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A Nonlinear Time-Domain Homogenization
Technique for Laminated Iron Cores in
Three-Dimensional Finite Element Models

J. Gyselinck, R. V. Sabariego and P. Dular

Abstract— The authors present a novel nonlinear homogeniza-
tion technique for laminated iron cores in 3D FE models of
electromagnetic devices. It takes into account the eddy current
effects in the stacked core without the need of modelling all
laminations separately. A nonlinear constitutive magnetic law is
considered. The system of nonlinear algebraic equations obtained
after time discretisation is solved by means of the Newton-
Raphson scheme. By way of validation the method is applied
to a 3D FE model of a laminated ring core with toroidal coil.

I. INTRODUCTION

The magnetic cores of electromagnetic AC devices are often
laminated as this is an efficient measure for reducing the eddy
current losses due to the time-varying flux. As a result, the
eddy current losses, and the iron losses as a whole, have a
limited effect on the device characteristics; they obviously
affect the overall losses and thus the efficiency of the device,
but to a lesser extent e.g. the torque output. Accordingly, in
2D or 3D FE calculations, the stacked iron core is commonly
assumed nonconducting and homogeneous (i.e. not laminated),
and a nonlinear single-valued BH-curve is adopted. Based
on the FE results, i.e. the time and space distribution of the
induction in the iron core, an estimation of the iron losses
may be obtained a-posteriori [1]. The FE analysis may be
enhanced by considering a more involved constitutive law for
the homogenized iron. A static or dynamic hysteresis model
may be adopted, along with a 1D low-frequency eddy current
model, in which skin and edge effects in the laminations are
neglected [2].

In some applications the eddy currents in laminated iron
cores may considerably alter the overall behavior of the
device under study. This may be the case in power elec-
tronic applications where working frequencies and harmonic
distortion are constantly increasing. Finely discretizing each
separate lamination in a FE modelling is mostly out of the
question. Such a brute-force approach would indeed result in
huge memory requirements and calculation times. Dedicated
homogenization methods are thus indispensable.
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In a frequency-domain FE analysis, considering non-
saturated iron, a complex reluctivity may be adopted in the ho-
mogenized core [3]. The frequency-dependent complex value
follows from a 1D lamination model including skin effect
[5]. This can be extended to the time domain by introducing
skin-effect basis functions and additional degrees of freedom
in the iron core [4]. Both approaches are limited to a linear
magnetic material. In view of the inherent magnetic saturation
of many electromagnetic apparatus, nonlinear methods are
of more practical interest. In this paper the time-domain
homogenization method is extended to the nonlinear case.
After a brief outline of the method, it is validated by means
of a 3D test case.

II. TIME-DOMAIN HOMOGENIZATION
A. 1D model of a lamination & skin effect basis functions

We consider a lamination of thickness d (—d/2 < z < d/2)
that carries a magnetic induction b(z,t), along e.g. the x-
axis, as shown in Fig. 1. A homogeneous isotropic material
of conductivity o is assumed. The magnetic field h(z,t),
equally along the z-axis, is linked to the induction b(z,t)
by the reversible constitutive law h = hy(b). The current
density j(z,t) is along the y-axis. Imposing a nonzero net flux
and a zero current, the following symmetries hold: b(z,t) =
b(—z,t), h(z,t) = h(—2,t) and j(z,t) = —j(—2,t). The
1D eddy current problem is governed by the following partial
differential equation:
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Fig. 1. Variation of b, h and j throughout lamination thickness

Relevant to the homogenization are the induction averaged
over the thickness, b, (t) = % ffZQ b(z,t) dz, and the surface
magnetic field hy(t) = h(z = £d/2,t).

The resolution of (1) can be developed either in the fre-
quency domain [3], [6] or the time domain [2], [3], [6]. The
frequency-domain approach is limited to linear materials, hav-

ing a constant permeability ;5. = b/h or constant reluctivity
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vse = h/b, whereas the time-domain approach is applicable to
nonlinear materials as well.

In the frequency domain, considering a sinusoidal h(t)
and b,(t) of frequency f (or pulsation w = 2mf), the
equivalent complex reluctivity vy = h; /b, with hg and b,
the complex representation of the hs(t) and b,(t), has the
following analytical expression:

d/d(sinhd/5+sind/5
2 \coshd/§ — cosd/d

sinhd/é — sin d/5)
I osh d/o —cosd/d
2

where j is the imaginary unit, and 6 = \/2/ousw the pene-
tration depth [5]. This complex reluctivity is straightforwardly
adopted in a FE analysis, without any additional computational
cost. Its imaginary part effects the eddy current losses.

