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Purpose − To develop a subdomain perturbation technique to 
calculate skin and proximity effects in inductors within frequency 
and time domain finite element (FE) analyses. 

Design/methodology/approach − A reference limit eddy current 
FE problem is first solved by considering perfect conductors via 
appropriate boundary conditions. Its solution gives the source for 
eddy current FE perturbation subproblems in each conductor with its 
actual conductivity. Each of these problems requires an appropriate 
mesh of the associated conductor and its surrounding region. 

Findings − The skin and proximity effects in inductors can be 
accurately determined in a wide frequency range, allowing for a 
precise consideration of inductive phenomena as well as Joule losses 
calculations in thermal coupling. 

Originality/value − The developed subdomain method allows to 
accurately determine the current density distributions and ensuing 
Joule losses in conductors of any shape, not only in the frequency 
domain but also in the time domain. It extends the domain of validity 
and applicability of impedance boundary condition techniques. It 
also allows the solution process to be lightened, as well as efficient 
parameterized analyses on signal forms and conductor 
characteristics. 

Keywords − Impedance boundary condition, Perturbation 
technique, Subdomain finite element method, Skin and proximity 
effects, Time and frequency domains 
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I. INTRODUCTION 
A precise consideration of the skin and proximity effects in 

conductors is important for an accurate calculation of their 
field distribution and the ensuing Joule losses. Calculating 
these effects with the classical finite element (FE) method 
usually presents difficulties. The mesh must be fine enough 
with respect to the skin depth in all the materials, which then 
leads to a large system of equations. 

Impedance boundary conditions (IBCs) (Krähenbühl and 
Muller, 1993) defined on the conductor boundaries are an 
alternative to avoid meshing the conductor interior. Such 
boundary conditions (BCs) are nevertheless generally based 
on analytical solutions and in practice only valid far from any 

geometrical discontinuities, e.g. edges and corners. They are 
also generally restricted to frequency domain and linear 
analyses. 
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In this contribution, a method is developed to overcome the 
limitations of IBCs, considering conductors of any shape not 
only in the frequency domain but also in the time domain. The 
magnetic vector potential FE magnetodynamic formulation is 
used. The developed method is based on the coupling of 
reference and perturbation solutions (Badics et al., 1997; 
Dular and Sabariego, 2007; Dular et al., 2007), each of these 
being calculated in distinct meshes. A reference limit eddy 
current FE problem is first solved by considering perfect 
conductive properties, via appropriate BCs on the conductor 
boundaries. The solution of the limit problem gives the 
sources for FE perturbation subproblems in each conductor 
then considered with a finite conductivity. Each of these 
problems requires an appropriate volume mesh of the 
associated conductor and its surrounding region. The 
developed technique is validated on application examples. Its 
main advantages versus the IBC technique are pointed out. 

II. REFERENCE AND MODIFIED  EDDY CURRENT PROBLEMS 

A. Canonical problem in a strong form 
A canonical problem p consists in solving the 

magnetodynamic equations in a bounded domain Ωp, with 
boundary Γp = Γh,p ∪ Γb,p = ∂Ωp (possibly at infinity), of the 2-
D or 3-D Euclidean space. The eddy current conducting part 
of Ωp is denoted Ωc,p and the non-conducting one Ωc,pC, with 
Ωp = Ωc,p ∪ Ωc,pC. Massive conductors belong to Ωc,p. The 
subscript p of each object refers to the associated problem p. 

