			Sequences	
000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	000

A Belgian view on lattice rules

Ronald Cools Dept. of Computer Science, KU Leuven

Linz, Austria, October 14-18, 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000000 Quality criteria

Recent constructions

Sequences 00000 Final remarks 000

Atomium - Brussels

built in 1958 height $pprox 103 \mathrm{m}$

 $\begin{array}{l} \mbox{figure} = 2 {\mbox{\ensuremath{\in}}} \ \mbox{coin} \\ 5 \cdot 10^6 \ \mbox{in circulation} \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Body centered cubic lattice

Introduction			Sequences	
00000	000000000000000000000000000000000000000	00000000000000000	00000	000

Introduction

Given is an integral

$$I[f] := \int_{\Omega} w(\mathbf{x}) f(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

where $\Omega \subseteq \mathbb{R}^s$ and $w(\mathbf{x}) \ge 0$, $\forall \mathbf{x} \in \mathbb{R}^s$. Search an approximation for I[f]

$$I[f] \simeq Q[f] := \sum_{j=1}^{n} w_j f(\mathbf{y}^{(j)})$$

with $w_j \in \mathbb{R}$ and $\mathbf{y}^{(j)} \in \mathbb{R}^s$. Webster:

quadrature: the process of finding a square equal in area to a given area. cubature: the determination of cubic contents.

If s = 1 then Q is called a quadrature formula.

If $s \ge 2$ then Q is called a cubature formula.

Introduction		Recent constructions	Sequences	
000000	000000000000000000000000000000000000000	0000000000000000	00000	000

$$Q[f] := \sum_{j=1}^{n} w_j f(\mathbf{y}^{(j)})$$

Cubature/quadrature formulas are basic integration rules \rightarrow choose points $\mathbf{y}^{(j)}$ and weights w_i independent of integrand f.

It is difficult (time consuming) to construct basic integration rules, but the result is usually hard coded in programs or tables.

Introduction	Recent constructions	Sequences	
00000			

$$Q[f] := \sum_{j=1}^{n} w_j f(\mathbf{y}^{(j)})$$

Cubature/quadrature formulas are basic integration rules \rightarrow choose points $\mathbf{y}^{(j)}$ and weights w_i independent of integrand f.

It is difficult (time consuming) to construct basic integration rules, but the result is usually hard coded in programs or tables.

Restriction to unit cube: given is

$$I[f] = \int_0^1 \cdots \int_0^1 f(x_1, \dots, x_s) \mathrm{d}x_1 \cdots \mathrm{d}x_s = \int_{[0,1)^s} f(\mathbf{x}) \mathrm{d}\mathbf{x}$$

Introduction		Recent constructions	Sequences	
00000	000000000000000000000000000000000000000	00000000000000000	00000	000

Taxonomy: two major classes

 polynomial based methods incl. methods exact for algebraic or trigonometric polynomials

 number theoretic methods incl. Monte Carlo and quasi-Monte Carlo methods

As in zoology, some species are difficult to classify.

Introduction		Recent constructions	Sequences	
00000	000000000000000000000000000000000000000	0000000000000000	00000	000

Taxonomy: two major classes

- polynomial based methods incl. methods exact for algebraic or trigonometric polynomials
- Inumber theoretic methods incl. Monte Carlo and quasi-Monte Carlo methods

As in zoology, some species are difficult to classify. For example

Definition

An $s\mbox{-}dimensional$ lattice rule is a cubature formula which can be expressed in the form

$$Q[f] = \frac{1}{d_1 d_2 \dots d_t} \sum_{j_1=1}^{d_1} \sum_{j_2=1}^{d_2} \dots \sum_{j_t=1}^{d_t} f\left(\left\{\frac{j_1 \mathbf{z}_1}{d_1} + \frac{j_2 \mathbf{z}_2}{d_2} + \dots + \frac{j_t \mathbf{z}_t}{d_t}\right\}\right),$$

where $d_i \in \mathbb{N}_0$ and $\mathbf{z}_i \in \mathbb{Z}^s$ for all i.

Introduction		Recent constructions	Sequences	
000000	000000000000000000000000000000000000000	00000000000000000	00000	000

Alternative formulation:

Definition

A multiple integration lattice Λ is a subset of \mathbb{R}^s which is discrete and closed under addition and subtraction and which contains \mathbb{Z}^s as a subset.

Definition

A lattice rule is a cubature formula where the n points are the points of a multiple integration lattice Λ that lie in $[0,1)^s$ and the weights are all equal to 1/n.

$$n = n(Q) = \#\{\Lambda \cap [0,1)^s\}$$
.