Vfe = Vfe

An approximate time-domain solution of (1) can be ob-
tained with a 1D FE model, possibly considering involved
constitutive laws [6]. In order to minimize the number of
spatial degrees of freedom, polynomial basis functions that
are nonzero over the complete interval —d/2 < z < d/2 are
introduced for interpolating b(z,¢) and h(z,t); these are the
so-called skin effect basis functions.

The starting point is the expansion of b(z, t):

b(z,t) = ap(2) ba(t) + as(2) ba(t) +..., (3)

where the even polynomial basis functions ap(z) =1, as(z) =
—3 + 6(2/d)?, ..., are orthogonal, éffﬁz a;(2)a;(z)dz =
0 if ¢ # 7, and have unit value on the lamination surface,
a;(z=%4)=1.

The magnetic field i(z,t) is subsequently expanded consid-
ering the surface magnetic field h(¢) and the even polynomial
basis functions Sj(z) of order k > 2:

db,, dby

h(z,t) = hs(t) — od*Ba(z )E_Ud%)‘l( z) — T

where the latter are zero on the lamination surface, §;(z =

+42) = 0, and further determined so that b(z,t) and h(z,t)

2
satisfy (1) identically, i.e. ‘flfg = —a;_o(z)/d?. These condi-

tions produce then for k equal to 2 and 4: 35(z) = 1 —1(z/d)?
and B4(2) = —55 + +(2/d)* — 5(2/d)* respectively.

When considering a finite number of basis functions, up to
order n for b(z,t) and order n + 2 for h(z,t), the constitutive
law h = hfe(b), whether linear or nonlinear, cannot be satisfied
identically. It can be weakly imposed as follows:

/2

d / d/2

which leads to 1+n/2 equations (k = 0,2, ...,n) in terms of
ba(t), ba(t), ..., bu(t), and hy(t). For instance, for the linear

case with n = 2, a system of two linear differential equations
is obtained:

ol = Lo 2]+ i

with either h4(t) or b, (t) given function of time. By means of
e.g. the so-called #-scheme, which amounts to the backward
Euler and Crank-Nicolson scheme with 6 equal to 1 and 0.5

NG

(b= 1)) on(z) dz = 0. (9)
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respectively, a system of algebraic equations is obtained for
each time step from ¢; to ;11 = t; + At.

For a given maximum error, the order n of the spatial
interpolation of b(z,t) has to been increased along with
the frequency f (or the relative lamination thickness d/¢).
Allowing a 1% maximum error on the equivalent complex
reluctivity (2), a constant interpolation (n = 0) is valid up to
roughly d/6 = 1. Adding one or two interpolation functions
(n = 2 and n = 4 resp.) extends the validity range to d/d
equal to 4 and 8 respectively [4].

In the nonlinear case with n = 2, the system (5) becomes

hs] od®[35-7]d [b] 1 [ ao
[0] T 420 {7 2] dt {bg] + d/d/};fe(b(z’t)) LJ dz,
(N
with b(z,t) = by(t) + aa(2) ba(t). The nonlinear algebraic
equations that result from the time discretization can be solved

by means of the Newton-Raphson method. With given h(t),
the Jacobian matrix reads

od? 35 —7 /d/2 dhse | apag apas
420At -7 2 d d/2 db Qo0 (g

}dzy ®)

where dgg" is the differential reluctivity. The integration in

the interval [0, d/2], exploiting the symmetry with respect to
z = 0, can be done numerically, by means of e.g. the 5-point
Gauss scheme for the case n = 2.

B. FE implementation

We consider an eddy current problem in a 3D domain {2 and
its formulation in terms of the magnetic vector potential a. The
induction b = curla and the electrical field e = —0,a thus
satisfy divb = 0 and curle = —0;b. The current density j is
imposed in a subdomain €2, and induced in another conducting
subdomain ;. The vector potential is e.g. discretised by
means of edge basis function 70 a = Zj a;y - The weak
form of Ampere’s law curl h = j produces as many equations
as degrees of freedom a;: N

(h(curla), curly,)o + (00,7, ), = (4,7,)0.. (9

where h = h(b) is the vector constitutive law in Q; (-, )q
denotes the volume integral in €2 of the scalar product of the
two vector arguments. The uniqueness of a can be ensured
by considering an edge co-tree in the nonconducting domain
Q\ Q.

