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Atomium – Brussels

built in 1958

height ≈ 103m

figure = 2e coin
5 · 106 in circulation

Body centered cubic lattice
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Introduction

Given is an integral

I[f ] :=

∫
Ω

w(x)f(x) dx

where Ω ⊆ Rs and w(x) ≥ 0, ∀x ∈ Rs.
Search an approximation for I[f ]

I[f ] ' Q[f ] :=

n∑
j=1

wjf(y(j))

with wj ∈ R and y(j) ∈ Rs.
Webster:
quadrature: the process of finding a square equal in area to a given area.
cubature: the determination of cubic contents.
If s = 1 then Q is called a quadrature formula.
If s ≥ 2 then Q is called a cubature formula.
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Q[f ] :=

n∑
j=1

wjf(y(j))

Cubature/quadrature formulas are basic integration rules
→ choose points y(j) and weights wj independent of integrand f .

It is difficult (time consuming) to construct basic integration rules,
but the result is usually hard coded in programs or tables.

Restriction to unit cube: given is

I[f ] =

∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , xs)dx1 · · · dxs =

∫
[0,1)s

f(x)dx
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Taxonomy: two major classes

1 polynomial based methods
incl. methods exact for algebraic or trigonometric polynomials

2 number theoretic methods
incl. Monte Carlo and quasi-Monte Carlo methods

As in zoology, some species are difficult to classify.

For example

Definition

An s-dimensional lattice rule is a cubature formula which can be
expressed in the form

Q[f ] =
1

d1d2 . . . dt

d1∑
j1=1

d2∑
j2=1

. . .

dt∑
jt=1

f

({
j1z1

d1
+
j2z2

d2
+ . . .+

jtzt
dt

})
,

where di ∈ N0 and zi ∈ Zs for all i.
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Alternative formulation:

Definition

A multiple integration lattice Λ is a subset of Rs which is discrete and
closed under addition and subtraction and which contains Zs as a subset.

Definition

A lattice rule is a cubature formula where the n points are the points of a
multiple integration lattice Λ that lie in [0, 1)s and the weights are all
equal to 1/n.

n = n(Q) = #{Λ ∩ [0, 1)
s} .
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Example

The Fibonnaci lattice with n = Fj and z = (1, Fj−1)

has points x(j) =
(
j
Fj
,
jFj−1

Fj

)
⇒ lattice rule Q[f ] =

1

n

n−1∑
j=0

f

({
(j, jFj−1)

n

})
Example: the lattice rule with n = d1 = F7 = 13 and z1 = (1, 8)
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Polynomials

Let α = (α1, α2, . . . , αs) ∈ Zs and |α| :=
∑s
j=1 |αj |.

algebraic polynomial

p(x) =
∑

aαxα =
∑

aα

s∏
j=1

x
αj
j , with αj ≥ 0

trigonometric polynomial

t(x) =
∑

aαe
2πiα·x =

∑
aα

s∏
j=1

e2πixjαj

The degree of a polynomial = max
aα 6=0

|α|.

Psd = all algebraic polynomials in s variables of degree at most d.

Tsd = all trigonometric polynomials in s variables of degree at most d.
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Quality criteria?

Definition

A cubature formula Q for an integral I has algebraic (trigonometric)
degree d if it is exact for all polynomials of algebraic (trigonometric)
degree at most d.

How many points are needed in a cubature formula
to obtain a specified degree of precision?
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The dimensions of the vector spaces of polynomials are:

dimPsd =

(
s+ d
d

)

dimTsd =
s∑
j=0

(
s
j

)(
d
j

)
2j .

We will use the symbol Vsd to refer to one of the vector spaces Psd or Tsd.
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Theorem

If a cubature formula is exact for all polynomials of Vs2k, then the
number of points n ≥ dimVsk.

Algebraic degree: For s = 2 (Radon, 1948); general s (Stroud, 1960)
Trigonometric degree: (Mysovskikh, 1987)

J. Radon

A. Stroud
I.P. Mysovskih
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Theorem

If a cubature formula is exact for all polynomials of degree d > 0 and has
only real points and weights, then it has at least dimVsk positive weights,
k = bd2c.

