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Haemostasis 

The hemostatic system involves a tightly controlled interplay between the vasculature, 

circulating platelets, coagulation proteins and the fibrinolytic mechanism. The system comprises 

platelet aggregation, coagulation and fibrinolysis and its complexity is underscored by the 

enormous number of proteins involved. A delicate balance between forming an occlusive clot 

upon vessel injury (coagulation) and clot degradation (fibrinolysis) has to be maintained. 

Therefore, a disturbance of this delicate balance leads to unwanted intravascular thrombosis or 

extravasation of blood from the vasculature.  

Coagulation 

The coagulation is a complex cascade of enzymatic reactions with positive and negative feedback 

loops. The cascade involves consecutively activated serine proteases (coagulation factors) 

denominated with Roman numerals. The coagulation cascade can be described by three phases: 

the initiation, amplification and propagation phase. 

The initiation phase is initiated by exposure of tissue factor (TF) by damage or activation of the 

endothelium. The catalytic complex between TF and factor VIIa activates factor IX and X. 

Activated factor X (FXa) generates small amounts of factor IIa (thrombin) which is able to 

activate factor VIII (generating FVIIIa) resulting in the complex FIXa:FVIIIa which is the start of the 

amplification phase. The complex FIXa:FVIIIa is responsible for the amplification of the clotting 

process by stimulating the factor Xa (FXa) production which subsequent stimulates the thrombin 

generation. Furthermore, thrombin generation is enhanced by the FXa:FVa complex but also by 

itself through a positive feedback loop mechanism. This loop mechanism results in an increased 

thrombin generation to form a stable clot. Thrombin also activates platelets which results in an 

enhanced platelet aggregation. The recruitment of activated platelets initiates the propagation 

phase and is accompanied by a massive thrombin production. This burst of thrombin leads to 

generation of fibrin from fibrinogen and is responsible for a stable clot. Activation of factor XIII 

by thrombin leads to covalently cross-linked fibrin strands leading to a firm fibrin network. 

Furthermore, the generated thrombin also activates thrombin-activatable fibrinolysis inhibitor 

(TAFI) which protects the clot from plasmin-mediated fibrinolysis 
1
. 
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Fibrinolysis 

Plasminogen, present in the blood as a zymogen, can be converted to plasmin by the 

plasminogen activators tissue-type plasminogen activator (t-PA) and urokinase-type 

plasminogen activator (u-PA). The catalytic efficiency of t-PA in the conversion of plasminogen to 

plasmin is rather low, however in the presence of fibrin, the generation of plasmin is enhanced. 

Plasmin can cleave fibrin and generates fibrin degradation products (FbDP’s) thereby exposing C-

terminal lysine residues at the fibrin surface. Both t-PA and plasminogen contain lysine-binding 

sites and upon binding to the C-terminal lysine residues an enhanced plasmin generation and 

subsequent fibrin degradation is observed. The C-terminal lysine residues can be removed by 

TAFI, thereby attenuating the formation of plasmin and leading to a stabilization of fibrin 

thrombi. Fibrinolysis can also be inhibited by plasminogen activator inhibitor-1 (PAI-1) and by 

direct plasmin inhibitors such as α2-antiplasmin. However, plasmin bound to fibrin is protected 

from α2-antiplasmin 
2, 3

 (Figure 1.1).  

 

Figure 1.1: Overview of the fibrinolytic system. Plasminogen can be converted to plasmin by tissue-type plasminogen 

activator (t-PA) or urokinase-type plasminogen activator (u-PA). Both u-PA and t-PA can be inhibited by plasminogen 

activator inhibitor-1 (PAI-1) while plasmin is inhibited by α2-antiplasmin (α2-AP). Plasmin degrades fibrin to fibrin 

degradation products (FbDP’s). Thrombin does not only converts fibrinogen to fibrin but also activates thrombin-activatable 

fibrinolysis inhibitor (TAFI) to TAFIa which in turn inhibits fibrinolysis by modifying the fibrin surface (black lines represent 

conversion, green lines represent stimulation and red lines represent inhibition). 
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Thrombin-Activatable Fibrinolysis inhibitor (TAFI) 

 

Discovery and nomenclature 

In 1989 a novel unstable basic carboxypeptidase in fresh human serum was reported distinct 

from the constitutively active carboxypeptidase N (CPN). The unstable enzyme, 

carboxypeptidase U (CPU, U stands for unstable), was suggested to originate from an inactive 

precursor circulating in the blood 
4
. Independent research groups confirmed the discovery: 

Campbell et al. reported a carboxypeptidase protein with preference for arginine and named it 

arginine carboxypeptidase (CPR) 
5
 , Eaton et al. purified a new plasminogen-binding protein and 

named it, based on its sequence similarity with pancreatic carboxypeptidase B, plasma 

procarboxypeptidase B (plasma pro CPB) 
6
. Bajzar et al. reported a zymogen that is activatable by 

thrombin and upon activation it attenuates clot lysis, therefore it was called thrombin-

activatable fibrinolysis inhibitor (TAFI) 
7
. Later it was demonstrated that proCPU, proCPR, plasma 

proCPB and TAFI are identical. Throughout this thesis TAFI and TAFIa are used for the zymogen 

and the activated form, respectively. 