The equations, material relations, boundary conditions 
(BCs) and interface conditions (ICs) of problem p are 

 curl hp = jp ,     curl ep = – ∂t bp ,     div bp = 0 , (1a-b-c) 
 bp = µp hp + bs,p ,     jp = σp ep + js,p , (1d-e) 
 n × hp|Γh,p

 = 0 ,  n × ep|Γe,p ⊂ Γb,p
 = 0 ,  n ⋅ bp|Γb,p

 = 0 , (1f-g-h) 
 [n × hp]γp

 = jsu,p,  [n × ep]γp
 = ksu,p,  [n ⋅ bp]γp

 = bsu,p, (1i-j-k) 
where hp is the magnetic field, bp is the magnetic flux density, 
ep is the electric field, jp is the electric current density 
(including source and eddy currents), µp is the magnetic 
permeability, σp is the electric conductivity and n is the 
external unit normal to a boundary. As will be shown, fields 
bs,p and js,p are source fields that will serve for the coupling of 
different subproblems. Note that (1b) is only expressed in 
Ωc,p, whereas it is reduced to the form (1c) in Ωc,pC. Also (1g) 
is more restrictive than (1h). The notation [ ⋅ ]γ = ⋅ |γ+ – ⋅ |γ– 
expresses the discontinuity of a quantity through any interface 
γ (with sides γ+ and γ–), which is allowed to be non-zero. The 
associated surface fields jsu,p, ksu,p and bsu,p may be either 
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known or not, respectively for fixing constraints or post-
processing results. Both uses will be tackled. 

B. Reference and perturbation problems 
The objective is solving successive problems, the 

superposition of which gives the solution of a complete 
problem. For the case of two subproblems, the complete 
solution is 
 h = h1 + h2 ,  b = b1 + b2 ,  j = j1 + j2 ,  e = e1 + e2 , 
 jsu = jsu,1 + jsu,2 ,  ksu = ksu,1 + ksu,2 ,  bsu = bsu,1 + bsu,2 . (2) 

As first step, a problem p = 1 of form (1) is defined and 
called reference or source problem. Its source fields in (1d-e) 
are set to zero 
 bs,1 = 0 ,     js,1 = 0 . (3a-b) 

Both small and large perturbations of this problem are 
considered. These can result from the change of properties of 
existing materials (Badics et al., 1997) or from the addition of 
new materials in the ambient region (Dular and Sabariego, 
2007), which actually also amounts to changing some material 
properties. A problem p = 2 of same form (1) is then defined 
as a perturbation problem that results from a change of 
permeability or conductivity, from µ1 to µ2 or σ1 to σ2, in 
some subregions. It is defined in domain Ω2, i.e. a modified 
form of Ω1. For linear materials, the complete problem 
resulting from this perturbation has a solution with form (2) 
under the condition that the source fields  in (1d-e) are given 
by 

 bs,2 = (µ2 – µ1) h1 ,     js,2 = (σ2 – σ1) e1 . (4-5) 
This way the sum of all the equations and relations of (1) 
respectively for p = 1 and 2 gives exactly these of the complete 
problem. Nonlinear analyses can be classically treated inside 
each problem, with possible inter-problem iterations. 

The perturbation fields are still governed by the classical 
Maxwell equations (1a-b-c) whereas their associated material 
relations include now the additional volume sources (4) and 
(5). These sources usefully only occur in the modified regions. 

Solving the perturbation problem p = 2 instead of the 
complete one enables to avoid operations already performed 
in the reference problem p = 1. At the discrete level, the 
meshes of both reference and perturbation problems can be 
significantly simplified, each problem asking for mesh 
refinement of different regions. 

C. Possible approximation of the perturbation problem 
As an approximation, domain Ω2 can disregard some 

materials initially present in domain Ω1, while these must 
exist in the considered complete problem.  At the discrete 
level, this allows to reduce the meshing operations and the 
computational efforts in solving the perturbation problem. In 
particular, any intersection of non-material regions of Ω2 with 
the material regions of Ω1 is thus allowed (Dular and 
Sabariego, 2007; Dular et al., 2007). 

With such an approximation, the sources (4) and (5) are not 
applied in the omitted material regions. The material relations 
for the complete fields in these regions are thus 

 b1 + b2 = µ1 h1 + µ2 h2 ,     j1 +  j2 = σ1 e1 + σ2 e2 . (6a-b) 
They can be transformed, with (2), as 

 b = µ1 h + (µ2 – µ1) h2 ,     j = σ1 e + (σ2 – σ1) e2 , (7a-b) 

to point out the error made when their second terms are not 
negligible. This is the case when the material properties differ 
too much between states 1 and 2, and the perturbation fields 
are too large compared to the reference fields. The correct 
relations, b = µ1 h and j = σ1 e, are only rigorously fulfilled in 
the regions where µ and σ are unchanged. 

