. Springer, 2012.

[22] J. Balasch, S. Faust, B. Gierlichs, and I. Verbauwhede. Theory and
Practice of a Leakage Resilient Masking Scheme. In X. Wang and K. Sako,
editors, Advances in Cryptology - ASIACRYPT 2012, volume 7658 of
Lecture Notes in Computer Science, pages 758–775. Springer, 2012.

[23] J. Balasch, B. Gierlichs, and I. Verbauwhede. An In-depth and Black-
box Characterization of the Effects of Clock Glitches on 8-bit MCUs.
In L. Breveglieri, S. Guilley, I. Koren, D. Naccache, and J. Takahashi,
editors, Workshop on Fault Diagnosis and Tolerance in Cryptography -
FDTC 2011, pages 105–114. IEEE Computer Society, 2011.

[24] J. Balasch, B. Gierlichs, R. Verdult, L. Batina, and I. Verbauwhede.
Power Analysis of Atmel CryptoMemory - Recovering Keys from Secure
EEPROMs. In O. Dunkelman, editor, Topics in Cryptology - CT-RSA
2012, volume 7178 of Lecture Notes in Computer Science, pages 19–34.
Springer, 2012.

[25] J. Balasch, B. Preneel, A. Rial, M. Scheir, and I. Verbauwhede.
Anonymous E-Cash for Resource Constrained Devices. Cosic internal
report, 2012.

[26] J. Balasch, A. Rial, C. Troncoso, C. Geuens, B. Preneel, and
I. Verbauwhede. PrETP: Privacy-Preserving Electronic Toll Pricing.
In USENIX Security Symposium 2010, pages 63–78. USENIX Association,
2010.

[27] J. Balasch, I. Verbauwhede, and B. Preneel. An Embedded Platform for
Privacy-Friendly Road Charging Applications. In Design, Automation
and Test in Europe - DATE 2010, pages 867–872. IEEE Computer Society,
2010.

[28] J. Ban. Cryptographic library for ARM7TDMI processors. Master’s
thesis, T.U. Kosice, 2007.

[29] F. Bao, R. H. Deng, Y. Han, A. B. Jeng, A. D. Narasimhalu, and T.-H.
Ngair. Breaking Public Key Cryptosystems on Tamper Resistant Devices
in the Presence of Transient Faults. In B. Christianson, B. Crispo, T. M. A.
Lomas, and M. Roe, editors, Security Protocols Workshop, volume 1361
of Lecture Notes in Computer Science, pages 115–124. Springer, 1997.

[30] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The
Sorcerer’s Apprentice Guide to Fault Attacks. Proceedings of the IEEE,
94(2):370–382, 2006.

132 BIBLIOGRAPHY

[31] A. Barenghi, G. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi. Low
Voltage Fault Attacks to AES. In J. Plusquellic and K. Mai, editors,
Hardware-Oriented Security and Trust - HOST 2010, pages 7–12. IEEE
Computer Society, 2010.

[32] A. Battistello and C. Giraud. Fault Analysis of Infective AES
Computations. In W. Fischer and J.-M. Schmidt, editors, Fault Diagnosis
and Tolerance in Cryptography - FDTC 2013, pages 101–107. IEEE
Computer Society, 2013.

[33] J. P. Benhammou and M. Jarboe. Security at an affordable price. In
Atmel Applications Journal, pages 29–30. Atmel, 2004.

[34] D. J. Bernstein. Cache-timing attacks on AES, 2005.

[35] D. J. Bernstein. The Salsa20 Family of Stream Ciphers. In M. J. B.
Robshaw and O. Billet, editors, New Stream Cipher Designs - The
eSTREAM Finalists, volume 4986 of Lecture Notes in Computer Science,
pages 84–97. Springer, 2008.

[36] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. Error
Analysis and Detection Procedures for a Hardware Implementation of
the Advanced Encryption Standard. IEEE Transactions on Computers,
52(4):492–505, 2003.

[37] A. Berzati, C. Canovas, J.-G. Dumas, and L. Goubin. Fault Attacks on
RSA Public Keys: Left-To-Right Implementations Are Also Vulnerable.
In M. Fischlin, editor, Topics in Cryptology - CT-RSA 2009, volume 5473
of Lecture Notes in Computer Science, pages 414–428. Springer, 2009.

[38] A. Berzati, C. Canovas, and L. Goubin. In(security) Against Fault
Injection Attacks for CRT-RSA Implementations. In L. Breveglieri,
S. Gueron, I. Koren, D. Naccache, and J.-P. Seifert, editors, Fault
Diagnosis and Tolerance in Cryptography - FDTC 2008, pages 101–107.
IEEE Computer Society, 2008.

[39] A. Berzati, C. Canovas, and L. Goubin. Perturbating RSA Public Keys:
An Improved Attack. In E. Oswald and P. Rohatgi, editors, Cryptographic
Hardware and Embedded Systems - CHES 2008, volume 5154 of Lecture
Notes in Computer Science, pages 380–395. Springer, 2008.

[40] I. Biehl, B. Meyer, and V. Müller. Differential Fault Attacks on Elliptic
Curve Cryptosystems. In M. Bellare, editor, Advances in Cryptology -
CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages
131–146. Springer, 2000.

BIBLIOGRAPHY 133

[41] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like
Cryptosystems. In A. Menezes and S. A. Vanstone, editors, Advances
in Cryptology - CRYPTO ’90, volume 537 of Lecture Notes in Computer
Science, pages 2–21. Springer, 1990.

[42] E. Biham and A. Shamir. Differential Fault Analysis of Secret Key
Cryptosystems. In B. S. K. Jr., editor, Advances in Cryptology - CRYPTO
’97, volume 1294 of Lecture Notes in Computer Science, pages 513–525.
Springer, 1997.

[43] A. Biryukov, I. Kizhvatov, and B. Zhang. Cryptanalysis of the Atmel
Cipher in SecureMemory, CryptoMemory and CryptoRF. In J. Lopez
and G. Tsudik, editors, Proceedings of ACNS 2011, volume 6715 of LNCS,
pages 91–109. Springer, 2011.

[44] J. Blömer, J. Guajardo, and V. Krummel. Provably Secure Masking
of AES. In H. Handschuh and M. A. Hasan, editors, Selected Areas in
Cryptography - SAC 2004, volume 3357 of Lecture Notes in Computer
Science, pages 69–83. Springer, 2004.

[45] J. Blömer, M. Otto, and J.-P. Seifert. A new CRT-RSA algorithm secure
against bellcore attacks. In S. Jajodia, V. Atluri, and T. Jaeger, editors,
Computer and Communications Security - CCS 2003, pages 311–320.
ACM, 2003.

[46] J. Blömer, M. Otto, and J.-P. Seifert. Sign Change Fault Attacks on
Elliptic Curve Cryptosystems. In L. Breveglieri, I. Koren, D. Naccache,
and J.-P. Seifert, editors, Fault Diagnosis and Tolerance in Cryptography
- FDTC 2006, volume 4236 of Lecture Notes in Computer Science, pages
36–52. Springer, 2006.

[47] J. Blömer and J.-P. Seifert. Fault Based Cryptanalysis of the Advanced
Encryption Standard (AES). In R. N. Wright, editor, Financial
Cryptography, volume 2742 of Lecture Notes in Computer Science, pages
162–181. Springer, 2003.

[48] A. Bogdanov. Linear Slide Attacks on the KeeLoq Block Cipher. In
D. Pei, M. Yung, D. Lin, and C. Wu, editors, Proceeedings of Inscrypt
2007, volume 4990 of LNCS, pages 66–80. Springer, 2007.