Introduction	Recent constructions	Sequences	
000000			

The Fibonnaci lattice with
$$n = F_j$$
 and $\mathbf{z} = (1, F_{j-1})$
has points $\mathbf{x}^{(j)} = \left(\frac{j}{F_j}, \frac{jF_{j-1}}{F_j}\right)$
 \Rightarrow lattice rule $Q[f] = \frac{1}{n} \sum_{j=0}^{n-1} f\left(\left\{\frac{(j, jF_{j-1})}{n}\right\}\right)$

Introduction	Recent constructions	Sequences	
000000			

The Fibonnaci lattice with
$$n = F_j$$
 and $\mathbf{z} = (1, F_{j-1})$
has points $\mathbf{x}^{(j)} = \left(\frac{j}{F_j}, \frac{jF_{j-1}}{F_j}\right)$
 \Rightarrow lattice rule $Q[f] = \frac{1}{n} \sum_{j=0}^{n-1} f\left(\left\{\frac{(j, jF_{j-1})}{n}\right\}\right)$

Introduction	Recent constructions	Sequences	
000000			

The Fibonnaci lattice with
$$n = F_j$$
 and $\mathbf{z} = (1, F_{j-1})$
has points $\mathbf{x}^{(j)} = \left(\frac{j}{F_j}, \frac{jF_{j-1}}{F_j}\right)$
 \Rightarrow lattice rule $Q[f] = \frac{1}{n} \sum_{j=0}^{n-1} f\left(\left\{\frac{(j, jF_{j-1})}{n}\right\}\right)$

Introduction	Recent constructions	Sequences	
000000			

The Fibonnaci lattice with
$$n = F_j$$
 and $\mathbf{z} = (1, F_{j-1})$
has points $\mathbf{x}^{(j)} = \left(\frac{j}{F_j}, \frac{jF_{j-1}}{F_j}\right)$
 \Rightarrow lattice rule $Q[f] = \frac{1}{n} \sum_{j=0}^{n-1} f\left(\left\{\frac{(j, jF_{j-1})}{n}\right\}\right)$

Introduction	Quality criteria	Recent constructions	Sequences	Final remarks
000000	000000000000000000000000000000000000000	00000000000000000	00000	000

Polynomials

Let
$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \in \mathbb{Z}^s$$
 and $|\alpha| := \sum_{j=1}^s |\alpha_j|$.

algebraic polynomial

$$p(\mathbf{x}) = \sum a_{\alpha} \mathbf{x}^{\alpha} = \sum a_{\alpha} \prod_{j=1}^{s} x_{j}^{\alpha_{j}}, \text{ with } \alpha_{j} \ge 0$$

trigonometric polynomial

$$t(\mathbf{x}) = \sum a_{\alpha} e^{2\pi i \alpha \cdot \mathbf{x}} = \sum a_{\alpha} \prod_{j=1}^{s} e^{2\pi i x_{j} \alpha_{j}}$$

The degree of a polynomial $= \max_{a_{\alpha} \neq 0} |\alpha|$.

 $\mathbb{P}^s_d = \text{all algebraic polynomials in } s \text{ variables of degree at most } d. \\ \mathbb{T}^s_d = \text{all trigonometric polynomials in } s \text{ variables of degree at most } d.$

э

Recent constructions

uences 000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Final remarks 000

Quality criteria?

Definition

A cubature formula Q for an integral I has algebraic (trigonometric) degree d if it is exact for all polynomials of algebraic (trigonometric) degree at most d.

Recent constructions

Jences 000

Final remarks 000

Quality criteria?

Definition

A cubature formula Q for an integral I has algebraic (trigonometric) degree d if it is exact for all polynomials of algebraic (trigonometric) degree at most d.

How many points are needed in a cubature formula to obtain a specified degree of precision?

Quality criteria	Recent constructions	Sequences	
000000000000000000000000000000000000000			

The dimensions of the vector spaces of polynomials are:

$$\dim \mathbb{P}_d^s = \begin{pmatrix} s+d \\ d \end{pmatrix}$$
$$\dim \mathbb{T}_d^s = \sum_{j=0}^s \begin{pmatrix} s \\ j \end{pmatrix} \begin{pmatrix} d \\ j \end{pmatrix} 2^j.$$

We will use the symbol \mathbb{V}_d^s to refer to one of the vector spaces \mathbb{P}_d^s or \mathbb{T}_d^s .

(ロ)、(型)、(E)、(E)、 E) の(の)

Introduction	Quality criteria	Recent constructions	Sequences	Final remarks
000000	000000000000000000000000000000000000000	0000000000000000	00000	000

Theorem

If a cubature formula is exact for all polynomials of \mathbb{V}_{2k}^s , then the number of points $n \ge \dim \mathbb{V}_k^s$.

Algebraic degree: For s = 2 (Radon, 1948); general s (Stroud, 1960) Trigonometric degree: (Mysovskikh, 1987)

J. Radon

A. Stroud

И.П. Мысовских

Introduction	Quality criteria	Recent constructions	Sequences	Final remarks
000000	000000000000000000000000000000000000000	0000000000000000	00000	000

Theorem

If a cubature formula is exact for all polynomials of degree d > 0 and has only real points and weights, then it has at least dim \mathbb{V}_k^s positive weights, $k = \lfloor \frac{d}{2} \rfloor$.

Algebraic degree: (Mysovskikh, 1981) Trigonometric degree: (C. 1997) \Rightarrow minimal formulas have only positive weights.

Corollary

If a cubature formula of trigonometric degree 2k has $n = \dim \mathbb{T}_k^s$ points, then all weights are equal.

This is a reason to restrict searches to

$$Q[f] = \frac{1}{n} \sum_{j=1}^{n} f(\mathbf{x}_j).$$

Recent constructions

Sequences 00000

Final remarks 000

Improved bound for odd degrees

For algebraic degree, the improved lower bound for odd degrees takes into account the symmetry of the integration region.

