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Abstract

One of the central concerns of declarative programming is that it leads to less
error-prone, more understandable and better maintainable programs. However,
it is well-known that a declarative programming style also results in less efficient
computations, and in the extreme case, in non-terminating computations. The
latter problem has received considerable attention within the community. Much
research has been done on termination analysis, loop detection and more recently,
non-termination analysis.

Due to the nature of undecidability, there must be situations in which neither
a termination proof nor a non-termination proof can apply; i.e., no sufficient
termination/non-termination conditions are satisfied so that the user would
get no conclusion. We observe that in such a situation, it is particularly
useful to compute an approximate conclusion indicating possible termination or
possible non-termination. To the best of our knowledge, however, no existing
approximation approach was available before our work.

A first contribution of the thesis is the development of such an approximation
approach called termination prediction. In the case that neither a termination
nor a non-termination proof is applicable, we appeal to an approximation
algorithm to predict possible termination or non-termination. The analysis
constructs a finite symbolic derivation tree, representing the derivation for
a class of queries. The termination behavior is then predicted by checking
properties of this tree.

A second contribution of the thesis is a new non-termination analysis for
logic programs. In the thesis, we define a non-termination analysis based on
the symbolic derivation trees from the termination prediction approach. We
show that this non-termination analysis improves on the results of the only non-
termination analyzer developed before our work. We extend our non-termination
analysis in several ways. Type information and use program specialization is
incorporated to obtain a stronger non-termination analysis. Another extension
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iv ABSTRACT

we discuss, is an extension to handle programs using integer arithmetics. We
implemented this non-termination analysis and we show its applicability on a
benchmark of logic programs.

A final contribution of the thesis is the development of a termination analysis for
the programming language Constraint Handling Rules (CHR). This termination
analysis is the first approach without restrictions on the type of rules in the CHR
program. We demonstrate the condition’s applicability on a set of terminating
CHR programs, using a prototype analyzer. This analyzer is the first in-language
automated termination analyzer for CHR programs.



Beknopte samenvatting

Een van de belangrijkste voordelen van declaratieve programmeertalen is dat
het toelaat om beknopte, verstaanbare programmas te schrijven die makkelijk
te onderhouden zijn en minder gevoelig zijn fouten. Het is echter ook geweten
dat zo een declaratieve stijl van programmmeren kan leiden tot onefficiënte
programmas en in het ergste geval zelfs tot oneindige berekeningen. Dit probleem
heeft veel aandacht gekregen in de onderzoeksgemeenschap. Er is veel onderzoek
gebeurd naar technieken om eindigheid voor programmas te bewijzen (terminatie
analyze), technieken om lussen te detecteren tijdens de uitvoering (lus detectie)
en meer recent, technieken om oneindigheid van programmas te bewijzen (non-
terminatie analyze).

Doordat de analyze van eindigheid voor programmeertalen onbeslisbaar is,
moeten er situaties zijn waarbij noch de eindigheid, noch de oneindigheid van
een programma bewezen kan worden. In zo een geval krijgt de gebruiker dus geen
conclusie. Daarom is het volgens ons nuttig om een benaderende analyze uit te
werken. Wanneer exacte terminatie en non-terminatie technieken geen conclusie
geven, kan de benaderende techniek gebruikt worden om een afschatting van
de eindigheid van het programma te maken. Deze benadering kan dan helpen
om het programma verder aan te passen totdat een traditionele analyze de
eindigheid of oneindigheid kan bewijzen.

Een eerste bijdrage van de thesis is de ontwikkeling van zo een benaderende
analyze genoemd eindigheids voorspelling. Wanneer de eindigheid van een
programma niet exact kan worden bepaald, gebruiken we een algoritme om
een benaderend antwoord te zoeken. De analyze stelt een eindige, symbolische
boom op die de berekening voor een klasse van queries voorstelt. Vervolgens
worden er eigenschappen van deze symbolische boom onderzocht, om zo een
benaderende conclusie over het eindigheid gedrag van deze queries te bekomen.

Een tweede bijdrage van de thesis is de ontwikkeling van een nieuwe non-
terminatie analyze. In de thesis definiëren we een nieuwe analyze die de
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vi BEKNOPTE SAMENVATTING

symbolische boom van de eindigheids voorspelling zal gebruiken om te bewijzen
dat de uitvoering van een programma niet zal eindigen. We tonen aan dat
onze analyze preciezer is dan de enige andere geautomatiseerde non-terminatie
analyze. We breiden deze techniek op verschillende manieren uit. Type
informatie en specializatie wordt gebruikt om een betere analyze te verkrijgen.
Daarnaast bespreken we een uitbreiding van deze techniek die toelaat om
programmas te bestuderen die rekenkundige predikaten bevatten.

Een laatste bijdrage die in de thesis wordt besproken is de ontwikkeling van een
terminatie analyze voor de programmeertaal Constraint Handling Rules (CHR).
Deze terminatie analyze is de eerste eindigheids analyze die geen beperking legt
op het soort regels dat gebruikt mag worden in het programma. We tonen aan
dat de analyze van toepassing is op een heel aantal eindigende CHR programmas,
met behulp van een prototype analyzer. Deze analyzer is de eerste terminatie
analyzer voor CHR die de programmas rechtstreeks, dus zonder vertaling naar
een andere programmeertaal, onderzoekt.
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Chapter 1

Introduction

In this Chapter, we summarize the works on termination and non-termination
analysis in Logic Programs and explain how they motivate our research. In
Section 1.2, we give an overview of the thesis.

1.1 The Termination Problem in Logic Program-
ming

One of the central concerns of declarative programming, in particular of Logic
Programming, is that the use of a declarative programming style in a declarative
programming language leads to less error-prone, more understandable and
better maintainable programs. However, it is well-known that a declarative
programming style also results in less efficient computations, and in the extreme
case, in non-terminating computations. The latter problem has received
considerable attention within the community. Much research has been done
on termination analysis, loop detection and more recently, non-termination
analysis.

Among these areas, termination analysis has by far received most attention.
[16] presents a survey of the extensive amount of work up till 1994. However,
most of the more powerful approaches and techniques have been introduced in
the last decade: the constrained-based approach to termination analysis [18],
the local approaches [15], the use of types in termination analysis [10], powerful
transformational approaches [46], termination inference [33], and the porting of
TRS-techniques to the LP-context [35].

1



2 INTRODUCTION

A rather recent concern in this research is the precision of the termination
analysis. Since termination is undecidable in general, only sufficient conditions
for termination are verified. It is important to have a good understanding of the
precision of these techniques: do they actually capture most of the terminating
computations?

With respect to the other two approaches, loop detection and non-termination
analysis, there is often confusion concerning their relation. Because both
approaches use similar techniques, their distinguishing features and aims are
not always well understood. Loop detection is a run-time technique. It
aims to cut infinite derivations for a concrete query at run-time. One of
the possible approaches to achieve this is tabulation [43]. For an extensive
overview and comparison of different loop checking algorithms, we refer to [7].
Non-termination analysis is a compile-time approach. It aims to prove that
a certain class of queries will result in non-terminating computations for at
least some of the queries in the considered class. Non-termination analysis is
performed for classes of queries described in terms of modes (or types). One of
the key concerns of non-termination analysis is to address the important issue
of precision analysis of termination analysis. A termination analysis can be
shown to be precise by proving that the class of queries for which termination
could not be proven is actually non-terminating. This has been one of the
main goals and achievements of the first non-termination analyzer for Logic
Programs, NTI[38].

Due to the nature of undecidability, there must be situations in which neither
a termination proof nor a non-termination proof can apply; i.e., no sufficient
termination/non-termination conditions are satisfied so that the user would
get no conclusion (see the results of the Termination Competition 2007 [1]).
We observe that in such a situation, it is particularly useful to compute
an approximate conclusion indicating possible termination or possible non-
termination, which guides the user to continue to improve his program towards
termination. To the best of our knowledge, however, no existing approximation
approach was available before our work.

1.2 Overview and goals of the Thesis

Chapter 2 introduces the basic notions of Logic Programming and loop checking,
which are essential for understanding the thesis.

Chapter 3 proposes an approximation approach to termination analysis, called
termination prediction. In the case that neither a termination nor a non-
termination proof is applicable, we appeal to an approximation algorithm to
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predict possible termination or non-termination. We develop a framework for
predicting termination of general logic programs with concrete queries or moded
queries. Moded queries allow to represent arbitrary ground terms by input
modes. For example flat(I, O), with I an input mode, represents all flat
queries with a ground term as a first argument and a free variable as second
argument. The basic idea of our analysis is that we establish a characterization of
infinite (generalized) SLDNF-derivations with arbitrary queries. Then based on
the characterization, we design a complete loop checking mechanism, which cuts
all infinite SLDNF-derivations. Given a logic program and a query, we evaluate
the query by applying SLDNF-resolution while performing loop checking. If the
query evaluation proceeds without encountering potential infinite derivations,
we predict terminating for this query; otherwise we predict non-terminating.
It is nontrivial to characterize infinite SLDNF-derivations with moded queries.
The first challenge we must address is how to formulate an SLDNF-derivation
for a moded query Q0, as the standard SLDNF-resolution is only for concrete
queries [14, 28]. We will introduce a framework called a moded-query forest,
which consists of all (generalized) SLDNF-trees rooted at an instance of Q0 (the
instance is Q0 with each input mode replaced by a ground term). An SLDNF-
derivation for Q0 is then defined over the moded-query forest such that a logic
program P terminates for Q0 if and only if the moded-query forest contains
no infinite SLDNF-derivations. A moded-query forest may have an infinite
number of SLDNF-trees, so it is infeasible for us to predict termination of a
logic program by traversing the moded-query forest. To handle this challenge,
we will introduce a novel compact approximation for a moded-query forest,
called a moded generalized SLDNF-tree. The key idea is to treat an input mode
as a special meta-variable in the way that during query evaluation, it can be
substituted by a constant or function, but cannot be substituted by an ordinary
variable. As a result, SLDNF-derivations for a moded query can be constructed
in the same way as the ones for a concrete query. A characterization of infinite
SLDNF-derivations for moded queries is then established in terms of some
key properties of a moded generalized SLDNF-tree. We have implemented a
termination prediction system and obtained quite satisfactory experimental
results. Our prediction is 100% correct for all benchmark programs of the
Termination Competition 2007, of which eighteen programs cannot be proved
by the existing state-of-the-art analyzers like AProV E07, NTI, Polytool and
TALP .

Chapter 4 introduces a new non-termination analysis. It reuses the analysis
scheme proposed in Chapter 3 to produce a finite representation of the
computation for a moded query, given some logic program. We introduce
a new non-termination condition expressed in terms of this finite representation
of the computation.
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Example 1.1.

flat(niltree, nil).
flat(tree(X, niltree, XS), cons(X, YS)) :- flat(XS, YS).
flat(tree(X, tree(Y, YS1, YS2), XS), ZS) :-

flat(tree(Y, YS1, tree(X, YS2, XS)), ZS).

This program, flat, flattens a binary tree into a list denoted with the cons
notation. To flatten the tree, the program repeatedly moves one element from
the left to the right subtree until the left subtree is empty. When the left subtree
is empty, we proceed by processing the right subtree. If the first argument of the
query is a variable, this program loops w.r.t. the third clause. �

This non-termination condition detects that a sequence of derivation steps
can be repeated infinitely for a class of queries. For the flat program in
Example 1.1, it will prove that the last clause can be repeated infinitely for
queries with a variable as a first argument. We prove the correctness of the
condition and extend it to increase its applicability. It turns out that our
characterization of non-terminating computations is more precise than that of
NTI. We have implemented the technique in the analyzer P2P and performed
extensive experiments with it on the basis of the benchmark of the termination
analysis competition of 20071. The experiments show that our technique has
a 100% success-rate on this benchmark, outperforming the only competing
approach, NTI.

Although we experienced this as a success, the experiment mostly shows that
the benchmark does not offer sufficient challenges for non-termination analysis.
Chapter 5 focuses on two new directions. One is to identify classes of programs
for which non-termination analyzers developed before 2011 fail. A second is
to investigate whether the inclusion of type-information, in addition to modes,
may improve the power of our analyzer. Considering the first of these questions,
a limitation of both NTI and P2P is that they only detect non-terminating
derivations if, within these derivations, some fixed sequence of clauses can be
applied repeatedly. Example 1.2 shows a program that violates this restriction.

Example 1.2. The program, longer, loops for any query longer(L), with L a
non-empty list of zeros. The predicate zeros/1 checks if the list contains only
zeros. At the recursive call, a zero is added to the list.

1http://www.lri.fr/˜marche/termination-competition/



OVERVIEW AND GOALS OF THE THESIS 5

longer([0|L]):-
zeros(L),
longer([0,0|L]).

zeros([]).
zeros([0|L]):- zeros(L).

The list in the recursive call is longer than the original one and thus, the number
of applications of the recursive clause for zeros/1 increases in each recursion.
Therefore, no fixed sequence of clauses can be repeated infinitely and previous
non-termination analyzers fail to prove non-termination of this example. �

In Chapter 5, we overcome this limitation by using non-failure information.
Non-failure analysis [17] detects classes of goals that can be guaranteed not
to fail, given mode and type information. Its applications include inferring
minimal computational costs, guiding transformations and debugging. To use
the information provided by non-failure analysis in the non-termination analysis
of [58], type information must be added to the symbolic derivation tree. We
add this information using regular types [60]. Extending our non-termination
analysis with non-failure information allows to prove non-termination for
programs such as the one in Example 1.2. Another limitation of previous
non-termination analyzers is related to aliased variables. Non-termination
analyzers developed before 2011 fail to prove non-termination of programs such
as the one in Example 1.3.

Example 1.3.

append([],L,L).
append([H|T],L,[H|R]):- append(T,L,R).

The query append(X,X,X) succeeds once with a computed answer substitution
X/[]. The program loops after backtracking. �

Program specialization [26] allows to transform this program and query into
an equivalent program and query for which non-termination can be proven.
In Chapter 5, we extend the technique of Chapter 4 with type information.
Then, we use non-failure analysis and specialization to deal with the classes of
programs illustrated by the examples above. In addition to these two classes
of programs, there are combinations of them that yield a fairly large class of
new programs that we can prove non-terminating using non-failure analysis
combined with program specialization.

Both termination and non-termination analyzers have been rather successful
in analyzing the termination behavior of definite logic programs, but their
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applicability on real-life Prolog programs is limited because most Prolog
programs use non-logical features. Chapter 6 takes a first step towards the
analysis of real-life Prolog programs, by presenting a non-termination condition
for Logic Programs containing integer arithmetics. Given a program, containing
integer arithmetics, and a class of queries, we infer a subset of these queries for
which we prove existential non-termination. The inference and proof are done in
two phases. In the first phase, non-termination of the logic part of the program
is proven by assuming that all comparisons between integer expressions succeed.
In the second phase, given the moded query, integer arguments are identified
and constraints over these arguments are formulated, such that solutions for
these constraints correspond to non-terminating queries. We will illustrate this
with an example.

Example 1.4. The following program, count_to, is a faulty implementation
of a predicate generating the list starting from 0 up to a given number. The
considered class of queries is represented by the moded query ← count_to(N,L)
with N an integer variable and L a free variable.

count_to(N,L):- count(0,N,L).
count(N,N,[N]).
count(M,N,[M|L]):- M > N, M1 is M+1, count(M1,N,L).

In the last clause, the integer condition should be M < N instead of M > N. Due
to this error, the program:

• fails for the queries for which N > 0 holds,

• succeeds for ← count_to(0, L),

• loops for the queries for which N < 0 holds.

The first phase of the analysis detects non-termination assuming the arithmetic
predicates succeed. For the considered class of queries count is always called
with a free variable as the third argument. Therefore, any considered query loops
w.r.t. the last clause if the arithmetic calls succeed.

The second phase of the analysis completes the non-termination proof by inferring
the constraint N < 0 on the considered class of queries. �

Chapter 7 discusses the less related topic of Termination analysis of Constraint
Handling Rules (CHR). CHR was designed to develop custom constraint solvers
but proved successful as a general purpose programming language. The language
rewrites multisets of constraints, the constraint store, and defines two types of
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rules. Simplification rules replace constraints by equivalent, simpler constraints.
Propagation rules add extra constraints to the store. Because propagation
rules do not remove constraints, a propagation history is used to prevent a
combination of constraints of firing a propagation rule more than once. Chapter
7 presents the first termination condition for CHR with propagation rules.

Finally, Chapter 8 concludes the thesis.





Chapter 2

Preliminaries

In this chapter, we present the basic concepts and definitions of logic
programming and loop checking that are necessary for understanding the thesis.
Definitions and concepts that are specific to a chapter will be introduced in
that chapter.

2.1 Logic Programming

Logic programming (LP) is a programming paradigm based on first order logic
[28]. In our research, we focus on general logic programming as implemented
by Prolog. A logic program consists of an alphabet, a first order language,
a set of axioms and a set of inference rules. The alphabet includes sets of
variables, constants, function symbols, predicate symbols and connectives. To
denote variables, we use uppercase characters, e.g., X, Y , Z. Usually, function
symbols are denoted f , g, h, and predicate symbols are denoted p, q, r. Each
function or predicate symbol f is associated with a natural number n, the arity
of f . We often write f/n to denote that a function or a predicate symbol f
(a functor) has arity n. Constant symbols are function symbols with arity 0,
denoted by lowercase letters, e.g., a, b, c. Connectives are ← (implication) and
∧ (conjunction).

Terms and atoms, two basic components of logic programming, are defined based
on variables, constants, function and predicate symbols. A term is either a
variable, a constant, or f(t1, . . . , tn) if t1, . . . , tn are terms and f/n is a function
symbol. For simplicity, we use T to denote a set of terms T1, ..., Tm. Lists are

9
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commonly used terms. A list is of the form [] or [T |L] where T is a term and L
is a list. For our purpose, the symbols [, ] and | in a list are treated as special
constant symbols. Similarly, p(t1, . . . , tn) is an atom if p/n is a predicate symbol
and t1, . . . , tn are terms. Let A be an atom/term. The size of A, denoted |A|,
is the number of occurrences of function symbols, variables and constants in
A. Two atoms are called variants if they are the same up to variable renaming.
A literal is an atom A or the negation ¬A of A. A term or an atom, that is
variable free, is called ground. Otherwise, it is called non-ground. For a term or
atom t, we use the notation V ar(t) to denote the set of all variables occurring
in t.

A definite logic program P is a finite set of clauses of the form A← A1, ..., An,
where A and each Ai is an atom. A general logic program P is a finite set
of clauses of the form A ← L1, ..., Ln, where A is an atom and each Li is a
literal. Throughout the thesis, we consider only Herbrand models [28]. The
Herbrand universe and Herbrand base of P are denoted by HU(P ) and HB(P ),
respectively.

A goal Gi is a headless clause ← L1, ..., Ln where each literal Lj is called a
subgoal. The goal, G0 =← Q0, for a query Q0 is called a top goal. Without
loss of generality, we assume that Q0 consists only of one atom. Q0 is a moded
query if some arguments of Q0 are input modes (in this case, Q0 is called an
abstract atom or a moded atom); otherwise, it is a concrete query. An input
mode always begins with a letter I and corresponds to a ground term. For
more information about mode analysis in logic programming, we refer to [29].

Let P be a logic program and G0 a top goal. G0 is evaluated by building
a generalized SLDNF-tree GTG0 as defined in [51], in which each node is
represented by Ni : Gi where Ni is the name of the node and Gi is a goal
attached to the node. We do not reproduce the definition of a generalized
SLDNF-tree. Roughly speaking, GTG0 is the set of standard SLDNF-trees for
P ∪ {G0} augmented with an ancestor-descendant relation on their subgoals.
Let Li and Lj be the selected subgoals at two nodes Ni and Nj , respectively.
Li is an ancestor of Lj , denoted Li ≺anc Lj , if Lj is selected as a subgoal
in the proof of Li. Throughout the thesis, we choose to use the best-known
depth-first, left-most control strategy, as is used in Prolog, to select nodes/goals
and subgoals (it can be adapted to any other fixed control strategies). So by the
selected subgoal in each node Ni :← L1, ..., Ln, we refer to the left-most subgoal
L1.

Recall that in SLDNF-resolution, let Li = ¬A be a ground negative subgoal
selected at Ni, then (by the negation-as-failure rule [14]) a subsidiary child
SLDNF-tree TNi+1:←A rooted at Ni+1 :← A will be built to solve A. In
a generalized SLDNF-tree GTG0 , such parent and child SLDNF-trees are
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connected from Ni to Ni+1 via a dotted edge “· · ·." (called a negation arc), and
A at Ni+1 inherits all ancestors of Li at Ni. Therefore, a path of a generalized
SLDNF-tree may come across several SLDNF-trees through dotted edges. Any
such a path starting at the root node N0 : G0 of GTG0 is called a generalized
SLDNF-derivation.

We do not consider floundering queries; i.e., we assume that no non-ground
negative subgoals are selected at any node of a generalized SLDNF-tree (see
[51]).

Another feature of a generalized SLDNF-tree GTG0 is that each subsidiary child
SLDNF-tree TNi+1:←A in GTG0 terminates (i.e. stops expanding its nodes) at
the first success leaf. The intuition behind this is that it is absolutely unnecessary
to exhaust the remaining branches because they would never generate any new
answers for A (since A is ground). In fact, Prolog executes the same pruning by
using a cut operator to skip the remaining branches once the first success leaf is
generated (e.g. see SICStus Prolog [25]). To illustrate, consider the following
logic program and top goal:

P0 : p← ¬q. Cp1

q. Cq1

q ← q. Cq2

G0 : ← p.

The generalized SLDNF-tree GTG0 for P0 ∪ {G0} is depicted in Figure 2.1.
Note that the subsidiary child SLDNF-tree TN2:←q terminates at the first
success leaf N3, leaving N4 not further expanded. As a result, all generalized
SLDNF-derivations in GTG0 are finite.

.................................̂�

....

.................................�

.................................̂

?
Cp1

N0: ← p

N1: ← ¬q

N2: ← q
Cq1 Cq2

N3: �t N4: ← q

N5 : �f

TN2:←q

Figure 2.1: The generalized SLDNF-tree GTG0 of P0.

For simplicity, in the following sections by a derivation or SLDNF-derivation
we refer to a generalized SLDNF-derivation. Moreover, for any node Ni : Gi we
use L1

i to refer to the selected subgoal in Gi.
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A derivation step is denoted by Ni : Gi ⇒C,θi Ni+1 : Gi+1, meaning that
applying a clause C to Gi produces Ni+1 : Gi+1, where Gi+1 is the resolvent of
C and Gi on L1

i with the mgu (most general unifier) θi. Here, for a substitution
of two variables, X in L1

i and Y in (the head of) C, we always use X to
substitute for Y . When no confusion would occur, we may omit the mgu θi
when writing a derivation step.

2.1.1 Loop Checking

Loop checking is a runtime approach to prevent non-termination during query
evaluation. Non-termination is prevented by modifying the computation
mechanism that searches through an SLDNF-tree by adding the possibility of
pruning.

A loop checking mechanism, or more formally a loop check [8], defines conditions
for us to cut a possibly infinite derivation at some node. By cutting a derivation
at a node N we mean removing all descendants of N . Informally, a loop check is
said to be weakly sound if for any generalized SLDNF-tree GTG0 , GTG0 having
a success derivation before cut implies it has a success derivation after cut; it is
said to be complete if it cuts all infinite derivations in GTG0 . An ideal loop check
cuts all infinite derivations while retaining success derivations. Unfortunately,
as shown by Bol et al. [8], there exists no loop check that is both weakly sound
and complete. In the thesis, we focus on complete loop checks, because we want
to apply them to analyze the termination behavior of logic programs.

Definition 2.1. A loop check L is complete w.r.t. SLDNF-resolution if for
every logic program P and query Q, every infinite derivation of P for Q is cut
by L. �



Chapter 3

Termination Prediction for
General Logic Programs

This chapter proposes the idea of termination prediction, as depicted in Figure
3.1. In the case that neither a termination nor a non-termination proof
is applicable, we appeal to an approximation algorithm to predict possible
termination or non-termination. The prediction applies to general logic programs
with concrete or moded queries.

We develop a framework for predicting termination of general logic programs
with arbitrary (i.e., concrete or moded) queries. The basic idea is that we
establish a characterization of infinite (generalized) SLDNF-derivations with
arbitrary queries. Then based on the characterization, we design a complete loop
checking mechanism, which cuts all infinite SLDNF-derivations. Given a logic
program and a query, we evaluate the query by applying SLDNF-resolution
while performing loop checking. If the query evaluation proceeds without
encountering potential infinite derivations, we predict terminating for this query;
otherwise we predict non-terminating.

The core of our termination prediction is a characterization of infinite SLDNF-
derivations with arbitrary queries. In [51], a characterization is established
for general logic programs with concrete queries. This is far from enough for
termination prediction; a characterization of infinite SLDNF-derivations for
moded queries is required. Moded queries are the most commonly used query
form in static termination analysis. A moded query contains (abstract) atoms
like p(I, T ) where T is a term and I is an input mode. An input mode stands
for an arbitrary ground term, so that to prove that a logic program terminates

13
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Figure 3.1: A framework for handling the termination problem

for a moded query p(I, T ) is to prove that the program terminates for any
(concrete) query p(t, T ) where t is a ground term.

It is nontrivial to characterize infinite SLDNF-derivations with moded queries.
The first challenge we must address is how to formulate an SLDNF-derivation
for a moded query Q0, as the standard SLDNF-resolution is only for concrete
queries [14, 28]. We will introduce a framework called a moded-query forest,
which consists of all (generalized) SLDNF-trees rooted at an instance of Q0
(the instance is Q0 with each input mode replaced by a ground term). An
SLDNF-derivation for Q0 is then defined over the moded-query forest such
that a logic program P terminates for Q0 if and only if the moded-query forest
contains no infinite SLDNF-derivations.

A moded-query forest may have an infinite number of SLDNF-trees, so it is
infeasible for us to predict termination of a logic program by traversing the
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moded-query forest. To handle this challenge, we will introduce a novel compact
approximation for a moded-query forest, called a moded generalized SLDNF-tree.
The key idea is to treat an input mode as a special meta-variable in the way that
during query evaluation, it can be substituted by a constant or function, but
cannot be substituted by an ordinary variable. As a result, SLDNF-derivations
for a moded query can be constructed in the same way as the ones for a concrete
query. A characterization of infinite SLDNF-derivations for moded queries
is then established in terms of some key properties of a moded generalized
SLDNF-tree.

We have implemented a termination prediction system and obtained quite
satisfactory experimental results. Our prediction is 100% correct for all
benchmark programs of the Termination Competition 2007, of which eighteen
programs cannot be proved by the existing state-of-the-art analyzers like
AProVE07, NTI, Polytool and TALP.

3.1 A Characterization of Infinite SLDNF-Derivations
for Concrete Queries

In this section, we review the characterization of infinite derivations with
concrete queries presented in [51].

Definition 3.1. Let T be a term or an atom and S be a string that consists of
all predicate symbols, function symbols, constants and variables in T , which is
obtained by reading these symbols sequentially from left to right. The symbol
string of T , denoted ST , is the string S with every variable replaced by X . �

For instance, let T1 = a and T2 = f(X, g(X, f(a, Y ))). Then ST1 = a and
ST2 = fX gXfaX .