 

TAFI synthesis and distribution 

The TAFI gene is located on chromosome 13 (13q14.11), it comprises 11 exons and spans 

approximately 48 kb of genomic DNA 
8, 9

. A total of 19 single nucleotide polymorphisms have 

been identified of which only 6 are in the encoding region 
10

. Only 2 result in an amino acid 

substitution (+505G/A : 147Ala/Thr and +1040 C/T: 325Thr/Ile) leading to four TAFI isoforms: 

TAFI-Ala
147

Thr
325

, TAFI-Ala
147

Ile
325

, TAFI-Thr
147

Thr
325 

and TAFI-Thr
147

Ile
325 11

. 

 

TAFI is synthesized in the liver as a 423 amino acids long peptide. The signal peptide is removed 

upon secretion in plasma where TAFI circulates at a concentration around 10 µg/ml 
12, 13

. TAFI is 

also present in platelets, however the glycosylation pattern is different compared to TAFI that is 

synthesized in the liver. This suggests that TAFI is also synthesized in megakaryocytes 
14

. The 

total amount of platelet TAFI is only 0.1% of the amount found in plasma. The low concentration 

of platelet TAFI does not suggests that there is no physiological role since the release of TAFI 

from platelets concentrated at the site of a thrombus may result in a local boost of TAFI 
14

. 

TAFI harbors five possible glycosylation sites: four in the activation peptide (Asn
22

, Asn
51

, Asn
63

 

Asn
86

) and one in the active moiety (Asn
219

). Glycosylation only occurs at the activation peptide 

and is responsible for ca. 9 kDa of the total molecular weight 
15

. 
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TAFI activation and TAFIa instability 

TAFI can be activated to TAFIa by trypsin-like enzymes such as thrombin and plasmin. These 

enzymes proteolytically cleave TAFI, resulting in the generation of the TAFIa moiety (Ala
96

 - 

Val
401

; 36kDa) and the release of the activation peptide (Phe
1
-Arg

92
; 20kDa) (Figure 1.2). 

 

 

 

 

 

 

 

Figure 1.2: Schematic overview of TAFI activation and TAFIa inactivation 
16

. TAFI (56 kDa) can be activated by thrombin, 

the complex thrombin/thrombomodulin or by plasmin. The activation comprises proteolytic cleavage at Arg
92

 which 

releases the activation peptide (20 kDa) from the TAFIa moiety (36 kDa). TAFIa is thermally unstable and inactivated 

through conformational changes to TAFIai. TAFIai is subsequently degraded by thrombin/thrombomodulin and plasmin 

resulting in the formation of 25 and 11 kDa products. 

 

Thrombin is a weak activator of TAFI, however in complex with thrombomodulin (TM) the 

activation of TAFI is accelerated 1250-fold. Due to this significant increase, the complex 

thrombin-thrombomodulin (T/TM) has been suggested to be the main physiological activator of 

TAFI 
17

. At low concentrations of TM (< 5 nM), the T/TM complex mainly activates TAFI. At higher 

concentrations (ca 10 nM), the complex is also responsible for the conversion of protein C to 

activated protein C which has anticoagulant properties 
18

. Therefore, depending on the 

concentration, TM contributes to the downregulation of the coagulation or the fibrinolytic 

cascade. The key enzyme of fibrinolytic cascade, plasmin, is also capable of activating TAFI, even 

more efficient than thrombin alone. In complex with heparin, plasmin-mediated TAFI activation 

is increased almost 20-fold 
19

 but the catalytic efficiency is still 10-fold lower compared to that of 

the complex T/TM 
20

. 

TAFIa is a very unstable enzyme with a half-life of 8 to 15 min (at 37°C) depending on the amino 

acid (T or I) at position 325 
21, 22

. A more stable TAFIa variant (TAFIa A
147

-C
305

-I
325

-I
329

-Y
333

-Q
335

, 

TAFI-ACIIYQ) with a 180-fold increased stability has been described 
23

, all mutations within this 

variant are within the dynamic flap region, a region important for the stability 
24

. Boffa et al. 
25

 

reported that inactivation of TAFIa is associated with two consecutive conformational transitions 
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characterized by k1 (0.5 min
-1

) and k2 (0.064 min
-1

) (scheme 1). The second, rate limiting, step 

results in inactivation 
25

.  