Algebraic degree: (Mysovskikh, 1981)
Trigonometric degree: (C. 1997)
⇒ minimal formulas have only positive weights.

Corollary

If a cubature formula of trigonometric degree 2k has n = dimTsk points,
then all weights are equal.

This is a reason to restrict searches to

Q[f ] =
1

n

n∑
j=1

f(xj).
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Improved bound for odd degrees

For algebraic degree, the improved lower bound for odd degrees
takes into account the symmetry of the integration region.

E.g., centrally symmetric regions such as a cube
→ (Möller, 1973)

H.M. Möller

Result for trigonometric degree is very similar.
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Improved bound for odd degrees

Gk := span of trigonometric monomials of degree ≤ k
with the same parity as k.

Theorem ((Noskov, 1985), (Mysovskikh, 1987))

The number of points n of a cubature formula for the integral over
[0, 1)s which is exact for all trigonometric polynomials of degree at most
d = 2k + 1 satisfies

n ≥ 2 dimGk.
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Definition

A cubature formula is called shift symmetric if it is invariant w.r.t. the
group of transformations{

x 7→ x,x 7→ {x + (
1

2
, . . . ,

1

2
)}
}

(This is the ‘central symmetry’ for the trig. case.)

Theorem (Beckers & C., 1993)

If a shift symmetric cubature formula of degree 2k + 1 has n = 2 dimGk
points, then all weights are equal.

Conjecture (C., 1997)

Any cubature formula that attains the lower bound is shift symmetric.

This became a Theorem (Osipov, 2001).
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Known minimal formulas for trigonometric degree

for all s

degree 1
degree 2 (Noskov, 1988)
degree 3 (Noskov, 1988)

for s = 2

all even degrees (Noskov, 1988)
all odd degrees
(Reztsov, 1990) (Beckers & C., 1993) (C. & Sloan, 1996)

for s = 3

degree 5 (Frolov, 1977)

M. Beckers M.V. Noskov A. Rezcov I.H. Sloan



Introduction Quality criteria Recent constructions Sequences Final remarks

All known minimal formulas of trigonometric degree are lattice rules,
except...

Theorem (C. & Sloan, 1996)

The following points(
Cp +

j

2(k + 1)
, Cp +

j + 2p

2(k + 1)

)
j = 0, . . . , 2k + 1
p = 0, . . . , k

with C0 = 0 and C1, . . . , Ck arbitrary are the points of a minimal
cubature formula of trigonometric degree 2k + 1.
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1

5/6

2/3

1/2

1/3

1/6

0
15/62/31/21/31/60

k = 2, n = 18, C1 = 1
18 , C2 = 1

9

Q[f ] =
1

n

n−1∑
j=0

f

(
j

n
,
j(2m+ 1)

n

)
with n = 2(m+ 1)

2
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1
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0
15/62/31/21/31/60

k = 2, n = 18, C1 = C2 = 0: body-centered cubic lattice

Q[f ] =
1

2(m+ 1)2

2m+1∑
k=0

m∑
j=0

f

(
2j + k

2(m+ 1)
,

k

2(m+ 1)

)
with n = 2(m+ 1)

2
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Technology used to obtain these results:
Reproducing kernels

The integral I defines an inner product (φ, ψ) = I[φ · ψ].
Let F be a subspace of Ts.
Choose φ1(x), φ2(x), . . . ∈ F so that

φi(x) is I-orthogonal to φj(x), ∀j < i, and

(φi(x), φi(x)) = 1.

For a given k ∈ N and t := dim(F ∩ Tsk) we define

K(x,y) :=

t∑
j=1

φj(x) · φj(y)

K(x,y) is a polynomial in 2s variables of degree ≤ 2k.
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Definition

K is a reproducing kernel in the space F ∩ Tsk

if f ∈ F ∩ Tsk then f(a) = (f(x),K(x,a))

=

t∑
j=1

φj(a) · I[f(x)φj(x)]

The trigonometric monomials form an orthonormal sequence.