Definition 3.2. Let ST1 and ST2 be two symbol strings. ST1 is a projection of
ST2 , denoted ST1 ⊆proj ST2 , if ST1 is obtained from ST2 by removing zero or
more elements. �

Definition 3.3. Let A1 and A2 be two atoms (positive subgoals) with the
same predicate symbol. A1 is said to loop into A2, denoted A1  loop A2, if
SA1 ⊆proj SA2 . Let Ni : Gi and Nj : Gj be two nodes in a derivation with
L1
i ≺anc L1

j and L1
i  loop L

1
j . Then Gj is called a loop goal of Gi. �

Observe that if A1  loop A2 then |A1| ≤ |A2|, and that if G3 is a loop goal of
G2 that is a loop goal of G1 then G3 is a loop goal of G1. Since a logic program
has only a finite number of clauses, an infinite derivation results from repeatedly
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applying the same set of clauses, which leads to either infinite repetition of
selected variant subgoals or infinite repetition of selected subgoals with recursive
increase in term size. By recursive increase of term size of a subgoal A from a
subgoal B we mean that A is B with a few function/constant/variable symbols
added and possibly with some variables changed to different variables. Such
crucial dynamic characteristics of an infinite derivation are captured by loop
goals. The following result is proved in [51].

Theorem 3.1. Let G0 =← Q0 be a top goal with Q0 a concrete query.
Any infinite derivation D in GTG0 contains an infinite sequence of goals
G0, ..., Gg1 , ..., Gg2 , ... such that for any j ≥ 1, Ggj+1 is a loop goal of Ggj .
�

Put another way, Theorem 3.1 states that any infinite derivation D in GTG0 is
of the form

N0 : G0 ⇒C0 ... Ng1 : Gg1 ⇒C1 ... Ng2 : Gg2 ⇒C2 ... Ng3 : Gg3 ⇒C3 ...

where for any j ≥ 1, Ggj+1 is a loop goal of Ggj . This provides a necessary and
sufficient characterization of an infinite generalized SLDNF-derivation with a
concrete query.

Example 3.1. Consider the following logic program:

P1 : p(a). Cp1

p(f(X))← p(X). Cp2

The generalized SLDNF-tree GT←p(X) for a concrete query p(X) is shown in
Figure 3.2, where for simplicity the symbol ← in each goal is omitted. Note
that GT←p(X) has an infinite derivation

N0 : p(X)⇒Cp2
N2 : p(X2)⇒Cp2

N4 : p(X4)⇒Cp2
...

where for any j ≥ 0, G2(j+1) is a loop goal of G2j . �

3.2 A Characterization of Infinite SLDNF-Derivations
for Moded Queries

We first define generalized SLDNF-derivations for moded queries by introducing
a framework called moded-query forests.
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Cp1

Cp1

N1: �t

N3: �t
θ4 = {X2/f(X4)}

N4: p(X4)

Cp2

θ2 = {X/f(X2)}Cp2

N2: p(X2)

N0: p(X)

Figure 3.2: The generalized SLDNF-tree GT←p(X) of P1 for a concrete query
p(X).

Definition 3.4. Let P be a logic program and Q0 = p(I1, ..., Im, T1, ..., Tn) a
moded query. The moded-query forest of P for Q0, denoted MFQ0 , consists of
all generalized SLDNF-trees for P ∪ {G0}, where G0 =← p(t1, ..., tm, T1, ..., Tn)
with each ti being a ground term from HU(P ). A (generalized SLDNF-)
derivation for the moded query Q0 is a derivation in any generalized SLDNF-tree
of MFQ0 . �

Therefore, a logic program P terminates for a moded query Q0 if and only
if there is no infinite derivation for Q0 if and only if MFQ0 has no infinite
derivation.

Example 3.2. Consider the logic program P1 again. We have HU(P1) =
{a, f(a), f(f(a)), ...}. Let p(I) be a moded query. The moded-query
forest MFp(I) consists of generalized SLDNF-trees GT←p(a), GT←p(f(a)), etc.,
as shown in Figure 3.3. Note that MFp(I) has an infinite number of
generalized SLDNF-trees. However, any individual tree, GTG0 with G0 =←
p(f(f(...f︸ ︷︷ ︸

n items

(a)...))) (n ≥ 0), is finite. MFp(I) contains no infinite derivation, thus

P1 terminates for p(I). �

? ?

?

Cp2

Cp1

N3: �t

N2: p(a)

N0: p(f(a))

N1: �t

N0: p(a)
Cp1

· · ·GT←p(f(a)) :GT←p(a) :

Figure 3.3: The moded-query forest MFp(I) of P1 for a moded query p(I).
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In a moded-query forest, all input modes are instantiated into ground terms
in HU(P ). When HU(P ) is infinite, the moded-query forest would contain
infinitely many generalized SLDNF-trees. This means that it is infeasible to
build a moded-query forest to represent the derivations for a moded query. An
alternative yet ideal way is to directly apply SLDNF-resolution to evaluate
input modes and build a compact generalized SLDNF-tree for a moded query.
Unfortunately, SLDNF-resolution accepts only terms as arguments of a top
goal; an input mode I is not directly evaluable.

Since an input mode stands for an arbitrary ground term, i.e. it can be any term
from HU(P ), during query evaluation it can be instantiated to any term except
variable (note that a ground term cannot be substituted by a variable). This
suggests that we may approximate the effect of an input mode I by treating it
as a special (meta-) variable I in the way that in SLDNF-derivations, I can be
substituted by a constant or function, but cannot be substituted by an ordinary
variable. Therefore, when doing unification of a special variable I and a variable
X, we always substitute I for X.

Definition 3.5. Let P be a logic program and Q0 = p(I1, ..., Im, T1, ..., Tn)
a moded query. The moded generalized SLDNF-tree of P for Q0, denoted
MTQ0 , is defined to be the generalized SLDNF-tree GTG0 for P ∪ {G0}, where
G0 =← p(I1, ..., Im, T1, ..., Tn) with each Ii being a distinct special variable
not occurring in any Tj . The special variables I1, ..., Im for the input modes
I1, ..., Im are called input mode variables (or input variables). �

In a moded generalized SLDNF-tree, an input variable I may be substituted
by either a constant t or a function f(T ). It will not be substituted by any
non-input variable. If I is substituted by f(T ), all variables in T are also called
input variables (thus are treated as special variables).

In the thesis, we do not consider floundering moded queries; i.e., we assume that
no negative subgoals containing either ordinary or input variables are selected
at any node of a moded generalized SLDNF-tree.

Definition 3.6. Let P be a logic program, Q0 = p(I1, ..., Im, T1, ..., Tn) a
moded query, and G0 =← p(I1, ..., Im, T1, ..., Tn). Let D be a derivation in the
moded generalized SLDNF-tree MTQ0 . A moded instance of D is a derivation
obtained from D by first instantiating all input variables at the root node
N0 : G0 with an mgu θ = {I1/t1, ..., Im/tm}, where each ti ∈ HU(P ), then
passing the instantiation θ down to the other nodes of D. �

Example 3.3. Consider the logic program P1 again. Let Q0 = p(I) be a
moded query and G0 =← p(I). The moded generalized SLDNF-tree MTQ0 is
GTG0 as depicted in Figure 3.4, where all input variables are underlined. Since
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I is an input variable, X2 is an input variable, too (due to the mgu θ2). For
the same reason, all X2i are input variables (i > 0).

Consider the following infinite derivation D in MTQ0 :

N0 : p(I)⇒Cp2
N2 : p(X2)⇒Cp2

N4 : p(X4)⇒Cp2
· · ·

By instantiating the input variable I at N0 with different ground terms from
HU(P1) and passing the instantiation θ down to the other nodes of D, we can
obtain different moded instances from D. For example, instantiating I to a (i.e.
θ = {I/a}) yields the moded instance

N0 : p(a)

Instantiating I to f(a) (i.e. θ = {I/f(a)}) yields the moded instance

N0 : p(f(a))⇒Cp2
N2 : p(a)

And, instantiating I to f(f(a)) (i.e. θ = {I/f(f(a))}) yields the moded instance

N0 : p(f(f(a)))⇒Cp2
N2 : p(f(a))⇒Cp2

N4 : p(a)

�

?

?

����

����

...

Cp1

Cp1

N1: �t

N3: �t
θ4 = {X2/f(X4)}

N4: p(X4)

Cp2

θ2 = {I/f(X2)}Cp2

N2: p(X2)

N0: p(I)

Figure 3.4: The moded generalized SLDNF-tree MTp(I) of P1 for a moded
query p(I).

Observe that a moded instance of a derivation D in MTQ0 is a derivation in
GTG0θ, where G0θ =← p(t1, ..., tm, T1, ..., Tn) with each ti being a ground term
from HU(P ). By Definition 3.4, GTG0θ is in the moded-query forest MFQ0 .
This means that any moded instance of a derivation in MTQ0 is a derivation
for Q0 in MFQ0 . For instance, all moded instances illustrated in Example 3.3
are derivations in the moded-query forest MFQ0 of Figure 3.3.
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Theorem 3.2. Let MFQ0 and MTQ0 be the moded-query forest and the moded
generalized SLDNF-tree of P for Q0, respectively. If MFQ0 has an infinite
derivation D′, MTQ0 has an infinite derivation D with D′ as a moded instance.
�

Proof. Let Q0 = p(I1, ..., Im, T1, ..., Tn). Then, the root node of D′ is N0 :←
p(t1, ..., tm, T1, ..., Tn) with each ti ∈ HU(P ), and the root node of MTQ0 is
N0 :← p(I1, ..., Im, T1, ..., Tn) with each Ii being an input variable not occurring
in any Tj . Note that the former is an instance of the latter with the mgu
θ = {I1/t1, ..., Im/tm}. Let D′ be of the form

N0 :← p(t1, ..., tm, T1, ..., Tn)⇒C0 N1 : G′1 · · · ⇒Ci Ni+1 : G′i+1 · · ·

MTQ0 must have a derivation D of the form

N0 :← p(I1, ..., Im, T1, ..., Tn)⇒C0 N1 : G1 · · · ⇒Ci Ni+1 : Gi+1 · · ·

such that each G′i = Giθ, since for any i ≥ 0 and any clause Ci in P , if G′i can
unify with Ci, so can Gi with Ci. Note that when the selected subgoal at some
G′i is a negative ground literal, by the assumption that Q0 is non-floundering,
we have the same selected literal at Gi. We then have the proof.

Our goal is to establish a characterization of infinite derivations for a moded
query such that the converse of Theorem 3.2 is true under some conditions.

Consider the infinite derivation in Figure 3.4 again. The input variable I is
substituted by f(X2); X2 is then substituted by f(X4), . . . This produces an
infinite chain of substitutions for I of the form I/f(X2), X2/f(X4), . . . The
following lemma shows that infinite derivations containing such an infinite chain
of substitutions have no infinite moded instances.

Lemma 3.1. If a derivation D in a moded generalized SLDNF-tree MTQ0 is
infinite but none of its moded instances is infinite, then there is an input variable
I such that D contains an infinite chain of substitutions for I of the form

I/f1(..., Y1, ...), ..., Y1/f2(..., Y2, ...), ..., Yi−1/fi(..., Yi, ...), ... (3.1)

(some fis would be the same). �

Proof. We distinguish four types of substitution chains for an input variable I
in D:
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1. X1/I, ..., Xm/I or X1/I, ..., Xi/I, . . . That is, I is never substituted by
any terms.

2. X1/I, ..., Xm/I, I/t where t is a ground term. That is, I is substituted
by a ground term.

3. X1/I, ..., Xm/I, I/f1(..., Y1, ...), ..., Y1/f2(..., Y2, ...), ..., Yn−1/fn(..., Yn, ...),
. . ., where fn( ..., Yn, ...) is the last non-ground function in the substitution
chain for I in D. In this case, I is recursively substituted by a finite
number of functions.

4. X1/I, ..., Xm/I, I/f1(..., Y1, ...), ..., Y1/f2(..., Y2, ...), ..., Yi−1/fi(..., Yi, ...), . . .
In this case, I is recursively substituted by an infinite number of functions.

For type 1, D retains its infinite extension for whatever ground term we replace
I with. For type 2, D retains its infinite extension when we use t to replace I.
To sum up, for any input variable I whose substitution chain is of type 1 or of
type 2, there is a ground term t such that replacing I with t does not affect the
infinite extension of D. In this case, replacing I in D with t leads to an infinite
derivation less general than D.

For type 3, note that all variables appearing in the fi(.)s are input variables.
Since fn(..., Yn, ...) is the last non-ground function in the substitution chain for I
inD, the substitution chain for every variable Yn in fn(..., Yn, ...) is either of type
1 or of type 2. Therefore, we can replace each Yn with an appropriate ground
term tn without affecting the infinite extension of D. After this replacement,
D becomes Dn and fn(..., Yn, ...) becomes a ground term fn(..., tn, ...). Now
fn−1(..., Yn−1, ...) is the last non-ground function in the substitution chain
for I in Dn. Repeating the above replacement recursively, we will obtain an
infinite derivation D1, which is D with all variables in the fi(.)s replaced with
a ground term. Assume f1(..., Y1, ...) becomes a ground term t in D1. Then the
substitution chain for I in D1 is of type 2. So replacing I with t in D1 leads to
an infinite derivation D0.

The above constructive proof shows that if the substitution chains for all input
variables in D are of type 1, 2 or 3, then D must have an infinite moded instance.
Since D has no infinite moded instance, there must exist an input variable I
whose substitution chain in D is of type 4. That is, I is recursively substituted
by an infinite number of functions. Note that some fis would be the same
because a logic program has only a finite number of function symbols. This
concludes the proof.

We are ready to introduce the following principal result.
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Theorem 3.3. Let MFQ0 and MTQ0 be the moded-query forest and the moded
generalized SLDNF-tree of P for Q0, respectively. MFQ0 has an infinite
derivation if and only if MTQ0 has an infinite derivation D of the form

N0 : G0 ⇒C0 ... Ng1 : Gg1 ⇒C1 ... Ng2 : Gg2 ⇒C2 ... Ng3 : Gg3 ⇒C3 ...(3.2)

where (i) for any j ≥ 1, Ggj+1 is a loop goal of Ggj , and (ii) for no input
variable I, D contains an infinite chain of substitutions for I of form (3.1). �

Proof. (=⇒) Assume MFQ0 has an infinite derivation D′. By Theorem 3.2,
GTG0 has an infinite derivation D with D′ as a moded instance. By Theorem
3.1, D is of form (3.2) and satisfies condition (i).

Assume, on the contrary, that D does not satisfy condition (ii). That is, for
some input variable I, D contains an infinite chain of substitutions for I of the
form

I/f1(..., Y1, ...), ..., Y1/f2(..., Y2, ...), ..., Yi−1/fi(..., Yi, ...), ...

Note that for whatever ground term t we assign to I, this chain can be
instantiated at most as long in length as the following one:

t/f1(..., t1, ...), ..., t1/f2(..., t2, ...), ..., tk/fk+1(..., Yk+1, ...)

where k = |t|, tis are ground terms and |tk| = 1. This means that replacing I
with any ground term t leads to a finite moded instance of D. Therefore, D
has no infinite moded instance in MFQ0 , a contradiction.

(⇐=) Assume, on the contrary, that MFQ0 has no infinite derivation. By
Lemma 3.1, we reach a contradiction to condition (ii).

Theorem 3.3 provides a necessary and sufficient characterization of an infinite
generalized SLDNF-derivation for a moded query. Note that it coincides with
Theorem 3.1 when Q0 is a concrete query, where MFQ0 = MTQ0 and condition
(ii) is always true.

The following corollary is immediate to this theorem.

Corollary 3.1. A logic program P terminates for a moded query Q0 if and
only if the moded generalized SLDNF-tree MTQ0 has no infinite derivation of
form (3.2) satisfying conditions (i) and (ii) of Theorem 3.3. �

We use simple yet typical examples to illustrate the proposed characterization
of infinite SLDNF-derivations with moded queries.
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Example 3.4. Consider the moded generalized SLDNF-tree MTQ0 in Figure
3.4. It has only one infinite derivation, which satisfies condition (i) of Theorem
3.3 where for each j ≥ 0, Ngj in Theorem 3.3 corresponds to N2j in Figure 3.4.
However, the chain of substitutions for I in this derivation violates condition
(ii). This means that MFQ0 contains no infinite derivations; therefore, there is
no infinite derivation for the moded query p(I). As a result, P1 terminates for
p(I). �

Example 3.5. Consider the following logic program:

P2 : append([], X,X). Ca1

append([X|Y ], U, [X|Z])← append(Y,U, Z). Ca2

Let us choose the three simplest moded queries:

Q1
0 = append(I, V2, V3),

Q2
0 = append(V1, I, V3),

Q3
0 = append(V1, V2, I).

Since applying clause Ca1 produces only leaf nodes, for simplicity we ignore it
when depicting moded generalized SLDNF-trees. The three moded generalized
SLDNF-trees MTQ1

0
, MTQ2

0
and MTQ3

0
are shown in Figures 3.5 (a), (b) and

(c), respectively. Note that all the derivations are infinite and satisfy condition
(i) of Theorem 3.3, where for each j ≥ 0, Ngj in Theorem 3.3 corresponds to Nj
in Figure 3.5. Apparently, the chains of substitutions for I in the derivations
of MTQ1

0
and MTQ3

0
violate condition (ii) of Theorem 3.3. MFQ1

0
and MFQ3

0
contain no infinite derivation and thus there exists no infinite derivation for
the moded queries Q1

0 and Q3
0. Therefore, P2 terminates for Q1

0 and Q3
0.

However, the derivation in MTQ2
0
satisfies condition (ii), thus there exist infinite

derivations for the moded query Q2
0. P2 does not terminate for Q2

0. �

(a) (b) (c)

?

?

N1: append(Y , V2, Z)

N2: append(Y1, V2, Z1)

N0: append(I, V2, V3)
Ca2

Ca2
θ1 = {Y /[X1|Y1],

θ0 = {I/[X|Y ],

U1/V2, Z/[X1|Z1]}

U/V2, V3/[X|Z]} ?

?

N1: append(Y, I, Z)

N2: append(Y1, I, Z1)

N0: append(V1, I, V3)
Ca2

Ca2
θ1 = {Y/[X1|Y1],

θ0 = {V1/[X|Y ],

U1/I, Z/[X1|Z1]}

U/I, V3/[X|Z]} ?

?

N1: append(Y, V2, Z)

N2: append(Y1, V2, Z1)

N0: append(V1, V2, I)
Ca2

Ca2
θ1 = {Y/[X1|Y1],

θ0 = {V1/[X|Y ],

U1/V2, Z/[X1|Z1]}

U/V2, I/[X|Z]}

Figure 3.5: (a) MTQ1
0
, (b) MTQ2

0
, and (c) MTQ3

0
.

Let pred(P ) be the set of predicate symbols in P . Define
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MQ(P ) = {p(I1, ..., Im, Xm+1, ..., Xn) | p is an
n-ary predicate symbol in pred(P ) and m > 0}.

Note that MQ(P ) contains all most general moded queries of P in the sense
that any moded query of P is an instance of some query in MQ(P ). Since
pred(P ) is finite, MQ(P ) is finite. Therefore, it is immediate that P terminates
for all moded queries if and only if it terminates for each moded query in
MQ(P ). Note that there is no restriction on the argument positions on which
we allow input modes. In example, MQ(P ) also contains queries such as
p(X1, I1, ..., Im, Xm+2, ..., Xn). To simplify the notation however, moded atoms
are represented as having the input modes on the first arguments if possible.

Theorem 3.4. For any two moded queries Q1
0 = p(I1, ..., Il, Xl+1, ..., Xn) and

Q2
0 = p(I1, ..., Im, Xm+1, ..., Xn) with l < m, that there is no infinite derivation

for Q1
0 implies there is no infinite derivation for Q2

0. �

Proof. Note that we consider only non-floundering queries. Then, for any
concrete query Q, that there is no infinite derivation for Q implies there
is no infinite derivation for any instance of Q. Assume that there is
no infinite derivation for Q1

0. Then, there is no infinite derivation for
any query Q = p(t1, ..., tl, Xl+1, ..., Xn), where each ti is a ground term
from HU(P ). Then, there is no infinite derivation for any query Q′ =
p(t1, ..., tl, sl+1, ..., sm, Xm+1, ..., Xn), where each ti is a ground term from
HU(P ) and each si an instance of Xi. Since all Xis are variables, there is
no infinite derivation for any query Q′′ = p(t1, ..., tl, tl+1, ..., tm, Xm+1, ..., Xn),
where each ti is a ground term from HU(P ). That is, there is no infinite
derivation for Q2

0.

Applying this theorem, we can conclude that P2 in Example 3.5 terminates for
all moded queries in MQ(P2) except Q2

0.

3.3 An Algorithm for Predicting Termination of
Logic Programs

We develop an algorithm for predicting termination of logic programs based on
the necessary and sufficient characterization of an infinite generalized SLDNF-
derivation (Theorem 3.3 and Corollary 3.1). We begin by introducing a complete
loop checking mechanism.

Definition 3.7. Given a repetition number r ≥ 2, LP-check is defined as
follows: Any derivation D in a generalized SLDNF-tree is cut at a node Ngr if
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D has a prefix of the form

N0 : G0 ⇒C0 ... Ng1 : Gg1 ⇒Ck ... Ng2 : Gg2 ⇒Ck ... Ngr : Ggr ⇒Ck (3.3)

such that (a) for any j < r, Ggj+1 is a loop goal of Ggj , and (b) for all j ≤ r,
the clause Ck applied to Ggj is the same. Ck is then called a looping clause. �

LP-check predicts infinite derivations from prefixes of derivations based on
the characterization of Theorem 3.1 (or condition (i) of Theorem 3.3). The
repetition number r specifies the minimum number of loop goals appearing in
the prefixes. It appears not appropriate to choose r < 2, as that may lead to
many finite derivations being wrongly cut. Although there is no mathematical
mechanism available for choosing this repetition number (since the termination
problem is undecidable), our experimental results show that in many situations,
it suffices to choose r = 3 for a correct prediction of infinite derivations.

LP-check applies to any generalized SLDNF-trees including moded generalized
SLDNF-trees.

Theorem 3.5. LP-check is a complete loop check. �

Proof: Let D be an infinite derivation in GTG0 . By Theorem 3.1, D is of the
form

N0 : G0 ⇒C0 ... Nf1 : Gf1 ⇒C1 ... Nf2 : Gf2 ⇒C2 ...

such that for any i ≥ 1, Gfi+1 is a loop goal of Gfi . Since a logic program
has only a finite number of clauses, there must be a (looping) clause Ck being
repeatedly applied at infinitely many nodes Ng1 : Gg1 , Ng2 : Gg2 , · · · where for
each j ≥ 1, gj ∈ {f1, f2, ...}. Then for any r > 0, D has a partial derivation of
form (3.3). So D will be cut at node Ngr : Ggr . This shows that any infinite
derivation can be cut by LP-check. That is, LP-check is a complete loop check.
�

Example 3.6. Let us choose r = 3 and consider the infinite derivation D in
Figure 3.4. p(X4) at N4 is a loop goal of p(X2) at N2 that is a loop goal of p(I)
at N0. Moreover, the same clause Cp2 is applied at the three nodes. D satisfies
the conditions of LP-check and is cut at node N4. �

Recall that to prove that a logic program P terminates for a moded query Q0 =
p(I1, ..., Im, T1, ..., Tn) is to prove that P terminates for any query p(t1, ..., tm,
T2, ..., Tn), where each ti is a ground term. This can be reformulated in terms of
a moded-query forest; that is, P terminates for Q0 if and only if MFQ0 has no
infinite derivation. Then, Corollary 3.1 shows that P terminates for Q0 if and
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only if the moded generalized SLDNF-tree MTQ0 has no infinite derivation D
of form (3.2) satisfying the two conditions (i) and (ii) of Theorem 3.3. Although
this characterization cannot be directly used for automated termination test
because it requires generating infinite derivations in MTQ0 , it can be used along
with LP-check to predict termination, as LP-check is able to guess if a partial
derivation would extend to an infinite one. Before describing our prediction
algorithm with this idea, we introduce one more condition following Definition
3.7.

Definition 3.8. Let D be a prefix of form (3.3). D is said to have the term-size
decrease property if for any i with 0 < i < r, there is a substitution X/f(...Y...)
between Ngi and Ngi+1 , where X is an input variable and Y (an ordinary or
input variable) appears in the selected subgoal of Ggi+1 . �

Theorem 3.6. Let D be a derivation such that for all r ≥ 2 D has a prefix of
form (3.3) which has the term-size decrease property. D contains an infinite
chain of substitutions of form (3.1) for some input variable I at the root node
of D. �

Proof. Due to the term-size decrease property of the prefix of D which holds for
all r ≥ 2, D contains an infinite number of substitutions of the form X/f(...),
where X is an input variable. Assume, on the contrary, that D does not contain
such an infinite chain of form (3.1). LetM be the longest length of substitutions
of form (3.1) for each input variable I at the root node of D. Note that each
input variable can be substituted only by a constant or function. For each
substitution X/f(...) with X an input variable, assume f(...) contains at most N
variables (i.e., it introduces at most N new input variables). Then, D contains
at most K ∗ (N0 +N1 + ...+NM ) substitutions of the form X/f(...), where
K is the number of input variables at the root node of D and X is an input
variable. This contradicts the condition that D contains an infinite number of
such substitutions. We conclude the proof.

LP-check and the term-size decrease property approximate conditions (i) and (ii)
of Theorem 3.3, respectively. So, we can guess an infinite extension (3.2) from
a prefix (3.3) by combining the two mechanisms, as described in the following
algorithm.

Algorithm 3.1. Input: A logic program P , a (concrete or moded) query Q0,
and a repetition number r ≥ 2 (r = 3 is recommended).
Output: terminating, predicted-terminating, or predicted-non-terminating.
Method: Apply the following procedure.
procedure TPoLP(P , Q0, r)
{
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1. Initially, set L = 0. Construct the moded generalized SLDNF-tree MTQ0

of P for Q0 in the way that whenever a prefix D of the form

N0 : G0 ⇒C0 ... Ng1 : Gg1 ⇒Ck ... Ng2 : Gg2 ⇒Ck ... Ngr : Ggr ⇒Ck

is produced which satisfies conditions (a) and (b) of LP-check, if D does
not have the term-size decrease property then goto 3; else set L = 1
and extend D from the node Ngr with the looping clause Ck skipped and
continue with the construction of the tree of step 1.

2. Return terminating if L = 0; otherwise, return predicted-terminating.

3. Return predicted-non-terminating.

} �

Starting from the root node N0 : G0, we generate derivations of a moded
generalized SLDNF-tree MTQ0 step by step. If a prefix D of form (3.3) is
generated which satisfies conditions (a) and (b) of LP-check, then by Theorem
3.1 D is very likely to extend infinitely in MTQ0 (via the looping clause Ck).
By Theorem 3.2, however, D may not have infinite moded instances in MFQ0 .
So in this case, we further check if D has the term-size decrease property. If not,
by Theorem 3.3 D is very likely to have moded instances that extend infinitely
in MFQ0 . Algorithm 3.1 then predicts non-terminating for Q0 by returning
an answer predicted-non-terminating. If D has the term-size decrease property,
however, we continue to extend D from Ngr by skipping the clause Ck (i.e., the
derivation via Ck is cut at Ngr by LP-check).