E.g., centrally symmetric regions such as a cube \rightarrow (Möller, 1973)

H.M. Möller

Result for trigonometric degree is very similar.

Introduction
000000

Recent constructions

Jences 000

Final remarks 000

Improved bound for odd degrees

 $G_k :=$ span of trigonometric monomials of degree $\leq k$ with the same parity as k.

Theorem ((Noskov, 1985), (Mysovskikh, 1987))

The number of points n of a cubature formula for the integral over $[0,1)^s$ which is exact for all trigonometric polynomials of degree at most d = 2k + 1 satisfies

 $n \ge 2 \dim G_k.$

	Quality criteria	Recent constructions	Sequences	
000000	000000000000000000000000000000000000000	0000000000000000	00000	000

Definition

A cubature formula is called shift symmetric if it is invariant w.r.t. the group of transformations

$$\left\{\mathbf{x}\mapsto\mathbf{x},\mathbf{x}\mapsto\{\mathbf{x}+(\frac{1}{2},\ldots,\frac{1}{2})\}\right\}$$

(This is the 'central symmetry' for the trig. case.)

Theorem (Beckers & C., 1993)

If a shift symmetric cubature formula of degree 2k + 1 has $n = 2 \dim G_k$ points, then all weights are equal.

Conjecture (C., 1997)

Any cubature formula that attains the lower bound is shift symmetric.

This became a Theorem (Osipov, 2001).

	Quality criteria
000000	000000000000000000000000000000000000000

Known minimal formulas for trigonometric degree

- for all \boldsymbol{s}
 - degree 1
 - degree 2 (Noskov, 1988)
 - degree 3 (Noskov, 1988)
- for s=2
 - all even degrees (Noskov, 1988)
 - all odd degrees (Reztsov, 1990) (Beckers & C., 1993) (C. & Sloan, 1996)
- for s=3
 - degree 5 (Frolov, 1977)

M. Beckers

М.В. Носков

А. Резцов

Introduction	Quality criteria	Recent constructions	Sequences	Final remarks
000000	000000000000000000000000000000000000000	0000000000000000	00000	000

All known minimal formulas of trigonometric degree are lattice rules, except...

Introduction	Quality criteria	Recent constructions	Sequences	Final remarks
	000000000000000000000000000000000000000			

All known minimal formulas of trigonometric degree are lattice rules, except...

Theorem (C. & Sloan, 1996)

The following points

$$\left(C_p + \frac{j}{2(k+1)}, C_p + \frac{j+2p}{2(k+1)}\right) \begin{array}{ll} j &=& 0, \dots, 2k+1\\ p &=& 0, \dots, k \end{array}$$

with $C_0 = 0$ and C_1, \ldots, C_k arbitrary are the points of a minimal cubature formula of trigonometric degree 2k + 1.

Introduction	

Recent constructions

equences

Final remarks 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	Quality criteria	Recent constructions	Sequences	
000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	000

 $k=2\text{, }n=18\text{, }C_1=C_2=0\text{:}$ body-centered cubic lattice

$$Q[f] = \frac{1}{2(m+1)^2} \sum_{k=0}^{2m+1} \sum_{j=0}^{m} f\left(\frac{2j+k}{2(m+1)}, \frac{k}{2(m+1)}\right) \text{ with } n = 2(m+1)^2$$

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ > ▲□ >

Introdu	

Recent constructions

ences Fin

Technology used to obtain these results: Reproducing kernels

The integral I defines an inner product $(\phi, \psi) = I[\overline{\phi} \cdot \psi]$. Let \mathbb{F} be a subspace of \mathbb{T}^s . Choose $\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \ldots \in \mathbb{F}$ so that

• $\phi_i(\mathbf{x})$ is *I*-orthogonal to $\phi_j(\mathbf{x})$, $\forall j < i$, and

•
$$(\phi_i(\mathbf{x}), \phi_i(\mathbf{x})) = 1.$$

For a given $k \in \mathbb{N}$ and $t := \dim(\mathbb{F} \cap \mathbb{T}_k^s)$ we define

$$K(\mathbf{x}, \mathbf{y}) := \sum_{j=1}^{t} \overline{\phi_j(\mathbf{x})} \cdot \phi_j(\mathbf{y})$$

 $K(\mathbf{x}, \mathbf{y})$ is a polynomial in 2s variables of degree $\leq 2k$.