K(x,y) =
∑
k∈Λd

e2πik·(x−y)

Λd = {k ∈ Zs : 0 ≤
s∑
l=1

|kl| ≤
⌊d

2

⌋
}
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A simplifying aspect of the trigonometric case is that the reproducing
kernel is a function of one variable:

K(x,y) = K(x− y)

with
K(x′) =

∑
k∈Λd

e2πik·x′

For s = 2 it has the following simple form:
let g(z) = cos(π(2bd2c+ 1)z) cosπz, then

K(x′) =
g(x1)− g(x2)

sin(π(x1 + x2)) sin(π(x1 − x2))
.
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On route to other quality criteria

Assume f can be expanded into
an absolutely convergent multiple Fourier series

f(x) =
∑
h∈Zs

f̂(h)e2πih·x

with

f̂(h) =

∫
[0,1)s

f(x)e−2πih·x dx
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Then

Q[f ]− I[f ] =
1

n

n∑
j=1

 ∑
h∈Zs\{0}

f̂(h)e2πih·xj


=

∑
h∈Zs\{0}

f̂(h)
1

n

n∑
j=1

e2πih·xj

 .

Observe that
1

n

n∑
j=1

e2πih·xj =

{
1, h · xj ∈ Z
0, h · xj 6∈ Z
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A very important tool to investigate the error of a lattice rule is . . .

Definition

The dual of the multiple integration lattice Λ

Λ⊥ := {h ∈ Zs : h · x ∈ Z,∀x ∈ Λ} .

Theorem (Sloan & Kachoyan, 1987)

Let Λ be a multiple integration lattice.
Then the corresponding lattice rule Q has an error

Q[f ]− I[f ] =
∑

h∈Λ⊥\{0}
f̂(h).
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Example

Dual lattice of Fibonnaci lattice
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Construction criteria

For many years, only used in Russia...

Definition

The trigonometric degree is

d(Q) := min
h 6= 0

h ∈ Λ⊥

 s∑
j=1

|hj |

− 1 .

The enhanced degree δ := d+ 1.

Some names:
Mysovskikh (1985–1990), Reztsov (1990), Noskov (1985–1988),
Temirgaliev (1991), Semenova (1996–1997), Osipov (2001–2010), Petrov
(2004)
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Construction criteria

Mainly used in the ‘West’...

Definition

The Zaremba index or figure of merit is

ρ(Q) := min
h 6= 0

h ∈ Λ⊥

(
h̄1h̄2 · · · h̄s

)
.

with

h̄j :=

{
1 if hj = 0
|hj | if hj 6= 0.

Some names:
Maisonneuve (1972), . . ., Sloan & Joe (1994), Langtry (1996)
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Where does this come from?

For c > 0 and fixed α > 1,
let Eαs (c) be the class of functions f
whose Fourier coefficients satisfy

|f̂(h)| ≤ c

(h1h2 · · ·hs)α
,

where h = max(1, |h|).

Worst possible function in class Eαs (1) is

fα :=
∑
h∈Zs

1

(h1h2 · · ·hs)α
e2πih·x

Pα(Q) := the error of the lattice rule for fα.
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Pα is easy to compute for α an even integer
because fα can be written as products of Bernoulli polynomials.

Theoretical convergence is

O
(
(log(n))αsn−α

)
.

Pα introduced by (Korobov, 1959)

Obviously related to the figure of merit:

2

ρα
≤ Pα.

Figure of merit used by (Maisonneuve, 1972)

Other criteria:
R(z, n) (Niederreiter, 1987)

Pα(z, n) < R(z, n)α +O(n−α)

Discrepancy

DN = O

(
(logN)s−1

ρ

) H. Niederreiter
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Yet another way to look at this

Assume f can be expanded into
an absolutely convergent multiple Fourier series

f(x) =
∑
h∈Zs

f̂(h)e2πih·x with f̂(h) =

∫
[0,1)s

f(x)e−2πih·x dx

Mark region of interest As(m) in Fourier domain of “degree” m.

Ask to integrate those Fourier terms exactly, i.e.

Λ⊥ ∩ As(m) = {0}.

⇒ Rule of degree (at least) m.