[49] A. Bogdanov. Multiple-Differential Side-Channel Collision Attacks on
AES. In E. Oswald and P. Rohatgi, editors, Cryptographic Hardware
and Embedded Systems - CHES 2008, volume 5154 of Lecture Notes in
Computer Science, pages 30–44. Springer, 2008.

134 BIBLIOGRAPHY

[50] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of
Checking Cryptographic Protocols for Faults (Extended Abstract). In
W. Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, volume
1233 of Lecture Notes in Computer Science, pages 37–51. Springer, 1997.

[51] E. F. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation.
In V. Atluri, B. Pfitzmann, and P. D. McDaniel, editors, Computer and
Communications Security - CCS 2004, pages 132–145. ACM, 2004.

[52] E. Brier, B. Chevallier-Mames, M. Ciet, and C. Clavier. Why One
Should Also Secure RSA Public Key Elements. In L. Goubin and
M. Matsui, editors, Cryptographic Hardware and Embedded Systems -
CHES 2006, volume 4249 of Lecture Notes in Computer Science, pages
324–338. Springer, 2006.

[53] E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a
Leakage Model. In M. Joye and J.-J. Quisquater, editors, Cryptographic
Hardware and Embedded Systems - CHES 2004, volume 3156 of Lecture
Notes in Computer Science, pages 16–29. Springer, 2004.

[54] E. Brier and M. Joye. Weierstraß Elliptic Curves and Side-Channel
Attacks. In D. Naccache and P. Paillier, editors, Public Key Cryptography
- PKC 2002, volume 2274 of Lecture Notes in Computer Science, pages
335–345. Springer, 2002.

[55] J. Brouchier, T. Kean, C. Marsh, and D. Naccache. Temperature Attacks.
IEEE Security & Privacy, 7(2):79–82, 2009.

[56] D. Brumley and D. Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701–716, 2005.

[57] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact E-Cash. In
R. Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 302–321. Springer,
2005.

[58] J. Camenisch and A. Lysyanskaya. A Signature Scheme with Efficient
Protocols. In S. Cimato, C. Galdi, and G. Persiano, editors, Security in
Communication Networks - SCN 2002, volume 2576 of Lecture Notes in
Computer Science, pages 268–289. Springer, 2002.

[59] D. Canright and L. Batina. A Very Compact "Perfectly Masked" S-Box
for AES (corrected). Cryptology ePrint Archive, Report 2009/011, 2009.
http://eprint.iacr.org/.

http://eprint.iacr.org/

BIBLIOGRAPHY 135

[60] C. Carlet, L. Goubin, E. Prouff, M. Quisquater, and M. Rivain. Higher-
Order Masking Schemes for S-Boxes. In A. Canteaut, editor, Fast Software
Encryption - FSE 2012, volume 7549 of Lecture Notes in Computer Science,
pages 366–384. Springer, 2012.

[61] A. Cavoukian. Privacy by Design: The 7 Foundational Principles, 2010.

[62] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards Sound
Approaches to Counteract Power-Analysis Attacks. In M. J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, volume 1666 of Lecture
Notes in Computer Science, pages 398–412. Springer, 1999.

[63] S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In B. S. K.
Jr., Çetin Kaya Koç, and C. Paar, editors, Cryptographic Hardware
and Embedded Systems - CHES 2002, volume 2523 of Lecture Notes in
Computer Science, pages 13–28. Springer, 2003.

[64] D. Chaum. Blind Signatures for Untraceable Payments. In D. Chaum,
R. L. Rivest, and A. T. Sherman, editors, Advances in Cryptology -
CRYPTO ’82, pages 199–203. Plenum Press, New York, 1982.

[65] Z. Chen and Y. Zhou. Dual-Rail Random Switching Logic: A
Countermeasure to Reduce Side Channel Leakage. In L. Goubin and
M. Matsui, editors, Cryptographic Hardware and Embedded Systems -
CHES 2006, volume 4249 of Lecture Notes in Computer Science, pages
242–254. Springer, 2006.

[66] H. Choukri and M. Tunstall. Round Reduction Using Faults. pages 13–24,
2005.

[67] M. Ciet and M. Joye. Elliptic Curve Cryptosystems in the Presence
of Permanent and Transient Faults. Designs, Codes and Cryptography,
36(1):33–43, 2005.

[68] M. Ciet and M. Joye. Practical Fault Countermeasures for Chinese
Remaindering Based RSA. In L. Breveglieri and I. Koren, editors, Fault
Diagnosis and Tolerance in Cryptography - FDTC 2005, pages 124–131.
Springer, 2005.

[69] C. Clavier. Secret External Encodings Do Not Prevent Transient Fault
Analysis. In P. Paillier and I. Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, volume 4727 of Lecture
Notes in Computer Science, pages 181–194. Springer, 2007.

[70] C. Clavier, J.-S. Coron, and N. Dabbous. Differential Power Analysis
in the Presence of Hardware Countermeasures. In Çetin Kaya Koç and

136 BIBLIOGRAPHY

C. Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2000, volume 1965 of Lecture Notes in Computer Science, pages 252–263.
Springer, 2000.

[71] C. Clavier and M. Joye. Universal Exponentiation Algorithm. In Çetin
Kaya Koç, D. Naccache, and C. Paar, editors, Cryptographic Hardware
and Embedded Systems - CHES 2001, volume 2162 of Lecture Notes in
Computer Science, pages 300–308. Springer, 2001.

[72] K. J. Compton, B. Timm, and J. VanLaven. A Simple Power Analysis
Attack on the Serpent Key Schedule. IACR Cryptology ePrint Archive,
2009:473, 2009.

[73] J.-S. Coron. Resistance against Differential Power Analysis for Elliptic
Curve Cryptosystems. In Çetin Kaya Koç and C. Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 1999, volume
1717 of Lecture Notes in Computer Science, pages 292–302. Springer,
1999.

[74] J.-S. Coron, E. Prouff, and M. Rivain. Side Channel Cryptanalysis of a
Higher Order Masking Scheme. In P. Paillier and I. Verbauwhede, editors,
CHES, volume 4727 of Lecture Notes in Computer Science, pages 28–44.
Springer, Cryptographic Hardware and Embedded Systems - CHES 2007.

[75] J.-S. Coron, E. Prouff, and T. Roche. On the Use of Shamir’s Secret
Sharing against Side-Channel Analysis. In S. Mangard, editor, Smart
Card Research and Advanced Applications - CARDIS 2012, volume 7771
of Lecture Notes in Computer Science, pages 77–90. Springer, 2012.

[76] N. Courtois and L. Goubin. An Algebraic Masking Method to Protect
AES Against Power Attacks. In D. Won and S. Kim, editors, Information
Security and Cryptology - ICISC 2005, volume 3935 of Lecture Notes in
Computer Science, pages 199–209. Springer, 2005.

[77] C. Cuijpers and B.-J. Koops. Smart Metering and Privacy in Europe:
Lessons from the Dutch Case. In S. Gutwirth, R. Leenes, P. de Hert,
and Y. Poullet, editors, European Data Protection: Coming of Age, pages
269–293. Springer, 2013.

[78] J. Daemen and V. Rijmen. AES Proposal: Rijndael, 1998.

[79] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer,
2002.

BIBLIOGRAPHY 137

[80] I. Damgård and E. Fujisaki. A Statistically-Hiding Integer Commitment
Scheme Based on Groups with Hidden Order. In Y. Zheng, editor,
Advances in Cryptology - ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 125–142. Springer, 2002.

[81] G. Danezis and S. F. Gürses. A critical review of 10 years of Privacy
Technology. 2010.

[82] C. De Cannière. Trivium: A Stream Cipher Construction Inspired by
Block Cipher Design Principles. In S. K. Katsikas, J. Lopez, M. Backes,
S. Gritzalis, and B. Preneel, editors, Information Security Conference
- ISC 2006, volume 4176 of Lecture Notes in Computer Science, pages
171–186. Springer, 2006.