TAFIa1 
�

 TAFIa2 
�

 TAFIai     (scheme 1) 

TAFIai can be degraded by thrombin or plasmin into an 11 and 25 kDa fragment. Furthermore, 

plasmin is also able to cleave TAFI at position Lys
327

 and Arg
330

 resulting in a truncated TAFI-form 

of 45 kDa. This truncated form can still be cleaved at Arg
92

 but this does not result in an active 

fragment due to the absence of Tyr
341

 and Asp
349

 which are involved in substrate binding 
26

. 

Since half-maximal inhibition of clot lysis time is achieved by 1 nM of TAFIa even a minimal 

activation of TAFI (concentration in the blood between 75-275 nM) will lead to a substantial 

attenuation of fibrinolysis 
17

. 

Inhibition of TAFIa or prevention of TAFI activation 

No endogenous TAFIa inhibitors were identified so far, however the in vivo TAFIa activity is 

regulated through its thermal instability. Since TAFI(a) is a very powerful antifibrinolytic drug, 

much research is performed to identify TAFI(a) inhibitors.  

Due to the presence of a zinc ion in the active site, TAFIa is sensitive to inhibition by chelating 

agents such as EDTA and o-phenantroline. Reducing agents such as 2-mercaptoethanol and 

dithiotreitol disrupt disulfide bridges and interfere with the TAFIa activity 
4, 6, 27

. Several small 

synthetic inhibitors have been developed such as arginine analogs MERGETPA (DL-2-

mercaptomethyl-3-guanidinoethyl-thiopropanoic acid) and GEMSA (guanidinoethyl-

mercaptosuccinic acid) and the lysine analog ε-ACA (ε-aminocaproic acid) 
28

. Due to their 

inhibitory properties for other plasma carboxypeptidases such as carboxypeptidase N (CPN) the 

use of these non-selective compounds is not recommended 
29

. Multiple attempts to develop 

TAFI(a) inhibitors with higher potency, less reactivity towards CPN and more favorable 

pharmacokinetic properties have been performed but the selectivity of these compounds 

remains an issue due cross-reactivity with pancreatic carboxypeptidase (CPB) 
29

. Three naturally 

occurring inhibitors have been described with a higher selectivity for TAFIa; potato tuber 

carboxypeptidase inhibitor (PTCI), leech carboxypeptidase inhibitor (LCI) and tick 

carboxypeptidase inhibitor (TCI) 
30-32

. 

Reversible active site-inhibitors such as PTCI and GEMSA exhibit a biphasic pattern in in vitro clot 

lysis assays: a strong enhancement of lysis at high concentrations and a prolongation of clot lysis 

time at lower concentrations 
33

. The prolongation of clot lysis time was attributed to the 
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stabilizing effect that these compounds have on TAFIa, most likely by stabilization of the dynamic 

flap region 
24

. The prolonged clot lysis time observed at low concentrations of inhibitor can be 

explained by an equilibrium between free and inhibitor-bound TAFIa. Free TAFIa is rapidly and 

irreversibly inactivated while inhibitor-bound TAFIa is protected from inactivation and forms a 

pool to ‘replenish’ free TAFIa 
33, 34

. 

To overcome the problem of specificity, monoclonal antibodies (MAs) or nanobodies directed 

towards TAFI have been generated. The antibodies can hamper the activation of TAFI to TAFIa or 

directly interfere with the TAFIa activity. Two studies report antibodies (MA-T12D11 
35

 and 

mAbTAFI/TM#16 
36

) selectively inhibiting the T/TM-mediated activation of human TAFI while 

another study reported an antibody that selectively inhibits the plasmin-mediated activation of 

human TAFI (MA-TCK11A9 
37

). In the latter study, an antibody inhibiting T-, T/TM- and plasmin-

mediated activation of human TAFI was described (MA-TCK27A4 
37

). Unlike the previous 

antibodies MA-TCK26D6 cross-reacts with human, mouse and rat TAFI and inhibits the plasmin-

mediated activation of TAFI, furthermore it exerts strong profibrinolytic effects in an in vivo 

mouse thromboembolism model 
38

. Direct inhibition with the TAFIa activity was reported for two 

antibodies towards human and rat TAFI, MA-T9H11 and MA-RT30D8 respectively 
35, 39

. However, 

antibodies of mouse origin show immunogenicity upon administration to humans. Therefore, 

single-chain variable fragments (scFvs) derived from MAs towards TAFI were generated and 

most of them show similar properties towards their target 
40

 however, low production yields and 

stability problems hamper their applicability. To solve these problems, nanobodies (single-

domain fragments derived from heavy chain-only antibodies, such as e.g. VHH-TAFI-a204) 

interfering with the TAFI activation was generated by Buelens et al. 
41

. 