When the answer is not predicted-non-terminating, we distinguish between two
cases: (1) L = 0. This shows that no derivation was cut by LP-check during the
construction ofMTQ0 . Algorithm 3.1 concludes terminating for Q0 by returning
an answer terminating. (2) L = 1. This means that some derivations were cut
by LP-check, all of which have the term-size decrease property. Algorithm 3.1
then predicts terminating for Q0 by returning an answer predicted-terminating.

Note that for a concrete query Q0, no derivation has the term-size decrease
property. Therefore, Algorithm 3.1 returns predicted-non-terminating for Q0
once a prefix of a derivation satisfying the conditions of LP-check is generated.

Theorem 3.7. For any logic program P , concrete/moded query Q0 and
repetition number r, Algorithm 3.1 always terminates. �

Proof. Algorithm 3.1 constructs MTQ0 while applying LP-check to cut possible
infinite derivations. Since LP-check is a complete loop check, it cuts all infinite
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derivations at some depth. This means that MTQ0 after cut by LP-check is
finite. So, Algorithm 3.1 always terminates.

Algorithm 3.1 yields an approximate answer, predicted-terminating or predicted-
non-terminating, or an exact answer terminating, as shown by the following
theorem.

Theorem 3.8. P terminates for Q0 if Algorithm 3.1 returns terminating. �

Proof. If Algorithm 3.1 returns terminating, no derivations were cut by LP-check;
so the moded generalized SLDNF-tree MTQ0 for Q0 is finite. By Corollary 3.1,
P terminates for Q0.

In the following examples, we choose a repetition number r = 3.

Example 3.7. Consider Figure 3.4. Since the prefix D between N0 and N4
satisfies the conditions of LP-check, Algorithm 3.1 concludes that the derivation
may extend infinitely in MTQ0 . It then checks the term-size decrease property
to see if D has moded instances that would extend infinitely in MFQ0 . Clearly,
D has the term-size decrease property. So Algorithm 3.1 skips Cp2 at N4 (the
branch is cut by LP-check). Consequently, Algorithm 3.1 predicts terminating
for p(I) by returning an answer predicted-terminating. This prediction is correct;
see Example 3.4. �

Example 3.8. Consider Figure 3.5. All the derivations starting at N0 and
ending at N2 satisfy the conditions of LP-check, so they are cut at N2. Since the
derivations inMTQ1

0
andMTQ3

0
have the term-size decrease property, Algorithm

3.1 returns predicted-terminating for Q1
0 and Q3

0. Since the derivation in MTQ2
0

does not have the term-size decrease property, Algorithm 3.1 returns predicted-
non-terminating for Q2

0. These predictions are all correct; see Example 3.5.
�

Example 3.9. Consider the following logic program P3:

mult(s(X), Y, Z)← mult(X,Y, U), add(U, Y, Z). Cm1

mult(0, Y, 0). Cm2

add(s(X), Y, s(Z))← add(X,Y, Z). Ca1

add(0, Y, Y ). Ca2

MQ(P3) consists of fourteen moded queries, seven for predicate mult and seven
for predicate add. Applying Algorithm 3.1 yields the following result: (1)
P3 is predicted-terminating for all moded queries to add except add(V1, I2, V3)
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for which P3 is predicted-non-terminating, and (2) P3 is predicted-terminating
for mult(I1, I2, V3) and mult(I1, I2, I3), but is predicted-non-terminating for
the remaining moded queries to mult. For illustration, we depict two moded
generalized SLDNF-trees for mult(I, V2, V3) and mult(I1, I2, V3), as shown in
Figures 3.6 (a) and (b), respectively. In the two moded generalized SLDNF-trees,
the prefix from N0 down to N2 satisfies the conditions of LP-check and has the
term-size decrease property, so clause Cm1 is skipped when expanding N2. When
the derivation is extended to N6, the conditions of LP-check are satisfied again,
where G6 is a loop goal of G5 that is a loop goal of G4. Since the derivation for
mult(I, V2, V3) (Figure 3.6 (a)) does not have the term-size decrease property,
Algorithm 3.1 returns an answer, predicted-non-terminating, for this moded
query. The derivation for mult(I1, I2, V3) (Figure 3.6 (b)) has the term-size
decrease property, so clause Ca1 is skipped when expanding N6. For simplicity,
we omitted all derivations leading to a success leaf. Because all derivations
satisfying the conditions of LP-check have the term-size decrease property,
Algorithm 3.1 ends with an answer, predicted-terminating, for mult(I1, I2, V3).
It is then immediately inferred by Theorem 3.4 that P3 is predicted-terminating
for mult(I1, I2, I3). It is not difficult to verify that all these predictions are
correct. �

(a) (b)
?

?

?

?

?

N0: mult(I, V2, V3)

N5: add(X3, s(X3), Z3)

N6: add(X4, s(s(X4)), Z4)

Ca1

Ca1

θ4 = {V2/s(X3), V3/s(Z3)}

θ5 = {X3/s(X4), Z3/s(Z4)}

N3: add(0, V2, U1), add(U1, V2, V3)

N4: add(V2, V2, V3)

Cm2

Ca2

θ2 = {X2/0, Y3/V2, U2/0}

θ3 = {Y4/V2, U1/V2}

N1: mult(X1, V2, U1), add(U1, V2, V3)

N2: mult(X2, V2, U2), add(U2, V2, U1), add(U1, V2, V3)

Cm1

Cm1

θ0 = {I/s(X1), Y1/V2, Z1/V3}

θ1 = {X1/s(X2), Y2/V2, Z2/U1}

??

?

?

?

?

?

N0: mult(I1, I2, V3)

N6: add(X4, s(s(X4)), Z4)

Ca1

Ca1

θ4 = {I2/s(X3), V3/s(Z3)}

θ5 = {X3/s(X4), Z3/s(Z4)}

N3: add(0, I2, U1), add(U1, I2, V3)

N4: add(I2, I2, V3)

Cm2

Ca2

θ2 = {X2/0, Y3/I2, U2/0}

θ3 = {Y4/I2, U1/I2}

N1: mult(X1, I2, U1), add(U1, I2, V3)

N2: mult(X2, I2, U2), add(U2, I2, U1), add(U1, I2, V3)

Cm1

Cm1

θ0 = {I1/s(X1), Y1/I2, Z1/V3}

θ1 = {X1/s(X2), Y2/I2, Z2/U1}

N5: add(X3, s(X3), Z3)

Figure 3.6: Two moded generalized SLDNF-trees of P3 generated by Algorithm
3.1.

AProVE07 [23], NTI [38, 37], Polytool [35] and TALP [36] are four well-
known state-of-the-art analyzers. NTI proves non-termination, while the
others prove termination. The Termination Competition 2007 [1] reports their
latest performance. We borrow three representative logic programs from the
competition website to further demonstrate the effectiveness of our termination
prediction.
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Example 3.10. Consider the following logic program coming from the
Termination Competition 2007 with Problem id LP/talp/apt - subset1 and
difficulty rating 100%.
AProVE07, NTI, Polytool and TALP all failed to prove/disprove its termination
by yielding an answer “don’t know” in the competition [1].

P4 : member1(X, [Y |Xs])← member1(X,Xs). Cm1

member1(X, [X|Xs]). Cm2

subset1([X|Xs], Y s) : −member1(X,Y s), subset1(Xs, Y s). Cs1

subset1([], Y s). Cs2

Query Mode: subset1(o, i).

The query mode subset1(o, i) means that the second argument of any query
must be a ground term, while the first one can be an arbitrary term. Then,
to prove the termination property of P4 with this query mode is to prove the
termination for the moded query Q0 = subset1(V, I). Applying Algorithm 3.1
generates a moded generalized SLDNF-tree as shown in Figure 3.7. The prefix
from N0 down to N3 satisfies the conditions of LP-check and has the term-size
decrease property, so clause Cm1 is skipped when expanding N3. When the
derivation is extended to N10, the conditions of LP-check are satisfied again,
where G10 is a loop goal of G9 that is a loop goal of G8. Since the derivation
has the term-size decrease property, N10 is expanded by Cm2 .

At N11 (resp. N13 and N15), the derivation satisfies the conditions of LP-check
and has the term-size decrease property, where G11 (resp. N13 and N15) is a
loop goal of G4 that is a loop goal of G0. Therefore, N11 (resp. N13 and N15)
is expanded by Cs2 . When the derivation is extended to N17, the conditions
of LP-check are satisfied, where G17 is a loop goal of G4 that is a loop goal
of G0, but the term-size decrease condition is violated. Algorithm 3.1 stops
immediately with an answer, predicted-non-terminating, for the query Q0. It is
easy to verify that this prediction is correct. �

Example 3.11. Consider another logic program in the Termination Competi-
tion 2007 with Problem id LP/SGST06 - incomplete and difficulty rating 75%.
Polytool succeeded to prove its termination, while AProVE07, NTI and TALP
failed [1].

P5 : p(X)← q(f(Y )), p(Y ). Cp1

p(g(X))← p(X). Cp2

q(g(Y )). Cq1

Query Mode: p(i).
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?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

N0: subset1(V, I)

Cs1

Cm1

Cm1

Cm2

θ2 = {Xs1/[Y2|Xs2]}

θ3 = {Xs2/[X|Xs3]}

N1: member1(X, I), subset1(Xs, I)
Cs1

Cm1θ1 = {I/[Y1|Xs1]}

N2: member1(X, Xs1), subset1(Xs, [Y1|Xs1])

N5: member1(X1, [Y1|[Y2|[X|Xs3]]]), subset1(Xs4, [Y1|[Y2|[X|Xs3]]])

N6: member1(X1, [Y2|[X|Xs3]]), subset1(Xs4, [Y1|[Y2|[X|Xs3]]])

N8: member1(X1, Xs3), subset1(Xs4, [Y1|[Y2|[X|Xs3]]])

N9: member1(X1, Xs5), subset1(Xs4, [Y1|[Y2|[X|[Y3|Xs5]]]])

N4: subset1(Xs, [Y1|[Y2|[X|Xs3]]])

N3: member1(X, Xs2), subset1(Xs, [Y1|[Y2|Xs2]])

N7: member1(X1, [X|Xs3]), subset1(Xs4, [Y1|[Y2|[X|Xs3]]])

θ0 = {V/[X|Xs]}

Cm1

Cm1

Cm1

Cm1

θ4 = {Xs/[X1|Xs4]}

θ8 = {Xs3/[Y3|Xs5]}

θ9 = {Xs5/[Y4|Xs6]}

N14: �t
Cs2

Cm2

N16: �t
Cs2

θ9′ = {Xs5/[X1|Xs6]}

θ8′ = {Xs3/[X1|Xs5]}

N15: subset1(Xs4, [Y1|[Y2|[X|[X1|Xs5]]]])

N12: �t

N11: subset1(Xs4, [Y1|[Y2|[X|[Y3|[Y4|[X1|Xs7]]]]]])

N10: member1(X1, Xs6), subset1(Xs4, [Y1|[Y2|[X|[Y3|[Y4|Xs6]]]]])
Cm2

Cs2

θ10 = {Xs6/[X1|Xs7]}

N13: subset1(Xs4, [Y1|[Y2|[X|[Y3|[X1|Xs6]]]]])

Cm2
N17: subset1(Xs4, [Y1|[Y2|[X|Xs3]]])

θ7′ = {X1/X}Cm2

Figure 3.7: The moded generalized SLDNF-tree of P4 generated by Algorithm
3.1.

To prove the termination property of P5 with this query mode is to prove the
termination for the moded query Q0 = p(I). Applying Algorithm 3.1 generates
a moded generalized SLDNF-tree as shown in Figure 3.8. The prefix from N0
down to N4 satisfies the conditions of LP-check and has the term-size decrease
property, so clause Cp2 is skipped when expanding N4. Algorithm 3.1 yields an
answer predicted-terminating for the query Q0. This prediction is correct. �

Example 3.12. Consider a third logic program from the Termination
Competition 2007 with Problem id LP/SGST06 - incomplete2 and difficulty
rating 75%. In contrast to Example 3.11, for this program AProVE07 succeeded
to prove its termination, while Polytool, NTI and TALP failed [1].

P6 : f(X)← g(s(s(s(X)))). Cf1

f(s(X))← f(X). Cf2

g(s(s(s(s(X)))))← f(X). Cg1
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N0: p(I)
Cp1 θ2 = {I/g(X)}

Cp1

N4: p(X1)

Cp2
N2: p(X)

Cp2
θ4 = {X/g(X1)}

N5: q(f(Y )), p(Y )

N3: q(f(Y )), p(Y )

N1: q(f(Y )), p(Y )
Cp1

Figure 3.8: The moded generalized SLDNF-tree of P5 generated by Algorithm
3.1.

Query Mode: f(i).

To prove the termination property of P6 with this query mode is to prove the
termination for the moded query Q0 = f(I). Applying Algorithm 3.1 generates
a moded generalized SLDNF-tree as shown in Figure 3.9. Cf1 and/or Cf2 is
skipped at N4, N5, N6, N9, N10, N11, N13, N18, N19, N20, N22, N23, N25 and
N27, due to the occurrence of the following prefixes which satisfy both the
conditions of LP-check and the term-size decrease condition:

1. N0 : f(I)⇒Cf1
... N2 : f(X)⇒Cf1

... N4 : f(X1)⇒Cf1
2. N0 : f(I)⇒Cf1

... N2 : f(X)⇒Cf1
... N5 : f(X2)⇒Cf1

3. N0 : f(I)⇒Cf1
... N2 : f(X)⇒Cf1

... N6 : f(X3)⇒Cf1
4. N0 : f(I)⇒Cf1

... N4 : f(X1)⇒Cf2
N5 : f(X2)⇒Cf2

N6 : f(X3)⇒Cf2
5. N0 : f(I)⇒Cf1

... N7 : f(X1)⇒Cf1
... N9 : f(X2)⇒Cf1

6. N0 : f(I)⇒Cf1
... N7 : f(X1)⇒Cf1

... N10 : f(X3)⇒Cf1
7. N0 : f(I)⇒Cf1

... N2 : f(X)⇒Cf2
... N9 : f(X2)⇒Cf2

N10 : f(X3)⇒Cf2
8. N0 : f(I)⇒Cf1

... N11 : f(X2)⇒Cf1
... N13 : f(X3)⇒Cf1

9. N0 : f(I)⇒Cf1
... N2 : f(X)⇒Cf2

N7 : f(X1)⇒Cf2
... N13 : f(X3)⇒Cf2

10. N0 : f(I)⇒Cf1
... N2 : f(X)⇒Cf2

N7 : f(X1)⇒Cf2
N11 : f(X2)⇒Cf2

11. N0 : f(I)⇒Cf2
N14 : f(X)⇒Cf1

... N16 : f(X1)⇒Cf1
... N18 : f(X2)⇒Cf1

12. N0 : f(I)⇒Cf2
N14 : f(X)⇒Cf1

... N16 : f(X1)⇒Cf1
... N19 : f(X3)⇒Cf1

13. N0 : f(I)⇒Cf2
... N18 : f(X2)⇒Cf2

N19 : f(X3)⇒Cf2
14. N0 : f(I)⇒Cf2

N14 : f(X)⇒Cf1
... N20 : f(X2)⇒Cf1

... N22 : f(X3)⇒Cf1
15. N0 : f(I)⇒Cf2

... N16 : f(X1)⇒Cf2
... N22 : f(X3)⇒Cf2

16. N0 : f(I)⇒Cf2
... N16 : f(X1)⇒Cf2

N20 : f(X2)⇒Cf2
17. N0 : f(I)⇒Cf2

... N23 : f(X1)⇒Cf1
... N25 : f(X2)⇒Cf1

... N27 : f(X3)⇒Cf1
18. N0 : f(I)⇒Cf2

N14 : f(X)⇒Cf2
... N27 : f(X3)⇒Cf2

19. N0 : f(I)⇒Cf2
N14 : f(X)⇒Cf2

... N25 : f(X2)⇒Cf2
20. N0 : f(I)⇒Cf2

N14 : f(X)⇒Cf2
... N23 : f(X1)⇒Cf2
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Since there is no derivation satisfying the conditions of LP-check while violating
the term-size decrease condition, Algorithm 3.1 ends with an answer predicted-
terminating for the query Q0. This again is a correct prediction. �
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Cf1

N3: g(s(s(s(X))))
X/s(X1)

N7: f(X1)
Cf2

N2: f(X)

Cf1

N8: g(s(s(s(X1))))N11: f(X2)
Cf2

X1/s(X2)

X2/s(X3)
N13: f(X3)
Cg1

Cf1

X/s(X1)Cg1

N6: f(X3)

N5: f(X2)
X2/s(X3)Cf2

Cf2 X1/s(X2)
N4: f(X1)

N10: f(X3)
Cf2 X2/s(X3)

N9: f(X2)
X1/s(X2)Cg1

N12: g(s(s(s(X2))))

Cf1

N17: g(s(s(s(X1))))

N15: g(s(s(s(X))))

N14: f(X)Cf1

N16: f(X1)

Cf1

X1/s(X2)

Cg1

Cf2

X2/s(X3)Cg1

X1/s(X2)Cg1

X/s(X1)

N21: g(s(s(s(X2))))

N19: f(X3) N22: f(X3)

Cf2X2/s(X3)
N18: f(X2)

N20: f(X2)

N27: f(X3)
Cg1 X2/s(X3)

Cf1

N25: f(X2)
Cg1 X1/s(X2)

Cf1

N23: f(X1)

N24: g(s(s(s(X1))))

N26: g(s(s(s(X2))))

X/s(X1)Cf2

Cf1 I/s(X)

N0: f(I)

N1: g(s(s(s(I))))
I/s(X)

Cf2

Cg1

Figure 3.9: The moded generalized SLDNF-tree of P6 generated by Algorithm
3.1.

We should remark that although for all benchmark programs of the Termination
Competition 2007, choosing a repetition number r = 3 is enough for Algorithm
3.1 to produce a correct prediction, due to the undecidability of the termination
problem, there exist cases that Algorithm 3.1 would make an incorrect prediction
unless a big repetition number is used. Consider the following carefully crafted
logic program:

P7 : p(f(X), Y )← p(X, s(Y )). Cp1

p(Z, s(s(...s︸ ︷︷ ︸
100 items

(0)...)))← q. Cp2

q ← q. Cq1

P7 does not terminate for a moded query Q0 = p(I, 0), as there is an infinite
derivation

N0 : p(I, 0)⇒Cp1
... N101 : q ⇒Cq1

N102 : q ⇒Cq1
...

(see Figure 3.10) which satisfies conditions (i) and (ii) of Theorem 3.3, where
for any j ≥ 101, Gj+1 is a loop goal of Gj . Note that for any repetition number
r with 3 ≤ r ≤ 100, the prefix ending at Nr−1 satisfies both the conditions of
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LP-check and the term-size decrease property, where for any j with 0 ≤ j < r−1,
Gj+1 is a loop goal of Gj . However, for any r > 100, a prefix ending at N100+r
will be encountered, which satisfies the conditions of LP-check but violates the
term-size decrease condition, where for any j with 101 ≤ j < 100 + r, Gj+1 is a
loop goal of Gj . Therefore, Algorithm 3.1 will return predicted-terminating for
Q0 unless the repetition number r is set above 100.

......

?

?

?

?

?

�
�
�

��+

N0: p(I, 0)

N100: p(X100, s(s( ... s︸ ︷︷ ︸
100 items

(0) ... )))

N1: p(X1, s(0))

N2: p(X2, s(s(0)))

Cp1

Cp1

θ0 = {I/f(X1), Y1/0}

θ1 = {X1/f(X2), Y2/s(0)}

Cp1

N102: q

N101: q

Cp2 θ100 = {Z1/X100}

Cq1

Cq1

∞

Cp1

∞

Figure 3.10: The moded generalized SLDNF-tree of P7 with a moded query
p(I, 0).

The following results shows that choosing a sufficiently large repetition number
guarantees the correct prediction for non-terminating programs.

Theorem 3.9. Let P be a logic program and Q be a query such that P is non-
terminating for Q. There always exists a number R such that Algorithm 3.1 with
any repetition number r ≥ R produces the answer predicted-non-terminating. �

Proof. Let us assume the contrary. That is, we assume that for any number
N , there exists a larger number r such that Algorithm 3.1 for P with query Q
and repetition number r produces the answer predicted− terminating. This
means that for all r ≥ 2 the prefix of form 3.3 for some input variable I at Q.
This means that D does not satisfy condition (ii) of Theorem 3.6. However,
since P is non-terminating for Q, by Corollary 3.1 MTQ has at least one infinite
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branch of form 3.3 satisfying conditions (i) and (ii) of Theorem 3.3. We have a
contradiction and thus conclude the proof.

The same result applies for any terminating concrete query Q. That is, there
always exists a number R such that Algorithm 3.1 with any r ≥ R produces
the answer terminating or predicted-terminating when P is terminating for Q.
The proof for this is simple. When P is terminating for a concrete query Q, the
(moded) generalized SLDNF-tree for Q is finite. Let R be the number of nodes
of the longest branch in the tree. For any r ≥ R, Algorithm 3.1 will produce
the answer terminating or predicted-terminating, since no branch will be cut
by LP-check. However, whether the above claim holds for any moded query Q
when P is terminating remains an interesting open problem.

3.4 Experimental Results

We evaluated our termination prediction technique on a benchmark of 301 Prolog
programs. First, we describe the benchmark and our experimental results using
a straightforward implementation of Algorithm 3.1. Then, we define a pruning
technique to reduce the size of the SLDNF-derivation produced by our prediction.
Finally, we conclude this section with a comparison between the state-of-the-art
termination and non-termination analyzers and our termination prediction tool.

Our benchmark consists of the majority of programs from the termination
competition of 2007. Because the termination competition contains programs
with non-logical operations such as arithmetics, 23 programs from the
competition are omitted. For most of these programs neither termination
nor non-termination could be shown by any of the tools in the competition. Our
benchmark consists of 301 programs with moded queries: 244 terminating and
57 non-terminating programs. The most accurate termination analyzer of the
competition, AProvE [23], proves termination of 238 benchmark programs. The
non-termination analyzer NTI [38, 37] proves non-termination of 42 programs.
Because the prediction does not produce a termination or non-termination proof,
our goal is to outperform the analyzers of the competition.

We implemented our tool, TPoLP: Termination Prediction of Logic Programs,
in SWI-prolog [59]. TPoLP is freely available from [2]. The moded SLDNF-
derivation is represented by a graph and acquired by following Algorithm 3.1
as described in the last section. The derivation is initialized with the moded
query and extended for a maximum of 4 minutes until a branch is found that
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does not have the term-size decrease property or until all branches are cut. If
no answer is produced in 4 minutes the analysis is stopped and the result is a
timeout. To improve the efficiency of the analysis, a number of optimizations
were implemented, such as constant time access to the nodes and the arcs of
the graph representing the derivation. The experiments have been performed
using SWI-Prolog 5.6.40, on an Intel Core2 Duo 2,33GHz, 2 Gb RAM.

Repetition number: 2 3 4
Correct Predictions: 291 271 234
Wrong Predictions: 7 0 0

Out of time/memory 3 30 67
Average time (Sec): 1.7 24.9 59.3

Average Nb of nodes: 5553 56467 106057
Average Nb of lp cuts: 4082 22666 38066

Table 3.1: Predictions: full table available at [2]

Table 3.1 gives an overview of the predictions with repetition numbers two,
three and four. Two does not suffice as a repetition number because some of the
predictions are wrong and we want very reliable predictions. When the repetition
number is set to at least three, all predictions made for the benchmark are
correct. This shows that in practice, there is no need to increase the repetition
number any further. However, the cost of predicting the termination behavior
is very high. About 10% of the programs break the time limit of four minutes.

The component of the algorithm taking most of the time differs from program to
program. When a lot of branches are cut by LP-check, constructing the LP cuts
is usually the bottleneck. For programs with a low amount of LP cuts, most of
the time is spend on constructing the SLDNF-derivation. Because some of the
constructed SLDNF-derivations count more than a million nodes, we added a
component to remove redundant parts of the derivation on backtracking. To
reduce the analysis time needed by TPoLP, we implemented a pruning technique
to reduce the size of the SLDNF-derivations.

3.4.1 Pruning

To explain the intuition behind the pruning technique, we revisit Example 14.
Note that the paths N0 down to N6, N0 down to N10, and so on, contain the
same rules in a different order. Therefore, it seems that most of these paths are
redundant. The idea to prune redundant paths is to ignore clauses if they are
already applied to a similar parent or loop goal.
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Two versions of the pruning technique are defined. The first version prunes
only on variant loop goals. The second version prunes on all loop goals.

Definition 3.9 (Pruning). Let G2 be a loop goal of G1 (for which the selected
literals have the same symbol string). Then, all clauses except for the looping
clause that have already been applied at G2, are skipped at G1 during backtracking.
�

Example 3.13 (SLDNF-Derivation of Example 3.12 with pruning). See Figure
3.11. The algorithm starts by creating nodes N0 down to N6. All rules unifying
with f(X3) at N6 are cut by LP-check. Without the pruning technique we would
now apply Cf2 at node N2. Because N4 is a loop goal with identical symbol
string of N2, we ignore clause Cf2 at node N2. We also prune clause Cf2 at
node N0 because N4 is a loop goal with identical symbol string of N0.

No more rules can be applied, and the algorithm with pruning ends with the
correct answer: predicted terminating. Because all the loop goals in the derivation
have identical symbol strings, both pruning techniques construct the same
derivation for this example. The derivations with pruning contain 7 nodes,
while the derivation without pruning (see Example 3.12) counts 28 nodes.

�
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Pruned

Pruned
Cf1

N3: g(s(s(s(X))))
Cf2

N2: f(X)

X/s(X1)Cg1

N6: f(X3)

N5: f(X2)
X2/s(X3)Cf2

Cf2 X1/s(X2)
N4: f(X1)

Cf1

N0: f(I)

N1: g(s(s(s(I))))
I/s(X)

Cf2

Cg1

Figure 3.11: SLDNF-derivation of Example 3.12 with pruning

Table 3.2 gives an overview of our predictions with three as a repetition number:
without pruning, with pruning on variant loop goals and pruning on all loop
goals. The table shows that pruning is a good tradeoff between the precision and
the efficiency of the prediction. When pruning on variant loop goals, the size
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No pruning Pruning variants Pruning Loop Goals
Correct Predictions: 271 296 297
Wrong Predictions: 0 0 3

Out of time/memory 30 5 1
Average time (Sec) 24.9 4.4 0.05

Average Nb of nodes 56467 7800 140
Average Nb of lp cuts 22666 380 2.8

Table 3.2: Pruning: full tables available at [2].

of the derivations drops considerably, while all predictions for the benchmark
are still correct. Because the derivations are much smaller, more than 98% of
the predictions finish within the time limit. When pruning on all loop goals,
the size of the derivation is only a fraction of the derivation without pruning.
However, we lose accuracy by pruning on all loop goals: three non-terminating
programs are predicted to be terminating. The accuracy does not improve with
a higher repetition number.