Different regions As(m) possible:

Trigonometric degree.
Zaremba cross degree.
Product trigonometric degree.
. . .
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Corresponding Fourier spectra

Take m = 5 (and s = 2):

Trigonometric degree Zaremba degree Product degree

For s→∞ these shapes grow exponentially.
Consequently the number of nodes grows exponentially.
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Modern interpretation of Pα is the squared worst-case error in a RKHS
with Korobov kernel with smoothness α.
In general, for a shift-invariant kernel K and rank-1 lattice points

e2(Λ,K) = −
∫

[0,1)s
K(x,0) dx +

1

n

n−1∑
k=0

K

({
kz

n

}
,0

)
see e.g. (Hickernell, 1998)

Typical form for a weighted space:

e2
s(z) = −1 +

1

n

n−1∑
k=0

s∏
j=1

[
1 + γj ω

({
kzj
n

})]
This is a tensor prod-
uct space: a product
of 1-dimensional ker-
nels

The weights γj , γ1 ≥
γ2 ≥ · · · ≥ γs, model
anisotropicness of the
integrand functions

Between the big
braces we have the
1-dimensional kernel
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Searches for lattice rules

Remember that

1 The cost to verify that a lattice rule has degree d
is proportional to ds,
so only “moderate” dimensions are feasible.

2 The search space is huge.

⇒ Restrict the search space.
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For example:

Definition

A rank-1 simple lattice is generated by one vector z and has the form

Q[f ] :=
1

n

n−1∑
j=0

f

({
jz

n

})

Pn :=

{{
jz

n

}
: j = 0, . . . , n− 1

}
, z ∈ Usn .
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For example:

Definition

A rank-1 simple lattice is generated by one vector z and has the form

Q[f ] :=
1

n

n−1∑
j=0

f

({
jz

n

})

Restricting to rank-1 simple rules
→ only 1 vector, s− 1 components, to be determined.

Further restriction of the search space:
consider only generator vectors of the form

z(`) = (1, `, `2 mod n, ..., `s−1 mod n), 1 ≤ ` < n

(Korobov, 1959)
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Technology used: matrices

Any s-dimensional lattice Λ can be specified in terms of
s linearly independent vectors {a1,a2, . . . ,as}.
→ These vectors are known as generators of Λ.

Associated with the generators is an s× s generator matrix A
whose rows are a1,a2, . . . ,as.
All h ∈ Λ are of the form h =

∑s
i=1 λiai = λA for some λ ∈ Zs.

The dual lattice Λ⊥ may be defined as having generator matrix
B = (A−1)T .

It can be shown that the number of points n = |detA|−1 = |detB|.
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Recent searches for low dimensions:
K-Optimal rules

Not restricted to rank-1 lattices.
Based on a property of the dual lattice:
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Argument by (C. & Lyness, 2001):
It is reasonable to believe that the lattice Λ of an optimal lattice rule will
have Λ⊥ with many elements on the boundary of convS(Os, d+ 1)
(a scaled version of the unit octahedron).
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High computational cost, O(δs
2−1). (δ = d+ 1)

(C. & Lyness, Math. Comp., 2001): 3D (δ ≤ 30, 4D (δ ≤ 24)

(Lyness & Sørevik, Math. Comp., 2006): 5D (δ ≤ 12)

Restricting the search to (skew-)circulant generator matrices, reduces the
cost to O(δ2s−2).

(Lyness & Sørevik, Math. Comp., 2004): 4D

(C. & Govaert, J. Complexity, 2003): 5D, 6D

This also lead to closed expressions for arbitrary degrees.

J. Lyness T. Sørevik H. Govaert
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Packing factor

Definition

The packing factor

ρ̂(n) :=
δs

s!n
.

This is a measure of the efficiency of a rule.
It is convenient for making pictures because 0 ≤ ρ̂(n) ≤ 1.

Actually, ρ̂(n) is bounded above by
the density of the densest lattice packing
of the crosspolytope (octahedron) θ(Os).
(→ link with “Geometry of numbers”)

Known values:

θ(O1) = θ(O2) = 1

θ(O3) = 18
19 (Minkowski, 1911) used by (Frolov, 1977)
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This provides a (higher) lower bound for lattice rules
for trigonometric degree:

n ≥ (d+ 1)s

s!θ(Os)
.

Lattice rules provide constructive lower bounds for θ(Os).
From a lattice rule with n points follows

θ(Os) ≥
(d+ 1)s

s!n
.