Physiological and pathophysiological role of TAFI 

Role of TAFI in fibrinolysis 

During fibrinolysis, fibrin is converted to fibrin degradation products by plasmin. Plasmin is 

generated by conversion of plasminogen by t-PA. This conversion is enhanced by C-terminal 

lysine residues. The C-terminal lysine residues are important regulators of fibrinolysis through 

multiple mechanisms: (a) the affinity of plasminogen for partially degraded fibrin is increased, 

leading to an accelerated conversion of plasminogen to plasmin by t-PA 
42

 (b) plasmin bound to 

partially degraded fibrin is protected from inactivation by α2-antiplasmin, (c) partially degraded 

fibrin also acts as a co-factor in the plasmin mediated conversion of Glu-plasminogen to Lys-

plasminogen which is a better substrate for t-PA 
43

. TAFIa inhibits fibrinolysis by removing C-
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terminal lysine residues from partially degraded fibrin resulting in a down-regulation of the t-PA-

mediated conversion of plasminogen to plasmin.   

The antifibrinolytic function of TAFIa is mediated through a threshold-dependent mechanism 
44, 

45
. As long as the TAFIa concentration remains above a certain threshold, fibrinolysis is inhibited. 

When the concentration of TAFIa drops below the threshold value, the C-terminal lysine residues 

on fibrin drastically augment and enhance the conversion of plasminogen to plasmin. The 

increased plasmin production boosts fibrinolysis. The threshold value depends on the 

concentration of t-PA, a high concentration leads to a higher threshold level. The time that the 

TAFIa activity remains above the threshold value depends on the extend of activation (e.g. by 

T/TM) and its stability. Therefore a slow and sustained rate of TAFI activation leads to a more 

efficient regulation of fibrinolysis than an extensive short TAFIa burst 
45

. 

It has been suggested that the bleeding tendency in hemophilia is not only due to an impaired 

coagulation but also an aberrant fibrinolysis 
46

, with a prominent role for TAFI 
47-49

. A reduced 

activation of TAFI is partially responsible for the aberrant fibrinolysis 
50

 and on-demand 

treatment of hemophiliacs with FVIII leads to an increased TAFI activation 
51

. Foley et al. 

demonstrate that addition of TM, thereby activating TAFI, to FVIII deficient plasma corrects the 

premature lysis 
52

. However, TM is also a cofactor for the activation of activated protein C, an 

anticoagulant enzyme that inhibits thrombin formation, and thus TM is not considered a viable 

approach for the treatment of bleeding complications in hemophilia. 

Other roles of TAFI(a) 

Several pro-inflammatory mediators such as anaphylatoxins C3a and C5a, thrombin-cleaved 

osteopontin and bradykinin were identified as TAFIa substrates 
5, 53, 54

. Several in vivo studies 

have been performed indicating that TAFI may have a role in inflammation 
55-57

. 

Since bradykinin has also vasodilating properties, TAFIa might also have a role in the regulation 

of blood pressure 
53

. Furthermore, plasmin is involved in the extracellular matrix degradation 

which has a role in wound healing, since TAFIa attenuates the formation of plasmin, also a 

contribution in the wound healing might be expected and was observed in a study of te Velde et 

al. 
58

. 
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Zymogen activity of TAFI 

Until 2006, it was generally believed that in order to obtain carboxypeptidase activity of TAFI, 

TAFI had to be activated to TAFIa. Willemse et al. reported for the first time the existence of 

intrinsic carboxypeptidase activity of TAFI (= zymogen activity) as interference in a CPN assay 
59

. 

Valnickova et al. demonstrated that TAFI exhibits zymogen activity not only towards small 

synthetic substrates (as been reported by Willemse et al.) but also towards large peptide 

substrates (synthetic fibrinogen derived peptides). These data suggested that the zymogen 

activity is able to down-regulate fibrinolysis in vivo 
60

. However, by using a highly sensitive HPLC-

based assay for the TAFIa activity determination, Willemse et al. provided evidence that the clot 

lysis experiments of Valnickova et al. were compromised by an in vitro activation of TAFI. 

Furthermore, clot lysis experiments in the presence of batroxobin (a thrombin like enzyme 

unable to activate TAFI 
61

) revealed no prolongation of clot lysis time upon addition of TAFI 
62

. 