Answer TPoLP AProvE [23] NTI [38, 37] Polytool TALP [36]
Terminating (244): 239 238 0 206 164

Non-terminating (57): 57 0 42 0 0

Table 3.3: Comparison between TPoLP and (non-)termination analyzers.

Table 3.3 gives a comparison between our predictions with pruning on variant
loop goals and the state-of-the-art termination and non-termination analyzers.
Note that our tool, TPoLP, is the only tool for Logic programs which analyzes
both for termination and non-termination. The results are very satisfying.
We correctly predict the termination property of all 301 benchmark programs,
except for five programs which broke the time limit. It is also worth noticing
that for all programs of the benchmark, either an analyzer finds a termination
or non-termination proof or a correct prediction is made by our tool. This
shows that our prediction tool can be a very useful addition to any termination
or non-termination analyzer.

3.5 Related Work

Most approaches to the termination problem are norm- or level mapping-based in
the sense that they perform termination analysis by building from the source code
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of a logic program some well-founded termination conditions/constraints in terms
of norms (i.e. term sizes of atoms of clauses), level mappings, interargument
size relations and/or instantiation dependencies, which when solved, yield a
termination proof (see, e.g., [16] for a survey and more recent papers [5, 9,
10, 18, 22, 27, 30, 34]). Another main stream is transformational approaches,
which transform a logic program into a term rewriting system (TRS) and then
analyze the termination property of the resulting TRS instead [4, 6, 23, 31,
36, 44, 46, 54]). All of these approaches are used for a termination proof;
i.e., they compute sufficient termination conditions which once satisfied, lead
to a positive conclusion terminating. Recently, Payet and Mesnard [38, 37]
propose an approach to computing sufficient non-termination conditions which
when satisfied, lead to a negative conclusion non-terminating. A majority of
these termination/non-termination proof approaches apply only to positive logic
programs.

Our approach presented in this chapter differs significantly from previous
termination analysis approaches. First, we do not make a termination proof, nor
do we make a non-termination proof. Instead, we make a termination prediction
(see Figure 3.1) − an approximation approach to attacking the undecidable
termination problem. Second, we do not rely on static norms or level mappings,
nor do we transform a logic program to a term rewriting system. Instead,
we focus on detecting infinite SLDNF-derivations with the understanding
that a logic program is terminating for a query if and only if there is no
infinite SLDNF-derivation with the query. We have established a necessary and
sufficient characterization of infinite SLDNF-derivations with arbitrary (concrete
or moded) queries, introduced a new loop checking mechanism, and developed
an algorithm that predicts termination of general logic programs with arbitrary
queries by identifying potential infinite SLDNF-derivations. Since the algorithm
implements the necessary and sufficient conditions (the characterization) of an
infinite SLDNF-derivation, its prediction is very effective; see Examples 3.7
- 3.12. Especially, Examples 3.10 - 3.12 demonstrate that our algorithm can
make a correct prediction even though some of the state-of-the-art analyzers
like AProVE07 [23], NTI [38, 37], Polytool [35] and TALP [36] may fail to
prove/disprove it.

Our termination prediction approach uses a loop checking mechanism (a loop
check) to implement a characterization of infinite SLDNF-derivations. Well-
known loop checks include VA-check [8, 53], OS-check [11, 32, 45], and VAF-
checks [49, 52]. All apply to positive logic programs. In particular, VA-
check applies to function-free logic programs, where an infinite derivation is
characterized by a sequence of selected variant subgoals. OS-check identifies
an infinite derivation with a sequence of selected subgoals with the same
predicate symbol whose sizes do not decrease. VAF-checks take a sequence
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of selected expanded variant subgoals as major characteristics of an infinite
derivation. Expanded variant subgoals are variant subgoals except that some
terms may grow bigger. In this chapter, a new loop check mechanism, LP-check,
is introduced in which an infinite derivation is identified with a sequence of loop
goals. Most importantly, enhancing LP-check with Condition (c) leads to the
first loop check for moded queries.

3.6 Summary

We have presented an approximation framework for attacking the undecid-
able termination problem of logic programs, as an alternative to current
termination/non-termination proof approaches. We introduced an idea of
termination prediction, established a necessary and sufficient characterization
of infinite SLDNF-derivations with arbitrary (concrete or moded) queries, built
a new loop checking mechanism, and developed an algorithm that predicts
termination of general logic programs with arbitrary queries. We demonstrated
the effectiveness of the termination prediction with representative examples
including ones borrowed from the Termination Competition 2007.

Our prediction approach can be used standalone, e.g., it may be incorporated
into Prolog as a termination debugging tool; or it is used along with some
termination/non-termination proof tools (see Figure 3.1).

Reference

The work in this chapter was published in TPLP [50].



Chapter 4

Non-termination Analysis for
Logic Programs

This chapter defines a new non-termination analysis which reuses the analysis
scheme introduced in the last chapter. Our work has been inspired both by the
work on termination prediction and by the work on non-termination inference
[38] and its implementation NTI. The analysis scheme of the previous Chapter
is used to produce a finite representation of the computation for a given logic
program and moded query. We introduce a new non-termination condition
expressed in terms of this finite representation of the computation. We prove
its correctness and extend it to increase its applicability.

It turns out that our characterization of non-terminating computations is more
precise than that of NTI. We have implemented the technique and performed
extensive experiments with it on the basis of the benchmark of the termination
analysis competition of 2007 [1]. The experiments show that our technique
has a 100% success-rate on this benchmark, outperforming the only competing
analyzer, NTI.

The chapter is organized as follows. In Section 4.1, we present our conditions
implying non-termination and show that we are able to derive classes of non-
terminating queries. In Section 4.2, we present our experimental evaluation and
we compare our analyzer with the non-termination inference tool NTI.

41
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4.1 A new non-termination condition

In this section, we present a new non-termination analysis technique for general
logic programs with moded queries. A moded query Q corresponds to a set
of concrete queries, called the denotation of Q. We consider a program non-
terminating w.r.t. a moded query, if the denotation of the query contains at least
one concrete query that has an infinite branch in its generalized SLDNF-tree.
In the following definition, TermP denotes the set of ground terms defined by
a program P .

Let I1, . . . , In be all input variables occurring in a moded atom A. Let
t1, . . . , tn ∈ TermP . A(t1 → I1, . . . , tn → In) denotes the concrete atom
obtained by replacing the input variables I1, . . . , In by the terms t1, . . . , tn.

Definition 4.1. Let A be an atom with I1, . . . , In as its input variables. The
denotation of A is

Den(A) = {A(t1 → I1, . . . , tn → In) | ti ∈ TermP , ti is ground}. �

This concept can be adapted to moded goals, literals in a straightforward way.
Note that the denotation of a concrete atom is a singleton containing the atom
itself.

4.1.1 The moded more general relation

To prove non-termination, we prove that a path between two nodes Nb and
Ne in a moded SLDNF-derivation can be repeated infinitely often. To find
such a path, we check three properties. Because the rules in the path must be
applicable independent of the values of the input variables, no substitutions on
the input variables may occur in the path from Nb to Ne. Because this path
should be a loop, the selected literal of Nb must be an ancestor of the selected
literal of Ne. Finally, a special more general relation for moded atoms must
hold between the selected literals of Nb and Ne. We will show that these three
conditions imply non-termination.

A moded atom A is moded more general than a moded atom B, if any atom in
the denotation of A is more general than some atom in the denotation of B.
This means that for each atom I in the denotation of A, there must exists a
substitution θ such that Iθ is in the denotation of B.

Definition 4.2. A moded atom A is moded more general than a moded
atom B w.r.t. a program P , ABB, iff:
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∀I ∈ Den(A),∃I ′ ∈ Den(B) : I is more general than I ′ �

We illustrate this moded more general relation with some small examples.

Example 4.1. The binary tree program succeeds if the argument of the query
represents a binary tree.

bin(empty).
bin(tree(L,_,R)):- bin(L), bin(R).

The following moded more general relations hold w.r.t. the this program:

• bin(X)B bin(I)

The denotation of bin(X) only contains the atom itself, which is more
general than any atom in the denotation of bin(I), e.g. bin(empty).

• bin(tree(tree(In, V 1, Xn), V 2, Y ))B bin(tree(I, V 3, tree(X, V 4, empty)))

Every atom A of the denotation of bin(tree(tree(In, V 1, Xn), V 2, Y )), is
more general than some atom B denoted by bin(tree(I,, tree(X,, empty))).
For example, bin(tree(tree(empty, V 1, Xn), V 2, Y )) (obtained by {In \
empty}) is more general than bin(tree(tree(empty, empty, empty),
V 3, tree(X, V 4, empty))) (obtained by {I \tree(empty, empty, empty)}).�

Because the denotation of a moded atom is in general infinite, we cannot check
this property for every atom in the denotation. However, there is a syntactic
sufficient condition to check if the moded more general relation holds between
two given moded atoms A and B. The condition is based on a particular kind
of unifiability of the atoms.

We introduce the following notations. Let InV arP be the set of input variables
and V arP the set of normal variables. To every I ∈ InV arP we associate a
fresh normal variable I. Let Term+

P denote the set of all terms constructible in
the underlying language of P augmented with the variables {I | I ∈ InV arP }.

Proposition 4.1. Let A and B be two moded atoms. Let A1 and B1 be
renamings of these atoms such that they have no shared variables. Let A2 and
B2 denote variants of A1 and B1 in which every input variable I is replaced by
I. Let Na

1 , . . . , N
a
n be a subset of the normal variables in A1 and Ib1, . . . , Ibm be

the fresh variables associated to the input variables in B2.

If A2 and B2 are unifiable with a substitution γ = {Na
1 \ t1, . . . , Na

n \ tn,
Ib1 \ t+1 , . . . , Ibm \ t+m} with t1, . . . , tn ∈ TermP and t+1 , . . . , t+m ∈ Term

+
P , then A

is moded more general then B. �
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Proof. Let α = {Na
1 \ t1, . . . , Na

n \ tn} and β =
{
Ib1 \ t+1 , . . . , Ibm \ t+m

}
. Because

Ib1, . . . , I
b
m cannot occur in t1, . . . , tn, γ = β ◦ α, and by unifiability, A2αβ =

B2αβ. Moreover, since B2 does not contain Na
1 , . . . , N

a
n , B2αβ = B2β, and

since A2α does not contain Ib1, . . . , Ibm, A2αβ = A2α. Thus, A2α = B2β.

Let Ac be an element of Den(A1). Then, there exists a substitution ψ =
{Ia1 \ s1, . . . , I

a
k \ sk}, where Ia1 , . . . , Iak are all input variables of A1, s1, . . . , sk ∈

TermP and s1, . . . , sk are ground, such that Ac = A2ψ.

Now consider the atom Bc = B2βψ. First, Bc ∈ Den(B1). This is because β
replaces all Ibj of B2 by terms t+j . These terms t+j may contain variables Ial of
A2, but these are all substituted to ordinary ground terms sl ∈ TermP by ψ.

Finally, we have that Acα = A2ψα = A2αψ = B2βψ = Bc. Note that
A2ψα = A2αψ because no si of ψ can contain a variable Na

j of α, nor can any
ti of α contain a variable Iaj of ψ. Thus Ac is more general than an element of
Den(B1).

We clarify this property by checking the moded more general relations of the
last example.

Example 4.2. The moded atoms of the last example are already variable
disjunct. To check if the moded more general relation holds, we have to check if
the atoms are unifiable with a substitution of the correct forms.

• bin(X) = bin(I) with substitution: {I \X}

• bin(tree(tree(In, V 1, Xn), V 2, Y )) = bin(tree(I, V 3, tree(X,V 4, empty)))
with substitution: {I \ tree(In, V 1, Xn), V 2 \ V 3, Y \ tree(X,V 4, empty)}
�

4.1.2 Non-termination of moded more general loops

If a moded SLDNF-derivation contains a path without substitutions on input
variables, such that the ancestor relation and the moded more general relation
hold between the first and last selected literal in that path, we call this path a
moded more general loop. We will show that a moded more general loop implies
non-termination.

Definition 4.3. In a moded SLDNF-derivation D, nodes Ni : Gi and Nj : Gj
are a moded more general loop, Ni : Gi

mmg→ Nj : Gj, iff:

• No substitutions on input variables occur in the path from Ni to Nj.
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• L1
i ≺anc L1

j .

• L1
j B L

1
i �

Note that when no confusion can occur, we may omit writing the goal in the
moded more general loop.

A moded more general loop, Ni : Gi
mmg→ Nj : Gj , corresponds to an infinite

loop for every concrete goal in the denotation of Gi.

Theorem 4.1 (Sufficiency of the moded more general loop). Let Ni : Gi
mmg→

Nj : Gj be a moded more general loop in a moded SLDNF-derivation D of
a program P and a moded query I. The sequence of clauses from Ni to Nj,
〈C1, . . . , Cn〉, can be repeated infinitely often for any goal in Den(Gi). �

Proof. Because L1
i is an ancestor of L1

j , the literals of Ni different from L1
i are

irrelevant for the derivation between Ni and Nj and hence for the repeatability.

Because no substitutions on input variables occur in the path from Ni down to
Nj , 〈C1, . . . , Cn〉 is applicable to any atom in the denotation of L1

i . Obviously,
this path is also applicable to any atom A, which is more general than some
atom B in the denotation of L1

i . Furthermore, after applying 〈C1, . . . , Cn〉 to
A, the resulting selected literal is more general than the selected literal after
applying 〈C1, . . . , Cn〉 to B.

As L1
j BL

1
i , any atom in Den(L1

j ) is more general than some atom in Den(L1
i ).

Therefore, let S be the union of Den(L1
i ) and all more general atoms. Then,

〈C1, . . . , Cn〉 is applicable to any atom of S, and after applying these clauses,
the selected literal of the resulting goal is again an atom of S. Thus, this
sequence of clauses is infinitely often applicable to elements of S.

We illustrate this non-termination condition with the binary tree program.

Example 4.3 (Non-termination proof of binary tree). Figure 4.1 shows the
moded SLD-tree of bin(X) using LP-check with repetition number 2.

The path from N0 to N2 satisfies the conditions of Definition 4.3:

• There are no substitutions on input variables from N0 to N2.

• The selected atom of N0 is an ancestor of the selected atom at N2.

• bin(L)B bin(X)
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N
0
: bin(X)

N
2
: bin(L), bin(R)

1 2

X \ tree(L,_,R) 
   X \ empty

N
1
: □

1

N
3
: bin(R)

   L \ empty

1   R \ empty

N
4
: □

Figure 4.1: Moded SLD-tree for the binary tree program, using LP − check
with repetition number 2

so N0
mmg→ N2 is a moded more general loop. Therefore, non-termination of

this example is proven by Theorem 4.1. �

Observe that Theorem 4.1 can straightforwardly be generalized to conclude non-
termination for any goal that is more general than an element of Den(Gi). In
particular, the analysis is not restricted to goals with ground inputs: Theorem
4.1 also holds for an "extended" denotation of Gi, with non-ground inputs.
However, if the denotation is extended so that an input variable can be replaced
by a non-ground term, we have to be careful not to introduce aliased variables
on the input positions.

Example 4.4 (Aliasing). p(f(X),Y):- p(X,f(Y)).

When applying the above clause to a moded goal p(X, I), the result is p(X ′, f(I)).
These atoms satisfy the moded more general relation. However, if we replace
the input variable I with the aliased variable X in the original goal, the result is
p(X ′, f(f(X ′))), which is not more general than any atom in the denotation of
p(X ′, f(I)). �

4.1.3 Input-generalizations

Our experimental evaluation (see Section 4.2) shows that for many non-
terminating programs, non-termination can be proven using the moded more
general loop. But, the next example shows that there is room for further
improvement.
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Example 4.5 (Termination behavior of flat).

flat(niltree, nil).
flat(tree(X, niltree, XS), cons(X, YS)) :- flat(XS, YS).
flat(tree(X, tree(Y, YS1, YS2), XS), ZS) :-

flat(tree(Y, YS1, tree(X, YS2, XS)), ZS).

This program, flat, flattens a binary tree into a list denoted with the cons
notation. To flatten the tree, the program repeatedly moves one element from
the left to the right subtree until the left subtree is empty. When the left subtree
is empty, we proceed by processing the right subtree. If the first argument of the
query is a variable, this program loops w.r.t. the third clause.

N
0
: flat(T,I)

N
3
: □

1

2

T \ niltree 
   I \ nil   

Ur \ tree(V1,niltree,Vr)
    I1 \ cons(X,I2)

N
4
: flat(Vr,I2)

N
1
: □

1 2

T \ niltree
I \ nil   

T \ tree(U1,niltree,Ur)
   I \ cons(U,I1)

N
2
: flat(Ur,I1)

N
7
: □

T \ niltree
    I \ nil  

Yl \ tree(Z,Zl,Zr)

N
8
: flat(tree(Z,Zl,tree(Y,Zr,tree(X,Yr,Xr))),I2)

1

3

1

N
5
: □

T \ niltree
    I \ nil  

Vr \ tree(X,tree(Y,Yl,Yr),Xr)

N
6
: flat(tree(Y,Yl,tree(X,Yr,Xr)),I2)

3

Figure 4.2: Moded generalized SLDNF-tree with LP-check of flat (Example
4.5)

Figure 4.2 shows a part of the moded generalized SLDNF-tree constructed for
moded query flat(T, I) using LP-check with repetition number 3. No nodes in the
derivations satisfy Definition 4.3. Indeed, in deriving N2 and N4 substitutions
on input variables are applied. Furthermore, N6 is not moded more general than
N4 and N8 is not moded more general than N6 because the derivation steps
replace a variable by a compound term. �

To prove non-termination for programs such as flat, we define an input-
generalization. This input-generalization is such that proving non-termination
of an input-generalized goal implies non-termination of the original goal.
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Definition 4.4. We say that Aα is an input-generalization of an atom A, if
there exist terms t1, . . . , tn in A and fresh input variables I1, . . . , In such that
Aα = A(I1 → t1, . . . , In → tn) and V ar(Aα) ∩ V ar((t1, . . . , tn)) = ∅. �

Example 4.6 (Input generalizations).

• bin(tree(I, I1)) is an input-generalization of bin(tree(I, tree(X, empty)))

• bin(I2) is an input-generalization of bin(tree(I, I1))

• bin(tree(I3, X)) is not an input generalization of bin(tree(tree(X,Y ), X))
This last example refers to the condition of the empty intersection of the
variable sets. We return to this condition in Example 4.7. �

To check if a path is non-terminating w.r.t. an input-generalized goal, we define
an input-generalized derivation. This derivation is constructed by applying a
path in a given derivation to the input-generalized selected literal of the first
node in the path.

Definition 4.5. Let D be a moded SLDNF-derivation Ni, . . . , Nj, such that
L1
i ≺anc L1

j . Let 〈C1, . . . , Cn〉 be the sequence of clauses applied from Ni to Nj
and let Aα be an input-generalization of L1

i .

The input-generalized derivation D′ for Aα, is constructed by applying the
sequence of clauses 〈C1, . . . , Cn〉 to Aα. The input-generalized nodes Nα

i

and Nα
j are the top and bottom nodes of D′, respectively. �

Next, we prove that non-termination of the input-generalized derivation implies
non-termination of the original goal. First we introduce two lemmas.

Lemma 4.1. Let Aα be an input generalization of A, then ABAα. �

Proof. Let I1, . . . , In be the input variables of A and In+1, . . . , Im be the new
introduced input variables in Aα. For every concrete atom Ac in Den(A),
I1, . . . , In are replaced by ground terms. To construct an atom Aαc of Den(Aα),
for which Ac is more general then Aαc , one replaces I1, . . . , In by the same values
as in Ac and In+1, . . . , Im by instances of the corresponding terms, tn+1, . . . , tm,
in Ac. Due to the condition that V ar(Aα) ∩ V ar((tn+1, . . . , tm)) = ∅, Ac is
more general than Aαc .

Example 4.7. To explain the condition on the intersection of the variables in
Definition 4.4, consider the atom A = a(X, f(X)). If we omit the condition
on the variables, we could consider Aα = a(X, I) as an input generalization.
Den(A) = {a(X, f(X))} and a(X, f(X)) is not more general than any element
in Den(a(X, I)). So, the property that ABAα would not hold. �
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Lemma 4.2. Let A and B be atoms such that A B B and let every atom in
Den(B) be non-terminating w.r.t. a program P , then, every atom in Den(A)
is non-terminating w.r.t. P . �

Proof. Every atom of Den(A) is more general than a non-terminating atom.

Corollary 4.1 (Non-termination with input-generalization). Let Ni : Gi and
Nj : Gj be nodes in a derivation D of a program P for a moded query I,
such that L1

i ≺anc L1
j , and let Nα

i and Nα
j be input-generalized nodes in an

input-generalized derivation D′ of Ni and Nj for A.

If Nα
i

mmg→ Nα
j , then every concrete goal in the denotation of Gi is non-

terminating w.r.t. program P .

Proof. Follows from Theorem 4.1 and the two previous lemmas.

We illustrate these input-generalizations by revisiting the flat example.

Example 4.8 (Non-termination of flat). To prove non-termination, we
generalize node N6 to flat(tree(Y, Y l, In), I2), by changing the subterm
tree(X,Y r,Xr) to a new input variable In.

Yl \ tree(Z,Zl,Zr)

N
8
: flat(tree(Z,Zl,tree(Y,Zr,In)),I2)

3

N
6
: flat(tree(Y,Yl,In),I2)

α

α

Figure 4.3: Input-generalized SLDNF-derivation of flat

Figure 4.3, shows the input-generalized moded SLDNF-derivation for
flat(tree(Y, Y l, In), I2). This derivation is a moded more general loop: Nα

6
mmg→

Nα
8 . Therefore, non-termination of the program flat w.r.t. the concrete goals

in the denotation of the goal of N6 is proven by Corollary 4.1.

Obviously, not every query in the denotation of flat(T, I) reaches node N6.
However, when we apply all substitutions on input variables between nodes N0
and N6, we obtain a class of non-terminating top level queries. In this case
flat(T, cons(U, cons(X, I2))). To construct a class of non-terminating queries
that reaches this node and therefore loops, it is enough to apply all substitutions
on input variables occurring between N0 and N6. �

Note that a concrete query in the denotation of a moded query might not reach
the moded more general loop. However, classes of non-terminating top level
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queries can be obtained by applying all substitutions on the input variables
between the root and the first node of the moded more general loop. In the
last example, this class of top level queries is flat(T, cons(U, cons(X, I2))).

4.2 Experimental evaluation

To evaluate our approach, we implemented a non-termination analyzer P2P ,
from Prediction to Proof , based on Corollary 4.1. We tested P2P on a
benchmark of 48 non-terminating pure logic programs. First, we describe
our analyzer and the benchmark. Then, we compare our tool with the non-
termination inference tool NTI [38].

4.2.1 P2P : from Prediction to Proof

We implemented P2P in SWI-prolog [59]. P2P consists of two components.
First, the implementation of the termination prediction approach from the
previous chapter, TPoLP , constructs the moded SLDNF-derivation and predicts
the termination behavior. If TPoLP predicts a derivation to be non-terminating,
the second component tries to prove non-termination in the derivation.

To prove non-termination, P2P checks if the derivation contains a moded more
general loop or it uses a backtracking search to attempt to construct an input
generalized derivation that contains a moded more general loop. Although
many input generalizations can be constructed, proving non-termination in a
derivation can be done rather efficiently. This is because the LP-cuts made by
TPoLP correctly identify an infinite loop if the repetition number is sufficiently
high. Therefore, instead of checking the conditions of the moded more general
loop between all pairs of nodes in the derivation, it suffices to check these
conditions for the pairs of nodes of the LP-cut.

4.2.2 Benchmark of Termination Problems

Our benchmark consists of the non-terminating pure logic programs from the
termination competition of 2007. The benchmark and the results from the tools
that participated in the competition are available online [1]. The benchmark of
the termination competition contains around 300 logic programs and moded
queries representing different challenges in termination and non-termination
analysis. A few programs from the competition are omitted because they
contain non-logical operations such as arithmetics. The competition benchmark
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contains some doubles. These were also omitted. The benchmark contains 48
non-terminating programs. All programs contain between 2 and 15 clauses,
except for binary4, which contains 41 clauses. Note that the benchmark contains
some complex programs, e.g. pl.5.2.2 which is a Turing machine simulator. The
only other non-termination analyzer, NTI [38], proves non-termination for 45
benchmark programs.

Name program P2P Size Time NTI Name program P2P Size Time NTI
ackermann-ioi V 9 0.33 V permutation-fb V 22 0.26 V
bad sublist V 33 0.29 V pl1.1 V 8 0.25 V
binary4 V 12 0.27 V pl3.1.1 V 12 0.30 V
delete-bff V 13 0.31 V pl3.5.6 V 13 0.31 V
der-fb V 22 0.29 V pl4.0.1-oooi V 33 0.27 V
doublehalfpred V 38 0.28 V pl4.5.2 V 481 0.36 V
example4-2 V 4 0.23 V pl4.5.3a V 10 0.29 V
flatlength-fbf V 14 0.23 V pl4.5.3b V 10 0.24 V
flatlength-ffb V 19 0.23 V pl4.5.3c V 11 0.27 V
flat-oi V 9 0.26 X pl5.2.2 V 59 0.27 V
frontier-fb V 12 0.27 V pl7.6.2.a V 39 0.27 X
ifdiv V 19 0.29 V pl7.6.2.b V 45 0.33 X
in-bf V 18 0.29 V quicksort-fb V 72 0.26 V
inorder-fb V 4 0.27 V quicksort-oi V 74 0.26 V
insert-bff V 22 0.29 V reverse-fb V 9 0.32 V
log2a-oi V 35 0.25 V select-bff V 8 0.32 V
log2b-oi V 29 0.28 V slowsort-fb V 123 0.27 V
mapcolor V 23 0.31 V slowsort-oi V 26 0.26 V
member-bf V 8 0.27 V sublist-bf V 30 0.21 V
mergesort V 171 0.28 V subset-bf V 21 0.23 V
mergesort-oi V 54 0.28 V subset-fb V 14 0.26 V
mergesort_variant V 15 0.23 V suffix-bf V 9 0.25 V
minimum-fb V 8 0.29 V transpose2 V 6 0.28 V
naive reverse-fb V 8 0.37 V tree_member-bf V 12 0.28 V

Table 4.1: Benchmark of non-terminating pure logic programs.

Table 1 shows our experimental evaluation on this benchmark using LP-check
with pruning, with 4 as a repetition number. The result of our tool is given in
the column P2P , V denotes that non-termination is proven while X denotes
that no non-termination proof was found. The result of NTI is given in the
column NTI. The columns Size and Time show the size in the number of nodes
of the SLDNF-tree and the analysis time in seconds, respectively.

The results are very satisfactory. For all programs in the benchmark, non-
termination is proven and a class of non-terminating queries can be constructed.
The analyzer is very fast. Any benchmark program is analyzed in less than a
second and the memory use never exceeds a few megabytes.