We consider the case where €2; consists of laminations
of a stacked iron core. The insulating layers between the
laminations are assumed to be negligibly thin (near 100% fill
factor). We will further assume that the h and b vectors are
parallel to the plane of the laminations, as is the case in the
axisymmetric application example below. (See [4] for a more
complete analysis, including non-negligible insulation layers
and perpendicular flux.) If the lamination thickness d is small
compared to the overall dimensions of the core, the surface
magnetic field h, and the average induction b, vary little from
one lamination to the next. On the basis of these quantities,
continuous slowly-varying fields can be defined in every point
of the core volume §);; the latter will be denoted by h, and
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b, as well. According to the 1D lamination model presented
above, h, depends on b, and induction components by, by,
..., the latter being equally the continuus vector extension of
the components by, by, ... introduced above.

The weak form (9) can be simplified by considering h,:

(h(curla), curly, Jova, + (hy, curly,)o, = (4,7,)e,, (10)

as this amounts to considering for Ampere’s integral law,
contours C' that are not linked with the induced current density
in the laminations (see Fig. 3). The eddy current term produced
by ; in (9) thus vanishes.

Fig. 2. Contours for Ampere’s integral law: contour C is linked with the
current in the coil (j.04;) but not with the eddy currents in the laminations
(J1am» resulting in zero net current parallel to the laminations), whereas
contour C'g is linked with both

The induction b in  \ €; and the average induction b,
in €2; will be derived from the vector potential ¢ and its edge
basis function interpolation @ = Zj a;y, defined in the whole
domain §2 (with tree gauging throughout). This guarantees the
continuity of the average normal induction component at the
boundary of €2;. The additional quantities by, by, ... in €2; may
be interpolated with vector basis functions that are element-
wise constant and are directed in two perpendicular directions
in the plane of the laminations; these basis functions are further

denoted by ¢ i

We consider first the linear case, with constant reluctivity v
in Q\ € and v in €, and with n = 2. Using the first line
of (6), the equation (10) becomes

(vewrla, curly,)a\g, + (vfe curla, curly, o, +

2 2 .
(%Btcurlg, curlli)gl —(%&sbg,(ﬂlﬂj)m = (4, li)Qs .
1D
The second line of (6) is weakly imposed in €); considering
each of the basis functions ¢ :

(2, ¢ ), — (98- Brcurla, € e, + (355 0iby, € ), =0. (12)

Let us considering now a nonlinear relation h = h,(b)
between the local vectors b and h in the laminations, with
b = aop(z)b, + az(2)by = curla + as(2) by in case of
homogenization with n = 2.

Equation (10) and the vector extension of (7) give after
space and time discretization a system of nonlinear algebraic
equations that can be solved by means of the Newton-Raphson
method. Deriving the equations with respect to the unknowns
(coefficients of basis functions «; and L') gives rise to the

. . . oh . . . .
differential reluctivity tensor —;*. For isotropic materials with
scalar reluctivity v (b), this tensor can be written as follows:

Ohy,
ob

dvfe
db2

= Vfel+2 bb, (13)

where 1 is the unit tensor and bb the dyadic square of b. In
matrix notation (in 2D case for sake of brevity) this becomes:

2] = gg Z’E s [1 o}rzdyfe [bwm bwby}
o b, b, 01 db?

(14)
The contribution of €2; to the elements of the Jacobian
matrix is thus:

(Q /d/2 Oh, {ao curl'yi}’{ao curwj} dz) . (15)
dJ_qp OO 26, @2, Ql

III. APPLICATION EXAMPLE

In order to validate the proposed homogenization method,
we consider a field problem displaying symmetry with respect
to the xy-plane, and axisymmetry with respect to the z-axis
(Fig. 3). The FE model consists of part of a laminated ring
core (20 laminations, d = 0.5mm, ¢ = 5 - 105 S/m, separated
by 0.02mm thick airgaps), a toroidal 100-turn coil and the
air between the ring core and the coil [4]. A nonlinear BH-
relation is considered for the iron, viz vy = h/b = 100 +
10e!86* with h in A/m and b in T. The linear case has been
treated in [4].
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Fig. 3. 1/8th FE model of laminated ring core (discretization of homo-
genized core) with toroidal coil — zoom: current density in coil and fine
discretization of the laminations

Exploiting the symmetry fully, the FE model can be limited
to the upper half of the geometry (10 laminations) and a wedge
of arbitrary opening angle Af. Volume meshes of hexahedral
and prismatic elements are obtained by circularly extruding
(around the z-axis, over the angle A6 in m layers) a 2D mesh
of quadrangles and triangles of a radial cross-section (in the
xz-plane).