Valnickova replied by pointing out that the assay used for the determination of the TAFIa activity 

might also cross-react with TAFI or even other metallocarboxypeptidases. Furthermore, by 

western blotting no TAFIa formation or released activation peptide could be observed. Also the 

clot lysis experiment in the presence of batroxobin might not be the optimal setup for the effect 

of TAFI zymogen activity since the clot composition and protein content is different 
63

. Foley et 

al. confirmed that the TAFI zymogen activity is capable of cleaving small substrates but that it 

does not play a role in the attenuation of fibrinolysis due to its inability to cleave plasmin-

modified fibrin degradation products. The conclusion was mainly based on the fact that addition 

of PTCI (an inhibitor of TAFIa but not TAFI) abolished the prolongation of clot lysis time in TAFI 

depleted plasma (TDP) plasma spiked with TAFI 
64

. 

Mishra et al. reported two nanobodies stimulating the zymogen activity of TAFI. Addition of 

these nanobodies to TDP reconstituted with TAFI-R92A (a non-activatable TAFI mutant) resulted 

in a prolongation of clot lysis time 
65

. It was suggested that binding of nanobodies induces a 

translocation of the activation peptide thereby making the catalytic cleft more accessible for 

larger substrates (such as C-terminal lysine residues on partial degraded fibrin) 
65

.  
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TAFI crystal structure 

Attempts to crystallize TAFI were severely hampered by the heterogeneous appearance of the 

protein due to the glycosylation. However, using a special cell line, lacking the N-

acetylglucosaminetransferase, Marx et al. were the first to publish the crystal structure of 

recombinant TAFI (Figure 1.3) 
24

. 

 

Figure 1.3: Ribbon drawing of the TAFI structure with the activation peptide and catalytic domain in grey and green 

respectively. Within the catalytic domain the dynamic flap region (amino acids 296-350) is colored in dark orange and the 

thrombin cleavage sites are depicted as purple spheres. Amino acids involved in substrate binding and hydrolysis are shown 

in blue and the amino acids important for the interaction between the activation peptide (Val
35

 and Leu
39

) and catalytic 

domain (Tyr
341

) are colored in yellow. 

 

The TAFI structure consists of 2 domains; the activation peptide and the catalytic domain. The 

activation peptide is divided in two parts; the first 76-amino acids form 4 β-strands and 2 α-

helices while the linker region (amino acids 77-92) is partially α-helical and connected to the 

catalytic domain. The catalytic domain (amino acids 93-401) consists of a central 8 stranded 

mixed β-sheet flanked by 9 α-helices. The activation peptide covers the catalytic pocket, which 

comprises the amino acids important for substrate catalysis (Arg
217 

and Glu
363

) and for substrate 

specificity (Asn
234

, Arg
235

 and Tyr
341

) (see figure 1.3) 
24

. 
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Further studies on the TAFI structure revealed the presence of a dynamic flap region between 

amino acids 296 and 350. The dynamic flap region interacts with the activation peptide through 

hydrophobic interactions between Val
35

 and Leu
39

 located in the activation peptide and Tyr
341

 

located
 
in the dynamic flap region. Proteolytic cleavage at Arg

92
 leads to the release of the 

activation peptide and thereby compromises the interactions between the activation peptide 

and the TAFIa moiety. This leads to an increased mobility of the dynamic flap region and 

subsequently to the loss of enzymatic activity through conformational changes. This auto-

regulatory mechanism explains the short half-life of the TAFIa activity. Furthermore, the induced 

conformational changes lead to exposure of Arg
302

, a cryptic cleavage site for thrombin and 

plasmin resulting further degradation 
24

.  

TAFIa inhibitors such as GEMSA are known TAFIa stabilizers and the crystal structure of the 

complex TAFIa-GEMSA confirms stabilizing interactions between GEMSA and the dynamic flap 

region. Furthermore, the existence of a region important for the stability of TAFIa was further 

supported by the fact that the majority of the stabilizing mutations are located within this 

dynamic flap region 
24

.  

Measurement of TAFI/TAFIa 

Elevated TAFI levels have been associated with an increased risk of angina pectoris 
66

, venous 

thrombosis 
67

, coronary artery disease 
68

, ischaemic stroke 
69

 and myocardial infarction 
70

. Due to 

its critical role in different cardiovascular pathologies it is of interest to quantify TAFI(a) which 

can be determined by antigen- or activity-based assays. 