[83] W. de Jonge and B. Jacobs. Privacy-Friendly Electronic Traffic Pricing
via Commits. In P. Degano, J. D. Guttman, and F. Martinelli, editors,
Formal Aspects in Security and Trust, volume 5491 of Lecture Notes in
Computer Science, pages 143–161. Springer, 2008.

[84] A. Dehbaoui, J.-M. Dutertre, B. Robisson, and A. Tria. Electromagnetic
Transient Faults Injection on a Hardware and a Software Implementations
of AES. In G. Bertoni and B. Gierlichs, editors, Fault Diagnosis and
Tolerance in Cryptography - FDTC 2012, pages 7–15. IEEE Computer
Society, 2012.

[85] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and
J.-L. Willems. A Practical Implementation of the Timing Attack. In
J.-J. Quisquater and B. Schneier, editors, Proceedings of CARDIS, pages
167–182. Springer, 1998.

[86] C. Diaz, O. Tene, and S. F. G’́urses. Hero or Villain: The Data Controller
in Privacy Law and Technologies. Ohio State Law Journal, 74(6):923–964,
2013.

[87] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[88] V. S. Dimitrov, G. A. Jullien, and W. C. Miller. Complexity and Fast
Algorithms for Multiexponentiations. IEEE Trans. Computers, 49(2):141–
147, 2000.

[89] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The Second-
Generation Onion Router. In USENIX Security Symposium 2004, pages
303–320. USENIX Association, 2004.

138 BIBLIOGRAPHY

[90] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A
Strengthened Version of RIPEMD. In D. Gollmann, editor, Fast Software
Encryption - FSE 1996, volume 1039 of Lecture Notes in Computer Science,
pages 71–82. Springer, 1996.

[91] P. Dusart, G. Letourneux, and O. Vivolo. Differential Fault Analysis on
A.E.S. In J. Zhou, M. Yung, and Y. Han, editors, Applied Cryptography
and Network Security - ACNS 2003, volume 2846 of Lecture Notes in
Computer Science, pages 293–306. Springer, 2003.

[92] S. Dziembowski and S. Faust. Leakage-Resilient Circuits without
Computational Assumptions. In R. Cramer, editor, Theory of
Cryptography - TCC 2012, volume 7194 of Lecture Notes in Computer
Science, pages 230–247. Springer, 2012.

[93] S. Dziembowski and S. Faust. Leakage-Resilient Cryptography from
the Inner-Product Extractor. In D. H. Lee and X. Wang, editors,
ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages
702–721. Springer, Advances in Cryptology - ASIACRYPT 2011.

[94] T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and
M. T. M. Shalmani. On the Power of Power Analysis in the Real World:
A Complete Break of the KeeLoqCode Hopping Scheme. In D. Wagner,
editor, Advances in Cryptology - CRYPTO 2008, volume 5157 of Lecture
Notes in Computer Science, pages 203–220. Springer, 2008.

[95] J. Fan and I. Verbauwhede. An Updated Survey on Secure ECC
Implementations: Attacks, Countermeasures and Cost. In D. Naccache,
editor, Cryptography and Security: From Theory to Applications - Essays
Dedicated to Jean-Jacques Quisquater on the Occasion of His 65th
Birthday, volume 6805 of Lecture Notes in Computer Science, pages
265–282. Springer, 2012.

[96] B. Feix and A. Venelli. Defeating with Fault Injection a Combined Attack
Resistant Exponentiation. In E. Prouff, editor, Constructive Side-Channel
Analysis and Secure Design - COSADE 2013, volume 7864 of Lecture
Notes in Computer Science, pages 32–45. Springer, 2013.

[97] J. Ferrigno and M. Hlavác. When AES blinks: introducing optical side
channel. IET Information Security, 2(3):94–98, 2008.

[98] P.-A. Fouque, R. Lercier, D. Réal, and F. Valette. Fault Attack on Elliptic
Curve Montgomery Ladder Implementation. In L. Breveglieri, S. Gueron,
I. Koren, D. Naccache, and J.-P. Seifert, editors, Fault Diagnosis and
Tolerance in Cryptography - FDTC 2008, pages 92–98. IEEE Computer
Society, 2008.

BIBLIOGRAPHY 139

[99] T. Fukunaga and J. Takahashi. Practical Fault Attack on a Cryptographic
LSI with ISO/IEC 18033-3 Block Ciphers. In L. Breveglieri, I. Koren,
D. Naccache, E. Oswald, and J.-P. Seifert, editors, Fault Diagnosis and
Tolerance in Cryptography - FDTC 2009, pages 84–92. IEEE Computer
Society, 2009.

[100] G. Fumaroli, A. Martinelli, E. Prouff, and M. Rivain. Affine Masking
against Higher-Order Side Channel Analysis. In A. Biryukov, G. Gong, and
D. R. Stinson, editors, Selected Areas in Cryptography - SAC 2010, volume
6544 of Lecture Notes in Computer Science, pages 262–280. Springer, 2010.

[101] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analysis:
Concrete Results. In Çetin Kaya Koç, D. Naccache, and C. Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2001, volume
2162 of Lecture Notes in Computer Science, pages 251–261. Springer,
2001.

[102] F. D. Garcia, G. de Koning Gans, R. Muijrers, P. van Rossum, R. Verdult,
R. W. Schreur, and B. Jacobs. Dismantling Mifare Classic. In S. Jajodia
and J. Lopez, editors, Proceedings of ESORICS 2008, volume 5283 of
LNCS, pages 97–114. Springer, 2008.

[103] F. D. Garcia, P. van Rossum, R. Verdult, and R. W. Schreur. Dismantling
SecureMemory, CryptoMemory and CryptoRF. In A. Keromytis and
V. Shmatikov, editors, Proceedings of ACM CCS 2010, pages 250–259.
ACM Press, 2010.

[104] L. Genelle, C. Giraud, and E. Prouff. Securing AES Implementation
against Fault Attacks. In L. Breveglieri, I. Koren, D. Naccache, E. Oswald,
and J.-P. Seifert, editors, Fault Diagnosis and Tolerance in Cryptography
- FDTC 2009, pages 51–62. IEEE Computer Society, 2009.

[105] L. Genelle, E. Prouff, and M. Quisquater. Secure Multiplicative Masking of
Power Functions. In J. Zhou and M. Yung, editors, Applied Cryptography
and Network Security - ACNS 2010, volume 6123 of Lecture Notes in
Computer Science, pages 200–217. Springer, 2010.

[106] L. Genelle, E. Prouff, and M. Quisquater. Thwarting Higher-Order
Side Channel Analysis with Additive and Multiplicative Maskings. In
B. Preneel and T. Takagi, editors, Cryptographic Hardware and Embedded
Systems - CHES 2011, volume 6917 of Lecture Notes in Computer Science,
pages 240–255. Springer, 2011.

[107] B. Gierlichs, L. Batina, B. Preneel, and I. Verbauwhede. Revisiting
Higher-Order DPA Attacks: Multivariate Mutual Information Analysis.

140 BIBLIOGRAPHY

In J. Pieprzyk, editor, Topics in Cryptology - CT-RSA 2010, volume 5985
of Lecture Notes in Computer Science, pages 221–234. Springer, 2010.

[108] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual Information
Analysis. In E. Oswald and P. Rohatgi, editors, Cryptographic Hardware
and Embedded Systems - CHES 2008, volume 5154 of Lecture Notes in
Computer Science, pages 426–442. Springer, 2008.

[109] B. Gierlichs, K. Lemke-Rust, and C. Paar. Templates vs. Stochastic
Methods. In L. Goubin and M. Matsui, editors, Cryptographic Hardware
and Embedded Systems - CHES 2006, volume 4249 of Lecture Notes in
Computer Science, pages 15–29. Springer, 2006.