For large perturbations, iterations between these problems 
are required to ensure an accurate solution. Successive 
perturbations are thus to be calculated, not only from problem 
1 to problem 2 but also from the latter to the former. The 
perturbation of problem 2 then becomes a source for problem 
1 with, similarly to (4-5), the non-zero source fields 

 bs,1 = (µ1 – µ2) h2 ,     js,1 = (σ1 – σ2) e2 . (8-9) 

III. A REFERENCE PROBLEM WITH PERFECT CONDUCTORS 
Some conductors Ωcpe,1 ⊂ Ωc,1 ⊂ Ω1, of boundary 

Γcpe,1 = ∂Ωcpe,1, are first considered as perfect in the reference 
problem  p = 1. Their conductivity thus tends to infinity, which 
results in a zero limit skin depth and surface currents. The 
surface currents are considered to flow between the two ideal 
layers of Γcpe,1, denoted Γcpe,1+ and Γcpe,1– (inner and outer 
sides with regard to Ωcpe,1). The domain Ωcpe,1 can be 
extracted from Ω1 in (1) and treated via a BC of zero normal 
magnetic flux density on its boundary Γcpe,1+. Given that no 
field exists in Ωcpe,1, the same BC appears on Γcpe,1–. One 
thus has 

 n ⋅ b1|Γcpe,1
+ = 0 ,     n ⋅ b1|Γcpe,1

– = 0 . (10a-b) 
However, the trace of the magnetic field is unknown on 

Γcpe,1+ and vanishes also on Γcpe,1–, i.e. with (1i), p = 1, 

 n × h1|Γcpe,1
+ = jsu,1 ,     n × h1|Γcpe,1

– = 0 . (11a-b) 
The perturbation problem p = 2 then considers 

Ωcpe,2 = Ωcpe,1 ⊂ Ωc,2 with its finite conductivity σ2, which 
alters the distribution of the eddy current density and the other 
fields. The fields in Ωcpe,2 are not surface fields anymore but 
penetrate the conductors. They are solutions of problem (1), 
p = 2, with Ω2 now comprising Ωcpe,2 but with particular ICs 
(1i-k) through Γcpe,2 = ∂Ωcpe,2. 

On the one hand, (1k), p = 2, with (2) leads to 

 [n ⋅ b2]Γcpe,2
 = bsu,2 = bsu– bsu,1 = [n ⋅ b]Γcpe,2

– bsu,1 = 0, (12) 
due to the continuity of n⋅b in the complete solution (2) and 
the zero value of bsu,1 via (10a-b). 

On the other hand, (1i), p = 2, with (2) leads to 

[n×h2]Γcpe,2
= jsu,2 = jsu– jsu,1 = [n×h]Γcpe,2

– jsu,1 = – n×h1|Γcpe,1
+,(13) 

due to the continuity of n×h in (2) and relation (11a). 
The normal component of the perturbation magnetic flux 

density b2 is therefore continuous through Γcpe,2, whereas the 
tangential component of the perturbation magnetic field h2 is 
discontinuous and equals the opposite of the one of the 
reference field h1. This last trace field is a particularization of 
the volume source (5) for a surface perturbation. 

IV. FINITE ELEMENT WEAK FORMULATIONS AND 
CONSTRAINTS 

A. Reference formulation with surface currents 
The eddy current problems p are defined in Ωp with the 

magnetic vector potential formulation (Dular et al., 2000), 
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expressing the electric field ep in Ωc,p via a magnetic vector 
potential ap together with the gradient of an electric scalar 
potential vp, and the magnetic flux density bp in Ωp as the curl 
of ap. 

