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A perturbation approach for the modelling of
eddy current nondestructive testing problems
with differential probes

Ruth V. Sabariego and Patrick Dular

Abstract— A perturbation technique applied to the finite ele-
ment modelling of eddy-current nondestructive testing (ECNDT)
problems is developed for taking into account differential probes.
It concerns a h—conform formulation. The source term of the
formulation is directly determined by the projection of the
unperturbed field in a relatively small region around the defect.
The voltage change due to the presence of the flaw is calculated by
performing an integral over the defect and a layer of elements in
the exterior domain that touch its boundary. The considered test
case involves a shielded differential probe scanning the surface
of a metal specimen for the detection of flaws.

Index Terms— Perturbation method, finite element method,
nondestructive testing, eddy currents

I. INTRODUCTION

In eddy-current nondestructive testing problems (ECNDT),
a fast and accurate calculation of the probe response is
often required for identifying the flaws from measured data.
When the excitation is time-harmonic, the observed quantity
is usually the impedance variation due to the presence of the
defect.

Several variants of the volume integral method (VIM) have
been reported in literature [1], [2]. Herein, defects can be
represented by a distribution of current dipoles in its volume.
A boundary element method, with a VIM description for the
defect, is proposed in [3]. As only the crack is discretised, the
calculations associated to different probe positions are very
fast. However, these techniques become extremely expensive
in case of more complicated geometries (other than infinite
stabs or tubes with homogeneous and linear material parame-
ters).

The finite element method [4] allows to overcome this
drawback, but may require a dense discretization in the vicinity
of the defect (large 3D mesh). The impedance (or voltage)
change due to the defect is calculated as the difference of the
impedance values with and without flaw. Further, calculations
for different probe positions are performed independently,
which is time consuming.

A b-conform based finite element scheme that directly
calculates the distortion of the eddy-current due to a flaw
was proposed in [5]. The counterpart h — ¢ formulation is
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treated by the authors in [6]. Herein, the computation is split
into a computation without flaw and a computation of the
field distortion due to its presence. The unperturbed field is
calculated in a large region, and applied as a source in the
flaw for the second computation. The perturbed field can thus
be determined in a reduced domain around the defect, what
allows for an adapted discretization.

This paper deals with an extension of the method for taking
into account differential probes. Further, an expression for the
voltage variation is derived. As test case, we consider a piece
with a crack and a shielded differential probe that scans its
surface. The computational cost for both the conventional FE
approach and the FE perturbation method will be discussed.

II. PERTURBATION METHOD

The unperturbed magnetic field h,, is obtained by solving
the h—conform magnetodynamic formulation [7] in the whole
domain. Then we consider a relatively small region around the
defect without the probe. Note that the mesh of this reduced
region is completely independent from the mesh of the whole
domain and thus better adapted to the dimensions of the defect.

We consider a magnetodynamic problem in a bounded
domain © (boundary I') of R3. The eddy current conducting
part of  is denoted €. and the non-conducting one Q¢
Q = Q.U QY). Source conductors, with a given current
density 7, are comprised in Q, C QF. A flaw ¢ (boundary
I's) appears in €2.. The source of the perturbation problem
in 1y is calculated through a projection method of the eddy-
current distribution without defect in the reduced domain.

For the sake of simplicity, let us assume hereafter a zero-
conductivity flaw oy = 0 with the same magnetic permeability
py = p as the host material (.. Further both are considered
to be linear and isotropic. Let us particularise the Ampere
law for the unflawed (subscript u) and flawed (subscript f)
arrangements, i.e. curlh,, = oe, and curlhy = 0, where h
and e are the magnetic and electric fields. Subtracting these
two expressions, the source is described as an electric current
density in the flaw generating the perturbation, i.e.

jsf =curlh = —0ce, = —curl h,,, (D

with h = hy — h,, the perturbation magnetic field [6]. The
extension of the formulation to other cases is straightforward.
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A. h—conform magnetodynamic formulation

Adopting the magnetic field formulation, the general ex-
pression of the magnetic field h in Q is h = hg + h,, with
h a source magnetic field in 2 satisfying curlhy = 5, and
h, the reaction magnetic field in (2.. In the non-conducting
region QCC the reaction field h, can be derived from a scalar
potential ¢ such that h, = —grad ¢.