[110] B. Gierlichs, J.-M. Schmidt, and M. Tunstall. Infective Computation
and Dummy Rounds: Fault Protection for Block Ciphers without Check-
before-Output. In A. Hevia and G. Neven, editors, Progress in Cryptology
- LATINCRYPT 2012, volume 7533 of Lecture Notes in Computer Science,
pages 305–321. Springer, 2012.

[111] C. Giraud. DFA on AES. In H. Dobbertin, V. Rijmen, and A. Sowa,
editors, AES Conference, volume 3373 of Lecture Notes in Computer
Science, pages 27–41. Springer, 2004.

[112] S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM Journal on
Computing, 17(2):281–308, 1988.

[113] J. D. Golic and C. Tymen. Multiplicative Masking and Power Analysis of
AES. In B. S. K. Jr., Çetin Kaya Koç, and C. Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, volume 2523 of Lecture
Notes in Computer Science, pages 198–212. Springer, 2002.

[114] L. Goubin and A. Martinelli. Protecting AES with Shamir’s Secret Sharing
Scheme. In B. Preneel and T. Takagi, editors, Cryptographic Hardware
and Embedded Systems - CHES 2011, volume 6917 of Lecture Notes in
Computer Science, pages 79–94. Springer, 2011.

[115] L. Goubin and J. Patarin. DES and Differential Power Analysis (The
"Duplication" Method). In Çetin Kaya Koç and C. Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES’99, volume 1717
of Lecture Notes in Computer Science, pages 158–172. Springer, 1999.

[116] S. Govindavajhala and A. W. Appel. Using Memory Errors to Attack a
Virtual Machine. In IEEE Symposium on Security and Privacy, pages
154–165. IEEE Computer Society, 2003.

BIBLIOGRAPHY 141

[117] J. Großschädl, E. Oswald, D. Page, and M. Tunstall. Side-Channel
Analysis of Cryptographic Software via Early-Terminating Multiplications.
In D. Lee and S. Hong, editors, ICISC, volume 5984 of Lecture Notes in
Computer Science, pages 176–192. Springer, 2010.

[118] M. Gruteser and B. Hoh. On the Anonymity of Periodic Location Samples.
In D. Hutter and M. Ullmann, editors, Security in Pervasive Computing
- SPC 2005, volume 3450 of Lecture Notes in Computer Science, pages
179–192. Springer, 2005.

[119] S. F. Gürses, C. Troncoso, and C. Diaz. Engineering Privacy by Design,
booktitle = Computers, Privacy and Data Protection – CPDP 2011, year
= 2011.

[120] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten.
Lest We Remember: Cold Boot Attacks on Encryption Keys. In P. C.
van Oorschot, editor, USENIX Security Symposium 2008, pages 45–60.
USENIX Association, 2008.

[121] L. Hemme. A Differential Fault Attack Against Early Rounds of (Triple-
)DES. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware
and Embedded Systems - CHES 2004, volume 3156 of Lecture Notes in
Computer Science, pages 254–267. Springer, 2004.

[122] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady. Enhancing Security
and Privacy in Traffic-Monitoring Systems. IEEE Pervasive Computing,
5(4):38–46, 2006.

[123] M. Hutter and J.-M. Schmidt. The Temperature Side Channel and
Heating Fault Attacks. In Smart Card Research and Advanced Application
- CARDIS 2013, 2013. To appear.

[124] Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware
against Probing Attacks. In D. Boneh, editor, Advances in Cryptology -
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages
463–481. Springer, 2003.

[125] M. Joye, A. K. Lenstra, and J.-J. Quisquater. Chinese Remaindering
Based Cryptosystems in the Presence of Faults. Journal of Cryptology,
12(4):241–245, 1999.

[126] M. Joye, P. Paillier, and B. Schoenmakers. On Second-Order Differential
Power Analysis. In J. R. Rao and B. Sunar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2005, volume 3659 of Lecture
Notes in Computer Science, pages 293–308. Springer, 2005.

142 BIBLIOGRAPHY

[127] M. Joye, J.-J. Quisquater, F. Bao, and R. H. Deng. RSA-type Signatures
in the Presence of Transient Faults. In M. Darnell, editor, Cryptography
and Coding, volume 1355 of Lecture Notes in Computer Science, pages
155–160. Springer, 1997.

[128] M. Joye and M. Tunstall, editors. Fault Analysis in Cryptography.
Information Security and Cryptography. Springer, 2012.

[129] M. Joye and S.-M. Yen. The Montgomery Powering Ladder. In B. S. K.
Jr., Çetin Kaya Koç, and C. Paar, editors, Cryptographic Hardware
and Embedded Systems - CHES 2002, volume 2523 of Lecture Notes in
Computer Science, pages 291–302. Springer, 2002.

[130] D. Karaklajic. Securing Cryptographic Hardware Against Fault Attacks.
PhD thesis, KU Leuven, 2012.

[131] D. Karaklajic, J.-M. Schmidt, and I. Verbauwhede. Hardware Designer’s
Guide to Fault Attacks. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 21(12):2295–2306, 2013.

[132] M. G. Karpovsky, K. J. Kulikowski, and A. Taubin. Robust Protection
against Fault-Injection Attacks on Smart Cards Implementing the
Advanced Encryption Standard. In Dependable Systems and Networks -
DSN 2004, pages 93–101. IEEE Computer Society, 2004.

[133] A. Kerckhoffs. La cryptographie militaire (military cryptography). Journal
des sciences militaires, IX:5–83, 1883.

[134] C. H. Kim and J.-J. Quisquater. Fault Attacks for CRT Based RSA:
New Attacks, New Results, and New Countermeasures. In D. Sauveron,
C. Markantonakis, A. Bilas, and J.-J. Quisquater, editors, Information
Security Theory and Practices - WISTP 2007, volume 4462 of Lecture
Notes in Computer Science, pages 215–228. Springer, 2007.

[135] C. H. Kim, J. H. Shin, J.-J. Quisquater, and P. J. Lee. Safe-Error Attack
on SPA-FA Resistant Exponentiations Using a HW Modular Multiplier.
In K.-H. Nam and G. Rhee, editors, Information Security and Cryptology
- ICISC 2007, volume 4817 of Lecture Notes in Computer Science, pages
273–281. Springer, 2007.

[136] H. Kim, S. Hong, and J. Lim. A Fast and Provably Secure Higher-
Order Masking of AES S-Box. In B. Preneel and T. Takagi, editors,
Cryptographic Hardware and Embedded Systems - CHES 2011, volume
6917 of Lecture Notes in Computer Science, pages 95–107. Springer, 2011.

[137] P. Koargonkar and L. Wolin. A Multivariate Analysis of Web Usage.
Journal of Advertising Research, pages 53–68, March/April 1999.

BIBLIOGRAPHY 143

[138] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

[139] P. Kocher. Leak Resistant Cryptographic Indexed Key Update. US Patent
6539092.

[140] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In N. Koblitz, editor, Advances in Cryptology -
CRYPTO ’96, volume 1109 of LNCS, pages 104–113. Springer, 1996.

[141] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. J.
Wiener, editor, Advances in Cryptology - CRYPTO ’99, volume 1666 of
Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

[142] F. Koeune and J. jacques Quisquater. A timing attack against Rijndael.
Technical Report CG-1999/1, Université catholique de Louvain, 1999.

[143] O. Kömmerling and M. G. Kuhn. Design principles for Tamper-Resistant
Smartcard Processors. In USENIX Workshop on Smartcard Technology,
pages 9–20. USENIX Association, 1999.