The resulting a-v magnetodynamic formulation of problem 
p = 1 is obtained from the weak form of the Ampère equation 
(1a), i.e. (Dular et al., 2000), 

1
1

1 1( curl ,curl ')µ −
Ωa a

,1 ,11 1 1 1( , ') ( grad , ')
c ct vσ σΩ Ω+ ∂ +a a a   

 , , (14) 
,1 ,11 1, ' , ' 0

h bΓ Γ+ < × > + < × > =n h a n h a 1
1 1' (F∀ ∈ Ωa )

where F11(Ω1) is a gauged curl-conform function space 
defined on Ω1 and containing the basis functions for a as well 
as for the test function a' (at the discrete level, this space is 
defined by edge finite elements); ( · , · )Ω and < · , · >Γ 
respectively denote a volume integral in Ω and a surface 
integral on Γ of the product of their vector field arguments. 

The surface integral term on Γh,1 accounts for natural BCs 
of type (1f). The term on the surface Γb,1 with essential BCs 
on n⋅b1 is usually omitted because it does not contribute 
locally to (14).  It is however the key for expressing global 
currents (demonstrated hereafter) and post-processing the 
reference solution, a part of which being n × h1|Γb,1

 (this will 
be detailed in the next subsection). 

The BC (10a) on each boundary Γcpe,1 leads to an essential 
BC on the primary unknown a1 that can be expressed via the 
definition of a surface scalar potential u1 (in general single 
valued, if no net magnetic flux flows in Ωcpe, 1) (Dular et al., 
2005), i.e., 

 
,1 ,1 ,1

1 1curl 0 grad
cpe cpe cpe

uΓ Γ⋅ = ⇔ × = ×n a n a n 1 Γ . (15) 

In a 2D model with currents in the third direction, condition 
(15) amounts to defining an unknown constant value for the 
perpendicular component of a1 for each conductor. 

In the reference formulation (14), the perfect conductors are 
extracted from Ω1 and Ωc,1 and are only involved through 
their boundaries Γcpe,1 with condition (15). This latter 
condition is to be strongly defined in F11(Ω1). The boundaries 
Γcpe,1 are thus to be added to Γb,1. 

The surface integral term <n×h1, a'>Γcpe,1
 is non-zero only 

for the function grad u' (from (15)), the value of which is then 
the total surface current I1 flowing in Γcpe,1 (this can be 
demonstrated from the general procedure developed in (Dular 
et al., 2005)). It is zero for all the other local test functions (at 
the discrete level, for any edge not belonging to Γcpe,1). This 
way, the circuit relation can be expressed for each conductor 
Ωcpe,1 and the coupling with electrical circuits is possible. 

B. Perturbation formulation with surface sources 
The weak magnetic vector potential formulation of the 

perturbation problem p = 2 is 

2
1

2 2( curl ,curl ')µ −
Ωa a   

,2 ,2 ,2 ,22 2 \ 2 2 \( , ') ( grad , ')
c cpe c cpet vσ σΩ Ω Ω Ω+ ∂ +a a a  

,2 ,22 2 2 2( , ') ( grad , ')
cpe cpet vσ σΩ Ω+ ∂ +a a a

,22 , '
hΓ+< × >n h a  

. (16) 
,2 ,22[ ] , ' 0, 1

2 2' (F∀ ∈ Ωa
cpe cpeΓ Γ+< × > =n h a )

The approximation (6b) amounts to neglecting the second 
and third terms of (16), while (6a) acts on its first term. 

 A consequence of the b-conform formulation is that ICs 
(12) and (13) are to be defined respectively in strong and 

weak senses. The IC (12) is strongly expressed in F21(Ω2) via 
the continuity of the tangential component of a2 through 
Γcpe,2. The IC (13) can rather only act in a weak sense via the 
surface integral term related to Γcpe,2 in (16). Indeed, the trace 
n × h1 is not known in a strong sense on Γcpe,2+, but rather in 
a weak sense. Accordingly, the local determination of n × h1 
must be avoided. The integral in which it appears is directly 
calculated instead. This latter can be developed as 
  