Antigen-based assays: detection of TAFI 

Different research groups have in-house developed ELISAs for the detection of TAFI 
12, 13, 71

, some 

ELISAs are commercially available. The ELISAs require no activation of TAFI and do not show any 

cross-reactivity with CPN. The commercial available ELISAs (e.g. VisuLize™ (Affinity Biologicals), 

Zymotest® (Hyphen Biomed) and Imuclone® (American Diagnostica)) were developed to 

measure TAFI, however some show partial cross-reactivity with TAFIa or have different reactivity 

towards different TAFI isoforms 
71

. Due to the difference in reactivity of these assays for the 

different TAFI isoforms, conclusions in different studies are biased.  
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Antigen-based assays: detection of TAFIa/TAFIai 

Even though different ELISAs were developed for the detection of TAFIa, they also recognize 

TAFIai. Ceresa et al. developed an ELISA to measure the extent of TAFI activation, based on two 

monoclonal antibodies. The ELISA was used in a study to compare TAFIa/TAFIai levels between 

normolipidemic subjects and subjects with hyperlipidemia and showed a 10% increase in the 

latter 
72

. The ELISA of Hulme et al. 
73

 is based on PTCI as capture agent and a mouse monoclonal 

antibody towards TAFI. A concentration of 500 pM TAFIa/TAFIai was detected in pooled normal 

plasma. The ELISA was also used for the detection of TAFIa/TAFIai in plasma of hemophiliacs and 

sepsis patients and demonstrated a 5-fold increased concentration in both pathologies 
73, 74

. A 

commercial ELISA for the detection of TAFIa/TAFIai (Asserachrom® Stago Diagnostica) reports 

TAFIa/TAFIai values of 2.3 nM in healthy individuals and increased values in moderate and severe 

trauma patients; 4.3 and 8.4 nM respectively 
75

. Since all the ELISAs cross-react with TAFIai there 

is a need for a specific TAFIa ELISA. 

Activity-based assays 

The activity based assays are based on the ability of TAFIa to cleave arginine and lysine residues 

from small synthetic substrates. The quantification is then performed by different analytical 

methods such as HPLC, a spectrophotometric endpoint assay or a kinetic spectrophotometric 

assay. 

All activity-based assays are based on the conversion of the substrate hippuryl-L-arginine to 

hippuric acid by TAFIa. The hippuric acid can be detected and quantified in the HPLC-assisted 

assay 
76

. In the spectrophotometric endpoint assay hippuric acid can be detected by absorbance 

measurement at 254 nm 
21

 or 382 nm after reaction with cyanuric chloride 
77

. A commercial kit 

based on this principle is available (Actichrome® TAFIa, American Diagnostica). Kinetic 

spectrophotometric assays, continuously monitor the absorbance increase as a result of 

substrate cleavage by TAFIa. These assays are mainly used for the determination of the kinetics 

of the TAFIa enzyme 
78

. Due to the cross-reactivity of the substrates with CPN, Heylen et al. 

developed a new substrate with minimal enzymatic activity towards CPN 
79

.  

Neill et al. described an alternative assay using larger substrates, better resembling the 

physiological C-terminal lysine residues on partially degraded fibrin 
80

. The assay is based on the 

ability of TAFIa to decrease the co-factor activity of high-molecular-weight fibrin in the 

stimulation of plasminogen cleavage. The plasminogen in the assay is fluorescein labeled and an 
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increased TAFIa activity leads to a reduction of fluorescence. TAFIa concentrations as low as 10 

pM can be detected.  
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Conventional antibodies, heavy-chain antibodies and nanobodies 

The vertebrate immune system generates billions of antibody molecules, consisting of two heavy 

and two light chains. Their high diversity and selectivity make them attractive tools for research 

and therapeutics. A new antibody type was identified more than 20 years ago, first in the sera of 

dromedaries later in all members of the Camelidae family 
81

. This new antibody type, called 

heavy-chain only antibody, does not contain a light chain and lacks the first constant heavy 

domain (CH1). 

Conventional antibodies and derivatives 

Conventional antibodies are glycoproteins and comprise four polypeptide chains: two light 

chains and two heavy chains. The light chains (Mr 25 kDa) are composed of one constant domain 

(CL) and one variable domain (VL). There are two types of light chains: lambda (λ) and kappa (κ) 

but a single antibody molecule can only contain either λ or κ light chains. The heavy chains (Mr 

50 kDa) consist of constant and variable regions. The constant region consists of three or four 

constant domains (CH1, CH2, CH3 and CH4) and one variable domain (VH). The CH3 and CH2 

domains situated at the carboxy-terminal site (Fc, crystallisable fragment) are responsible for the 

binding of the antibody to different immune-components. The Fab fragment, the amino-terminal 

site of the antibody, consists of the CH1 and VH domain of the heavy chain and the CL and VL 

part of the light chain. There are five antibody classes, IgG, IgA, IgM, IgE and IgD based on their 

heavy chains γ, α, μ, ε and δ respectively. 