Quality criteria	Recent constructions	Sequences	
000000000000000000000000000000000000000			

Definition

K is a reproducing kernel in the space $\mathbb{F} \cap \mathbb{T}_k^s$

$$\begin{array}{lll} \text{if } f \in \mathbb{F} \cap \mathbb{T}_k^s \text{ then } f(\mathbf{a}) &= (f(\mathbf{x}), K(\mathbf{x}, \mathbf{a})) \\ &= \sum_{j=1}^t \phi_j(\mathbf{a}) \cdot I[f(\mathbf{x}) \overline{\phi_j}(\mathbf{x})] \end{array}$$

The trigonometric monomials form an orthonormal sequence.

$$K(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{k} \in \Lambda_d} e^{2\pi i \mathbf{k} \cdot (\mathbf{x} - \mathbf{y})}$$

$$\Lambda_d = \{ \mathbf{k} \in \mathbb{Z}^s : 0 \le \sum_{l=1}^s |k_l| \le \lfloor \frac{d}{2} \rfloor \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Quality criteria	Recent constructions	Sequences	Final remarks
000000	000000000000000000000000000000000000000	0000000000000000	00000	000

A simplifying aspect of the trigonometric case is that the reproducing kernel is a function of one variable:

$$K(\mathbf{x}, \mathbf{y}) = \mathcal{K}(\mathbf{x} - \mathbf{y})$$

with

$$\mathcal{K}(\mathbf{x}') = \sum_{\mathbf{k} \in \Lambda_d} e^{2\pi i \mathbf{k} \cdot \mathbf{x}'}$$

For s = 2 it has the following simple form: let $g(z) = \cos(\pi(2\lfloor \frac{d}{2} \rfloor + 1)z) \cos \pi z$, then

$$\mathcal{K}(\mathbf{x}') = \frac{g(x_1) - g(x_2)}{\sin(\pi(x_1 + x_2))\sin(\pi(x_1 - x_2))}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Introduction	

 Recent constructions

quences DOOO

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Final remarks 000

On route to other quality criteria

Assume f can be expanded into an absolutely convergent multiple Fourier series

$$f(\mathbf{x}) = \sum_{\mathbf{h} \in \mathbb{Z}^s} \hat{f}(\mathbf{h}) e^{2\pi i \mathbf{h} \cdot \mathbf{x}}$$

with

$$\hat{f}(\mathbf{h}) = \int_{[0,1)^s} f(\mathbf{x}) e^{-2\pi i \mathbf{h} \cdot \mathbf{x}} \, \mathrm{d}\mathbf{x}$$

	Quality criteria	Recent constructions	Sequences	
000000	000000000000000000000000000000000000000	00000000000000000	00000	000

Then

$$\begin{aligned} Q[f] - I[f] &= \frac{1}{n} \sum_{j=1}^{n} \left(\sum_{\mathbf{h} \in \mathbb{Z}^s \setminus \{0\}} \hat{f}(\mathbf{h}) e^{2\pi i \mathbf{h} \cdot \mathbf{x}_j} \right) \\ &= \sum_{\mathbf{h} \in \mathbb{Z}^s \setminus \{0\}} \left(\hat{f}(\mathbf{h}) \frac{1}{n} \sum_{j=1}^{n} e^{2\pi i \mathbf{h} \cdot \mathbf{x}_j} \right). \end{aligned}$$

Observe that

$$\frac{1}{n}\sum_{j=1}^{n}e^{2\pi i\mathbf{h}\cdot\mathbf{x}_{j}} = \begin{cases} 1, & \mathbf{h}\cdot\mathbf{x}_{j}\in\mathbb{Z}\\ 0, & \mathbf{h}\cdot\mathbf{x}_{j}\notin\mathbb{Z} \end{cases}$$

	Quality criteria	Recent constructions	Sequences	
000000	000000000000000000000000000000000000000	00000000000000000	00000	000

A very important tool to investigate the error of a lattice rule is

Definition
The dual of the multiple integration lattice Λ
$\Lambda^{\perp} := \left\{ \mathbf{h} \in \mathbb{Z}^s \ : \mathbf{h} \cdot \mathbf{x} \in \mathbb{Z}, orall \mathbf{x} \in \Lambda ight\}.$

Theorem (Sloan & Kachoyan, 1987)

Let Λ be a multiple integration lattice. Then the corresponding lattice rule Q has an error

$$Q[f] - I[f] = \sum_{\mathbf{h} \in \Lambda^{\perp} \setminus \{0\}} \hat{f}(\mathbf{h}).$$

Introduction	Quality criteria	Recent constructions	Sequences	Final remarks
000000	000000000000000000000000000000000000		00000	000
Example				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Recent constructions

ences Fi

Construction criteria

For many years, only used in Russia...

Definition

The trigonometric degree is

$$d(Q) := \min_{\substack{\mathbf{h} \neq \mathbf{0} \\ \mathbf{h} \in \Lambda^{\perp}}} \left(\sum_{j=1}^{s} |h_j|
ight) - 1 \; .$$

The enhanced degree $\delta := d + 1$.

Some names: Mysovskikh (1985–1990), Reztsov (1990), Noskov (1985–1988), Temirgaliev (1991), Semenova (1996–1997), Osipov (2001–2010), Petrov (2004)

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

000000	

Recent constructions

ences Fi

Construction criteria

Mainly used in the 'West'...

Definition

The Zaremba index or figure of merit is

$$\begin{split} \rho(Q) &:= & \min_{\mathbf{h} \neq \mathbf{0}} \quad \left(\bar{h}_1 \bar{h}_2 \cdots \bar{h}_s \right) \; . \\ & \mathbf{h} \in \mathbf{0} \\ & \mathbf{h} \in \Lambda^\perp \end{split}$$

with

$$\bar{h}_j := \begin{cases} 1 & \text{if } h_j = 0\\ |h_j| & \text{if } h_j \neq 0. \end{cases}$$

Some names:

Maisonneuve (1972), ..., Sloan & Joe (1994), Langtry (1996)

Recent constructions

uences

Where does this come from?