As stated, these experiments have been performed using 4 as a repetition number.
When we use 3 as a repetition number, our tool fails to prove non-termination
of programs pl7.6.2.a and pl7.6.2.b. These are two erroneous implementations
of a path find algorithm. When using 2 as repetition number, proving non-
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termination fails for about 25% of the benchmark programs. This is no surprise,
since the loss of precision using 2 as a repetition number, was also encountered
in the experimental evaluation of TPoLP .

4.2.3 Comparison with NTI

To infer non-terminating queries, NTI first transforms a given program into a
binary program using binary unfoldings. Then, it compares the head and body
of the clauses in the binary program with a special more general relation. If
this relation holds, non-termination is proven.

The binary unfolding of a program represent the calls made during program
execution. Thus, it corresponds to comparing the selected literals in our symbolic
computation. The binary unfolding of a program can be computed using a
fixpoint operator.

The special more general relation used by NTI, 4-more general, is based on
the notion of derivation neutral (DN) filters. These filters are functions defining,
for a clause and argument position, which terms have no influence on the
applicability of the clause. Furthermore, if the head atom satisfies the filter, the
body atom must satisfy the filter as well. We explain NTI’s non-termination
condition and compare it with our approach using some small examples.

Example 4.9 (Recursive clause of reverse-fb).

rev([H|T],Temp,Res):- rev(T,[H|Temp],Res).

In this clause, the second argument is not replaced by a more general one.
Therefore, NTI needs a DN filter to prove non-termination. The applicability
of the clause does not depend on the value of Temp, so we can use the trivial
filter, instance of X, for the second argument position. We can also use this
filter for the last argument position. Therefore, NTI concludes that this clause
is non-terminating for each goal where the first argument is more general than
[H|T ] and the second and third argument are instances of X. �

These DN filters cannot depend on the names of the variables. Therefore, they
cannot express that two argument must contain a common subterm.

Example 4.10 (Variable independent filters). a(X,X):- a(s(X),s(X)).

Both arguments are replaced by more specific ones and the applicability does not
depend on the value of X. However, since both arguments must be bound to the
same term, NTI fails to prove non-termination of this example. �
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Instead of comparing all the arguments independently, our approach compares
the selected literals. Therefore, our condition does not have this restriction.

Because NTI requires that each argument is either replaced by a more general
one or satisfies a DN filter, NTI fails to prove non-termination if in one
argument, a subterm is replaced by a more general one while another subterm
is replaced by a more specific one. This is because of the requirement that if
the head atom satisfies the filter, the body atom needs to satisfy it as well.

Example 4.11 (Looping clause of flat-oi). In the third clause of flat-oi in
Example 4.8, the first argument of this clause contains two such subterms. XS
is replaced by tree(X,YS2,XS) and tree(Y, YS1, YS2) is replaced by YS1. �

Because we allow arguments to contain both input and ordinary variables, our
condition does not have this restriction.

Table 1 shows that NTI fails to prove non-termination of 3 programs. These 3
programs are examples of the two classes of problems that are illustrated by
Examples 4.10 and 4.11. The actual results on the termination competition
were worse for NTI, as we have rewritten some programs that NTI could not
parse.

4.3 Summary

We introduced a new approach to non-termination analysis of logic programs
based on a finite, symbolic derivation tree for a moded query. This symbolic
tree represents the derivation trees of all concrete queries denoted by the moded
query. To prove non-termination we look for a loop in this symbolic derivation
tree. We implemented this approach and evaluated it on a benchmark of 48
non-terminating programs from the termination competition of 2007. Our tool,
P2P , proves non-termination of all benchmark programs. We have shown that
our technique improves on the results of the only non-termination analyzer
developed before our work, NTI, and that we can handle 2 new classes of
programs.
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Chapter 5

Non-termination Analysis for
Logic Programs using Types

In this chapter, we identify two classes of programs for which previous non-
termination analyzers fail and we extend our non-termination analysis to handle
such programs.

A first limitation of both NTI and P2P is that they only detect non-terminating
derivations if, within these derivations, some fixed sequence of clauses can be
applied repeatedly.

Example 5.1. The program, longer, loops for any query longer(L), with L a
non-empty list of zeros.

longer([0|L]):-
zeros(L),
longer([0,0|L]).

zeros([]).
zeros([0|L]):- zeros(L).

The list in the recursive call is longer than the original one and thus, the number
of applications of the recursive clause for zeros/1 increases in each recursion.
Therefore, no fixed sequence of clauses can be repeated infinitely and previous
non-termination analyzers fail to prove non-termination of this example. �

Example 5.1, which was also discussed in the introduction, shows a program
that violates this restriction. We overcome this limitation by using non-failure

55



56 NON-TERMINATION ANALYSIS FOR LOGIC PROGRAMS USING TYPES

information. Non-failure analysis [17] detects classes of goals that can be
guaranteed not to fail, given mode and type information. Its applications
include inferring minimal computational costs, guiding transformations and
debugging. To use the information provided by non-failure analysis in the non-
termination analysis of [58], type information must be added to the symbolic
derivation tree. We add this information using regular types [60]. Non-failure
information allows to abstract away from the details on how success was reached
for these computations. For the longer program, non-failure analysis proves
that zeros/1 cannot fail for the inferred types. This will allow us to prove
non-termination for the longer program.

Example 5.2.

append([],L,L).
append([H|T],L,[H|R]):- append(T,L,R).

The query append(X,X,X) succeeds once with a computed answer substitution
X/[]. The program loops after backtracking. NTI needs a filter for the second
argument to prove non-termination of this example. However, these filters are
only allowed on argument positions that don’t share variables with terms on
other positions. Because all argument positions contain the same variable, NTI
fails to prove non-termination of this example.

Similarly, P2P needs an input-generalization to prove non-termination for this
example. Due to the shared variables, this input-generalization is not allowed
for this query. �

Another limitation of previous non-termination analyzers is related to aliased
variables. Non-termination analyzers developed before 2011 fail to prove non-
termination of programs such as the one in Example 5.2. We will show that
program specialization can be used to overcome this limitation. In addition
to these two classes of programs, there are combinations of them that yield
a fairly large class of new programs that we can prove non-terminating using
non-failure analysis combined with program specialization.

Note that from here on in the thesis, we will focus on definite logic programs.
The extension to general logic programs should be fairly easy, but we see little
advantages in practice. Therefore, we will only consider definite logic programs
in the rest of the thesis.

The chapter is organized as follows. Section 5.1 introduces preliminaries. Section
5.2 extends the moded SLD-tree with types and introduces a special derivation
step to handle non-failing goals. Section 5.3 adapts our non-termination
condition for this setting and illustrates that Program Specialization can be
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used to further improve the power of our non-termination analyzer. Finally,
Section 5.4 summarizes the chapter.

5.1 Preliminaries

5.1.1 Types

In this chapter, we extend the moded SLD-tree defined in the previous chapter
by adding a special operation for nodes with a non-failing selected atom. To
use non-failure information, type information of the partially instantiated goals
must be available. Since logic programs are untyped, this type information will
be inferred. Many techniques and tools exist to infer type definitions for a given
logic program, for example [12]. We will describe types using regular types as
defined in [60]. The set of type symbols is denoted by Στ .

Definition 5.1. Let P be a logic program. A type rule for a type symbol
T ∈ Στ is of the form T → c1; . . . ; ci; fi+1(τ̄i+1); . . . ; fk(τ̄k), (k ≥ 1), where
c1, . . . , ci are constants, fi+1, . . . , fk are distinct function symbols associated
with T and τ̄j (i+ 1 ≤ j ≤ k) are tuples of corresponding type symbols of Στ .
A type definition T is a finite set of type rules, where no two rules contain
the same type symbol on the left hand side, and for each type symbol occurring
in the type definition, there is a type rule defining it. �

A predicate signature declares one type symbol for each argument position of
a given predicate. A well-typing 〈T ,S〉 of a program P , is a pair consisting
of a type definition T and a set S containing one predicate signature for each
predicate of P , such that the types of the actual parameters passed to a predicate
are an instance of the predicate’s signature. For this chapter, we use PolyTypes
([12]) to infer signatures and type definitions. In [12], it has been proven that
these inferred signatures and type definitions are a well-typing for the given
program.

Types allow to give a more precise description of the possible values during
evaluation at different argument positions. The set of terms constructible from
a certain type definition, is called the denotation of the type. We represent the
denotation of type T by Den(T ).

Given a type definition T , for every type T defined by T , we introduce an
infinite set of fresh variables V arT . For any two types T1 6= T2, we impose that
V arT1 ∩ V arT2 = ∅.
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Definition 5.2. Let T1, . . . , Tn be types defined by a type definition T defining
type symbols τ̄ . The denotation Den(Ti) of Ti(1 ≤ i ≤ n), defined by
Ti → c1; . . . ; cj ; fj+1(τ̄j+1); . . . ; fk(τ̄k), is recursively defined as:

• every variable in V arTi is an element of Den(Ti)

• every constant cp, 1 ≤ p ≤ j, is an element of Den(Ti)

• for every type term fp(τ1, . . . τl), j < p ≤ k,: if t1 ∈ Den(τ1), . . . , tl ∈
Den(τl), then fi(t1, . . . , tl) ∈ Den(Ti) �

Example 5.3. For the program longer of Example 5.1, the following types and
signatures are inferred by PolyTypes:
Tlz → [ ]; [T0 | Tlz] longer(Tlz)
T0 → 0 zeros(Tlz)

Den(T0) is the set containing 0 and all variables of V arT0 . Den(Tlz) contains:
[ ], Y, [0, 0], [0, X, 0], [X|Y ], . . ., with X ∈ V arT0 and Y ∈ V arTlz . �

5.1.2 Non-failure analysis and program specialization

Given type and mode information, non-failure analysis detects goals that can
be guaranteed not to fail, i.e. they either succeed or go in an infinite loop. We
use the non-failure analysis technique of [17] in our non-termination analysis.

Example 5.4. For Example 5.1, non-failure analysis proves that zeros/1 is
non-failing if its argument is an input mode of type Tlz. It cannot show that
longer/1 with an argument of type Tlz is non-failing, because longer([ ]) fails.
�

Program specialization aims at transforming a given logic program into an
equivalent but more efficient program for a certain query. This query can
be partially instantiated, yielding a specialized program for a class of queries.
Program specialization has received a lot of attention in the community, see
for example [26]. In this chapter, we use the specialization tool ECCE, [26], to
generate specialized programs.
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5.2 Moded-Typed SLD-trees and the NFG transi-
tion

5.2.1 Moded-typed SLD-trees and loop checking

As stated in the introduction, we want to prove non-termination of partially
instantiated queries, given mode and type information of the variables in the
query. In such a partially instantiated query, variables representing unknown
terms are labeled input modes. To every input mode, a type is assigned. An
atom Q is a moded-typed atom if some variables of Q are input modes, otherwise,
it is a concrete atom. The terms represented by input modes in an atom Q are
restricted to terms of their respective type. Note that the user does not have to
declare the types associated to input modes, because the inferred well-typing
declares a unique type for every subterm of atoms defined by the program.

Definition 5.3. Let P be a program, Q = p(I1, ..., Im, T1, ..., Tn) a moded-
typed atom and 〈T ,S〉 a well-typing for P . The moded-typed SLD-tree of
P for Q, is a pair (GTG0 , 〈T ,S〉), where GTG0 is the generalized SLD-tree
for P ∪ {← p(I1, ..., Im, T1, ..., Tn)}, with each Ii being a special variable not
occurring in any Tj . The special variables I1, ..., Im are called input variables.
�

As mentioned, an input variable I may be substituted by a term f(t1, . . . , tn).
If I is substituted by f(t1, . . . , tn), all variables in t1, . . . , tn also become input
variables. In particular, when unifying I with a normal variable X, X becomes
an input variable. We refer to Figure 5.1 for an illustration of (part of) a
moded-typed SLD-tree.

A moded-typed atom A represents a set of concrete atoms, called the denotation
of A. This is the set of atoms obtained by replacing the input modes by arbitrary
terms of their respective type.

Definition 5.4. Let A be a moded-typed atom with I1, . . . , In as its input
variables with types T1, . . . , Tn, respectively. The denotation of A, Den(A), is

{A(t1 → I1, . . . , tn → In) | t1 ∈ Den(T1), . . . , tn ∈ Den(Tn)} �

Note that non-termination of an atom implies non-termination of all more
general atoms. Therefore, we consider a moded-typed atom A to represent all
atoms of the denotation of A, as well as all more general atoms. We call this
set the extended denotation of A.
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Definition 5.5. Let A be a moded-typed atom with I1, . . . , In as its input
variables with types T1, . . . , Tn, respectively. The extended denotation of A,
Ext(A), is

{I | I ′ ∈ Den(A), I is more general than I ′} �

Note that this extended denotation includes the atoms of the denotation and
that this concept can be adapted to moded-typed goals in a straightforward
way.

Moded-typed SLD-trees represent all derivations for a certain class of queries.
For most programs and classes of queries, this tree is infinite. In order to obtain
a finite tree, we can use a complete loop check, to cut all infinite derivations
from the tree.

Example 5.5. Figure 5.1 shows the moded-typed SLD-tree for longer, using
LP-check with repetition number 2.

N
0
: ← longer(L)

1 L \ [0|M]

N
1
: ← zeros(M), longer([0,0|M])

2 3
M \ [0|N]M \ []

N
2
: ← longer([0,0]) N

6
: ← zeros(N), longer([0,0,0|N])

1

N
3
: ← zeros([0]), longer([0,0,0])

3

N
4
: ← zeros([ ]), longer([0,0,0])

2

N
5
: ← longer([0,0,0])

2 N \ [ ]

N
7
: ← longer([0,0,0])

3

N
9
: ← zeros([0]), longer([0,0,0,0])

3

N
10

: ← zeros([ ]), longer([0,0,0,0])

2

N
11

: ← longer([0,0,0,0])

1

N
8
: ← zeros([0,0]), longer([0,0,0,0])

Figure 5.1: Moded-typed SLD-tree for the atom longer, using LP − check with
repetition number 2

At node N5, LP-check cuts clause 1 because node N5 is a loop goal of node N2.
Likewise, LP-check cuts clause 3 at node N6 and clause 1 at node N11. �
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5.2.2 The NFG transition

As illustrated in Example 5.1, one of the main limitations of current non-
termination analysis techniques is that non-termination can only be proven for
programs and queries repeating a fixed sequence of clauses. To overcome this
limitation, we extend the moded-typed SLD-tree of Definition 5.3 by adding
a special transition NFG, to treat non-failing selected atoms. This transition
allows to abstract from the sequence of clauses needed to solve the non-failing
atom. Note that during the evaluation of a non-failing atom, normal variables
may be bound to terms of their respective type. Therefore, we approximate
the application of this unknown sequence of clauses by substituting all normal
variables in the selected atom by fresh input variables of the correct type. In the
next subsection, the correlation between these resulting moded-typed SLD-trees
and concrete SLD-trees is given.

Definition 5.6. Let Ni :← A1, A2, . . . , An be a node in a moded-typed SLD-
tree, with A1 a non-failing atom. Let V1, . . . , Vm be all normal variables of
A1, corresponding to types T1, . . . , Tm, respectively. Let V1, . . . , Vm be new
input variables of types T1, . . . , Tm, respectively. Then, an NFG transition,
Ni :← A1, . . . , An ⇒NFG Ni+1 :← A2θ, . . . , Anθ, can be applied to Ni, with
substitution θ = {V1 \ V1, . . ., Vm \ Vm}. �

Note that we can also allow an NFG transition to be applied to a goal containing
only one atom, resulting in a refutation.

Definition 5.7. Let P be a logic program, Q a moded-typed atom and 〈T ,S〉
a well-typing for P . The moded-typed SLD-tree with NFG is the pair
(GT(NFG,G0), 〈T ,S〉), where GT(NFG,G0) is obtained from the generalized SLD-
tree GTG0 for P∪ ← Q, by, at each node: Ni :← A1, A2, . . . , An, with A1 a
non-failing atom, additionally applying the NFG transition. �

Without proof, we state that LP − check is also a complete loop check for
moded-typed SLD-trees with NFG. From here on, when we refer to a moded-
typed SLD-tree, we mean the finite part of a moded-typed SLD-tree with NFG,
obtained by using LP − check with some repetition number, r.

Example 5.6. Figure 5.2 shows the moded-typed SLD-tree of Example 5.1 for
the query longer(L) using 3 as a repetition number. The selected atom at node
N1, zeros(M), is non-failing and can be solved using an NFG transition. Since
there are no normal variables in the selected atom, there are no substitutions
for this transition. At node N3, the NFG transition is applied as well.

At node N4, LP − check cuts the derivation because of the chain of loop goals
N0 ⇒1 . . . N2 ⇒1 . . . N4 ⇒1. �
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N
0
: ← longer(L)

1 L \ [0|M]

N
1
: ← zeros(M), longer([0,0|M])

NFG

N
2
: ← longer([0,0|M])

1

N
3
: ← zeros([0|M]), longer([0,0,0|M])

N
4
: ← longer([0,0,0|M])

... ...
2

3

NFG

... ...
2

3

Figure 5.2: Moded-typed SLD-tree with NFG
of the longer program

N
0
: ← start

1

N
1
: ← a(L), loop(L)

NFG

N
2
: ← loop(I)

4

N
3
:  ← loop([0,0,0])

N
4
: ← loop([0,0,0])

L \ I

I \ [0,0,0]

4

Figure 5.3: Moded-typed
SLD-tree of Example 5.8

5.2.3 Correlation with concrete queries

The correlation between derivations in moded-typed SLD-trees without NFG
transitions and concrete SLD-derivations is rather simple. For every derivation
in such a moded-typed SLD-tree from N0 : G0 to Ni : Gi, there exists a
non-empty subset of the concrete goals of the extended denotation of G0 on
which the same sequence of clauses can be applied. This subset of goals can
be obtained from G0 by applying the composition of all substitutions on input
variables from N0 to Ni.

Example 5.7. In the derivation from N0 to N8 in Figure 5.1, there are three
substitutions on input variables: L \ [0|M ], M \ [0|N ] and N \ []. Applying these
substitutions to the query longer(L) gives the concrete query longer([0, 0]). �

For typed SLD-trees withNFG transitions, there is no such clear correspondence.
Solving a non-failing atom corresponds to a potentially infinite sequence of
clause applications. Thus, for an NFG transition Ni : Gi →NFG Nj : Gj , it is
possible that no concrete state corresponding to Gj ever occurs in a concrete
derivation. However, this will not cause any problems for our analysis. If our
analysis detects and reports a non-terminating computation for a branch in the
moded-typed SLD-tree which has an NFG transition, then a corresponding
concrete atom either finitely succeeds or non-terminates. In both cases, reporting
non-termination is correct.

There is a second problem with the correspondence between NFG transitions
and concrete derivations. Input variables introduced by NFG give an
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overestimation of the possible values after evaluating the non-failing selected
atom in a concrete derivation. Therefore, substitutions on such input variables
further down the tree might be impossible and thus, cannot be allowed. We
illustrate this with an example.

Example 5.8.

start:- a(L), loop(L).
a([0]).
a([0,0]).
loop([0,0,0]):- loop([0,0,0]).

Tlz is a correct type definition for all arguments of atoms. Non-failure analysis
([17]) shows that a(L) is non-failing if L is a free variable.

Figure 5.3 shows a part of the moded-typed SLD-tree using repetition number
2 for the query start. At node N1, the non-failing atom a(L) is solved by
replacing the variable L by a new input variable I. The path from N3 to N4 is a
loop. However, this loop cannot be reached because I is substituted by [0,0,0],
but the program only allows it to be [0] or [0,0]. �

We introduce the following proposition showing the correlation between moded-
typed SLD-trees and concrete SLD-trees.

Proposition 5.1. Let T be a moded-typed SLD-tree with NFG for a goal G0
and Ni a node of T . Let θ be the composition of all substitutions on input
variables from N0 to Ni.

If the derivation from N0 to Ni does not contain a substitution on input variables
introduced by NFG transitions, then all goals in Ext(G0θ) can be evaluated to
goals in Ext(Gi) or loop w.r.t. an NFG transition. �

Proof. By induction on the length of the derivation.

Base case. Since we assume the query to consist only of one atom, applying
an NFG transition to the top level goal G0 results in a refutation. Since G0
is non-failing, every element of Ext(G0) either results in a refutation or loops
w.r.t. this NFG transition. Applying a clause, N0 : G0 ⇒C N1 : G1, to G0 only
succeeds if the actual values of the input variables are such that the substitutions
on the corresponding terms succeed. Therefore, let σT be the substitutions on
input variables corresponding to this derivation step, then clause C is applicable
to Ext(G0σT ).
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Induction step for NFG application Assume the lemma holds for N0 : G0 ⇒
Ni : Gi and that we apply Ni : Gi ⇒NFG Ni+1 : Gi+1. Since A1

i is non-failing,
this atom either succeeds or loops w.r.t. the program. If it succeeds, free
variables of A1

i may be substituted with terms of their corresponding type.
Due to Definition 5.5, the resulting goal is an element of Ext(Gi+1) whether
or not the variables are bound during the evaluation of A1

i . Thus, if θ is
the composition of substitutions on input variables from N0 to Ni, goals in
Ext(G0θ) either loops w.r.t. an NFG transition or can be evaluated to a goal
in Ext(Gi+1)

Let θi be the substitutions on input variables from N0 to Ni. Then, every atom
in the extended denotation of A1

i θi is non-failing and thus either succeeds or
loops. If the free variables in the selected atom of G0 are bound, they are
bound to an element of their respective type and thus included in Ext(G1). If
some free variables stay unbound they are still elements of Ext(G1) because
of Definition 5.5. Thus, every element in G0θi can be evaluated to a goal in
Ext(Gi+1) or loops w.r.t. an NFG transition.

Induction step for clause application Assume the lemma holds for N0 : G0 ⇒
Ni : Gi and that we apply Ni : Gi ⇒c Ni+1 : Gi+1. Let σT and be the
substitutions on input variables due to this derivation step. Let θi be the
substitutions on input variables from N0 to Ni.

As in the base case, this clause is applicable to Gi if the actual values of the
input variables are such that the substitutions on the corresponding terms
succeed and thus, they are applicable to Ext(GiσT ). Therefore, every goal in
Ext(G0θiσT ) can be evaluated to a goal in Ext(Gi+1) or loops w.r.t. an NFG
transition.

5.3 Typed non-termination analysis with non-failing
goals

In this section, we reformulate our non-termination conditions of the previous
chapter for moded-typed SLD-trees with NFG. We prove that these conditions
imply non-termination. We then show that program specialization can be used
to further extend the applicability of these conditions.
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5.3.1 Non-termination of inclusion loops

To prove non-termination, we prove that a path between two nodes Nb and
Ne in a moded-typed SLD-derivation can be repeated infinitely often. To find
such a path, we check three properties. Because the rules in the path must be
applicable independent of the values of the input variables, no substitutions on
the input variables may occur in the path from Nb to Ne. Because this path
should be a loop, A1

b must be an ancestor of A1
e. Finally, because the goals

corresponding to Ne must be able to repeat the loop, Ext(A1
e) must be a subset

of Ext(A1
b). We can show that these three conditions imply non-termination.

Definition 5.8. In a moded-typed SLD-derivation with NFG D, nodes Ni : Gi
and Nj : Gj are an inclusion loop, Ni : Gi

mmg→ Nj : Gj, if:

• No substitutions on input variables occur in the path from Ni to Nj.

• A1
i ≺anc A1

j .

• A1
j BA

1
i �

An inclusion loop Ni : Gi
mmg→ Nj : Gj corresponds to an infinite loop for every

goal of the extended denotation of Gi.

Theorem 5.1 (Sufficiency of the inclusion loop). Let Ni : Gi
mmg→ Nj : Gj be

an inclusion loop in a moded-typed SLD-derivation with NFG D of a program
P and a moded-typed query Q, then, every goal of the extended denotation of
Gi is non-terminating w.r.t. P . �

Proof. In the path from Ni to Nj , non-failing atoms can be solved using the
NFG transition. If such an atom loops, the theorem holds. Thus, it is sufficient
to prove that the path from Ni to Nj can be applied infinitely often if all
selected atoms, from Ni to Nj , corresponding to an NFG transition finitely
succeed.

Because A1
i is an ancestor of A1

j , only the selected atom of Ni influences if the
sequence of clauses can be repeated infinitely often.

Because no substitutions on input variables occur in the path from Ni down
to Nj , the corresponding sequence of derivation steps and NFG transitions is
applicable to any atom in Ext(A1

i ).

Since A1
j BA

1
i , this proves non-termination.
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Due to Proposition 5.1, an inclusion loop Ni : Gi
mmg→ Nj : Gj proves non-

termination for a subset of concrete goals of the extended denotation of the top
level goal, if no substitutions on input variables introduced by NFG transitions,
occur in the path from N0 to Ni.
Example 5.9. The moded-typed SLD-tree of Figure 5.2 can be used to prove
non-termination of the longer program. The path from N2 to N4 satisfies the
conditions of the inclusion loop. There are no substitutions on input variables
between these nodes, the ancestor relation holds and Ext(longer([0, 0, 0 |M ]))
is a subset of Ext(longer([0, 0 |M ])).

Since there are no input variables added by NFG transitions, Proposition 5.1
proves that all atoms in Ext(longer([0 | M ])), with M of type Tlz, are non-
terminating. �

Because extended denotations are usually infinite sets, the third condition of
Definition 5.8, A1

j BA
1
i , is hard to verify. In the previous chapter, we introduced

a syntactic condition, based on a unifiability test between atoms, to verify
whether the inclusion holds. This syntactic condition, formulated in Proposition
1 of the previous chapter, is still applicable in our current setting and can be
used to automatically check Definition 5.8.

5.3.2 Input-generalizations

In the previous chapter, we defined input-generalizations to increase the
applicability of our non-termination condition. The next example shows that
this is also needed in the current setting.
Example 5.10. We will illustrate the need for input generalizations with an
adapted version of the program of Example 5.1.

longer([0|L], X):-
zeros(L),
longer([0,0|L], f(X)).

zeros([]).
zeros([0|L]):- zeros(L).

For this program, the following types and signatures are inferred:
Tlz → [ ]; [T0 | Tlz] Tf → f(Tf ) longer(Tlz, Tf )
T0 → 0 zeros(Tlz)

Figure 5.4 shows the moded-typed SLD-derivation for the moded-typed query
longer(L, X), with L of type Tlz, using 3 as a repetition number. All pairs of
nodes in the derivations fail the third condition of Definition 5.8. �
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N
0
: ← longer(L, X)

1 L \ [0|M]

N
1
: ← zeros(M), longer([0,0|M], f(X))

NFG

N
2
: ← longer([0,0|M], f(X))

1

N
3
: ← zeros([0|M]), longer([0,0,0|M], f(f(X)))

NFG

N
4
: ← longer([0,0,0|M], f(f(X)))

Figure 5.4: Moded-typed SLD-tree
of Example 5.10

N
2
: ← longer([0,0|M], f(I))

1

N
3
: ← zeros([0|M]), longer([0,0,0|M], f(f(I)))

NFG

N
4
: ← longer([0,0,0|M], f(f(I)))

α

α

α

Figure 5.5: Input-generalized deriva-
tion

To prove non-termination for such a program, we define an input-generalization.
This input-generalization is such that proving non-termination of an input-
generalized selected atom implies non-termination of the original goal.