Antibody fragments such as the antigen-binding fragments (Fabs) and single chain variable 

fragments (scFvs) were generated (Figure 1.4). However, these smaller fragments have a strong 

tendency to aggregate and their production levels are quite low 
82

.  
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Comparison between VH and VHH 

Comparison of VH (from conventional antibodies) and VHH (from HcAbs) give some remarkable 

differences. The length of the CDR 1 and 3 in VHH’s is considerably longer compared to those of 

a VH (Figure 1.6). This is most pronounced for the CDR3 region: from 9-17 AA in VH to 13-27 in 

VHH. The longer CDR 1 and 3 regions are responsible for a larger surface for interaction with the 

antigen and might compensate for the loss of three CDR regions in the VL domain. The long 

CDR3 region could give a higher flexibility of the CDR3-loop hampering antigen recognition, 

however often stabilizing disulfide bridges (Figure 1.6) are observed between CDR1 and CDR3. 

The disulfide bridges reduce the conformational flexibility and lead to an enhanced antigen 

recognition. Alignment of VH and VHH also reveals some amino acid differences in the 

framework 2 region (FR2). In VHH, amino acids Phe
37

 or Tyr
37

, Glu
44

, Arg
45

 or Cys
45

 and Gly
47

 are 

observed while in VH mainly Val
37

, Gly
44

, Leu
45

 and Trp
47

. In conventional antibodies the FR2 

region contributes to the interaction between VH and VL favoring the presence of more 

hydrophobic amino acids for correct VH-VL orientation 
84

.  

 

 

Figure 1.6: Comparison between VH and VHH 
83

. Complementarity determining regions (CDR’s) are colored in blue and 

illustrate that both CDR1 and CDR3 are generally longer in VHH compared to VH and are often connected by a disulfide 

bound (green line). Framework regions are colored in grey and 5 typical amino acids substitutions in VHH are depicted in 

purple. 

 

Generation, production and purification of nanobodies 

The variable part of the HcAbs, VHH, can be cloned and expressed recombinantly and is then 

called nanobody. This fragment retains its antigen-binding properties and is very soluble due to 

hydrophobic amino acids that are replaced by more hydrophilic amino acids (figure 1.6). 

Nanobodies can be considered as one of the smallest (15 kDa) antigen-binding fragments with 

intact antigen-binding capacity.  
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The nanobodies are easily produced after immunization of a member of the Camildae family. 

Therefore, lymphocytes are isolated and the mRNA is purified. After reverse transcription, the 

VHH repertoire is cloned into a phagemid vector which allows the VHH’s to be expressed on the 

tip of phages. Two to three panning rounds are sufficient to enrich antigen-specific VHH’s and 

allow individual clones to be screened in an ELISA 
85

. Nanobodies can be expressed in bacteria 

using a secretion signal, transferring the nanobody to the periplasmic space. The purification is 

straightforward since the nanobodies are usually cloned in frame with a C-terminal 6-His-tag. By 

using immobilized metal affinity chromatography, yields of several mg per liter of medium are 

routinely obtained 
86

.  

Properties of the nanobodies 

Nanobodies are remarkably stable, they can be stored for months at 4°C and even longer at -

20°C maintaining full antigen-binding capacity. Incubation for more than one week at 37°C 

seems to be tolerated as well 
86

. Unlike conventional antibodies, nanobodies can successfully 

refold and bind to their antigen after incubation at 90 °C 
87

. Furthermore, nanobodies are also 

very tolerant towards chemical denaturation 
88

.  

Due to their long CDR3 region (Figure 1.7), nanobodies are often found to bind in cavities. 

Catalytic clefts of enzymes are frequently located in cavities and therefore it is not surprising 

that nanobodies are very potent enzyme inhibitors 
85, 89, 90

. However, it should be noted that also 

nanobodies with a short CDR3 region were also found to exert strong inhibitory properties 

indicating that also other interactions between nanobody and antigen can be observed 
91

.  
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Applications with nanobodies 

The ease and economic production, small size, stable and soluble behavior, specific and high 

affinity make nanobodies ideal binders for various targets. Furthermore, it has been suggested 

that nanobodies recognize ‘hidden’ epitopes and many nanobodies modulate the function of the 

target. The unique properties stimulated research in many universities, pharmaceutical 

companies and biotech companies to develop nanobodies for therapeutic and diagnostic 

properties and as research tools 
100

. The sections below focus on applications where nanobodies 

offer a special advantage. 