,2 ,2 ,2
2 1[ ] , ' , '

cpe cpe cpe
+Γ Γ Γ< × > = <− × >n h a n h a  

  (17) 
1,1

1
1 1 1, ' ( curl ,curl ')

cpecpe
µ+

−
Ω ΩΓ= <− × > = −n h a a a

,1\

in case no part of Ωc,1 \ Ωcpe,1 is in contact with Ωcpe,1 
(otherwise the second and third terms of (14) have to be 
considered as well). This way, the surface integral term  
related to Γcpe,2+ in (16) is naturally calculated from a volume 
integral coming from the reference problem. At the discrete 
level, this volume integral is usefully limited to one single 
layer of FEs touching the boundary. 

Because the reference quantity a1 in (17) is initially given 
in the mesh of the reference problem, it has afterwards to be 
expressed in the mesh of the perturbation problem for being 
used in (17). This can be done through a projection method 
(Geuzaine et al., 1999) of its curl limited to the layer of finite 
elements touching Ωcpe,1. 

V. APPLICATION 
A copper inductor with a square section is considered in a 

first test problem. The gap with the return path is reduced to 
1.4 times the square side size (s) to allow proximity effects. 
The copper conductivity is taken as constant (σCu = 5.9 107 Ω–
1m–1), although it varies in thermal analyses. A 2D model 
with a vertical symmetry axis is considered for this inductor 
(Fig. 1). For a direct comparison with the IBC technique, a 
frequency domain analysis is performed. However, the 
subdomain perturbation technique can be directly applied to 
time domain analyses without any change. 

Several working frequencies are considered to cover a 
range of skin depths (δ). An associated normalized variable is 
the skin depth to square size ratio (δ/s) for which the 
particular values 0.05, 0.1, 0.2 and 0.4 are considered. A low 
ratio fulfills the assumption required by the IBC technique for 
obtaining an accurate solution along flat conducting regions, 
whereas the solution in the vicinity of edges and corners 
suffers from inaccuracies as it will be shown. 

The magnetic flux lines of the reference solution are shown 
in Fig. 1. This solution serves as a source for each 
perturbation problem with a given ratio δ/s. Each perturbation 
solution (Fig. 2) is to be added to the reference one to give the 
actual associated magnetic flux solution (Fig. 3). The current 
density distribution in the inductor is however directly given 
by the perturbation solution (Fig. 4). 

For allowing a direct comparison of the absolute 
importance of each solution, the magnetic flux lines in Figs. 1, 
2 and 3 define equal flux tubes. It can then be observed that a 
decrease of the frequency, i.e. an increase of δ/s, leads to a 
perturbation solution of growing importance compared to the 
reference solution. This can be verified via the relative 
importance of the magnetic energy of the perturbation solution 
compared to the one of the complete solution, as shown in 
Fig. 5. 

The perfect conductor solution usually overestimates the 
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magnetic flux density in the vicinity of corners and edges. The 
correction given by the perturbation solution is clearly shown 
in Fig. 2 where flux loops occur around the corners. This is 
also pointed out for a particular ratio δ/s in Fig. 6 (opposite 
direction of the perturbation magnetic flux density compared 
to the reference flux density). In addition to calculating the 
actual solution in the inductor, the perturbation problem 
reduces the reference solution in the exterior region. 

Fig. 7 shows the current density distribution along the 
inductor surface calculated for different ratios δ/s with the 
conventional FE method, the perturbation technique and the 
IBC technique. The first two solutions are in perfect 
agreement, whereas the IBC underestimates the current 
density up to a distance of about 3 δ from each corner. The 
resulting error on the current and Joule power densities is 
shown in Fig. 8. It significantly increases in the vicinity of the 
conductor corners, up to 45% for the Joule power density and 
25% for the current density. This affects the accuracy of the 
total losses (Fig. 9). As for the developed perturbation 
technique, it successfully and accurately adapts its solution to 
any frequency (or δ). 

A second test problem consists of a transverse flux system 
with two 3-turn copper inductors on both sides of a 
conductive nonmagnetic plate. Half of a cross section of this 
system defines the considered 2D model (Fig. 10).  