Definition 5.9. A moded-typed atom Aα is an input-generalization of a moded-
typed atom A, if there exist terms t1, . . . , tn in A and fresh moded-typed variables
I1, . . . , In with the same types as t1, . . . , tn, respectively, such that Aα = A(I1 →
t1, . . . , In → tn) and V ar(Aα) ∩ V ar((t1, . . . , tn)) = ∅. �

Example 5.11. Let A be the atom longer([0, X,X], Y ):

• longer([0|I], Y ) is an input-generalization of A

• longer(I1, I2) is an input-generalization of A

• longer([0, I,X], Y ) is not an input-generalization of A. This last example
refers to the condition of the empty intersection of the variable sets. �

To check if a path is non-terminating w.r.t. an input-generalized goal, we define
an input-generalized derivation. This derivation is constructed by applying a
path in a given derivation to the input-generalized selected atom of the first
node in the path.

Definition 5.10. Let Ni and Nj be nodes in a moded-typed SLD-derivation with
NFG D, such that A1

i ≺anc A1
j . Let 〈C1, . . . , Cn〉 be the sequence of derivation
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steps and transitions from Ni to Nj and let Aα be an input-generalization of
A1
i .

If 〈C1, . . . , Cn〉 can be applied to ← Aα, the resulting derivation is called the
input-generalized derivation D′ for Aα. The input-generalized nodes
Nα
i and Nα

j are the first and last node of D′, respectively. �

Note that such a path in a moded-typed SLD-derivation is applicable to the
input-generalized atom, if the selected atoms at all NFG transitions are still
non-failing.

Non-termination of the input-generalized derivation implies non-termination of
the original goal. Before we prove that this holds, we introduce an alternative
definition of the extended denotation and give a lemma.

The following definition is an alternative characterization of the extended
denotation. This definition contains the same elements as the extended
denotation of Definition 5.5, up to variable renamings. This characterization
will also be used in the following proofs.

Definition 5.11. Let A be a moded-typed atom with I1, . . . , In as its typed
variables with types T1, . . . , Tn, respectively. The extended denotation of A,
Ext(A), is

Let S = {A(t1 → I1, . . . , tn → In) | t1 ∈ Den(T1), . . . ,
tn ∈ Den(Tn), t1 is ground, . . . , tn is ground}

Ext(A) = {I | I ′ ∈ S, I is more general than I ′} �

Lemma 5.1. Let Aα be an input-generalization of A, then ABAα. �

Proof. Note that again it is enough to prove that every element in S of Definition
5.11 is an element of Ext(Aα).

Let I1, . . . , In be the input variables of A and In+1, . . . , Im be the newly
introduced moded-typed atoms in Aα. For every concrete atom Ac of Den(A),
I1, . . . , In are replaced by ground terms. To construct an atom Aαc of Den(Aα),
for which Ac is more general then Aαc , one replaces I1, . . . , In by the same values
as in Ac and In+1, . . . , Im by instances of the corresponding terms, tn+1, . . . , tm,
in Ac. Due to the condition that V ar(Aα) ∩ V ar((tn+1, . . . , tm)) = ∅, Ac is
more general than Aαc and thus Ac is an element of Ext(Aα).

Example 5.12. To explain the condition on the intersection of the variables
in Definition 5.9, consider the atom A = a(X, f(X)). If we omit the condition
on the variables, we could consider Aα = a(X, I) as an input-generalization.
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Ext(A) contains a(X, f(X)), which is not an element of Ext(a(X, I)). So, the
property that ABAα would not hold. �

Proposition 5.2 (Non-termination with input-generalization). Let Ni : Gi and
Nj : Gj be nodes in a moded-typed SLD-derivation with NFG D of a program
P for a query I and let Aα an input-generalization of A1

i . Let Nα
i and Nα

j be
input-generalized nodes in the input-generalized derivation D′ for Aα.

If Nα
i
mmg→ Nα

j , then every concrete goal of the extended denotation of Gi is
non-terminating w.r.t. program P . �

Proof. According to Lemma 5.1, ABAα and according to Theorem 5.1, every
goal in Ext(Aα) is non-terminating. Since Nα

i
mmg→ Nα

j , Ni is an ancestor of
Nj and thus, every goal in Ext(Gi) must be non-terminating as well.

Example 5.13. To prove non-termination of the program in Example 5.10,
longer([0, 0|M ], f(I)) can be used as an input-generalization of A1

2 in Figure
5.4.

Figure 5.5, shows the input-generalized derivation of N2 to N4 for longer([0, 0 |
M ], f(I)). This derivation is an inclusion loop: Nα

2
mmg→ Nα

4 . Therefore, non-
termination of this program w.r.t. the concrete goals of Ext(← longer([0, 0 |
M ], f(X))) is proven by Proposition 5.2. �

5.3.3 Program specialization

In Example 5.2, we discussed a class of programs, related to aliased variables,
for which current non-termination analyzers fail to prove non-termination. We
illustrated that program specialization can be used to prove non-termination
of such programs. The main intuition is that non-termination analysis
techniques have difficulties with treating queries with aliased variables. Program
specialization often reduces the aliasing, due to argument filtering. So, in
the context of aliasing, applying program specialization often improves the
applicability of the analysis.

Program specialization can also be used in combination with theNFG transition.
When solving a non-failing atom, all variables in the atom are substituted with
new input variables. These input variables give an overestimation of the possible
values after evaluating the non-failing atom. Program specialization can produce
more instantiated, but equivalent clauses. These more instantiated clauses give
a better approximation of the possible values after evaluating the non-failing
atom. We illustrate this with an example.
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Example 5.14. The following program generates the infinite list of Hamming
numbers in symbolic notation. hamming/0 starts the computation initializing
the list of hamming numbers to [s(0)]. hamming([N|Ns]) keeps a list of
hamming numbers, ordered from small to large. Three new hamming numbers are
generated using times/3, which defines multiplication on the symbolic notation.
Then, insert/3 merges these three numbers with Ns and removes duplicates,
resulting in the list for the next iteration. The code for insert/3 and times/3
is omitted.

hamming:- hamming([s(0)]).
hamming([N|Ns]):- times(s(s(0)),N,N2),

times(s(s(s(0))),N,N3),
times(s(s(s(s(s(0))))),N,N5),
insert([N2,N3,N5],Ns,Res),
hamming(Res).

PolyTypes infers the following type definition:

Ts → 0; s(Ts) Tl → [ ]; [Ts | Tl]

The arguments of hamming/1 and insert/3 are of type Tl, the other arguments
are of type Ts. Non-failure analysis shows that insert/3 and times/3 are
non-failing if their last arguments are free variables.

When building the moded-typed SLD-tree for the query hamming, solving the
non-failing atoms by applying an NFG transition, the moded-typed goal
hamming(Res) is obtained at the recursive call. In this goal, Res is introduced
by an NFG transition. When applying clause 2 to this goal, Res is substituted
by a compound term and thus, non-termination of hamming cannot be proven.

To prove non-termination of hamming, one needs to know that the list in the
recursive call hamming(Res) is again of the form [N|Ns]. This can be done using
the program specialization technique: more specific programs. This technique
generates a more instantiated version of the program. For the running program,
it generates the following recursive clause for hamming:

hamming([N|Ns]):- times(s(s(0)),N,N2),
times(s(s(s(0))),N,N3),
times(s(s(s(s(s(0))))),N,N5),
insert([N2,N3,N5],Ns,[R|Res]),
hamming([R|Res]).

Because of this more instantiated clause, proving non-termination for hamming
using NFG transitions to solve times/3 and insert/3 is straightforward. �
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5.4 Summary

In this chapter, we identified classes of logic programs for which previous
analyzers fail to prove non-termination and we extended our non-termination
analysis to overcome these limitations. As in the previous chapter, non-
termination is proven by constructing a symbolic derivation tree, representing
all derivations for a class of queries, and then proving that a path in this tree
can be repeated infinitely.

The most important class of programs for which previous analyzers fail, are
programs for which no fixed sequence of clauses can be repeated infinitely. We
have shown that non-failure information ([17]) can be used to abstract away
from the exact sequence of clauses needed to solve non-failing goals. To use this
non-failure information, type information is added to the symbolic derivation
tree and a special NFG transition is introduced to solve non-failing atoms. As
far as we know, this is the first time that non-failure information is used for
non-termination analysis.

We have shown that program specialization ([26]) can be used to overcome
another limitation of current analyzers. If non-termination cannot be proven due
to aliased variables, redundant argument filtering may remove these duplicated
variables from the program. Specialization can also be used in combination with
the NFG transition. Program specialization may produce more instantiated
clauses, giving a better approximation of the possible values after solving the
non-failing goal.

Reference

The work in this chapter was presented at LOPSTR 2010 and is published in
[55].





Chapter 6

Non-termination Analysis for
Logic Programs with Integer
Arithmetics

This chapter extends our non-termination condition for programs containing
integer arithmetics. We modify the moded SLD-tree to handle a subset of
the build-in predicates for integer arithmetics, commonly found in Prolog
implementations. LP-check ensures finiteness of the tree and detects paths
that may correspond to infinite loops. For every such path, two analyses are
combined to identify classes of non-terminating queries. In the first phase,
non-termination of the logic part of the program is proven by assuming that
all comparisons between integer expressions succeed. We will show that only a
minor adaption of our non-termination analysis is needed to achieve this. In
the second phase, given the moded query, integer arguments are identified and
constraints over these arguments are formulated, such that solutions for these
constraints correspond to non-terminating queries. The chapter is structured as
follows. Section 6.1 defines the subset of integer predicates that we consider in
the chapter. Section 6.2 introduces the first phase of our analysis, proves non-
termination for the logic part of the computation. Section 6.3 the second phase
of our analysis, proves non-termination for the integer part of the computation.
Section 6.4 describes our prototype analyzer and discusses our results. Finally,
Section 6.5 summarizes the chapter.

73
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6.1 Integer arithmetics

Prolog implementations contain special purpose predicates for handling integer
arithmetics. Examples are is/2,≥ /2,=:= /2, . . ..

Definition 6.1. An expression Expr is an integer expression if it can be
constructed by the following recursive definition.

Expr = z ∈ Z | −Expr | Expr + Expr | Expr − Expr | Expr ∗ Expr �

An atom "V is Expr", with V a free variable and Expr an integer expression,
is called an integer constructor. An atom Expr1 ◦ Expr2 is called an
integer condition if Expr1 and Expr2 are integer expressions and ◦ ∈
{>,>=,=<,<,=:=,=/=}.

6.2 Non-termination of the Logic part

This section introduces the first part of our non-termination analysis for
programs containing integer arithmetics. In the first phase, we focus on the
logic part of the computation and assume the integer conditions succeed. This
section introduces a condition to detect that a program and moded query is
either non-terminating or fails due to the evaluation of an integer condition.
This condition is obtained by adapting our non-termination condition from
Chapter 4. In the next section we will generated additional constraints on the
class of queries to obtain classes of non-terminating queries.

6.2.1 Moded SLD-tree for programs with integer arithmetics

The first step of the extension is rather straightforward. The extensions to
the moded SLD-tree of Chapter 3 are limited to the introduction of the label
integer variable and additional transitions to handle integer constructors and
integer conditions. Integer variables denote an unknown integer and will also
be represented by underlining the name of the variable. An integer constructor,
i.e., is/2, is applicable if the first argument is a free variable and the second
argument is an integer expression. The application of an integer constructor
labels the free variable as an integer variable. An integer condition, e.g., ≥ /2,
is applicable if both arguments are integer expressions. Since integer variables
denote unknown integers, integer expressions are allowed to contain integer
variables. Applications of integer constructors and integer conditions in the
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moded SLD-tree are denoted by derivation steps Ni : Gi =⇒cons Ni+1 : Gi+1
and Ni : Gi =⇒cond Ni+1 : Gi+1, respectively.

N
0
: ← count_to(N,L)

1

N
1
: ← count(0,N,L)

2 3
L \ [0|L1]N \ 0

L \ [0]

N
2
: □ N

3
: ← 0 > N, M1 is 0+1, count(M1,N,L1) 

cond

N
4
: ← M1 is 0+1, count(M1,N,L1) 

cons

N
5
: ← count(M1,N,L1) 

2 3 L1 \ [M1|L2]
  M1 \ N
L1 \ [N]

N
6
: □ N

7
: ← M1 > N, M2 is M1+1, count(M2,N,L2) 

cond

cons

N
9
: ← count(M2,N,L2) 

N
10

: □

N
8
: ← M2 is M1+1, count(M2,N,L2) 

2
M2 \ N
L2 \ [N]

Figure 6.1: Moded SLD-tree count_to

Example 6.1. The following program, count_to, is a faulty implementation
of a predicate generating the list starting from 0 up to a given number. The
considered class of queries is represented by the moded query ← count_to(N,L)
with N an integer variable.

count_to(N,L):- count(0,N,L).
count(N,N,[N]).
count(M,N,[M|L]):- M > N, M1 is M+1, count(M1,N,L).

In the last clause, the integer condition should be M < N instead of M > N. Due
to this error, the program:

• fails for the queries for which N > 0 holds,

• succeeds for ← count_to(0, L),

• loops for the queries for which N < 0 holds.

Figure 6.1 shows the moded SLD-tree for the considered query, constructed using
LP-check. LP-check cuts clause 3 at node N9. �



76 NON-TERMINATION ANALYSIS FOR LOGIC PROGRAMS WITH INTEGER ARITHMETICS

Note that by ignoring the possible values for the integer variables when
constructing the tree, some derivations in it may not be applicable to any
considered query. For example the refutations at nodes N6 and N10 in the
previous example cannot be reached by the considered queries.
Definition 6.2. Let C be an integer condition or expression and Ni and Nj two
nodes in a moded SLD-tree D. Let Cons be the set of all integer constructors
occurring as selected atom in a node Np (i ≤ p ≤ j) in D.

The function apply_cons(C,Ni, Nj) returns the integer condition or expression
obtained by exhaustively applying I \Expr to C, for any I is Expr ∈ Cons. �

Since we only apply integer constructors if the second argument is an integer
expression, all integer conditions in a derivation can be expressed in terms of
the integer variables of the query.
Lemma 6.1. Let Ni be a node in a moded SLD-tree for a query ← Q with
integer variables Int. Let cond be an integer condition in the derivation to
Ni, then apply_cons(cond,N0, Ni) returns an integer condition over integer
variables Int.

Proof. This follows from the requirement of the derivation steps cond and cons
for the arguments to be of the correct type.

First, we formalize the correspondence between moded SLD-derivations and
concrete SLD-derivations.
Theorem 6.1. Let Ni be a node in a moded SLD-tree for a query ← Q with
integers Int. Let Cons be the set of all integer constructors in the derivation to
Ni, let Cond be the set of integer conditions on the derivation and let σ be the
composition of all substitutions on input variables in the derivation to Ni.

Then, the derivation to Ni is applicable to any query in Den(← Qσ) such that
all conditions in {apply_cons(cond,N0, Ni) | cond ∈ Cond} hold.

Proof. By induction on the number of derivation steps in a moded SLD-
derivation for a query ← Q with (non-integer) input variables I1, . . . , In and
integer variables Int1, . . . , Intm.

Note that queries in Den(← Q) corresponds to a grounding substitution on
the (non-integer) input variables of Q and a value for the integer variables in
Q. Also note that because integer constructors are only applied with integer
expressions as second argument, integer conditions cond in a derivation to
Ni can always be expressed over the integers variables of the query using
apply_cons(cond,N0, Ni).
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Base case: clause application. Let c be the clause applied to the query ← Q
in the considered derivation, let σ be the substitution corresponding to this
clause application and let σI be the subset of bindings on input variables. Then,
c is applicable to any element of Den(← Q) for which the ground terms (due
to the grounding substitution) and the terms in σI are unifiable for all input
variables. Thus, c is applicable to any query in Den(← QσI).

Base case: Integer condition. If Q is an integer condition, then solving it
results in a refutation and it’s clear that N0 :← Q⇒cond N1 is applicable to any
query in Den(← Q) for which the values corresponding to the integer variables
of Q are such that the condition holds.

Induction step: clause application. Assume the theorem holds for N0 :←
G0 ⇒ Ni :← Gi and that we apply Ni :← Gi ⇒c Ni+1 :← Gi+1. Let σI and
be the substitutions on input variables due to this derivation step. Let θ be the
composition of substitutions on input variables from N0 to Ni and let Cs be
the constraints due to integer conditions in the derivation up to this node.

As in the base case, this clause is applicable to Gi if the actual values of the
input variables due to the grounding substitution unify with the terms in σI .
Therefore, every goal in Den(G0θσI) can be evaluated to a goal in Den(Gi+1)
if the values corresponding to the integer variables are such that Cs holds.

Induction step: Integer condition. Assume the theorem holds for N0 :←
G0 ⇒ Ni :← Gi and that we apply Ni :← Gi ⇒cond Ni+1 :← Gi+1. Let θ be
the composition of substitutions on input variables from N0 to Ni and let Cs
be the constraints due other integer conditions in the derivation.

The selected atom ofGi, A1
i , only contains integer variables and apply_cons(A1

i , N0, Ni)
results in a condition over the integer variables of the query and thus,
this derivation is applicable to any query in Den(← Qθ) such that Cs ∧
apply_cons(A1

i , N0, Ni) holds.

This concludes the proof.

6.2.2 Adapting the non-termination condition

In this part of the analysis, we focus on the logical part of the computation
and assume the integer conditions to succeed. We adapt our non-termination
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condition of Chapter 4 to prove that every instance of a moded query is either
non-terminating or terminates due to the evaluation of an integer condition.
However, while we assume the integer conditions succeed, we will adapt our
condition to ensure that integer constructors and integer conditions are called
with correct arguments. We need to guarantee that integer constructors are
repeatedly evaluated with a free variable and an integer expression as arguments
and that integer conditions are repeatedly evaluated with integer expressions as
arguments.

To prove the repeated behavior on integer constructors and integer expressions,
the integer-similar to relation is defined. Intuitively, given some loop in the
computation, if an atom at the end of the loop is integer-similar to an atom at
the start of the loop, then it will provide the required integer expressions to the
first atom. First, we introduce positions to identify subterms and a function to
obtain a subterm from a given position.

Definition 6.3. Let L be a list of natural numbers, called a position, and A a
moded atom or term. The function subterm(L,A) returns the subterm obtained
by:

• if L = [I] and A = f(A1, . . . , AI , AI+1, . . . , An) then subterm(L,A) = AI

• else if L = [I|T ] and A = f(A1, . . . , AI , AI+1, . . . , An) then subterm(L,A) =
subterm(T,AI) �

A moded atom A is integer-similar to a moded atom B if it has integer
expressions on all positions corresponding to integer expressions in B.

Definition 6.4. Let A and B be moded atoms. A is integer-similar to B if
for every integer expression tB of B, with subterm(L,B) = tB, there exists an
integer expression tA of A, with subterm(L,A) = tA. �

Example 6.2. Let M be an integer variable in following examples.

• count(0, N, L) is integer-similar to count(M,N,L)

• count(M,N,L) is integer-similar to count(0, N, L)

• count(M + 1, N, L) is integer-similar to count(M,N,L)

• count(M,N,L) is not integer-similar to count(M + 1, N, L)

Note that the last one is a counterexample because count(M + 1, N, L) has
integer expressions on [1, 1] and [1, 2], while count(M,N,L) does not have any
subterms on these positions. �
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We adapt our non-termination condition of Chapter 4 by requiring that the
selected atoms of Nb and Ne are integer-similar.

Definition 6.5. Let Nb and Ne be nodes in a moded SLD-tree for a moded
query Q, then Nb

mmg→ Ne is called a moded more general loop if:

• A1
b is an ancestor of A1

e

• no substitutions on input variables occur from Nb to Ne

• A1
e is moded more general than A1

b

• A1
e is integer-similar to A1

b �

Now we prove that a moded more general loop implies non-termination if there
are values for the integers such that all integer conditions succeed. First, we
introduce a lemma.

Lemma 6.2. Let Nb
mmg→ Ne be a moded more general loop and let D be the

derivation to Ne followed by repeatedly applying the derivation steps from Nb to
Ne, then all integer conditions in D are evaluated with two integer expressions
as arguments and all integer constructors in D are evaluated with a free variable
and an integer expression as arguments. �

Proof. Since integer constructors and integer conditions are only applied if their
arguments are of the correct type, the lemma holds for the derivation to Ne.

Due to the definition of the moded more general relation, a position
corresponding to a free variable in A1

b must correspond to a free variable
in A1

e. This also holds for all following iterations and thus integer constructors
are always evaluated with a free variables as a first argument.

To prove that the second argument of an integer constructor and both arguments
of integer conditions are integer expressions when they are evaluated, it is
enough to prove that positions corresponding to integer expressions in A1

b also
correspond to integer expressions in the following iterations. This is guaranteed
by Definition 6.4.

Theorem 6.2. Let Nb
mmg→ Ne be a moded more general loop in a derivation

for a moded query ← Q and let θ be the composition of the substitutions on
input variables in the derivation to Ne, then every query in Den(← Qθ) is
non-terminating or fails due to the evaluation of an integer condition.

Proof. We need to prove that the sequence of derivation steps from Nb to Ne
can be applied infinitely often to any goal in Den(Q′), assuming that all integer
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conditions in this derivation succeed. Although we can assume all integer
conditions succeed, integer conditions and constructors must still be evaluated
with terms of the correct type. Lemma 6.2 already proves this is the case.

Because A1
b is an ancestor of A1

e, only the selected atom of Nb influences if the
sequence of derivation steps can be repeated infinitely often.

Because no substitutions on input variables occur in the path from Nb down to
Ne, the corresponding sequence of derivation steps is applicable to any atom
in Den(A1

b) (assuming that integer conditions are evaluated with values such
that they succeed). Furthermore, it is also applicable to queries that are more
general, but integer-similar to queries in Den(← A1

b). Let this set of queries be
S.

Since A1
jBA

1
i , every query in Den(← A1

e) is also a member of S. This concludes
the proof.

Example 6.3. The path between nodes N5 and N9 in Figure 6.1 satisfies the
conditions of Theorem 6.5. There are no substitutions on input variables from
N5 to N9 and thus, every query in Den(← count_to(N,L)) is either non-
terminating or fails due to the evaluation of an integer condition. Note that
although ← count_to(0, L) has a succeeding derivation to N2, its derivation to
N9 fails due to the integer condition 0 > N . �

To verify the moded more general relation and the integer-similar to relation
of Definition 6.5, we strengthen Proposition 1 of Chapter 4 to imply both the
moded more general relation and the integer-similar to relation.

Proposition 6.1. Let A and B be moded atoms. Let A1 and B1 be renamings
of these atoms such that they do not share variables. A is moded more general
than B and A is integer-similar to B, if A1 and B1 are unifiable with most
general unifier {V1 \ t1, . . . , Vn \ tn}, such that for each binding Vi \ ti, 1 ≤ i ≤ n,
either:

• Vi ∈ V ar(B1) and Vi is labeled as integer and ti is an integer expression,
or

• Vi ∈ V ar(B1) and Vi is labeled as input but not as integer variable, or

• Vi ∈ V ar(A1), Vi is not labeled as input, no variable of V ar(ti) is labeled
as input and ti does not contain integers. �

Proof. To prove that A is integer-similar to B, we must show that every position
corresponding to an integer expression in B corresponds to an integer expression
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in A. This follows from the restriction that normal variables are not allowed to
be substituted by terms containing integer variables or integers (third item).
To prove that the proposition implies that A is moded more general than B we
refer to the proof of Proposition 1 in Chapter 4.

Example 6.4. Since the selected atoms of nodes N5 and N9 in Figure 6.1 are
variants, Proposition 6.1 holds. �

6.3 Non-termination of the Integer part

This section introduces the second part of our analysis. If Theorem 6.2 holds,
we generate extra constraints on the integer variables proving non-termination.
These constraints consist of reachability constraints, identifying queries for which
the derivation up till the last node is applicable, and an implication proving
that the integer conditions will also succeed in the following iterations. First
we define how to obtain these constraints and then we apply transformations to
solve these constraints automatically.

Example 6.5. As a first example, we introduce the constraints for the path
between N5 and N9 in the moded SLD-tree of count_to in Figure 6.1. For this
path, Theorem 6.5 holds and thus every query denoted by ← count_to(N,L) is
either non-terminating or terminates due to an integer condition.

To restrict the class of considered queries to those for which the derivation to
N9 is applicable, all integer conditions in the derivation are expressed in terms
of the integers of the query, yielding 0 > N and 0 + 1 > N .

For this program and considered class of queries, the condition 0 > N implies
that the derivation is applicable until node N9. The following implication states
that if the condition of node N7 holds for any two values M and N , then it also
holds for the values of the next iteration.

∀M,N ∈ Z : M > N =⇒M + 1 > N

This implication is correct and thus proves non-termination for the considered
queries if the precondition holds in the first iteration. This is the case for all
queries in Den(← count_to(N,L)) with 0 > N since the value corresponding
to M in the first iteration is 0 and the value corresponding to N is N . This
proves non-termination of all considered queries for which 0 > N . �

In the following example, applicability of the derivation does not imply non-
termination. To detect a class of non-terminating queries, a domain constraint
is added to the pre- and postcondition of the implication.
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Example 6.6.

constants(I,J):- I =:= 2, In is J*2, Jn is I-J, constants(In,Jn).

The clause in constants is applicable to any goal with constants(2, J) as selected
atom, with J an integer variable. Since the first argument in the next iteration is
the value corresponding to J ∗2, only goals with the selected atom constants(2, 1)
are non-terminating for this program.

Since applicability of the derivation does not imply non-termination, a similar
implication as in the previous example is false, ∀I, J ∈ Z : I = 2 =⇒ J ∗ 2 = 2.
To overcome this, a constraint is added to the pre- and post-condition of this
implication, restricting the considered values of J to an unknown set of integers,
called its domain.

∃Domj ⊂ Z,∀I, J ∈ Z : I = 2, J ∈ Domj =⇒ J ∗ 2 = 2, I − J ∈ Domj

The resulting implication is true for Domj = {1}. By requiring that
the considered moded query satisfies both the reachability constraint and
the additional constraint in the pre-condition, the non-terminating query
← constants(2, 1) is obtained. �

All information needed to construct these constraints can be obtained from the
moded SLD-tree.

The constraints guaranteeing a derivation toNj to be applicable, can be obtained
using apply_cons(Cond,N0, Ni) for any integer condition Cond in a node Ni
in the considered derivation. For a path from Nb to Ne, the precondition of
the implication is obtained using apply_cons(Cond,Nb, Ni), for each condition
Cond in a node Ni between nodes Nb to Ne and universally quantifying the
integer variables of Nb.

Example 6.7. The derivation to N9 in Figure 6.1, contains integer conditions
in nodes N3 and N7. These are expressed on the integer variable of the query,
N , using apply_cons.

• apply_cons(0 > N,N0, N3) = 0 > N

• apply_cons(M1 > N,N0, N7) = 0 + 1 > N

To obtain the precondition of the implication, the integer condition in N7 is
expressed in terms of the integer variables of N5.