For c>0 and fixed $\alpha>1$, let $E_s^{\alpha}(c)$ be the class of functions fwhose Fourier coefficients satisfy

$$|\widehat{f}(\mathbf{h})| \leq rac{c}{(\overline{h}_1 \overline{h}_2 \cdots \overline{h}_s)^{lpha}},$$

where $\overline{h} = \max(1, |h|)$.

Worst possible function in class $E_s^{\alpha}(1)$ is

$$f_{\alpha} := \sum_{\mathbf{h} \in \mathbb{Z}^s} \frac{1}{(\overline{h}_1 \overline{h}_2 \cdots \overline{h}_s)^{\alpha}} e^{2\pi i \mathbf{h} \cdot \mathbf{x}}$$

 $P_{\alpha}(Q) :=$ the error of the lattice rule for f_{α} .

Introduction	Quality criteria	Recent constructions	Sequences	
000000	000000000000000000000000000000000000000	0000000000000000	00000	000

 P_{α} is easy to compute for α an even integer because f_{α} can be written as products of Bernoulli polynomials. Theoretical convergence is

 $O\left((\log(n))^{\alpha s}n^{-\alpha}\right).$

 P_{α} introduced by (Korobov, 1959)

Obviously related to the figure of merit:

$$\frac{2}{\rho^{\alpha}} \le P_{\alpha}.$$

Figure of merit used by (Maisonneuve, 1972)

Quality criteria	Recent constructions
000000000000000000000000000000000000000	

 P_{α} is easy to compute for α an even integer because f_{α} can be written as products of Bernoulli polynomials. Theoretical convergence is

 $O\left((\log(n))^{\alpha s} n^{-\alpha}\right).$

 $\frac{2}{a^{\alpha}} \leq P_{\alpha}.$

 P_{α} introduced by (Korobov, 1959)

Obviously related to the figure of merit:

Figure of merit used by (Maisonneuve, 1972)

Other criteria:

• $R(\mathbf{z}, n)$ (Niederreiter, 1987)

$$P_{\alpha}(\mathbf{z},n) < R(\mathbf{z},n)^{\alpha} + \mathcal{O}(n^{-\alpha})$$

Discrepancy

$$D_N = O\left(\frac{(\log N)^{s-1}}{\rho}\right)$$

H. Niederreiter

	Quality criteria
000000	000000000000000000000000000000000000000

Sequences 00000

Final remarks

Yet another way to look at this

Assume f can be expanded into an absolutely convergent multiple Fourier series

$$f(\mathbf{x}) = \sum_{\mathbf{h} \in \mathbb{Z}^s} \hat{f}(\mathbf{h}) e^{2\pi i \mathbf{h} \cdot \mathbf{x}} \text{ with } \hat{f}(\mathbf{h}) = \int_{[0,1)^s} f(\mathbf{x}) e^{-2\pi i \mathbf{h} \cdot \mathbf{x}} \, \mathrm{d}\mathbf{x}$$

- Mark region of interest $A_s(m)$ in Fourier domain of "degree" m.
- Ask to integrate those Fourier terms exactly, i.e.

$$\Lambda^{\perp} \cap \mathcal{A}_s(m) = \{\mathbf{0}\}.$$

- \Rightarrow Rule of degree (at least) m.
- Different regions $\mathcal{A}_s(m)$ possible:
 - Trigonometric degree.
 - Zaremba cross degree.
 - Product trigonometric degree.
 - . . .

	Quality criteria
000000	000000000000000000000000000000000000000

equences

Final remarks 000

Corresponding Fourier spectra

Take m = 5 (and s = 2):

For $s \to \infty$ these shapes grow exponentially. Consequently the number of nodes grows exponentially.

	Quality criteria		Sequences	
000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	000

Modern interpretation of P_{α} is the squared worst-case error in a RKHS with Korobov kernel with smoothness α .

In general, for a shift-invariant kernel K and rank-1 lattice points

$$e^{2}(\Lambda, K) = -\int_{[0,1)^{s}} K(\mathbf{x}, \mathbf{0}) \, \mathrm{d}\mathbf{x} + \frac{1}{n} \sum_{k=0}^{n-1} K\left(\left\{\frac{k\mathbf{z}}{n}\right\}, \mathbf{0}\right)$$

see e.g. (Hickernell, 1998)

Typical form for a weighted space:

$$e_s^2(\mathbf{z}) = -1 + \frac{1}{n} \sum_{k=0}^{n-1} \prod_{j=1}^s \left[1 + \gamma_j \ \omega\left(\left\{\frac{kz_j}{n}\right\}\right) \right]$$

This is a tensor product space: a product of 1-dimensional kernels The weights γ_j , $\gamma_1 \ge \gamma_2 \ge \cdots \ge \gamma_s$, model anisotropicness of the integrand functions

Between the big braces we have the 1-dimensional kernel

000000	000000000000000000000000000000000000000

quences DOOO

Searches for lattice rules

Remember that

- The cost to verify that a lattice rule has degree d is proportional to d^s, so only "moderate" dimensions are feasible.
- Intersearch space is huge.
- \Rightarrow Restrict the search space.