The brute-force calculations, with direct inclusion of the
eddy currents, are carried out with a fine mesh, in which each
of the ten laminations are discretized. A FE model of 1/128th
of the complete geometry (A6 = 27/64, m = 1, 8 layers
of hexahedra per lamination thickness, see zoom in Fig. 3)
produces 14406 spatial degrees of freedom for a.

The homogenization technique is applied to a much coarser
mesh, with only 6 layers of hexahedra for the half-thickness
of the core (see Fig. 3). For a 1/8th model (A = 27/4 and
m = 16), this leads a total of 8680 spatial degrees of freedom
for a (n = 0). With the skin effect approximation n = 2, there
are 2304 additional degrees of freedom for b,.

Time-stepping simulations with imposed sinusoidal current
of same amplitude but of different frequencies f (50Hz,
250Hz and 500 Hz) are carried out. In order to reach steady-
state, three periods [0, 37| are time stepped with the backward
Euler scheme and At = T'/200.
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The flux linkage of the coil is calculated by integrating j-a
over the coil volume. The flux waveforms obtained with the
fine model (reference solution) and the homogenized model
(n = 0 and n = 2) are compared in Fig. 4. One clearly
observes the saturation and the effect of the eddy currents.
The homogenization method produces satisfactory results with
n = 2 for all frequencies considered, whereas with n = 0 it
is sufficiently accurate only for the 50 Hz case.
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Fig. 4. Normalized flux vs time, calculated with fine model and
homogenization method (n = 0 and n = 2)

By way of illustration some results obtained with the fine
mesh and with the 500 Hz current are shown in Figs. 5 and 6.
The variation of the induction throughout the thickness of the
laminations is evidenced in Figs. 5. The circulation of the eddy
currents with the 180°-turn at the lamination edge is depicted
in Fig. 6.
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Fig. 5. Variation of induction throughout thickness of lower lamination at
500 Hz, obtained with fine model (4 equidistant instants in half a time period;
at average radius)
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Fig. 6. Current density in cross-section of lower lamination (near inner
radius) at 500 Hz obtained with fine model

Transient and steady-state waveforms of b, and b, obtained
with the homogenization method (n = 2) are shown in Figs. 7
and 8.

IV. CONCLUSION

A novel homogenization technique for laminated iron cores
in 3D FE models has been proposed. It can be used for
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Fig. 7. 50Hz induction components b, (t) and b (t) at average radius
(homogenization with n = 2)
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Fig. 8. 500Hz induction components b, (t) and b2 (t) at inner, average
and outer radius (homogenization with n = 2)

time-stepping simulations with the magnetic vector potential
formulation. The eddy current effects (including skin effect)
in the laminations are taken into account by considering skin-
effect basis functions and associated degrees of freedom in the
homogenized core.

The proposed homogenization method is validated by means
a 3D axisymmetric test case. The results agree well with those
obtained with a fine model, i.e. in which all laminations are
finely discretized and the eddy currents are directly modelled.

REFERENCES

[1] G. Bertotti, A. Boglietti, M. Chiampi, D. Chiarabaglio, F. Fiorillo and
M. Lazzari, “Calculation of eddy currents and associated losses in
electrical steel laminations,” IEEE Trans. on Magn., Vol. 27, pp. 5007—
5009, Nov. 1991.

[2] J. Gyselinck, L. Vandevelde, J. Melkebeek, P. Dular, F. Henrotte, and
W. Legros, “Calculation of eddy currents and associated losses in elec-
trical steel laminations,” IEEE Trans. on Magn., Vol. 35, pp. 1191-1194,
May 1999

[3] P. Dular, J. Gyselinck, C. Geuzaine, N. Sadowski, and J. P. A. Bastos,

“A 3D magnetic vector potential formulation taking eddy currents in

lamination stacks into account,” IEEE Trans. on Magn., Vol. 39, pp. 1424—

1427, May 2003.

J. Gyselinck and P. Dular, “A time-domain homogenization technique for

laminated iron cores in 3D finite element models,” IEEE Trans. on Magn.,

Vol. 40, pp. 1424-1427, May 2004.

[5] J. Lammeraner and M. §taﬂ, Eddy currents, ILIFFE Books, London,
1966.

[6] L. Dupré, O. Bottauscio, M. Chiampi, M. Repetto and J. Melkebeek,
“Modeling of electromagnetic phenomena in soft magnetic materials
under unidirectional time periodic flux excitations,” IEEE Trans. on
Magn., Vol. 35, pp. 4171-4184, Sept. 1999.

[4

=