• apply_cons(M1 > N,N5, N7) = M1 > N
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Universally quantifying these variables yields the precondition. �

To obtain the consequence of the implication for a path from Nb to Ne, one first
replaces the integer variables of Nb in the precondition by the corresponding
integer variables of Ne. Then, apply_cons is used to express the consequence
in terms of the values in the previous iteration.

Definition 6.6. Let LHS be the precondition of an implication, consisting of
integer conditions and constraints of the form I ∈ DomI . Let Ni and Nj be
two nodes in a moded SLD-derivation such that all integer variables in LHS
are in A1

i and let I1, . . . , In be all integer variables of A1
i .

If there exist subterms of A1
j , t1, . . . , tn, such that ∀L : subterm(L,A1

i ) =
Ip =⇒ subterm(L,A1

j ) = tp, 1 ≤ p ≤ n, then replace(LHS,Ni, Nj) is obtained
by applying {I1 \ t1, . . . , In \ tn} to all constraints in LHS. �

Example 6.8. In Example 6.7, we generated the precondition of the implication,
M1 > N . To obtain the consequence, replace(M1 > N,N5, N9) is applied,
yielding M2 > N . Then, the integer variable of N9, M2, is expressed in terms of
the integer variables of N5 using apply_cons(M2 > N,N5, N9) = M1 + 1 > N .

Adding the domains to the pre- and postcondition yields the desired implication:
∃DomN , DomM1 ⊂ Z,∀N,M1 ∈ Z : M1 > N, N ∈ DomN , M1 ∈
DomM1 =⇒
M1 + 1 > N, N ∈ DomN , M1 + 1 ∈ DomM �

Adding these constraints to the class of queries detected by Theorem 6.5, yields
a class of non-terminating queries.

6.3.1 Proving that the constraints on integers are solvable

The previous subsection introduced constraints, implying that all integer
conditions in a considered derivation succeed. In this subsection, we introduce a
technique to check if these constraints have solutions, using a constraint-based
approach. Symbolic coefficients represent values for the integers in the query
and domains in the implication, for which the considered path is a loop. After
these coefficients are introduced, the implication is transformed into a set of
equivalent implications over natural numbers. These implications can then be
solved automatically in the constraint-based approach, based on Proposition 3
of [35].

Proposition 6.2 (Proposition 3 of [35]). Let prem be a polynomial over n
variables and conc a polynomial over 1 variable, both with natural coefficients,
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where conc is not a constant. Moreover, let p1, . . . , pn+1, q1, . . . , qn+1 be
arbitrary polynomials with integer coefficients1 over the variables X. If

∀X ∈ N : conc(pn+1)− conc(qn+1)− prem(p1, . . . , pn) + prem(q1, . . . , qn) ≥ 0

is valid, then ∀X ∈ N : p1 ≥ q1, . . . , pn ≥ qn =⇒ pn+1 ≥ qn+1 is also valid. �

Introducing the symbolic coefficients.

To represent half-open domains in the implication by symbolic coefficients, the
domains are described by two symbolic coefficients, one upper or lower limit and
one for the direction. Constraints of the form Exp ∈ DomI in the implication,
are replaced by constraints of the form dI ∗Exp ≥ dI ∗ cI with dI either 1 or
−1, describing the domain {cI , cI − 1, . . .} for dI = −1 and {cI , cI + 1, . . .} for
d = 1. The values to be inferred for the integers of the query should satisfy the
precondition of the implication. Of course, the symbolic coefficients cI should
also be consistent with the values of the integers in the query.

Example 6.9. In Example 6.5, we introduced constraints on the integer
variable N , 0 > N and 0 + 1 > N , proving non-termination for queries in
Den(← count_to(N,L)). By convention, we denote the symbolic coefficients as
constants. For the integer variable N , we introduce the symbolic coefficient n.

The implication introduced in Example 6.5, for the path from N5 to N9 in Figure
6.1, does not contain constraints on the domains. When adding these constraints
to the pre- and postcondition, we obtain the following implication.

∀M,N ∈ Z : M > N, N ∈ DomN , M ∈ DomM =⇒
M + 1 > N, N ∈ DomN , M + 1 ∈ DomM

Representing these domains by symbolic coefficients yields the following
implication.

∀M,N ∈ Z : M > N, dN ∗N ≥ dN ∗ cN , dM ∗M ≥ dM ∗ cM =⇒
M + 1 > N, dN ∗N ≥ dN ∗ cN , dM ∗ (M + 1) ≥ dM ∗ cM

To guarantee that the precondition succeeds for the considered derivation, cM
and cN are required to be the values for M and N in node N5. Combining these
constraints implies non-termination for the query ← count_to(n,L), for which
the following constraints are satisfied with some unknown integers cN , cM , dN
and dM .

1Proposition 3 in [35] states natural coefficients, but the proposition also holds for
polynomials with integer coefficients.
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(1) 0 > n, 0 + 1 > n to guarantee applicability of the derivation

(2) cN = n, cM = 0 + 1 to guarantee that the precondition holds

(3) dN = 1 ∨ dN = −1, dM = 1 ∨ dM = −1,

(4) ∀M,N ∈ Z : M > N, dN ∗N ≥ dN ∗ cN , dM ∗M ≥ dM ∗ cM =⇒
M + 1 > N, dN ∗N ≥ dN ∗ cN , dM ∗ (M + 1) ≥ dM ∗ cM to prove that the
condition succeeds infinitely often.

Due to the implication, dM has to be 1. dN can be either 1 or −1. �

To be able to infer singleton domains, we allow the constant describing the
direction of the interval to be 0. If in such a constant, dI , is zero, the constraints
on the domain are satisfied trivially because they simplify to 0 ≥ 0. To guarantee
that the domain is indeed a singleton when dI is inferred to be zero, a constraint
of the form (1− d2

I)Exp = (1− d2
I) ∗ cI is added to the postcondition for every

constraint dI ∗ I ≥ dI ∗ cI . This constraint is trivially satisfied for half-open
domains and proves that {cI} is the domain in the case that dI = 0.

Example 6.10. In Example 6.6, we introduced constraints on the integer vari-
ables I and J , proving non-termination for queries in Den(← constants(I, J)).
Introducing symbolic coefficient i and j for the integers of the query and for the
domains of I and J , yields the following constraints.

(1) i = 2 to guarantee applicability of the derivation

(2) cI = i, cJ = j to guarantee that the precondition holds

(3) dI ≤ 1, dI ≥ −1, dJ ≤ 1, dJ ≥ −1,

(4) ∀I, J ∈ Z : I = 2, dI ∗ I ≥ dI ∗ cI , dJ ∗ J ≥ dJ ∗ cJ =⇒
J ∗ 2 = 2, dI ∗ (J ∗ 2) ≥ dI ∗ cI , (1− d2

I) ∗ (J ∗ 2) = (1− d2
I) ∗ cI ,

dJ ∗ (I − J) ≥ dJ ∗ cJ , (1− d2
J) ∗ (I − J) = (1− d2

J) ∗ cJ

The implication in (4) can only be satisfied with dJ equal to zero. �

To implications over the natural numbers

The symbolic coefficients to be inferred which represent the domains, allow us
to transform the implication over Z to an equivalent implication over N.

• for dI = 1, any integer in {cI , cI + 1, . . .} that satisfies the precondition
is in {cI + dI ∗N | N ∈ N}
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• for dI = −1, any integer in {cI , cI −1, . . .} that satisfies the precondition
is in {cI + dI ∗N | N ∈ N}

• for dI = 0, any integer in {cI} that satisfies the precondition is in {cI +
dI ∗N | N ∈ N}

Therefore, we obtain an equivalent implication over the natural numbers by
replacing each integer I by its corresponding expression cI+dI ∗N and replacing
the universal quantifier over I by a quantifier over N .

Automation by a translation to Diophantine constraints

To solve the resulting constraints, we use the approach of [35]. Constraints
of the form A =:= B in the implication, are replaced by the conjunction
A ≥ B, B ≥ A. Constraints of the form A = / = B, yield two disjunctive cases.
One obtained by replacing the = / = in the pre- and postcondition by > and
one obtained by replacing it by <. The other conditions – i.e. >,< and ≤ –
are transformed into ≥-constraints in the obvious way. Implications with only
one consequence are obtained by creating one implication for each consequence,
with the pre-condition of the original implication.

The resulting implications allow to apply Proposition 6.2. These inequalities
of the form, p ≥ 0, are then transformed into a set of Diophantine constraints,
i.e. constraints without universally quantified variables, by requiring that all
coefficients of p are non-negative. As proposed in [35], the resulting Diophantine
constraints are then transformed into a SAT-problem. The constraints are then
proven to have solutions by a SAT solver by inferring one possible solution.

6.4 Evaluation

We implemented the analysis introduced in the chapter, in our previous non-
termination analyzer pTNT , which is written in SWI-Prolog [59] and can be
downloaded from http://www.cs.kuleuven.be/˜dean/iclp2011.html. We tested
our analysis on a benchmark of 14 programs similar to those used in this chapter.
These programs are also available online. To solve the resulting SAT-Problem,
MiniSat [19] is used.

We experimented with different bit-sizes in the translation to SAT and different
classes of functions for the prem functions in Proposition 6.2. As conc functions,
the identity function was used. Table 6.1 shows the results for the considered
settings, + denotes that non-termination is proven successfully, − denotes that
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linear-class, 3 bits linear-class, 4 bits max2-class, 3 bits max2-class, 4 bits
count_to + + + +
constants + + + OS
int1 + + + +
int2 + + + +
int3 + + + OS
int4 + + + OS
int5 + + + OS
int6 + + + OS
int7 + + OS OS
int8 + + OS OS
int9 − + OS OS
int10 − − + OS
int11 − + − OS
int12 − + − OS
int13 + + + +
int14 + + + OS

Table 6.1: An overview of the experiments

non-termination could not be proven and OS denotes that the computation
went out of stack. The considered settings are 3 and 4 as bit-sizes and linear
and max2 as forms for the symbolic prem-functions. The linear class is a
weighted sum of each argument. The max2 class contains a weighted term for
each multiplication of two arguments. The analysis time is between 1 and 20
seconds for all programs and settings.

Table 6.1 shows non-termination can be proven for any program of the benchmark
when choosing the right combination of parameters, but no setting succeeds
in proving non-termination for all programs. Programs int9 and int12 require
a constant that cannot be represented with bit-size 3. Linear prem-functions
cannot prove non-termination for int10. However, the setting with 4 as a bit-size
and max2 as class of prem-function usually fails, because these settings cause
an exponential increase in memory use during the translation to SAT.

From the experiments, we have learned that it could be useful to apply SMT
solvers, instead of SAT solvers, to reduce the memory usage.

6.5 Summary

In this chapter, we introduced a technique to detect classes of non-terminating
queries for logic programs with integer arithmetic. The analysis starts with a
given program and class queries, specified using modes, and detects subclasses of
non-terminating queries. First, the derivations for the given class of queries are
abstracted by building a moded SLD-tree with additional transitions to handle
integer arithmetic. Then, this moded SLD-tree is used to detect subclasses
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of non-terminating queries in two phases. In the first phase, we ignore the
conditions over integers, e.g., > /2, and detect paths in the moded SLD-tree
that correspond to infinite derivations if all conditions on integers in those
derivations succeed. For every such path, the corresponding subclass of queries
is generated. In the second phase, the obtained classes of queries are restricted
to classes of non-terminating queries, by formulating constraints implying that
all conditions on integers will succeed. These constraints are then solved by
transforming them into a SAT problem.

We implemented this approach in our non-termination analyzer pTNT and
evaluated it on small benchmark of non-terminating Prolog programs with
integer arithmetic. The evaluation shows that the proposed technique is rather
powerful, but also that the parameters in the transformation to SAT must be
chosen carefully to avoid excessive memory use.

Reference

The work in this chapter was presented at ICLP 2011 and is published in [56].



Chapter 7

Termination Analysis of CHR

This chapter presents an approach to termination analysis of Constraint
Handling Rules (CHR). The presented analysis is the first termination condition
for CHR without restrictions on the kind of rules in the CHR program. We
propose a termination condition that verifies conditions imposed on the dynamic
process of adding constraints to the store, instead of a termination argument
based on the comparison of sizes of consecutive computation states. We
demonstrate the condition’s applicability on a set of terminating CHR programs,
using a prototype analyzer. This analyzer is the first in-language automated
termination analyzer for CHR programs.

7.1 Introduction

Constraint Handling Rules (CHR), created by Thom Frühwirth [20], is a
relatively young member of the declarative programming languages family.
It is a concurrent, committed-choice, logic programming language. CHR
is constraint-based and has guarded rules that rewrite multisets of atomic
formulas until they are solved. CHR defines three kinds of rules: simplification
rules remove constraints and add new ones, propagation rules only add new
constraints and simpagation rules are a combination of both. CHR’s simple
syntax and semantics make it well-suited for implementing custom constraint
solvers [20, 47, 48]. Particularly the latter feature of the language accounts for
its success and impact on the research community.

Due to its multi-headed rules, CHR provides extra declarative expressivity

89
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compared to the single-headed rules of Logic Programming (LP). But at the
same time, the operational behavior of multi-headed rules is more complex
and harder to predict than that of single-headed ones. As a consequence, the
importance of automated analysis tools, that assist a CHR-programmer to
predict runtime properties of his/her programs is high. One of these properties
is the termination of such programs.

Although the language is strongly related to LP, termination analysis of CHR
programs has received little attention. Termination of CHR without propagation
has been addressed before in [21] and [42]. The approach of [21] is based on
adapting well-known LP termination techniques directly to CHR. The approach
of [42] is based on a transformation of CHR into Prolog.

Because propagation rules only add constraints, a fire-once policy is used for
these rules. A condition based on this fire-once policy is needed to prove
termination for such programs. In this chapter we present a condition based
on an interpretation of the constraints, such that propagation rules only add
’smaller’ constraints and for other rules, the number of the ’largest’ constraints
decreases. Because of the fire-once policy, this condition implies termination. We
implemented the method in a prototype analyzer and performed an experimental
evaluation. The results were very satisfactory. Since the approach presented
in [21] was not implemented, this analyzer is the first in-language automated
termination analyzer for CHR.

The chapter is organized as follows. In the next section, we introduce the basic
aspects of CHR and adapt some concepts from termination analysis of LP to
the CHR context. In Section 7.3, we introduce a termination condition for
general CHR programs that is sufficient for proving termination. Next, we
further refine the condition so that it can be automated. In Section 7.4, we
discuss our implementation and experimental evaluation. Finally, Section 7.5
summarizes the chapter.

7.2 Preliminaries

7.2.1 Constraint Handling Rules

Syntax. A constraint in CHR is a first-order predicate. We distinguish between
built-in constraints, predefined and solved by the underlying constraint theory,
CT, and CHR constraints, user-defined and solved by a CHR program P . A
CHR program is a finite set of CHR rules. Rules are of the form:
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Simplification rule: Propagation rule: Simpagation rule:
true \H ⇔ [G |] B. H \ true⇔ [G |] B. H1 \H2 ⇔ [G |] B.

or H ⇔ [G |] B. or H ⇒ [G |] B.

The head H or H1 \ H2 is a conjunction of CHR constraints. The optional
guard G is a conjunction of built-in constraints. The body B is a conjunction
of built-in and CHR constraints. Empty conjuncts are denoted by the built-in
constraint true. As in Prolog syntax, conjuncts are separated by commas. Note
that all rules can be written as simpagation rules.

Example 7.1 (Fibonacci). The CHR program below implements a Fibonacci
algorithm. Natural numbers are written in the symbolic notation, using 0 and
the successor functor s. In this program, add/3 is a built-in constraint which
defines addition on natural numbers written in symbolic notation.

fib(N,M1), fib(N,M2)⇔M1 = M2, fib(N,M1).

fib(0,M)⇒M = s(0).

fib(s(0),M)⇒M = s(0).

fib(s(s(N)),M)⇒ fib(s(N),M1), fib(N,M2), add(M1,M2,M).

The first rule is a simplification rule that removes doubles. The other rules
are propagation rules. Base cases are solved by the second and third rule. The
last rule adds CHR constraints representing Fibonacci numbers and a built-in
constraint relating their arguments. �

Operational Semantics. A CHR program defines a state transition system,
where a state is defined as a conjunction of CHR and built-in constraints, called
the constraint store. The initial state or query is an arbitrary conjunction of
constraints. Each state where either the built-in constraints are inconsistent
(failed state), or no more transitions are possible, is called a final state.

Definition 7.1 (Transition relation). The transition relation, 7−→, between
states, given a constraint theory CT and a CHR program P , is defined as:

H ′1 ∧H ′2 ∧D 7−→ (B ∧H ′1 ∧D)θθ′
if H1 \H2 ⇔ G | B. in P and θ, θ′ are substitutions such that
CT |= D → (((H1θ ∧H2θ) = (H ′1 ∧H ′2)) ∧Gθθ′)

A CHR rule, H1\H2 ⇔ G | B, is applicable to a conjunction of CHR constraints,
H ′ = H ′1 ∧H ′2, if H ′1 matches head H1 and H ′2 matches head H2 with matching
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substitution θ, such that the guard G evaluates to true, with answer substitution
θ′, given the built-ins in the constraint store. The body B is a conjunction
of built-in and CHR constraints. Bθθ′ is added to the constraint store. Rule
application is non-deterministic and committed-choice. �

For more information about the operational semantics of CHR, we refer to [20].

A CHR program P with query I terminates, if all computations for P with query
I end in a final state. Because propagation rules do not remove constraints from
the store, a fire-once policy is used to prevent trivial non-termination. This
fire-once policy ensures that no propagation rule fires more than once on the
same multi-set of constraints. The propagation history implements this policy.
For a more detailed description of the propagation history, we refer to [3].

CHR has no fairness guarantees: constraints in the body of a rule might never
be selected in a computation. This means that our technique will not be
able to prove termination if termination depends on the evaluation of built-in
constraints from the body.

In the following example, we discuss a computation for the Fibonacci program
discussed earlier.

Example 7.2 (Fibonacci continued). With a typical query fib(s(s(s(0 ))),N ),
the last propagation rule adds two new fib/2 constraints to the store with lower
first arguments. However, it does not remove the constraint that has fired the
rule from the store. This propagation rule fires again on the added constraint
fib(s(s(0 )),N ), adding again two CHR constraints with a lower first argument
to the store. The other two propagation rules resolve base cases, while the
simplification rule removes duplicates. The constraint store:
fib(s(s(s(0 ))), s(s(s(0 )))) ∧ fib(s(s(0 )), s(s(0 ))) ∧ fib(s(0 ), s(0 )) ∧ fib(0 , s(0 ))
is the final state. Without the simplification rule the answer would contain an
additional fib(s(0), s(0)) constraint. �

Observe that, given any reasonable way to measure the size of the constraint
store, the size of the store increases for this program. This means that standard
approaches for proving termination of LP, which prove decreases in size between
consecutive computation states, are not easily and immediately applicable
to CHR. One would need to explicitly add an encoding of the propagation
history to the representation of the store to make this work. In this paper, we
have chosen for a different type of termination condition for programs with
propagation rules.
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7.2.2 Termination Analysis

Termination analysis of logic programs has received a lot of attention (see for
example [16]). In LP, consecutive computation states are compared using a
norm and level mapping. A norm is a function which maps terms to natural
numbers. A level mapping is a function which maps atoms to natural numbers.
In this subsection we redefine some well-known concepts from LP to the CHR
context.

We define TermP as the set of all terms constructible from a program P and
ConP as the set of all constraints constructible from P, with arguments from
TermP .

Definition 7.2 (norm, level mapping). A norm is a mapping ||.|| : TermP →
N. A level mapping is a mapping |.| : ConP → N. �

We refer to |C| as the level value of C. Several examples of norms and level
mappings can be found in the literature on LP termination analysis [16]. Two
well-known norms are list-length and term-size.

Definition 7.3 (list-length, term-size).
List-length is defined as: Term-size is defined as:
|| [t1|t2] ||l = 1 + ||t2||l ||f (t1, t2, ..., tn) ||t = 1 +

∑
1≤i≤n ||ti||t

||t||l = 0 otherwise. ||t||t = 0 otherwise
with t1, t2 and t any term. with t1, . . . , tn and t any term

�

The most common kind of level mapping is the linear level mapping.

Definition 7.4 (linear level mapping). A linear level mapping is any level
mapping which can be defined as: |con (t1, ..., tn) | = con0 +

∑
1≤i≤n coni.||ti||,

with coni ∈ N only depending on the constraint symbol con and ||.|| a norm. �

We also adapt the notion of rigidity to the CHR context.

Definition 7.5 (Rigidity). A CHR constraint C is rigid w.r.t. a level mapping
|.| iff ∀ substitutions θ : |C| = |Cθ|. �

To prove termination, we need some information about the CHR constraints
which can be added to the store during an execution of a program for a query.
For this purpose, we define the call set.

Definition 7.6 (Call Set). Given a program P and a query I, the call set for
P with query I, Call(P, I), is the union, over all possible computations of P
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for I, of all CHR-constraints which are added to the constraint store during
that computation.

Usually, Call(P, I ) is specified using an abstraction. In what follows we describe
the call set using types.

7.3 A new termination condition for CHR

In [21], concepts and ideas from LP termination analysis are adapted to CHR
with simplification only. Termination is proved by showing a decrease between
the removed and the added constraints, for each CHR rule in the program.

The extension to programs with propagation rules gives a totally new termination
problem. In LP or CHR without propagation, each rule removes one predicate,
for LP, and at least one constraint, for CHR without propagation. Termination
is proven by measuring a decrease of the goal, or of the constraint store, for each
rule application. For CHR with propagation, this approach seems infeasible
because new constraints are added and no existing constraints are removed. As
mentioned before, one would need to keep track of information regarding the
propagation history to observe a decrease. Instead of a termination argument
based on a comparison of sizes of consecutive computation states, we formulate
and verify conditions imposed on the dynamic process of adding constraints to
the store. We formulate conditions which guarantee that the entire computation
only adds a finite number of constraints to the store. Due to the use of a
propagation history, this implies termination.

First we prove that if only a finite number of CHR constraints are added to the
constraint store, program P with query I terminates. Note that, if the same
constraint is added multiple times to the constraint store, then we consider
these additions as different.

Lemma 7.1 (Termination of a CHR program). A CHR program P with query
I terminates iff there are a finite number of additions of CHR constraints to
the constraint store during any execution of P for I. �

Proof. =⇒: If P terminates for I, then for any execution of P for I, only a
finite number of rules are applied. Therefore, only a finite number of CHR
constraints are added to the store.
⇐=: Suppose there are only a finite number of CHR constraints added to the
store during any execution of program P for I. Each propagation rule can
only be fired a finite number of times because of the propagation history. Each
simplification or simpagation rule removes at least one CHR constraint from
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the store. Therefore, a simpagation or simplification rule can only be applied a
finite number of times. Since every rule can only be applied a finite number of
times, P terminates for I.

7.3.1 Ranking Condition (RC) for CHR with substitutions

The next definition gives the first version of our Ranking Condition (RC). It
is applicable to general CHR programs. Informally, a program satisfies the
RC if each propagation rule only adds constraints which are smaller than the
constraints in the head and each simplification or simpagation rule reduces the
number of largest constraints in the rule.
Definition 7.7 (Ranking condition for CHR with substitutions). A program
P and a query I satisfy the RC for CHR, w.r.t. level mapping |.| iff every
CHR constraint in Call(P, I ) is rigid w.r.t. |.| and for each rule in P and for
every matching substitution θ and answer substitution θ′ from Definition 7.1:

1. For a simplification or simpagation rule H\H1, ...,Hn ⇔ G | B1, ..., Bm,
with n > 0 and body-CHR constraints Bk, ..., Bm,

let p = max {|H1θ|, ..., |Hnθ|, |Bkθθ′|, ..., |Bmθθ′|}. Then,
the number of CHR constraints with level value p is
higher in {H1θ, ...,Hnθ} than in {Bkθθ′, ..., Bmθθ′}

2. For a propagation rule: H1, ...,Hn ⇒ G | B1, ..., Bm, with body-CHR
constraints Bk, ..., Bm:

for all i = 1, ..., n and j = k, ...,m: |Hiθ| > |Bjθθ′|. �

Our condition on simplification and simpagation rules in Definition 7.7 is more
strict than the corresponding ranking condition for such rules in [21]. The
reason for this is that in the presence of propagation rules, a multiset order
decrease, as in [21], is insufficient to guarantee termination.
Example 7.3 (Counterexample multiset order decrease). Consider the program:

a(s(N)), a(N)⇔ a(s(N)). a(s(N))⇒ a(N).

The program does not terminate for any query a(s(n)), with n any term. Our
RC cannot be fulfilled for the simplification rule. However, using a level mapping
|a(t)| = ||t||t and a multiset order on conjunctions of constraints, as in [21], there
is a decrease from head to body constraints for this rule. So a straightforward
extension of the ranking condition of [21] is incorrect. �

Theorem 7.1 (Sufficiency of the RC with substitutions). Let program P with
query I satisfy the RC with substitutions w.r.t. |.|, then all computations for P
with query I terminate. �
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Proof. In order to prove termination of a CHR program P with a query I,
Lemma 7.1 shows that it is sufficient to prove that the total number of CHR
constraints, added during an execution of P for I, is finite. As a base of the
induction, we show that there is a maximal level value for the CHR constraints
in the store and that only a finite number of CHR constraints with that level
mapping can be added to the store. Using induction we prove that for each
level value only a finite number of CHR constraints can enter the store.

Before we present the induction proof, first note that because of the rigidity of
Call(P, I ) under |.|, the level value of a constraint that matches the head of a
rule cannot change anymore due to instantiations caused by answer substitutions
of guards or built-in body constraints. So, level values of constraints in the
store are static: the level values cannot change over time.

Base case. Let max be the maximal level value of the constraints in I.
Propagation rules only add constraints with a lower level value than max.
Because of the RC, simplification or simpagation rules only add constraints with
a level value smaller than or equal to the largest level value of the constraints
matching the head of the rule. Every time a CHR constraint of level value max
is added by such a rule, the number of CHR constraints with level value max
decreases. So only a finite number amax of CHR constraints with level value
max are added to the store during any execution of P for I.

Induction step. Let amax, ..., an+1 be upper limits for the number of CHR
constraints with level value max, ..., n+ 1, w.r.t. |.|, which can be added to the
constraint store during an execution of P with query I.

• I only contains a finite number of constraints with level value n.

• If an instance of a propagation rule adds a CHR constraint with level
value n to the store, the CHR constraints matching the head all have
a level value larger than n. Because of the upper limits amax, ..., an+1
and the propagation history, every propagation rule can only add a finite
number of CHR constraints with level value n.

• For every instance of a simplification or simpagation rule which adds
a CHR constraint with level value n to the store, there exists an i,
i : n ≤ i ≤ max, such that the number of CHR constraints of level value
i decreases, and no constraint with a level value higher than i is added to
the store by this simplification or simpagation rule. This implies that only
a finite number of constraints with level mapping n can enter the store by
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simpagation or simplification rules, because after enough rule executions,
there are no CHR constraints with a level value n or higher left.

By induction, this proves that only a finite number of CHR constraints are
added to the store. Therefore, Lemma 7.1 proves termination.