	Recent constructions	Sequences	
	000000000000000000000000000000000000000		

For example:

Definition

A rank-1 simple lattice is generated by \underline{one} vector \mathbf{z} and has the form

$$Q[f] := \frac{1}{n} \sum_{j=0}^{n-1} f\left(\left\{\frac{j\mathbf{z}}{n}\right\}\right)$$

$$P_n := \left\{ \left\{ \frac{j\mathbf{z}}{n} \right\} : j = 0, \dots, n-1 \right\}, \quad \mathbf{z} \in U_n^s.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

	Recent constructions	Sequences	
	000000000000000000000000000000000000000		

For example:

Definition

A rank-1 simple lattice is generated by \underline{one} vector \mathbf{z} and has the form

$$Q[f] := \frac{1}{n} \sum_{j=0}^{n-1} f\left(\left\{\frac{j\mathbf{z}}{n}\right\}\right)$$

- Restricting to rank-1 simple rules
 - ightarrow only 1 vector, s-1 components, to be determined.
- Further restriction of the search space: consider only generator vectors of the form

$$\mathbf{z}(\ell) = (1, \ell, \ell^2 \mod n, \dots, \ell^{s-1} \mod n), 1 \leq \ell < n$$

(Korobov, 1959)

000000	000000000000000000000000000000000000000

quences F

Final remarks 000

Technology used: matrices

Any *s*-dimensional lattice Λ can be specified in terms of *s* linearly independent vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s\}$.

 \rightarrow These vectors are known as generators of $\Lambda.$

Associated with the generators is an $s \times s$ generator matrix Awhose rows are $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s$. All $\mathbf{h} \in \Lambda$ are of the form $\mathbf{h} = \sum_{i=1}^s \lambda_i \mathbf{a}_i = \boldsymbol{\lambda} A$ for some $\boldsymbol{\lambda} \in \mathbb{Z}^s$.

The dual lattice Λ^{\perp} may be defined as having generator matrix $B=(A^{-1})^T.$

It can be shown that the number of points $n = |\det A|^{-1} = |\det B|$.

Quality criteria

Recent constructions

iences Final

Recent searches for low dimensions: *K*-Optimal rules

Not restricted to rank-1 lattices. Based on a property of the dual lattice:

Argument by (C. & Lyness, 2001):

It is reasonable to believe that the lattice Λ of an optimal lattice rule will have Λ^{\perp} with many elements on the boundary of $\operatorname{conv} S(O_s, d+1)$ (a scaled version of the unit octahedron).

Introduction	Quality criteria	Recent constructions	Sequences	Final remarks
		0000000000000000		

High computational cost, $\mathcal{O}(\delta^{s^2-1})$.

$$(\delta = d+1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- (C. & Lyness, *Math. Comp.*, 2001): 3D ($\delta \le 30$, 4D ($\delta \le 24$)
- (Lyness & Sørevik, Math. Comp., 2006): 5D ($\delta \leq 12$)

Introduction	Quality criteria	Recent constructions	Sequences	Final remarks
		0000000000000000		

High computational cost, $\mathcal{O}(\delta^{s^2-1})$.

• (C. & Lyness, *Math. Comp.*, 2001): 3D (
$$\delta \leq 30$$
, 4D ($\delta \leq 24$)

• (Lyness & Sørevik, Math. Comp., 2006): 5D ($\delta \leq 12$)

Restricting the search to (skew-)circulant generator matrices, reduces the cost to $\mathcal{O}(\delta^{2s-2}).$

- (Lyness & Sørevik, Math. Comp., 2004): 4D
- (C. & Govaert, J. Complexity, 2003): 5D, 6D

This also lead to closed expressions for arbitrary degrees.

J. Lyness

T. Sørevik

H. Govaert

 $(\delta = d + 1)$

		Recent constructions	Sequences	
000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	000

Packing factor

Definition

The packing factor

$$\hat{\rho}(n) := \frac{\delta^s}{s!n}.$$

This is a measure of the efficiency of a rule.

It is convenient for making pictures because $0 \leq \hat{\rho}(n) \leq 1.$

Actually, $\hat{\rho}(n)$ is bounded above by the density of the densest lattice packing of the crosspolytope (octahedron) $\theta(O_s)$. (\rightarrow link with "Geometry of numbers")

Known values:

•
$$\theta(O_1) = \theta(O_2) = 1$$

• $\theta(O_3) = \frac{18}{19}$ (Minkowski, 1911) used by (Frolov, 1977)

		Recent constructions	Sequences	
000000	000000000000000000000000000000000000000	00000000000000000	00000	000

This provides a (higher) lower bound for lattice rules for trigonometric degree:

$$n \ge \frac{(d+1)^s}{s!\theta(O_s)}.$$

Lattice rules provide constructive lower bounds for $\theta(O_s)$. From a lattice rule with n points follows

$$\theta(O_s) \ge \frac{(d+1)^s}{s!n}.$$

The best known bounds for $\theta(O_4)$, $\theta(O_5)$ and $\theta(O_6)$ come from lattice rules (C., *East Journal on Approximations*, 2006).