The h — ¢ magnetodynamic formulation is obtained from
the weak form of the Faraday law:

Oy (uh, K)o+ (o tcurl h,curl '), +(n x e, h')r =0,

VRh' € Frp(Q) (2)
where n is the outward unit normal vector on I, part of the
boundary of Q; (-,-)q and {-,-)r denote a volume integral
in Q and a surface integral on I' of the product of their
arguments; Fj4(€2) is the function space defined on  and
containing the basis functions for h (coupled to ¢) as well as
for the test function k' [7]. At the discrete level, this space is
built with edge finite elements. The trace of e is a constraint
associated with I' (this constraint can e.g. be associated with
a homogeneous natural boundary condition or with a global
quantity) [7].

The unperturbed field h, (with 0y C Q) is obtained by
particularising (h = h,,) and solving (2). This field h,, is then
projected on a reduced domain Q' C 2 around the defect. Note
that projecting only h,, is not sufficient as this way the local
current j,, = curl h,, will not be conserved. Furthermore, the
trace of source field n x h,y on I'y (hsy = —h,,) contributes
to the exterior domain 2'\Q;. Indeed, the following interface
condition has to be satisfied on I'y,

n'j|1—‘f:7n'jsf ‘Ff7 €)]
which is equivalent to considering
nxhlp,=-nxgrad¢ |r, +n < hgy |r, . )

The source of the perturbation problem in 2 is calculated
through a projection method in £’ as

(curl hyf,curl h') oy — (44, curl h)or = 0,

Vh' e Fh¢(Q/), (®))
where a gauge condition using a tree-cotree method at the
discrete level in €' is applied to ensure the uniqueness of the
solution. The circulation of h,; on the edges of '\ Q; is fixed
to zero. For the sake of conciseness, hereafter we refer to ¢/
as Q.

Taking into account the source in the flaw (1), the pertur-
bation problem is completely characterised by (2) applied to
the perturbation field h as follows:

O (uh, h)q + (o~ Lcurl b, curl h')QC\Qf + 0 (hsp, R )q
+(jsf,Clll"1h/)Qf = 0, Vh S Fh¢(Q) . (6)

B. Calculation of the voltage variation

The final goal is to calculate the voltage variation of the
differential coil which allows us to detect and characterize
the defect. However, the variation of the observed quantity is
usually under 1% of the total value or even smaller in practical
cases. The accurate calculation of this voltage variation AU
is crucial.

Taking into account the developments presented in [6], a
suitable definition (position of the cut of the coils linked to
the direction of the current [7]) allow us to directly calculate
the variation of the voltage AU between the unflawed and
flawed problem. It can be accurately obtained by performing
an integral over the defect 2, and a layer of elements in Q\Q;
that touch I'y.

A suitable treatment of the surface integral term in (2)
consists in naturally defining a global voltage U (AU for
differential probes) in a weak sense. We can define a global
test function for h with a unit circulation along any current
tube of the inductor so that the surface integral in (2) can be
expressed as the product of a global voltage U and a unit
global current I (curl h')[7].

Let us specify (2) for the unflawed problem, it holds

Ot (phu, K )q + (0 teurl by, curl '), = U, I(curl h'),
Vh' € Frs(Q). ()

Analogously, for the flawed problem, we can write

Oi(phg,h')g + (o curl hy, curl h)ona,+

(ef,curlh')q, = UsI(curlh’), Vh' e Frs(Q), (8)

where we have added the term (ey,curl A')q, which is not
cancelled as in the general case due to the imposed perturba-
tion current in the flaw, i.e. curl b’ #01in Qf C QCC

Choosing as test functions A’ = hy in (7) and h' = h,, in
(8) and subtracting (7) from (8), we obtain

AUI=Uy-U,)I =
= —(o teurl hy,curl hy)g, + (eg,curlhy)q, =
©))

where the first volume integral cancels because hy is curl-free
in Qf and I is the real current injected in the inductor.

The perturbed electric field ey is not known in the flaw but
can be calculated by means of (8) with ' = h, ¢- This way
I(curlh') = 0 and the voltage variation AU is obtained as

= (ey,curl hy)q, ,

AU I = (ey,curl hy)o, = —(ef,curlhyp)g, =

= (o7 "curl (h+hyg), 5o, +0i(u(h+hgs), hap)a,
(10)

where the domain of integration, at the discrete level, is
actually limited to 2y and a layer of elements in Q\Qy
touching I'¢ due to the definition of hy.