Example 7.4 (Fibonacci continued). We prove termination for the Fibonacci
example with the RC with substitutions.

Let fib(n,m) be any query, with n a ground term, representing a natural number
in successor-notation and m a free variable. One can infer that the call set is
the set {fib(n1 ,m), fib(n2 ,n3 ) | n1, n2, n3 ground terms, representing natural
numbers and m a free variable}. As a norm, we use term-size. The level
mapping is defined as |fib(n,m)| = ||n||t. Clearly, the call set is rigid w.r.t. |.|.

For the first rule, we have that for every matching substitution θ, the first term
in every fib/2 constraint is substituted by the same ground term. The answer
substitutions θ′ are the identity substitutions because this rule has no guard:

|fib(N ,M1 )θ| = |fib(N ,M2 )θ| = |fib(N ,M1 )θθ′| = ||Nθθ′||t

All constraints have the same level value. There are two constraints in the head
and one in the body, so this rule satisfies the RC with substitutions.

For the fourth rule we have that for every matching substitution θ, the term
matching s(s(N)) is a ground term. The answer substitutions θ′ are empty,
because the rule has no guard. For all matching and answer substitutions:

|fib(s(s(N )),M )θ| = 2 + ||Nθ||t > |fib(s(N ),M1 )θθ′| = 1 + ||Nθθ′||t

|fib(s(s(N )),M )θ| = 2 + ||Nθ||t > |fib(N ,M2 )θθ′| = ||Nθθ′||t

The RC with substitutions is therefore satisfied, which implies termination for
the considered queries. �

7.3.2 Ranking Condition for CHR

A disadvantage of the ranking condition of Definition 7.7, is that one
has to consider all matching and answer substitutions. This cannot be
done automatically because in general there can be infinitely many of such
substitutions. In this section, we present a RC which is more suitable for
automation. In order to estimate the effects of the matching substitutions,
abstract norms and abstract level mappings are adapted from [18] and [35].
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These functions map a variable to itself, instead of to zero. In order to estimate
the effects of the answer substitutions, interargument relations are used.

Let N [V arP ] denote the set of polynomials over V arP , with natural coefficients.

Definition 7.8 (abstract norm, abstract level mapping). An abstract norm
is a mapping ||.|| : TermP → N [V arP ], which is the identity function on V arP .
An abstract level mapping is a mapping |.| : ConP → N [V arP ]. �

Abstract list-length, abstract term-size and abstract linear level mappings are
the obvious adaptations of Definitions 7.3 and Definition 7.4.

Example 7.5 (Abstract linear level mappings). Let L,List, N and M be
variables. Typical examples of abstract linear level mappings are:
|mergesort ([L|List]) |α = 0 + 1.|| [L|List] ||αl = 1 + List
|fib (s (s (N)) ,M) |α = 0 + 1.||s (s (N)) ||αt + 0.||M ||αt = 2 +N
�

In general, an abstract level mapping maps constraints to arbitrary polynomials
over N. In order to compare the level values of the constraints w.r.t. an abstract
level mapping, we define an ordering on polynomials over N [35].

Definition 7.9 (orderings on N [V arP ]). Let p and q be two polynomials with
n variables. The quasi-ordering � is defined as p � q iff p(x1, . . . , xn) ≥
q(x1, . . . , xn) for all x1, . . . , xn ∈ N. The strict ordering � is defined as p �
q iff if p(x1, . . . , xn) > q(x1, . . . , xn) for all x1, . . . , xn ∈ N. The equality
between polynomials is defined as p ≈ q iff p(x1, . . . , xn) = q(x1, . . . , xn) for all
x1, . . . , xn ∈ N. �

The next example shows the orderings between three polynomials.

Example 7.6 (polynomial ordering).
Let p(X,Y ) = 1 +XY + 2X, q(X) = 2X and z(X,Y ) = XY +X:

• p(X,Y ) � q(X), p(X,Y ) � z(X,Y ).

• Neither q(X) � z(X,Y ) nor z(X,Y ) � q(X). �

As stated, interargument relations are used to estimate the effect of the answer
substitutions from Definition 7.1.

Definition 7.10 (Interargument relation). Let P be a program and p/n a built-
in constraint in P. An interargument relation for p/n is a relation Rp ∈ Nn.
Rp is a valid interargument relation for p/n w.r.t. a norm ||.||, iff
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∀t1, ..., tn ∈ TermP : CT |= p(t1, ..., tn) =⇒ (||t1||, ..., ||tn||) ∈ Rp. �

We illustrate this with some small examples.

Example 7.7 (Interargument relations).
built-in constraint norm and interargument relation
delete(N1,N2,N3) list-length:

{
(n1, n2, n3) ∈ N3 | n1 ≥ n3

}
append(N1,N2,N3) list-length:

{
(n1, n2, n3) ∈ N3 | n1 + n2 = n3

}
leq(N1,N2) term-size:

{
(n1, n2) ∈ N2 | n1 ≤ n2

}
�

We define rigidity for abstract level mappings.

Definition 7.11 (Rigidity). A CHR constraint C is rigid w.r.t. an abstract
level mapping |.|α iff ∀ substitutions θ : |C|α ≈ |Cθ|α. �

For an instance of a simplification or simpagation rule, the maximal level value
is used in our RC with substitutions from Definition 7.7. Because the maximum
is not defined for a set of polynomials, we introduce a �-maximal subset of
constraints.

Definition 7.12 (�-maximal subset of constraints). Let C be a multiset of
CHR constraints and |.|α an abstract level mapping. D is a �-maximal subset
of C w.r.t. |.|α iff D is a non-empty multi-subset of C such that:

• The constraints in D have the same level value:
∀ CHR-constraints C1, C2 ∈ D : |C1|α ≈ |C2|α

• There are no |.|α-larger constraints in C \D:
¬(∃C1 ∈ D,∃C2 ∈ C \D : |C2|α � |C1|α) �

Note that a multiset C may have several �-maximal subsets.

We now reformulate our ranking condition from Definition 7.7, using abstract
level mappings and interargument relations.

Definition 7.13 (Ranking condition for CHR).
A program P and a query I satisfy the RC for CHR, w.r.t. an abstract
level mapping |.|α and a set of interargument relations iff every constraint in
Call(P, I ) is rigid w.r.t. |.|α and for each rule in P and for each substitution
σ such that the built-in constraints in the guard all satisfy their associated
interargument relations:

1. For a simplification or simpagation rule H\H1, ...,Hn ⇔ G | B1, ..., Bm,
with n > 0, body-CHR constraints Bk, ..., Bm and D1, ..., Dc all �-maximal
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subsets of {H1, ...,Hn, Bkσ, ..., Bmσ}, then
∀i ∈ {1, ..., c} : let Di =

{
Hi1 , ...,Hip , Bi1σ, ..., Biqσ

}
:

#
{
Hi1 , ...,Hip

}
>#

{
Bi1σ, ..., Biqσ

}
2. For a propagation rule: H1, ...,Hn ⇒ G | B1, ..., Bm, with body-CHR

constraints Bk, ..., Bm:
∀i ∈ {1, ..., n} ,∀j ∈ {k, ...,m} : |Hi|α � |Bjσ|α. �

Observe that we still have substitutions in the formulation of this condition.
But, we can avoid reasoning about them explicitly in an automation. It is
enough to reason about all instances that satisfy the interargument relations.

Theorem 7.2 (Sufficiency of the RC). Let program P with query I satisfy the
RC for CHR w.r.t. |.|α and some associated interargument relations for all
built-in constraints in the program, then all computations for P with query I
terminate. �

Proof. In order to prove termination of a CHR program P with a query I, it is
sufficient to prove that the total number of CHR constraints, added during an
execution of P with query I, is finite. We will prove this using induction.

Since the call set is rigid w.r.t. the level mapping |.|α, for each CHR constraint
C, which is added to the constraint store by the query or an instance of a rule,
|C|α is a natural number.

Base case. The query is rigid w.r.t. |.|α, so there exists a maximal level value
of the CHR constraints in the query, max. Because of the ranking condition,
each instance of a propagation rule can only add constraints with a level value
lower than max and each simplification or simpagation rule can only add CHR
constraints with a level value max or lower to the store.

If program P with query I satisfies the RC for CHR with |.|α, all CHR constraints
which are added to the store during any computation of P with query I have
a natural number as level value w.r.t. |.|α and there is a maximal level value
max. Every time a CHR constraint of level value max is added by such a rule,
the number of CHR constraints with level value max decreases. So only a finite
number amax of CHR constraints with level value max are added to the store
during any execution of P for I.

Induction step. Let amax, ..., an+1 be upper limits for the number of CHR
constraints with level value max, ..., n+ 1 which can be added to the constraint
store during an execution of P with query I.
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• The query only contains a finite number of constraints with level value n.

• For each propagation rule which satisfies the RC w.r.t. |.|α, every head
constraint has a larger level value, w.r.t. �, than every CHR constraint
in the body.
If an instance of a propagation rule adds a CHR constraint with level
value n to the store, the CHR constraints matching the head all have a
natural number larger than n as a level mapping. Because of the upper
limits amax, ..., an+1 and the propagation history, every propagation rule
can only add a finite number of CHR constraints with level value n.

• For each simplification or simpagation rule which satisfies the RC w.r.t.
|.|α, every maximal subset of CHR constraints has more constraints from
the head than from body of the rule. For every instance of a simplification
or simpagation rule with maximal subsets D1, ..., Dn, there are maximally
ranked subsets Di1 , ..., Dip , which contain the CHR constraints with the
highest level value, m, w.r.t. |.|α. Since the program satisfies the RC for
CHR, the number of CHR constraints with level value m decreases and
all CHR constraints added by the body of the rule have a level mapping
smaller than or equal to m. This implies that only a finite number of
constraints with level mapping n can be added to the store by instances of
simpagation and simplification rules, because after enough rule executions,
the constraint store has no CHR constraints with a level value n or higher
left.

By induction, this proves that only a finite number of CHR constraints are
added to the store. Therefore, Lemma 7.1 proves termination.

We prove termination for the Fibonacci program with this RC.

Example 7.8. As in Example 7.4, the query is fib(n,m) with n a ground
term, representing a natural number in successor-notation and m a free variable.
The call set is {fib(n1 ,m), fib(n2 ,n3 ) | n1, n2, n3 ground terms, representing
natural numbers and m a free variable}. We use the abstract level mapping:
|fib(n,m)|α = ||n||αt .

The call set is rigid w.r.t. the chosen abstract level mapping. For the first rule,
{fib(N,M1), fib(N,M2), fib(N,M1)} is a �-maximal subset w.r.t. |.|α. With
two of these constraints in the head of the rule and only one in the body, this
rule satisfies the RC for CHR. The second and third rule trivially satisfy the
RC for CHR because they have no CHR constraints in the body. The last rule
is a propagation rule. To satisfy the RC for CHR, every constraint matching
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the head of the rule must be larger than every constraint added by the body of
the rule.

|fib(s(s(N)),M)|α = 2 +N � |fib(s(N),M1)|α = 1 +N

|fib(s(s(N)),M)|α = 2 +N � |fib(N,M2)|α = N . �

Because no interargument relations are needed for the Fibonacci example,
another small example is given.

Example 7.9 (Greatest common divisor - gcd). We prove termination for gcd
with the RC for CHR. This program calculates the greatest common divisor of a
set of positive integer numbers for a query: gcd(n) (n ∈ N).

gcd(0)⇔ true.

gcd(M) \ gcd(N)⇔ N >= M,M > 0, NN is N −M | gcd(NN).

The call set is {gcd(n) | n a natural number}. As an abstract norm, we map
each natural number or variable to itself. The associated interargument relations
for the guard of the second rule are obvious (e.g.

{
(n,m) ∈ N2 | n ≥ m

}
for

N >= M). For any instance gcd(m) \ gcd(n)⇔ n >= m,m > 0, nn is n−m |
gcd(nn). satisfying the interargument relations of the guard, we have n > nn.

The abstract level mapping |gcd(n)|α = n, proves termination w.r.t. the
associated interargument relations and the chosen norm.

The call set is rigid w.r.t. the abstract level mapping. Because the first rule has
no CHR constraints in the body, it trivially satisfies the RC with {gcd(0)} as a
�-maximal subset. The second rule replaces a constraint gcd(n), mapped to n,
by the constraint gcd(nn), mapped to nn. Since the associated interargument
relations for this rule need to be satisfied: n > nn. Therefore, {gcd(N)} is the
only �-maximal subset of the rule. Since both rules satisfy the RC, this program
terminates for the considered queries. �

7.4 Automation and experimental evaluation

We have implemented a prototype analyzer to allow us to experimentally evaluate
our approach. The prototype is implemented in CHR, with SWI-Prolog as
host-language. Space restrictions do not allow us to give a full account of the
system. In this section, we focus on the most central components only and
illustrate the general strategy with an example.
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Example 7.10 (Employee availability). This program computes a list of all
employees who have no appointment on a certain time point.

app(T b, T e, E), empl(L), time(T ) ⇒ member(E, L), T b ≤ T, T ≤ T e |
remove(E).
empl(L1), remove(E)⇔ select(E, L1, L2) | empl(L2).

Here, select(e, l1, l2) only succeeds if the list l1 contains e and l2 is the list
obtained from l1 by removing one occurrence of e.

The intention is that a query consists of constraints app/3, with a begin time, end
time and employee’s name, representing appointments, a constraint empl/1, with
as only argument the list of all employee’s names and a constraint time/1, with
as its argument the time point on which we want the list of available employees.
The propagation rule determines which employees need to be removed from
the list. The simplification rule deletes employees from the list. The program
terminates for all considered queries. �

To prove termination of a CHR program with the RC for CHR, one has to find
a norm, associated interargument relations and an appropriate abstract level
mapping, such that the RC is satisfied. We use abstract linear level mappings.
In the philosophy of the constraint based approach to termination analysis, as
described in [18], we introduce a symbolic form of the level mapping.

Example 7.11 (Employee availability continued). For the constraints in
employee availability we have the symbolic forms: |time(t)|α = time0 +
time1.||t||α,
|app(tb, te, e)|α = app0 + app1.||tb||α + app2.||te||α + app3.||e||α,
|empl(e)|α = empl0 + empl1.||e||α,
|remove(e)|α = remove0 + remove1.||e||α. �

Following the constraint based approach, the aim is to translate the
conditions imposed by the RC into constraints of the symbolic coefficients
(e.g. app0, app1, app2, app3) of the level mapping. This translation must be
such that every solution for the resulting constraints corresponds to one way of
satisfying the RC, and therefore, of obtaining a termination proof.

First, we perform a simple type inference to compute an overestimation of the
call set. It is based on four basic types: ground list, nil-terminated list, ground
term and any term. We initialize the call set with the given query type. Until a
fix point is reached, constraints from the call set are matched with each rule’s
head. For every applicable rule, the effect of the guard is analyzed and the call
types of the CHR body constraints are added to the call set.
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Example 7.12 (Employee availability continued). We initialize the call set as
the set of all typed constraints in the query: Call = {app(t1, t2, e), empl(l), time(t3) |
t1, t2, t3, e ground terms and l a ground list}. Only the first rule adds a new
typed constraint, namely remove(e) with e a ground term. The fix point is
reached and the call set is Call ∪ {remove(e) | e a ground term}. �

Next, we choose between term-size and list-length as the norm. The call set can
provide us with information on how to select between them. But, the choice is
backtrackable.
Example 7.13 (Employee availability continued). Due to the groundness of
all terms in the call set, we first select term-size. It turns out that the analyzer
fails for this choice. We then set the norm to list-length. �

Now, we impose rigidity of the level mapping on the call set. We also ensure
that the level mapping only measures arguments of the appropriate type.
Example 7.14 (Employee availability continued). The constraints app/3,
time/1 and remove/1 have no list-arguments. Thus, we measure no arguments:

|app(tb, te, e)|α = app0 |time(t)|α = time0 |remove(e)|α = remove0

The only argument of empl/1 is a ground list, so |empl(l)|α = empl0 +
empl1.||l||αl is rigid on the call set. �

In a next step, interargument relations are inferred for the guards. Our
prototype implementation contains predefined interargument relations under
list-length and term-size for built-in predicates. It requires the user to provide
interargument relations for other guards. This can easily be further automated
in the future by using interargument relation inference from another analyzer
(e.g. Polytool [35]).
Example 7.15 (Employee availability continued). For member/2 and =< /2
there are no ’real’ interargument relations under list-length, so that the relations
are N2. For select/3, the associated interargument relation is{

(n1, n2, n3) ∈ N3 | n2 = n3 + 1
}
. �

We then reach the most central part of the system. Here, we set up constraints
on the remaining symbolic coefficients of the level mapping, corresponding to
the conditions expressed in the RC.

For propagation rules, this is fairly easy: provided that interargument relations
hold of the guards, the level mapping should decrease from head to body
constraints.
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possible �-maximal subsets Resulting set of equations
{empl(L)} |empl(L1)|α � |empl(L2)|α ∧ |empl(L1)|α � |remove(E)|α
{remove(E)} |remove(E)|α � |empl(L1)|α ∧ |remove(E)|α � |empl(L2)|α

(|remove(E)|α � |empl(L2)|α ∨ |empl(L1)|α � |empl(L2)|α)
{empl(L1)} , {remove(E)} ∧¬(|empl(L1)|α � |remove(E)|α)

∧¬(|remove(E)|α � |empl(L1)|α)
{empl(L1), remove(E)} |empl(L1)|α � |empl(L2)|α ∧ |empl(L1)|α ≈ |remove(E)|α

{empl(L1), remove(E), empl(L2)} |empl(L1)|α ≈ |empl(L2)|α ∧ |empl(L1)|α ≈ |remove(E)|α

Table 7.1: �-maximal subsets for employee availability

Example 7.16 (Employee availability continued). For the propagation rule,
since the interargument relations for the guard are trivial, we get:

|app(Tb, Te, E)|α � |remove(E)|α app0 � remove0
|time(T )|α � |remove(E)|α or time0 � remove0
|empl(L1)|α � |remove(E)|α empl0 + empl1.L1 � remove0 (1)

�

For simplification and simpagation rules this step is more difficult. The problem
is that we need to reason about �-maximal subsets of constraints but that these
subsets depend on the used level mapping – which, as yet, has not been fixed.

To solve this, we will compute all the possibilities of candidate �-maximal
subsets, which are such that the condition in the RC is fulfilled. For each of
these possibilities, we then express what conditions on the level mapping are
required to make these subsets the �-maximal ones. If any of these conditions
on the level mapping can be satisfied, the RC holds for the rule.

Example 7.17 (Employee availability continued). In the first column of Table
1, we present all the different cases of possible �-maximal subsets for the
simplification rule, which are such that the RC is fulfilled. The second column
of the table contains the corresponding condition on the level mapping needed
for �-maximality of these sets.

Observe that for the four last rows, the resulting equations are inconsistent
with the constraint (1) obtained for the propagation rule. For instance, for the
second row, |remove(E)|α � |empl(L1)|α is inconsistent with |empl(L1)|α �
|remove(E)|α.

As a result, the first row is the only remaining candidate constraint. Since the
interargument relation of the guard in the simplification rule is non-trivial, we
obtain the condition:
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L1 = L2 + 1 =⇒ |empl(L1)|α � |empl(L2)|α ∧ |empl(L1)|α �
|remove(E)|α

or L1 = L2 + 1 =⇒ empl0 + empl1.L1 � empl0.L2 + empl1.L2∧

empl0 + empl1.L1 � remove0 �

Finally, all conditions on the symbolic coefficients are collected and transformed
into Diophantine constraints, by using the method described in [35]. These
equations are solved using the constraint solver of AProVE ([23]).

Example 7.18 (Employee availability continued).
AProVE finds the solution app0 = empl0 = time0 = empl1 = 1, remove0 = 0,
corresponding to the level mapping:
|app(Tb, Te,E)|α = 1 |empl(L)|α = 1 + ||L||αl
|remove(E)|α = 0 |time(T )|α = 1 �

7.4.1 Experimental evaluation

There are some benchmarks available in the CHR community. Because they are
aimed at testing performance issues, they are relatively small and not useful for
testing a termination analyzer. Therefore, we collected a number of programs
from various sources to set up a new benchmark. It contains 52 programs: 39
without propagation and 13 with propagation. All programs are terminating.

We compared our prototype analyzer with the transformational analyzer of [42],
which cannot deal with propagation. The results are very satisfactory. Our
analyzer proves termination for 31 programs without propagation. The analyzer
of [42] proves termination of 26 of these programs. The transformational
analyzer proves termination of two programs where our approach fails. This is
because these programs need a more complex norm as list-length or term-size.
The results are presented in Tables 7.2 and 7.3. The upper half of the tables
are programs from [42]. The lower part are programs from webCHR1 except
for employee, which is the employee availability example from Section 4. Imp
gives the results of our prototype implementation. [42] gives the results of the
transformational approach in [42].

Our implementation proves 10 programs with propagation from the benchmark
terminating. The failing programs increase an arguments size till a certain
bound. Our approach cannot deal with bounded increases. For term rewrite
systems, a technique to prove termination for such programs is discussed in [24].

1http://chr.informatik.uni-ulm.de/ webchr/
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Name Imp [42] Name Imp [42]
ackermann - - modulo + +
average + + oddeven + +
binlog + + pathcons - +
booland + + power + +
boolcard + + revlist + +
concat - - som + +
convert + - toyama - +
diff + + weight + -
factorial + + bool andtr + +
gcd + + eventr + +
genint1 + + fib tabulationtr + -
joinlists + + fibbonacitr + -
max + + geninttr - -
mean + + primestr + -
mergesort + +
dfsearch + + primes3 - -
lex + + succ add + +
min + + sudoku - -
nqueen2 + - tak - -
primes2 + + zebra + -

Table 7.2: Result for programs without propagation

Name Imp
boolean and +
even +
fib tabulation +
fibonacci +
genint -
primes +
employee +
autogen booland +
family +
fib bottomup -
fib top down +
primes1 +
sorting -

Table 7.3: Programs for programs with propagation
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7.5 Summary

We discussed a new approach to termination analysis of CHR programs. Before
2008, automated termination analysis was restricted to CHR programs with
simplification only. Our condition allows for termination analysis of general
CHR programs, that is, CHR programs with propagation as well. We have
implemented the technique in an automated system. Experimental results with
this system show that it is successful in proving termination for a majority of
the test set programs.

The condition on simplification rules, as proposed in [21], was strengthened in
our RC in order to be able to extend it with a condition for propagation rules.
Therefore, a small class of CHR programs cannot be proved terminating with
our approach, where the (non-automated) approach of [21] succeeds.

7.5.1 Later works on Termination analysis of CHR

After the publication of the work described in this chapter, P. Pilozzi introduced
a new ranking condition for CHR with propagation in [39]. The analysis
of [39] allows to combine our ranking condition for propagation rules with
multiset decreases for simplification rules as in [21]. The resulting analysis is
strictly stronger than both the termination condition of [21] and the termination
condition described in this chapter.

Further improvements on termination analysis of CHR were published in [40]
and [41].

Reference

The work in this chapter was presented at LOPSTR 2008 and is published in
[57].



Chapter 8

Conclusion

Chapter 3 presented an approximation framework for attacking the unde-
cidable termination problem of logic programs, as an alternative to current
termination/non-termination proof approaches. We introduced an idea of
termination prediction, established a necessary and sufficient characterization
of infinite SLDNF-derivations with arbitrary (concrete or moded) queries, built
a new loop checking mechanism, and developed an algorithm that predicts
termination of general logic programs with arbitrary queries. We implemented
the analysis and demonstrated the effectiveness of the termination prediction
with representative examples including ones borrowed from the Termination
Competition 2007.

Chapter 4 introduced a new approach to non-termination analysis of logic
programs based on the symbolic derivation tree for a moded query defined
in Chapter 3. This symbolic derivation tree represents the derivations of all
concrete queries denoted by the moded query. We introduced a non-termination
condition that identifies paths in this tree that can be repeated infinitely.
We implemented the approach and evaluated it on a benchmark of 48 non-
terminating programs from the termination competition of 2007. Our tool,
P2P , proves non-termination of all benchmark programs. We have shown that
our technique improves on the results of the only non-termination analyzer
developed before our work, NTI, and that we can handle 2 new classes of
programs.

In Chapter 5, we identified classes of logic programs for which previous analyzers
fail to prove non-termination and we extended our non-termination analysis to
overcome these limitations. The most important class of programs for which
previous analyzers fail, are programs for which no fixed sequence of clauses
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can be repeated infinitely. We have shown that non-failure information [17]
can be used to abstract away from the exact sequence of clauses needed to
solve non-failing goals. To use this non-failure information, type information is
added to the symbolic derivation tree and a special transition is introduced to
solve non-failing atoms. We have shown that program specialization [26] can be
used to overcome another limitation of previous analyzers. If non-termination
can not be proven due to aliased variables, redundant argument filtering may
remove these duplicated variables from the program. Specialization can also
be used in combination with the NFG transition. Program specialization may
produce more instantiated clauses, giving a better approximation of the possible
values after solving the non-failing goal.

In Chapter 6, we took a first step towards the analysis of real life Prolog
programs by extending our non-termination analysis for logic programs with
integer arithmetic. The analysis starts with a given program and class queries,
specified using modes, and detects subclasses of non-terminating queries. First,
the derivations for the given class of queries are abstracted by building a symbolic
derivation tree with transitions to handle integer arithmetic. Then, this symbolic
derivation tree is used to detect subclasses of non-terminating queries in two
phases. The first phase focuses on the logic part of the computation and assumes
the conditions over integers, e.g. > /2, succeed. It detects classes of queries that
are non-terminating if all conditions on integers in those derivations succeed.
The second phase of the analysis adds constraints over the integer arguments
of the query to obtain a class of non-terminating queries. These constraints
guarantee that all conditions on integers in the derivation will succeed. The
constraints are then solved by transforming them into a SAT problem.

Chapter 7 introduced a termination analysis approach for Constraint Handling
Rules, a constraint based programming language. Before 2008, automated
termination analysis was restricted to CHR programs with simplification only.
Our condition allows for termination analysis of general CHR programs, that is,
CHR programs with propagation as well. We have implemented the technique
in an automated system. Experimental results with this system show that it is
successful in proving termination for a majority of the benchmark programs.

8.1 Symbolic execution

To finish the conclusion, we will situate our work in the broader context of
symbolic execution [13]. Symbolic execution entails different analyses that use
symbolic values instead of concrete inputs to test program properties. Program
paths can then be explored by keeping a symbolic state which can identify
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concrete inputs for which the path is applicable. Applications of symbolic
execution include test input generation, error detection such as detection of
uncaught exceptions but also more complex analyses such as security testing.

This description fits our work on termination prediction and non-termination
analysis very well. Like in symbolic execution, we keep a symbolic state and
explore different program paths to detect a non-terminating goal. When such a
goal is found we can generate a class of concrete non-terminating queries using
information in the moded SLD-tree.

As the similarities between symbolic execution and our work suggest, our
termination prediction and non-termination analyses could be extended using
ideas from symbolic execution. Using techniques from symbolic execution
concerning constraint solving for example, could make big improvements in
analyzing programs with integer arithmetics.
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