The best known bounds for θ(O4), θ(O5) and θ(O6)
come from lattice rules
(C., East Journal on Approximations, 2006).
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Results: 4D

4 6 8 10 12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ (= d+1)

ρ

◦ refers to nKO , � refers to nME .
× refers to (Noskov & Semenova, 1996)+corrections

∗ refers to (C., Novak & Ritter, 1999)
× refers to (Temirgaliev, 1991),4 refers to Good lattices
5 refers to Korobov rules (Maisonneuve, 1972)
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K-optimal rules: conclusions

The search for K-optimal lattice rules is expensive.

The packing factor is related to the concept critical lattice (a global
minimum)
As a side effect it delivered the best known constructive lower
bounds for θ(s), for s = 4, 5, 6.

There are also local minima for the determinant of admissible lattices
→ extremal lattices
The corresponding lattices can be used to bootstrap
the construction of higher degree lattice rules (in no-time)
and sequences.

More recent: approach based on Golomb rules
(Sørevik, MCQMC2012)
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Recent searches for higher dimensions:
Component-by-component construction

Focus on rank-1 lattice rules ⇒ find 1 vector z.

Idea: search z component by component

2000: I. Sloan & A. Reztsov (Tech. Report)
published Math. Comp. 2002

unweighted Korobov space, n prime

Note that Korobov (1959) presented a constructive proof using the
CBC-principle.

I.H.Sloan A. Reztsov
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Some milestones of component-by-component

2000-2002: F. Kuo (PhD) with S. Joe
weighted Korobov space, weighted Sobolev space

MCQMC 2002: J. Dick & F. Kuo
basically for weighted Korobov space, n a product of few primes, but
partial search, faster and for millions of points

MCQMC 2004, 2006: D. Nuyens & C.
fast construction in O(sn log(n)), basic case for n prime, but also
possible for any composite n (and full search)

F. Kuo S. Joe J. Dick D. Nuyens
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The CBC algorithm in a shift-invariant RKHS

for s = 1 to smax do
for all z in Un do

e2
s(z) = −1 +

1

n

n−1∑
k=0

s∏
j=1

[
1 + γj ω

({
kzj
n

})]
end for
zs = argmin

z∈Un
e2
s(z)

end for

Computational cost: O(smaxn
2)
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Rephrasing CBC: matrix-vector form

The inner loop can be formulated as a matrix-vector product with matrix

Ωn :=

[
ω

({
kz

n

})]
z∈Un
k∈Zn

=

[
ω

(
k · z mod n

n

)]
z∈Un
k∈Zn

This matrix has a lot of structure!

A matrix-vector multiplication can be done in O(n log n)
(Nuyens & C. 2005, 2006)

⇒ Construction then takes O(sn log n) using O(n) memory
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An example matrix Ωn and its permutations

A nice view on
90 = 2×32×5

The blocks of
the last matrix
are
diagonizable
by FFT’s

1 2 3 6 9 18 5 10 15 30 45 90

1 2 3 6 9

18

5

10 15 30 45 90
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Results in O(sn log(n))

1 min
10 mins
1 hour

1 day

1 month
1 year
8 years

120 years

102 103 104 105 106 107 108

n

10−3

100

103

106

109

to
ta
l
ti
m
e
fo
r
s
=

2
0
(i
n
se
cs
)

fastrank1

rank1

slowrank1

Timings anno 2004 for 20 dimensions
generated on a P4 2.4GHz ht, 2GB RAM
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Combination of approaches

Inspired by “classical” approach and

H. Woźniakowski I.H. Sloan
weighted spaces from QMC (Sloan & Woźniakowski, 1998),
→ “weighted degree of exactness”:

For example:

Trigonometric degree Zaremba degree Product degree
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A new worst case setting

Amend the Korobov space Eα to make new space H
with reproducing kernel

K(x,y) =
∑

h∈As(m)

exp(2πi h · (x− y)) +
∑

h/∈As(m)

exp 2πi h · (x− y)

rα(γ,h)
.

The squared worst case error of a rank-1 lattice rule is now

e2
n,s(z) =

∑
0 6=h∈As(m)

h·z≡0 (mod n)

1 +
∑

h/∈As(m)
h·z≡0 (mod n)

1

rα(γ,h)
.