The inner aperture of the inductor is 20 mm, each inductor 
cross section is 10 mm by 6 mm and the gap between two 
successive turns is 2 mm.  The copper conductivity is still 
considered as constant. The plate thickness is 2 mm. Two 
electric conductivities are considered for the plate 
(σPlate = 106 Ω–1m–1 and 5 107 Ω–1m–1). The working 
frequency of the inductor current is chosen for having 
δ/s = 0.2, with s = 10 mm, i.e. f = 1073 Hz. 

For this problem, the perturbation technique is applied only 
on the inductor. The plate is considered in the classical way. It 
is verified that, here again, the same level of inaccuracy is 
obtained with the IBC technique (around 25% for the inductor 
Joule losses), while the perturbation technique (Fig. 10) gives 
very accurate results. An accurate calculation of the current 
density distribution in the inductor is important for calculating 
its accurate coupling with the plate. The high conductive plate 
is responsible for an inverse proximity effect in the inductor, 
bringing the main current closer to the plate, while the 
opposite occurs with the low conductive plate. For high and 
low conductive plates, a uniform inductor current density 
would respectively underestimate and overestimate the Joule 
losses in the plate of 10% and 22%, in addition to 
underevaluating the Joule losses in the inductor. 

VI. CONCLUSIONS 
The developed subdomain perturbation method offers a 

way to uncouple FE regions in eddy current frequency and 
time domain analyses, allowing the solution process to be 
lightened. The skin and proximity effects in inductors can be 
accurately determined in a wide frequency range, allowing 
precise Joule losses calculations. 

Once calculated, the reference solution can be used in 
various subproblems. This allows efficient parameterized 
analyses on the power supply and the electric conductivity 
(e.g. via a temperature dependence) of the inductors in a wide 
range, i.e. on parameters affecting the skin depth. 
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Fig. 1. Two-dimensional model (right part of the inductor and vertical 
symmetry axis on the left) and magnetic flux lines (phase 0) for the reference 
solution b1. 

Y

XZ  
Y

XZ  
Y

XZ  
Y

XZ  
Fig. 2. Magnetic flux lines (phase 0) for the perturbation solution b2 (from left 
to right for δ/s = 0.05, 0.1, 0.2 and 0.4). 
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Fig. 3. Magnetic flux lines (phase 0) for the perturbed solution b (from left to 
right for δ/s = 0.05, 0.1, 0.2 and 0.4). 
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Fig. 4. Current density distribution (modulus) for the perturbation solution 
(from left to right for δ/s = 0.05, 0.1, 0.2 and 0.4). 
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Fig. 5. Importance of the magnetic energy of the perturbation solution with 
respect to the reference solution as a function of the skin depth – inductor size 
ratio. 
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Fig. 6. Magnetic flux density (zoom on the lower left corner of the inductor; 
phase 0; for δ/s = 0.1) for the reference solution (left) and the perturbation 
solution (middle), the sum of which gives the complete solution (right). 
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Fig. 7. Current density modulus along the inductor top surface for the 
conventional FE solution, the perturbation technique and the IBC technique; 
the position is normalized for varying from –0.5 to 0.5 along the square side, 
allowing a direct comparison with the ratio δ/s. 
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Fig. 8. Relative differences between the solutions (Joule power and current 
densities) of the perturbation and IBC techniques. 
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Fig. 9. Inaccuracy of the IBC technique for the Joule losses calculation in a 
conductor with corners as a function of the skin depth – inductor size ratio. 
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Fig. 10. Two-dimensional model of a transverse flux system (3-turn inductor 
above a half plate, with perpendicular flux horizontal symmetry axis below); a 
low (left) and a high (right) electric conductivity are considered for the plate; 
from top to bottom: magnetic flux lines (phase 0) for the reference solution b1 
with a perfectly conductive inductor, the perturbation solution b2 and the 
perturbed solutions b (for δ/s = 0.2, with s the height of the inductor); bottom: 
current density distribution (modulus). 
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