[144] J. Krämer, D. Nedospasov, A. Schlösser, and J.-P. Seifert. Differential
Photonic Emission Analysis. In E. Prouff, editor, Constructive Side-
Channel Analysis and Secure Design - COSADE 2013, volume 7864 of
Lecture Notes in Computer Science, pages 1–16. Springer, 2013.

[145] J. Krumm. Inference Attacks on Location Tracks. In A. LaMarca,
M. Langheinrich, and K. N. Truong, editors, Pervasive Computing, volume
4480 of Lecture Notes in Computer Science, pages 127–143. Springer, 2007.

[146] M. G. Kuhn. Optical Time-Domain Eavesdropping Risks of CRT Displays.
In IEEE Symposium on Security and Privacy, pages 3–18. IEEE Computer
Society, 2002.

[147] J. Lee and N. Pahl. Bypassing Smart-Card Authentication and Blocking
Debiting: Vulnerabilities in Atmel CryptoMemory based Stored-Value
Systems. DEFCON 18, 2010.

[148] V. Lomné, T. Roche, and A. Thillard. On the Need of Randomness in
Fault Attack Countermeasures - Application to AES. In G. Bertoni and
B. Gierlichs, editors, Fault Diagnosis and Tolerance in Cryptography -
FDTC 2012, pages 85–94. IEEE Computer Society, 2012.

[149] T. Malkin, F.-X. Standaert, and M. Yung. A Comparative Cost/Security
Analysis of Fault Attack Countermeasures. In L. Breveglieri, I. Koren,
D. Naccache, and J.-P. Seifert, editors, Fault Diagnosis and Tolerance in

144 BIBLIOGRAPHY

Cryptography - FDTC 2006, volume 4236 of Lecture Notes in Computer
Science, pages 159–172. Springer, 2006.

[150] S. Mangard. A simple power-analysis (SPA) attack on implementations of
the AES key expansion. In P. J. Lee and C. H. Lim, editors, Information
security and cryptology - ICISC’02, volume 2587 of LNCS, pages 343–358,
2003.

[151] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks - Revealing
the Secrets of Smart Cards. Springer, 2007.

[152] S. Mangard, T. Popp, and B. M. Gammel. Side-Channel Leakage of
Masked CMOS Gates. In A. Menezes, editor, Topics in Cryptology -
CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages
351–365. Springer, 2005.

[153] S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking
Masked AES Hardware Implementations. In J. R. Rao and B. Sunar,
editors, Cryptographic Hardware and Embedded Systems - CHES 2005,
volume 3659 of Lecture Notes in Computer Science, pages 157–171.
Springer, 2005.

[154] M. Matsui. Linear Cryptoanalysis Method for DES Cipher. In T. Helleseth,
editor, Advances in Cryptology - EUROCRYPT ’93, volume 765 of Lecture
Notes in Computer Science, pages 386–397. Springer, 1993.

[155] M. Medwed and E. Oswald. Template Attacks on ECDSA. In K.-I.
Chung, K. Sohn, and M. Yung, editors, Workshop on Information Security
Applications - WISA 2008, volume 5379 of Lecture Notes in Computer
Science. Springer, 2008.

[156] M. Medwed, C. Petit, F. Regazzoni, M. Renauld, and F.-X. Standaert.
Fresh Re-keying II: Securing Multiple Parties against Side-Channel and
Fault Attacks. In E. Prouff, editor, Smart Card Research and Advanced
Applications - CARDIS 2011, volume 7079 of Lecture Notes in Computer
Science, pages 115–132. Springer, 2011.

[157] M. Medwed, F.-X. Standaert, J. Großschädl, and F. Regazzoni. Fresh
Re-keying: Security against Side-Channel and Fault Attacks for Low-Cost
Devices. In D. J. Bernstein and T. Lange, editors, Progress in Cryptology -
AFRICACRYPT 2010, volume 6055 of Lecture Notes in Computer Science,
pages 279–296. Springer, 2010.

[158] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of
Applied Cryptography. CRC Press, Inc., 1996.

BIBLIOGRAPHY 145

[159] T. S. Messerges. Securing the AES Finalists Against Power Analysis
Attacks. In B. Schneier, editor, Fast Software Encryption - FSE 2000,
volume 1978 of Lecture Notes in Computer Science, pages 150–164.
Springer, 2000.

[160] T. S. Messerges. Using Second-Order Power Analysis to Attack DPA
Resistant Software. In Çetin Kaya Koç and C. Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2000, volume 1965 of Lecture
Notes in Computer Science, pages 238–251. Springer, 2000.

[161] T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Investigations of power
analysis attacks on smartcards. In USENIX Workshop on Smartcard
Technology - WOST ’99, pages 151–162. USENIX Association, 1999.

[162] T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Examining Smart-Card
Security under the Threat of Power Analysis Attacks. IEEE Transactions
on Computers, 51(5):541–552, 2002.

[163] V. S. Miller. Use of Elliptic Curves in Cryptography. In H. C. Williams,
editor, Advances in Cryptology - CRYPTO ’85, volume 218 of Lecture
Notes in Computer Science, pages 417–426. Springer, 1985.

[164] A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-Enhanced Power
Analysis Collision Attack. In S. Mangard and F.-X. Standaert, editors,
Cryptographic Hardware and Embedded Systems - CHES 2010, volume
6225 of Lecture Notes in Computer Science, pages 125–139. Springer,
2010.

[165] S. Murphy and M. J. B. Robshaw. Essential Algebraic Structure within
the AES. In M. Yung, editor, Advances in Cryptology - CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 1–16. Springer,
2002.

[166] S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementation
of Non-linear Functions in the Presence of Glitches. In P. J. Lee and J. H.
Cheon, editors, Information Security and Cryptology - ICISC 2008, volume
5461 of Lecture Notes in Computer Science, pages 218–234. Springer, 2008.

[167] K. Nohl, D. Evans, Starbug, and H. Plötz. Reverse-engineering a
cryptographic RFID tag. In Proceedings of USENIX 2008, pages 185–193.
USENIX Association, 2008.

[168] NVIDIA. Checklist for Building a PC that Plays HD DVD or Blu-ray
Movies. ftp://download.nvidia.com/downloads/pvzone/Checklist_
for_Building_a_HDPC.pdf.

ftp://download.nvidia.com/downloads/pvzone/Checklist_for_Building_a_HDPC.pdf
ftp://download.nvidia.com/downloads/pvzone/Checklist_for_Building_a_HDPC.pdf

146 BIBLIOGRAPHY

[169] E. Oswald, S. Mangard, C. Herbst, and S. Tillich. Practical Second-Order
DPA Attacks for Masked Smart Card Implementations of Block Ciphers.
In D. Pointcheval, editor, Topics in Cryptology - CT-RSA 2006, volume
3860 of Lecture Notes in Computer Science, pages 192–207. Springer,
2006.

[170] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen. A Side-Channel
Analysis Resistant Description of the AES S-Box. In H. Gilbert and
H. Handschuh, editors, Fast Software Encryption - FSE 2005, volume
3557 of Lecture Notes in Computer Science, pages 413–423. Springer,
2005.

[171] E. Peeters, F.-X. Standaert, and J.-J. Quisquater. Power and
electromagnetic analysis: Improved model, consequences and comparisons.
Integration, 40(1):52–60, 2007.

[172] G. Piret and J.-J. Quisquater. A Differential Fault Attack Technique
against SPN Structures, with Application to the AES and KHAZAD.
In C. D. Walter, Çetin Kaya Koç, and C. Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2003, volume 2779 of Lecture
Notes in Computer Science, pages 77–88. Springer, 2003.

[173] R. A. Popa, H. Balakrishnan, and A. J. Blumberg. VPriv: Protecting
Privacy in Location-Based Vehicular Services. In USENIX Security
Symposium 2009, pages 335–350. USENIX Association, 2009.