Consequently, no integration of any flux variation in the
coils is required, which would not be directly accessible
because of the lack of explicit solution there (no mesh of the
coils for the perturbed problem).
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III. APPLICATION EXAMPLE

We consider a Titanium piece (¢ = 1.798 MS/m, Fig. 1)
with a semi-cylindrical crack (I mm long, 0.2 mm wide and
0.1 mm deep) at the upper border. A magnetically shielded
differential probe scans the outer surface (Fig. 2). It consists
of a driver coil carrying an imposed sinusoidal current of 1 A
and frequency f = 200kHz, that surrounds two D-shaped
sensing coils wound around a ferrite core (u,-=1000). The lift-
off between the coil and the surface of the piece is 0.1 mm.

| 1 <

Cut of the Titanium piece with defect at the upper border
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Fig. 2. Longitudinal cut (left) and mesh (right) of the shielded differential
probe: driver coil surrounding two D-shaped sensing coils

We are interested in calculating the difference in voltage
AU of the two sensing coils that comprises the differential
probe. A single source field (used as the test function h’ in
(2)) associated to these coils connected in series allows us to
directly calculate AU in both the unflawed AU, and flawed
problem AUy [7].
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Fig. 3. 3D FE mesh of both the complete domain 2 (left) and the reduced
domain Q' of size D = 3.5 used in the perturbation method. The source
field is defined in the flaw, the excitation coil is taken as air.

We define the size of the reduced domain Q' in terms of
the distance D (multiple of the skin depth § = 1/v/7fuc =
0.84 mm of the tube) from the boundary of the crack to
the boundary of €. The size of the reduced domain €' is
chosen taken into account the 2D results presented in [6] and
depicted for convenience in Figs. 4 and 5. Herein, we vary the
dimensions of Q' around the defect in terms of D and compare
the voltage variation AU obtained with both the conventional
approach (the unflawed and the flawed problems are solved
successively) and the proposed perturbation method (directly
integrating in a sub-domain of €’). A correlation between
the parameter D and the accuracy of the results can then be
established.
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Fig. 4. Relative error (%) in the real part of AU as a function of the
normalised size of €’
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Fig. 5. Relative error (%) in the imaginary part of AU as a function of the
normalised size of '

One observes in Figs. 4 and 5 that the error in the real and
imaginary parts of AU is smaller than 1% for D > 34§ and
D > 26, respectively. Therefore, we take a reduced domain
Q' of size D = 3.54 for our 3D computations.

The FE discretisation of the complete domain €2, with
107186 tetrahedra, yields 85676 unknowns for the unperturbed
problem and 83008 unknowns for the perturbed problem. The
FE discretisation of the reduced domain €/, with 50085 tetra-
hedra, yields 73072 unknowns for the perturbation problem.
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Note that the discretisation of the reduced domain €’ is finer
and better adapted to the dimensions of the crack (Fig. 3).

Fig. 6. Real and imaginary part of unperturbed magnetic field

Fig. 7. Real and imaginary part of unperturbed current density

The real and imaginary parts of the unperturbed magnetic
field, with the coil centered at the center of the flaw, are
depicted in Fig. 6. The real and imaginary parts of the unper-
turbed electric current density are shown in Fig. 7. The real
and imaginary parts of the perturbation source current imposed
in the flaw Q¢ in the perturbation method are represented in
Fig. 8.

Fig. 8. Real and imaginary part of the perturbation source current density
imposed in the flaw €2

The voltage variation obtained with the traditional approach
is AU = —0.402 4+ ¢ 0.113mV. When applying the proposed
perturbation method, we achieve AU = —0.406 +:0.114 mV.
The error in both the real and imaginary parts is thus approx-
imately 1%.

A. Computational cost

The system of algebraic equations is solved by means of
the iterative solver GMRES [8] with ILU-preconditioning on
a 2.26 GHz Intel Pentium M Processor.

The FE conventional approach requires performing two
successive computations on the same mesh of the complete
domain described above. The unperturbed and perturbed prob-
lem are solved after 4605 s and 4256 s, respectively. The total
computation time equals thus 8861 s.

When applying the perturbation scheme, the two given
meshes are needed: the mesh of the complete domain €2 and
the finer mesh of the reduced domain §2'. The solution of the
perturbation method is obtained after 6241s. Therefore, the
savings in memory reach approximately 30%. This reduction
illustrates the efficiency of the method.

IV. CONCLUSION

A 3D FE perturbation technique based on the h-conform
magnetodynamic formulation has been elaborated. The unper-
turbed field is conventionally calculated in the complete do-
main taking advantage of any symmetry or analytical solution
and applied as a source in the flaw. The perturbed field is then
determined in a reduced domain surrounding the defect. Its
discretisation is thus chosen independently of the dimensions
of the probe and the specimen under study and thus better
adapted.

Furthermore, the voltage variation due to the presence of the
flaw is efficiently obtained by performing an integral over the
defect and a layer of elements in the exterior domain that touch
its boundary. Therefore no integration of any flux variation in
the coils is required. Significant savings in computation time
are achieved.
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