		Recent constructions	Sequences	
000000	000000000000000000000000000000000000000	000000000000000000	00000	000

Results: 4D

æ

		Recent constructions	Sequences	
000000	000000000000000000000000000000000000000	00000000000000000	00000	000

K-optimal rules: conclusions

- The search for K-optimal lattice rules is expensive.
- The packing factor is related to the concept critical lattice (a global minimum)

As a side effect it delivered the best known constructive lower bounds for $\theta(s),$ for s=4,5,6.

 $\bullet~$ There are also local minima for the determinant of admissible lattices $\rightarrow~$ extremal lattices

The corresponding lattices can be used to bootstrap the construction of higher degree lattice rules (in no-time) and sequences.

• More recent: approach based on Golomb rules (Sørevik, MCQMC2012)

Quality criteria

Recent constructions

iences Fii

Recent searches for higher dimensions: Component-by-component construction

- Focus on rank-1 lattice rules \Rightarrow find 1 vector z.
- Idea: search \mathbf{z} component by component

2000: I. Sloan & A. Reztsov (Tech. Report) published Math. Comp. 2002 unweighted Korobov space, n prime

Note that Korobov (1959) presented a constructive proof using the CBC-principle.

I.H.Sloan

A. Reztsov

000000	000000000000000000000000000000000000000

Sequences Fir

Some milestones of component-by-component

- 2000-2002: F. Kuo (PhD) with S. Joe weighted Korobov space, weighted Sobolev space
- MCQMC 2002: J. Dick & F. Kuo basically for weighted Korobov space, *n* a product of few primes, but partial search, faster and for millions of points
- MCQMC 2004, 2006: D. Nuyens & C. fast construction in O(sn log(n)), basic case for n prime, but also possible for any composite n (and full search)

F. Kuo

S. Joe

J. Dick

D. Nuyens

000000	000000000000000000000000000000000000000

equences

Final remarks 000

The CBC algorithm in a shift-invariant RKHS

for
$$s = 1$$
 to s_{\max} do
for all z in U_n do
 $e_s^2(z) = -1 + \frac{1}{n} \sum_{k=0}^{n-1} \prod_{j=1}^s \left[1 + \gamma_j \ \omega\left(\left\{\frac{kz_j}{n}\right\}\right) \right]$
end for
 $z_s = \operatorname*{argmin}_{z \in U_n} e_s^2(z)$
end for

Computational cost: $O(s_{\max}n^2)$

		Recent c
000000	000000000000000000000000000000000000000	00000

Sequences Fina 00000 00

Rephrasing CBC: matrix-vector form

The inner loop can be formulated as a matrix-vector product with matrix

$$\mathbf{\Omega}_n := \left[\omega \left(\left\{ \frac{kz}{n} \right\} \right) \right]_{\substack{z \in U_n \\ k \in \mathbb{Z}_n}} = \left[\omega \left(\frac{k \cdot z \bmod n}{n} \right) \right]_{\substack{z \in U_n \\ k \in \mathbb{Z}_n}}$$

This matrix has a lot of structure!

A matrix-vector multiplication can be done in $O(n \log n)$ (Nuyens & C. 2005, 2006)

 \Rightarrow Construction then takes $O(sn\log n)$ using O(n) memory

000000	000000000000000000000000000000000000000

equences

Final remarks 000

An example matrix Ω_n and its permutations

A nice view on $90 = 2 \times 3^2 \times 5$ The blocks of the last matrix are diagonizable by FFT's

		Recent c
000000	000000000000000000000000000000000000000	00000

Recent constructions	
000000000000000000000000000000000000000	2

Sequences 00000 Final remarks 000

Results in $O(sn \log(n))$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

		Recent constructions
000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Sequences 00000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Final remarks 000

Combination of approaches

Inspired by "classical" approach and

Quality criteria

Recent constructions

Sequences 00000 Final remarks 000

Combination of approaches

Inspired by "classical" approach and

H. Woźniakowski I.H. Sloan weighted spaces from QMC (Sloan & Woźniakowski, 1998), \rightarrow "weighted degree of exactness":

For example:

		Recent constructions	Sequences	
000000	000000000000000000000000000000000000000	00000000000000000	00000	000

A new worst case setting

Amend the Korobov space E_{α} to make new space H with reproducing kernel

$$K(\boldsymbol{x},\boldsymbol{y}) = \sum_{\boldsymbol{h} \in \mathcal{A}_s(m)} \exp(2\pi \mathrm{i} \, \boldsymbol{h} \cdot (\boldsymbol{x} - \boldsymbol{y})) + \sum_{\boldsymbol{h} \notin \mathcal{A}_s(m)} \frac{\exp 2\pi \mathrm{i} \, \boldsymbol{h} \cdot (\boldsymbol{x} - \boldsymbol{y})}{r_\alpha(\boldsymbol{\gamma}, \boldsymbol{h})}.$$

The squared worst case error of a rank-1 lattice rule is now

$$e_{n,s}^2(\boldsymbol{z}) = \sum_{\substack{\boldsymbol{0} \neq \boldsymbol{h} \in \mathcal{A}_s(m) \\ \boldsymbol{h} \cdot \boldsymbol{z} \equiv 0 \pmod{n}}} 1 \quad + \sum_{\substack{\boldsymbol{h} \notin \mathcal{A}_s(m) \\ \boldsymbol{h} \cdot \boldsymbol{z} \equiv 0 \pmod{n}}} \frac{1}{r_{\alpha}(\boldsymbol{\gamma}, \boldsymbol{h})}.$$

-1

 \rightarrow CBC-algorithm (C., Kuo & Nuyens, 2010)

Introduction 000000	Quality criteria 0000000000000000000000000000	Recent constructions 000000000000000000	Sequences •0000	Final remarks 000
Frror est	imation			

In practice one wants more than 1 approximation.