[174] T. Popp, M. Kirschbaum, T. Zefferer, and S. Mangard. Evaluation of
the Masked Logic Style MDPL on a Prototype Chip. In P. Paillier and
I. Verbauwhede, editors, Cryptographic Hardware and Embedded Systems
- CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages
81–94. Springer, 2007.

[175] T. Popp and S. Mangard. Masked Dual-Rail Pre-charge Logic: DPA-
Resistance Without Routing Constraints. In J. R. Rao and B. Sunar,
editors, Cryptographic Hardware and Embedded Systems - CHES 2005,
volume 3659 of Lecture Notes in Computer Science, pages 172–186.
Springer, 2005.

[176] H. E. Products. Microsoft Zune HD 16GB, what’s inside?
http://www2.electronicproducts.com/Microsoft_Zune_HD_
16GB-whatsinside_text-89.aspx.

[177] E. Prouff and M. Rivain. Theoretical and Practical Aspects of Mutual
Information Based Side Channel Analysis. In M. Abdalla, D. Pointcheval,
P.-A. Fouque, and D. Vergnaud, editors, Applied Cryptography and

http://www2.electronicproducts.com/Microsoft_Zune_HD_16GB-whatsinside_text-89.aspx
http://www2.electronicproducts.com/Microsoft_Zune_HD_16GB-whatsinside_text-89.aspx

BIBLIOGRAPHY 147

Network Security - ACNS 2009, volume 5536 of Lecture Notes in Computer
Science, pages 499–518. Springer, 2009.

[178] E. Prouff, M. Rivain, and R. Bevan. Statistical Analysis of Second
Order Differential Power Analysis. IEEE Transactions on Computers,
58(6):799–811, 2009.

[179] E. Prouff, M. Rivain, and T. Roche. On the Practical Security of a
Leakage Resilient Masking Scheme. Cryptology ePrint Archive, Report
2013/396, 2013. http://eprint.iacr.org/.

[180] E. Prouff and T. Roche. Higher-Order Glitches Free Implementation of
the AES Using Secure Multi-party Computation Protocols. In B. Preneel
and T. Takagi, editors, Cryptographic Hardware and Embedded Systems -
CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages
63–78. Springer, 2011.

[181] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA
public-key cryptosystem. Electronics Letters, 18(21):905–907, 1982.

[182] J.-J. Quisquater and D. Samyde. ElectroMagnetic Analysis (EMA):
Measures and Counter-Measures for Smart Cards. In I. Attali and T. P.
Jensen, editors, Research in Smart Cards - E-smart 2001, volume 2140 of
Lecture Notes in Computer Science, pages 200–210. Springer, 2001.

[183] J.-J. Quisquater and D. Samyde. Eddy current for Magnetic Analysis
with Active Sensor. In Esmart 2002, Nice, France, 9 2002.

[184] C. Rechberger and E. Oswald. Practical Template Attacks. In C. H.
Lim and M. Yung, editors, Information Security Applications - WISA
2004, volume 3325 of Lecture Notes in Computer Science, pages 440–456.
Springer, 2004.

[185] O. Reparaz, B. Gierlichs, and I. Verbauwhede. Selecting Time Samples
for Multivariate DPA Attacks. In E. Prouff and P. Schaumont, editors,
Cryptographic Hardware and Embedded Systems - CHES 2012, volume
7428 of Lecture Notes in Computer Science, pages 155–174. Springer,
2012.

[186] A. Rial, J. Balasch, and B. Preneel. A Privacy-Preserving Buyer-Seller
Watermarking Protocol Based on Priced Oblivious Transfer. IEEE
Transactions on Information Forensics and Security, 6(1):202–212, 2011.

[187] M. Rivain. Differential Fault Analysis on DES Middle Rounds. In
C. Clavier and K. Gaj, editors, Cryptographic Hardware and Embedded
Systems - CHES 2009, volume 5747 of Lecture Notes in Computer Science,
pages 457–469. Springer, 2009.

http://eprint.iacr.org/

148 BIBLIOGRAPHY

[188] M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES.
In S. Mangard and F.-X. Standaert, editors, CHES, volume 6225 of Lecture
Notes in Computer Science, pages 413–427. Springer, Cryptographic
Hardware and Embedded Systems, CHES 2010.

[189] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications of
the ACM, 21(2):120–126, 1978.

[190] P. Schaumont. A Practical Introduction to Hardware/Software Codesign.
Springer, 2010.

[191] P. Schaumont and I. Verbauwhede. Domain-Specific Codesign for
Embedded Security. IEEE Computer, 36(4):68–74, 2003.

[192] W. Schindler, K. Lemke, and C. Paar. A Stochastic Model for Differential
Side Channel Cryptanalysis. In J. R. Rao and B. Sunar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2005, volume
3659 of Lecture Notes in Computer Science, pages 30–46. Springer, 2005.

[193] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and J.-P. Seifert. Simple
Photonic Emission Analysis of AES - Photonic Side Channel Analysis for
the Rest of Us. In E. Prouff and P. Schaumont, editors, Cryptographic
Hardware and Embedded Systems - CHES 2012, volume 7428 of Lecture
Notes in Computer Science, pages 41–57. Springer, 2012.

[194] J.-M. Schmidt and C. Herbst. A Practical Fault Attack on Square and
Multiply. In L. Breveglieri, S. Gueron, I. Koren, D. Naccache, and J.-P.
Seifert, editors, Fault Diagnosis and Tolerance in Cryptography- FDTC
2008, pages 53–58. IEEE Computer Society, 2008.

[195] J.-M. Schmidt and M. Hutter. Optical and EM Fault-Attacks on CRT-
based RSA: Concrete Results. In J. W. Karl C. Posch, editor, Austrian
Workhop on Microelectronics - Austrochip 2007, pages 61 – 67. Verlag der
Technischen Universität Graz, 2007.

[196] J.-M. Schmidt, M. Tunstall, R. M. Avanzi, I. Kizhvatov, T. Kasper, and
D. Oswald. Combined Implementation Attack Resistant Exponentiation.
In M. Abdalla and P. S. Barreto, editors, Progress in Cryptology -
LATINCRYPT 2010, volume 6212 of Lecture Notes in Computer Science,
pages 305–322. Springer, 2010.

[197] K. Schramm, G. Leander, P. Felke, and C. Paar. A Collision-Attack on
AES: Combining Side Channel- and Differential-Attack. In M. Joye and
J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Systems
- CHES 2004, volume 3156 of Lecture Notes in Computer Science, pages
163–175. Springer, 2004.

BIBLIOGRAPHY 149

[198] K. Schramm and C. Paar. Higher Order Masking of the AES. In
D. Pointcheval, editor, Topics in Cryptology - CT-RSA 2006, volume
3860 of Lecture Notes in Computer Science, pages 208–225. Springer,
2006.

[199] K. Schramm, T. J. Wollinger, and C. Paar. A New Class of Collision
Attacks and Its Application to DES. In T. Johansson, editor, Fast Software
Encryption - FSE 2003, volume 2887 of Lecture Notes in Computer Science,
pages 206–222. Springer, 2003.

[200] J.-P. Seifert. On authenticated computing and RSA-based authentication.
In V. Atluri, C. Meadows, and A. Juels, editors, Computer and
Communications Security - CCS 2005, pages 122–127. ACM, 2005.

[201] N. Selmane, S. Guilley, and J.-L. Danger. Practical Setup Time Violation
Attacks on AES. In European Dependable Computing Conference - EDCC
2008, pages 91–96. IEEE Computer Society, 2008.

[202] A. Shamir. How to Share a Secret. Communications of the ACM,
22(11):612–613, 1979.