→ CBC-algorithm (C., Kuo & Nuyens, 2010)
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Error estimation

In practice one wants more than 1 approximation.

Common approaches (for all types of cubature):

randomization (randomly shifted rules) (Cranley & Patterson, 1976)

embedded sequences

copy rules, with intermediate lattice rules (Joe & Sloan, 1992)
augmentation sequences (Li, Hill & Robinson, 2007)
embedded rank-1 rules
(Hickernell, Hong, L’Ecuyer, Lemieux, SISC 2000)
(C., Kuo, Nuyens, SISC 2006)
(C. & Nuyens, MCQMC2008)

T. Patterson R. Hong P. L’Ecuyer C. Lemieux



Introduction Quality criteria Recent constructions Sequences Final remarks

Error estimation

In practice one wants more than 1 approximation.

Common approaches (for all types of cubature):

randomization (randomly shifted rules) (Cranley & Patterson, 1976)

embedded sequences

copy rules, with intermediate lattice rules (Joe & Sloan, 1992)
augmentation sequences (Li, Hill & Robinson, 2007)
embedded rank-1 rules
(Hickernell, Hong, L’Ecuyer, Lemieux, SISC 2000)
(C., Kuo, Nuyens, SISC 2006)
(C. & Nuyens, MCQMC2008)

T. Patterson R. Hong P. L’Ecuyer C. Lemieux



Introduction Quality criteria Recent constructions Sequences Final remarks

Example of embedded rank-1 rules

n = 8
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Example of embedded rank-1 rules

n = 16
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Example of embedded rank-1 rules

n = 32
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Example of embedded rank-1 rules

n = 64
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This is not restricted to powers of 2

The structure of the points using Gray code or radical inverse
ordering is similar to that of a net. The unit cube gets filled with
smaller lattices which consists of smaller lattices and so on.

Starting from a good lattice sequence we can stop anywhere and
have a good uniform distribution (Hickernell, Kritzer, Kuo, Nuyens,
2011)

n = 100 n = 200 n = 300 P. Kritzer
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Is the Weyl sequence a relative?

Simple rank-1 lattice:

x(k) =

{
k z

n

}
, for k = 0, 1, 2, . . . , n− 1.

Embedded rank-1 lattice: in order to stop at any time, you need a
good ordering of the points:

x(k) =

{
ϕ(k)

n
z

}
, for k = 0, 1, 2, . . . , n− 1.

If n is very large, this can be seen as an extensible cubature rule.

Weyl sequence: Take n ∞, then `/n has an infinite digit
expansion, i.e. think “irrational”.
Now group on z/n, and take each zj/n = ξj an irrational:

x(k) = {k ξ}, for k = 0, 1, 2, . . .

This could be interpreted as an infinite extensible “lattice”.
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Weyl sequence for periodic functions

Introduce weights and achieve higher order of convergence
for periodic functions.
(Niederreiter, 1973) (Sugihara & Murota, 1982)
(Vandewoestyne, C. & Warnock, 2007)

M. Sugihara B. Vandewoestyne

Example: 3D, O(n−8)

10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

100 101 102 103 104 105 106

A
bs

ol
ut

e 
er

ro
r

N

dimensions: 3

O(1/N7)
O(1/N8)
O(1/N9)
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Final remarks

Construction:

Searches for lattice rules using the “classical” criteria are doomed to
fail for increasing dimensions.

The CBC algorithm, relying on “worst-case-error” for “reproducing
kernel Hilbert spaces” beats this curse of dimensionality. Rules can
be constructed very fast even if n and s are large.

But work remains to be done, e.g.,

for CBC, tuning of the function space using the weights,

practical error estimates based on sequences.
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Finally note that

lattice rules are useful for low and high dimensions, and are not only
for integrating periodic functions;

all quality criteria have a reason to exist;

the difference between lattice rules and “classical” low discrepancy
sequences evaporates.
Lattice rules with large n can be constructed easily and can be used
as sequences.

Use a lattice rule anywhere & anytime!

This was a story about integration but the above suggestion also applies
to you if you are involved in approximation.
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The end.
Thank you!

A special “thank you” to those that put their picture on the web.

Don’t forget to update it!
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