Common approaches (for all types of cubature):

• randomization (randomly shifted rules) (Cranley & Patterson, 1976)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Quality criteria	Recent constructions	Sequences	Final remarks
			00000	

Error estimation

In practice one wants more than 1 approximation.

Common approaches (for all types of cubature):

- randomization (randomly shifted rules) (Cranley & Patterson, 1976)
- embedded sequences
 - copy rules, with intermediate lattice rules (Joe & Sloan, 1992) augmentation sequences (Li, Hill & Robinson, 2007)
 - embedded rank-1 rules (Hickernell, Hong, L'Ecuyer, Lemieux, SISC 2000) (C., Kuo, Nuyens, SISC 2006) (C. & Nuyens, MCQMC2008)

T. Patterson

R. Hong

P. L'Ecuyer , C. Lemieux 🛓

000000	000000000000000000000000000000000000000

Sequences F

Example of embedded rank-1 rules

000000	000000000000000000000000000000000000000

Sequences

Example of embedded rank-1 rules

$$n = 16$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recent constructions

Sequences

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Final remarks 000

Example of embedded rank-1 rules

$$n = 32$$

000000

Quality criteria

Recent constructions

Sequences

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Final remarks 000

Example of embedded rank-1 rules

$$n = 64$$

			Sequences	
000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	00

This is not restricted to powers of 2

- The structure of the points using Gray code or radical inverse ordering is similar to that of a net. The unit cube gets filled with smaller lattices which consists of smaller lattices and so on.
- Starting from a good lattice sequence we can stop anywhere and have a good uniform distribution (Hickernell, Kritzer, Kuo, Nuyens, 2011)

000000	000000000000000000000000000000000000000	(

Final remarks 000

Is the Weyl sequence a relative?

• Simple rank-1 lattice:

$$\mathbf{x}^{(k)} = \left\{ \frac{k \, \mathbf{z}}{n} \right\}, \text{ for } k = 0, 1, 2, \dots, n-1.$$

• Embedded rank-1 lattice: in order to stop at any time, you need a good ordering of the points:

$$\mathbf{x}^{(k)} = \left\{ \frac{\varphi(k)}{n} \mathbf{z} \right\}, \text{ for } k = 0, 1, 2, \dots, n-1.$$

- If n is very large, this can be seen as an extensible cubature rule.
- Weyl sequence: Take n → ∞, then ℓ/n has an infinite digit expansion, i.e. think "irrational".
 Now group on z/n, and take each z_i/n = ξ_i an irrational:

$$\mathbf{x}^{(k)} = \{k \, \boldsymbol{\xi}\}, \text{ for } k = 0, 1, 2, \dots$$

This could be interpreted as an infinite extensible "lattice".

000000	000000000000000000000000000000000000000

Sequences Final 1 00000 000

Weyl sequence for periodic functions

Introduce weights and achieve higher order of convergence for periodic functions. (Niederreiter, 1973) (Sugihara & Murota, 1982)

(Vandewoestyne, C. & Warnock, 2007)

M. Sugihara

B. Vandewoestyne

Absolute error

イロト イ押ト イヨト イヨト

Introduction	Quality criteria	Recent constructions	Sequences	Final remarks
				000

Final remarks

Construction:

- Searches for lattice rules using the "classical" criteria are doomed to fail for increasing dimensions.
- The CBC algorithm, relying on "worst-case-error" for "reproducing kernel Hilbert spaces" beats this curse of dimensionality. Rules can be constructed very fast even if n and s are large.

But work remains to be done, e.g.,

- for CBC, tuning of the function space using the weights,
- practical error estimates based on sequences.

Introduction	Quality criteria	Recent constructions	Sequences	Final remarks
				000

Finally note that

- lattice rules are useful for low and high dimensions, and are <u>not</u> only for integrating periodic functions;
- all quality criteria have a reason to exist;
- the difference between lattice rules and "classical" low discrepancy sequences evaporates.
 Lattice rules with large n can be constructed easily and can be used as sequences.

Introduction	Quality criteria	Recent constructions	Sequences	Final remarks
				000

Finally note that

- lattice rules are useful for low and high dimensions, and are <u>not</u> only for integrating periodic functions;
- all quality criteria have a reason to exist;
- the difference between lattice rules and "classical" low discrepancy sequences evaporates.
 Lattice rules with large n can be constructed easily and can be used as sequences.

Use a lattice rule anywhere & anytime!

This was a story about integration but the above suggestion also applies to you if you are involved in approximation.

	Recent constructions	Sequences	Final remarks
			000

The end.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

	Recent constructions	Sequences	Final remarks
			000

The end.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A special "thank you" to those that put their picture on the web. Don't forget to update it!