[203] A. Shamir and E. Tromer. Acoustic cryptanalysis. On nosy people and
noisy machines. Web site: http://cs.tau.ac.il/ tromer/acoustic/ [Last
accessed: 19/11/2013].

[204] S. P. Skorobogatov and R. J. Anderson. Optical Fault Induction Attacks.
In B. S. K. Jr., Çetin Kaya Koç, and C. Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, volume 2523 of Lecture
Notes in Computer Science, pages 2–12. Springer, 2002.

[205] Slashdot.org. DirecTV’s Secret War On Hackers. Web site:
http://slashdot.org/story/01/01/25/1343218/directvs-secret-war-
on-hackers [Last accessed: 17/10/2013].

[206] F.-X. Standaert, T. Malkin, and M. Yung. A Unified Framework for
the Analysis of Side-Channel Key Recovery Attacks. In A. Joux, editor,
Advances in Cryptology - EUROCRYPT 2009, volume 5479 of Lecture
Notes in Computer Science, pages 443–461. Springer, 2009.

[207] F.-X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs,
M. Medwed, M. Kasper, and S. Mangard. The World Is Not Enough:
Another Look on Second-Order DPA. In M. Abe, editor, Advances
in Cryptology - ASIACRYPT 2010, volume 6477 of Lecture Notes in
Computer Science, pages 112–129. Springer, 2010.

150 BIBLIOGRAPHY

[208] D. Suzuki, M. Saeki, and T. Ichikawa. Random Switching Logic: A
Countermeasure against DPA based on Transition Probability. IACR
Cryptology ePrint Archive, 2004:346, 2004.

[209] T. Telegraph. EU funding ’Orwellian’ artificial intelligence plan to monitor
public for "abnormal behaviour" . Web site: http://tinyurl.com/mr5mwj
[Last accessed: 20/11/2013].

[210] S. Tillich and C. Herbst. Attacking State-of-the-Art Software
Countermeasures-A Case Study for AES. In E. Oswald and P. Rohatgi,
editors, Cryptographic Hardware and Embedded Systems - CHES 2008,
volume 5154 of Lecture Notes in Computer Science, pages 228–243.
Springer, 2008.

[211] K. Tiri, M. Akmal, and I. Verbauwhede. A dynamic and differential CMOS
logic with signal independent power consumption to withstand differential
power analysis on smart cards. In Solid-State Circuits Conference -
ESSCIRC 2002, pages 403–406, 2002.

[212] K. Tiri and I. Verbauwhede. A Logic Level Design Methodology for
a Secure DPA Resistant ASIC or FPGA Implementation. In Design,
Automation and Test in Europe - DATE 2004, pages 246–251. IEEE
Computer Society, 2004.

[213] E. Trichina, D. D. Seta, and L. Germani. Simplified Adaptive
Multiplicative Masking for AES. In B. S. K. Jr., Çetin Kaya Koç, and
C. Paar, editors, CHES, volume 2523 of Lecture Notes in Computer
Science, pages 187–197. Springer, Cryptographic Hardware and Embedded
Systems - CHES 2002.

[214] C. Troncoso, G. Danezis, E. Kosta, J. Balasch, and B. Preneel. PriPAYD:
Privacy-Friendly Pay-As-You-Drive Insurance. IEEE Transactions on
Dependable and Secure Computing, 8(5):742–755, 2011.

[215] C. Troncoso, G. Danezis, E. Kosta, and B. Preneel. PriPAYD: privacy
friendly pay-as-you-drive insurance. In P. Ning and T. Yu, editors, Privacy
in the Electronic Society - WPES 2007, pages 99–107. ACM, 2007.

[216] J. Tsai, S. Egelman, L. Cranor, and A. Acquisti. The Effect of Online
Privacy Information on Purchasing Behavior: An Experimental Study,
working paper. In The 6th Workshop on the Economics of Information
Security, 2007.

[217] M. Tunstall, D. Mukhopadhyay, and S. Ali. Differential Fault Analysis
of the Advanced Encryption Standard Using a Single Fault. In C. A.
Ardagna and J. Zhou, editors, Information Security Theory and Practice

BIBLIOGRAPHY 151

- WISTP 2011, volume 6633 of Lecture Notes in Computer Science, pages
224–233. Springer, 2011.

[218] L. Uhsadel, M. Ullrich, A. Das, D. Karaklajic, J. Balasch, I. Verbauwhede,
and W. Dehaene. Teaching HW/SW Co-Design With a Public Key
Cryptography Application. IEEE Transactions on Education, 56(4):478 –
483, 2013.

[219] J. G. J. van Woudenberg, M. F. Witteman, and F. Menarini. Practical
Optical Fault Injection on Secure Microcontrollers. In L. Breveglieri,
S. Guilley, I. Koren, D. Naccache, and J. Takahashi, editors, Fault
Diagnosis and Tolerance in Cryptography - FDTC 2011, pages 91–99.
IEEE Computer Society, 2011.

[220] J. VanLaven, M. Brehob, and K. J. Compton. Side Channel Analysis,
Fault Injection and Applications - A Computationally Feasible SPA Attack
on AES via Optimized Search. In R. Sasaki, S. Qing, E. Okamoto, and
H. Yoshiura, editors, Security and Privacy in the Age of Ubiquitous
Computing - SEC 2005, pages 577–588. Springer, 2005.

[221] I. Verbauwhede, D. Karaklajic, and J.-M. Schmidt. The Fault Attack
Jungle - A Classification Model to Guide You. In L. Breveglieri, S. Guilley,
I. Koren, D. Naccache, and J. Takahashi, editors, Fault Diagnosis and
Tolerance in Cryptography - FDTC 2011, pages 3–8. IEEE, 2011.

[222] R. Verdult, F. D. Garcia, and J. Balasch. Gone in 360 Seconds: Hijacking
with Hitag2. In USENIX Security Symposium 2012, pages 237–252.
USENIX Association, 2012.

[223] N. Veyrat-Charvillon, M. Medwed, S. Kerckhof, and F.-X. Standaert.
Shuffling against Side-Channel Attacks: A Comprehensive Study with
Cautionary Note. In X. Wang and K. Sako, editors, Advances in Cryptology
- ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science,
pages 740–757. Springer, 2012.

[224] H. Viksler. Web Laundry (In)Security . http://ihackiam.blogspot.
com/2010/09/web-laundry-insecurity.html.

[225] J. Waddle and D. Wagner. Towards Efficient Second-Order Power
Analysis. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware
and Embedded Systems - CHES 2004, volume 3156 of Lecture Notes in
Computer Science, pages 1–15. Springer, 2004.

[226] D. Wagner. Cryptanalysis of a provably secure CRT-RSA algorithm. In
V. Atluri, B. Pfitzmann, and P. D. McDaniel, editors, Computer and
Communications Security - CCS 2004, pages 92–97. ACM, 2004.

http://ihackiam.blogspot.com/2010/09/web-laundry-insecurity.html
http://ihackiam.blogspot.com/2010/09/web-laundry-insecurity.html

152 BIBLIOGRAPHY

[227] M. F. Witteman, J. G. J. van Woudenberg, and F. Menarini. Defeating
RSA Multiply-Always and Message Blinding Countermeasures. In
A. Kiayias, editor, Topics in Cryptology - CT-RSA 2011, volume 6558 of
Lecture Notes in Computer Science, pages 77–88. Springer, 2011.

[228] P. Wright. Spycatcher: The Candid Autobiography of a Senior Intelligence
Officer. Viking Press, 1987.

[229] L. Xiao and H. M. Heys. A simple power analysis attack against the key
schedule of the Camellia block cipher. Inf. Process. Lett., 95(3):409–412,
2005.

[230] S.-M. Yen and M. Joye. Checking Before Output May Not Be Enough
Against Fault-Based Cryptanalysis. IEEE Transactions on Computers,
49(9):967–970, 2000.

[231] S.-M. Yen, D. Kim, and S.-J. Moon. Cryptanalysis of Two Protocols for
RSA with CRT Based on Fault Infection. In L. Breveglieri, I. Koren,
D. Naccache, and J.-P. Seifert, editors, Fault Diagnosis and Tolerance in
Cryptography - FDTC 2006, volume 4236 of Lecture Notes in Computer
Science, pages 53–61. Springer, 2006.

[232] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon. RSA Speedup with Residue
Number System Immune against Hardware Fault Cryptanalysis. In
K. Kim, editor, Information Security and Cryptology - ICISC 2001,,
volume 2288 of Lecture Notes in Computer Science, pages 397–413.
Springer, 2001.

[233] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon. A Countermeasure against
One Physical Cryptanalysis May Benefit Another Attack. In K. Kim,
editor, Information Security and Cryptology - ICISC 2001, volume 2288
of Lecture Notes in Computer Science, pages 414–427. Springer, 2002.

[234] J. F. Ziegler and W. A. Lanford. Effect of Cosmic Rays on Computer
Memories. Science, 206(4420):776–788, 1979.

List of Publications

International Journals

[1] L. Uhsadel, M. Ullrich, A. Das, D. Karaklajic, J. Balasch, I. Verbauwhede,
and W. Dehaene, “Teaching HW/SW co-design with a public key
cryptography application”, In IEEE Transactions on Education - IEEE
ToE 56(4), pages 478 - 483. IEEE, 2013.

[2] A. Rial, J. Balasch, and B. Preneel, “A Privacy-Preserving Buyer–Seller
Watermarking Protocol Based on Priced Oblivious Transfer”, In IEEE
Transactions on Information Forensics and Security - IEEE TIFS 6(1),
pages 202-212. IEEE, 2011.

[3] C. Troncoso, G. Danezis, E. Kosta, J. Balasch, and B. Preneel, “PriPAYD:
Privacy Friendly Pay-As-You-Drive Insurance (Journal version)”, In IEEE
Transactions on Dependable and Secure Computing - IEEE TDSC 8(5),
pages 742-755. IEEE, 2011.

International Conferences

[1] J. Balasch, S. Faust, B. Gierlichs, and I. Verbauwhede, “Theory and
Practice of a Leakage Resilient Masking Scheme”, In Advances in
Cryptology - ASIACRYPT 2012, Volume 7658 of Lecture Notes in
Computer Science (LNCS), pages 758-775. Springer-Verlag, 2012.

[2] J. Balasch, B. Ege, T. Eisenbarth, B. Gérard, Z. Gong, T. Güneysu, S.
Heyse, S. Kerckhof, F. Koeune, T. Plos, T. Pöppelmann, F. Regazzoni, F-X.
Standaert, G. Van Assche, R. Van Keer, L. van Oldeneel tot Oldenzeel, and
I. von Maurich, “Compact Implementation and Performance Evaluation
of Hash Functions in ATtiny Devices”, In Proceedings of the 11th Smart
Card Research and Advanced Application Conference - CARDIS 2012,

153

154 LIST OF PUBLICATIONS

Volume 7771 of Lecture Notes in Computer Science (LNCS), pages 158-172.
Springer-Verlag, 2012.

[3] R. Verdult, F. D. Garcia, and J. Balasch, “Gone in 360 Seconds: Hijacking
with Hitag2”, In Proceedings of the 21st Usenix Security Symposium -
USENIX Security 2012, pages 237-252. USENIX Association, 2012.

[4] J. Balasch, B. Gierlichs, R. Verdult, L. Batina, and I. Verbauwhede,
“Power Analysis of Atmel CryptoMemory - Recovering Keys from Secure
EEPROMs”, In Topics in Cryptology - CT-RSA 2012, The Cryptographers’
Track at the RSA Conference, Volume 7178 of Lecture Notes in Computer
Science (LNCS), pages 19-34. Springer-Verlag, 2012.

[5] J. Balasch, B. Gierlichs, and I. Verbauwhede, “An in-Depth and black-Box
Characterization of the Effects of Clock Glitches on 8-bit MCUs”, In
Proceedings of the 8th International Workshop on Fault Diagnosis and
Tolerance in Cryptography - FDTC 2011, pages 105-114. IEEE, 2011.

[6] J. Balasch, A. Rial, C. Troncoso, C. Geuens, B. Preneel, and I.
Verbauwhede, “PrETP: Privacy-Preserving Electronic Toll Pricing”, In
Proceedings of the 19th Usenix Security Symposium - USENIX Security
2010, pages 63-78. USENIX Association, 2010.

[7] J. Balasch, I. Verbauwhede, and B. Preneel, “An Embedded Platform for
Privacy-Friendly Road Charging Applications”, In Proceedings of Design,
Automation and Test in Europe - DATE 2010, pages 867-872. IEEE, 2010.

Technical Reports

[1] W. Biesmans, J. Balasch, A. Rial, and I. Verbauwhede, “Priced Oblivious
Transfer Scheme for Pay-per-view Broadcast Mobile TV”, COSIC internal
report, 6 pages, 2013.

[2] M. Scheir, J. Balasch, A. Rial, B. Preneel, and I. Verbauwhede,
“Anonymous E-Cash for Resource Constrained Devices”, COSIC internal
report, 10 pages, 2012.

[3] B. Car, J. Balasch, A. Rial, B. Preneel, and I. Verbauwhede, “A Zero-
Knowledge Proofs Compiler for Hardware-Software Co-Design”, COSIC
internal report, 20 pages, 2012.

Curriculum

Josep Balasch was born on the 3rd of July 1982, in Vic, Spain. In 2008 he
obtained a Master in Telecommunication Engineering from the Polytechnic
University of Catalonia, Barcelona, Spain. His MSc Thesis entitled “Smart
Card Implementation of Anonymous Credentials” was carried out at the KU
Leuven, Belgium, as part of the Erasmus exchange framework.

In September 2009, he joined the COSIC research group at the department of
Electrical Engineering (ESAT) of KU Leuven. His research has been funded by
a joint PhD grant between the universities KU Leuven, Belgium, and Radboud
Universiteit Nijmegen, the Netherlands.

Between July and October 2012 he was a graduate technical intern at the Intel’s
Security Center of Excellence (SeCoE) in Hillsboro, Oregon (United States).

155

	Abstract
	Abbreviations
	Contents
	List of Figures
	List of Tables
	Introduction
	About this Thesis

	An Insight into Physical Vulnerabilities
	Side Channel Attacks
	An Overview of Side Channels
	Side Channel Leakage in Integrated Circuits
	Exploitation of Traces

	Fault Attacks
	Fault Analysis
	Fault Injection
	Fault Attacks based on Setup Time Violations

	Countermeasures
	Against Side Channel Attacks
	Against Fault Attacks

	Conclusions

	A Motivating Example
	Introduction
	Related Work and Background
	Developing an Attack Path
	Experimental Setup
	Initial Investigation of Power Traces
	Overcoming Authentication Attempt Counters

	Power Analysis Attack
	Implications and Countermeasures
	Conclusions

	Masking at Algorithm Level
	Introduction
	Masking Block Ciphers
	1st-Order Masking
	Higher-Order Attacks
	Higher-Order Masking

	Inner Product (IP) Masking
	Construction of IP Masking.
	Security Evaluation
	Performance Evaluation

	A 1st-order Attack Against (IP) Masking
	Conclusions

	Enabling Privacy in Embedded Design
	Introduction
	Privacy-Preserving Systems
	Use Case: Electronic Toll Pricing
	PrETP: Privacy-Preserving Electronic Toll Pricing

	Conclusions

	Conclusions and Open Problems
	Bibliography
	Curriculum