Nanobodies as research tools 

It has been proposed that nanobodies can assist in the crystallization process and structural 

determination of flexible or aggregating proteins. As crystallization chaperones, nanobodies may 

reduce conformational heterogeneity and mask counterproductive surfaces while extending 

surface predisposed to form crystal contacts 
101

. Due to an increased availability of nanobodies 

rapid progress has been observed over the last couple of years. In this way multiple difficult 

targets due to poor crystallization 
102

 and unstable active-state conformations 
103, 104

 were 

crystallized. Nanobodies can also be used as imaging tools: fusion of a fluorescent protein with a 

nanobody and its intracellular expression allows visualization of a specific antigen in various 

cellular compartments 
105, 106

. 

Nanobodies as diagnostic tools 

Surprisingly, the use of nanobodies for the quantitative detection of targets has been very 

limited. Some ELISAs have been reported 
107, 108

 for the detection of Taenia solium and human 

papillomavirus. The existence of a limited amount of nanobody based ELISAs is most likely due to 

the fact that conventional antibodies are, due to their larger size, probably better suited for 

random coupling at solid surfaces 
109

.  

Because of their small size (well below the renal clearance cutoff (ca. 50 kDa)) nanobodies are 

rapidly cleared from the blood and are therefore ideal for in vivo imaging, thereby reducing the 

radiation for the patient. Some nanobodies have been tested in mice for the detection of e.g. 

HER-2, a breast cancer antigen 
110

 and V-CAM1, an antigen used for the diagnosis of vulnerable 

atherosclerotic plaques 
111

. 
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Nanobodies as therapeutics 

Several antibacterial toxins and antisnake venom nanobodies have been generated 
112-114

 and 

use of nanobodies for passive immunization of mice injected with scorpion toxin demonstrated a 

high neutralizing potency 
115

. Nanobodies may also have an advantage in situations where 

functional domains on pathogenic substances as viruses and bacteria may be unaccesible 

(“hidden”) for the much larger conventional antibodies 
116, 117

. 

Ablynx, a Flemish biotech-company engaged in the discovery and development of nanobodies 

has several nanobody-derived therapeutics in their pipeline. These nanobodies target important 

acute and chronic diseases across a broad range of therapeutic areas including haematology 

(anti-von Willebrand factor nanobody used to treat people with thrombotic thrombocytopenic 

purpura), inflammation (anti-IL6R and anti-TNFα nanobody to treat rheumatoid arthritis) and 

oncology (anti-RANKL nanobody to treat bone loss associated with cancer, rheumatoid arthritis 

and post-menopausal osteoporosis) 
109

. Some of these nanobody-derived therapeutics have 

passed phase I and are currently investigated in phase II tests, however there is a tough 

competition from other therapeutics. Due to the smaller size and remarkable stability of the 

nanobodies, the success of nanobody-based therapy could be found in alternative 

administration (i.e. topical, inhalation or oral)  
118

. 

  



 

 

Objectives 

One of the main disadvantages of current t-PA thrombolytic treatment is the increased bleeding 

risk. Upon activation, thrombin-activatable fibrinolysis inhibitor (TAFI) is a very powerful 

antifibrinolytic enzyme. Co-administration of a TAFI inhibitor during thrombolysis could reduce 

the t-PA dose required to obtain a comparable degree of lysis thereby decreasing bleeding risks 

without compromising the efficacy of the treatment. 

Nanobodies interfering with the activation of TAFI to TAFIa through multiple mechanisms have 

been described 
41

. Due to their long CDR3 region, nanobodies are ideal candidates for binding to 

cavities of enzymes such as activated TAFI (TAFIa). The first objective was the generation of 

inhibitory nanobodies towards human TAFIa and characterization of their profibrinolytic 

properties (chapter 2). 

The previously described anti-TAFI(a) nanobodies towards human TAFI(a) lack cross-reactivity 

with mouse and rat TAFI and therefore could not be tested in an in vivo thromboembolism 

model. The second objective was the generation of inhibitory nanobodies towards mouse TAFI 

(chapter 3) and rat TAFI (chapter 4) and test their application in an in vivo mouse 

thromboembolism model. 

Many ELISAs have been developed to measure TAFI antigen levels, mainly based on total antigen 

levels. However, not the total antigen levels but the amount of TAFIa represents the enzymatic 

activity essential for its biological function. The third objective was the development of an ELISA 

specifically detecting TAFIa (chapter 5). 
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SUMMARY 

Background: Since activated thrombin activatable fibrinolysis inhibitor (TAFIa) has very powerful 

antifibrinolytic properties, co-administration of t-PA and a TAFIa inhibitor enhances t-PA 

treatment. 

Objective: We aimed to generate nanobodies specifically inhibiting the human TAFIa activity and 

to test their effect in t-PA induced clot lysis. 

Methods and results: Five nanobodies, raised towards an activated more stable TAFIa mutant 

(TAFIa A
147

-C
305

-I
325

-I
329

-Y
333

-Q
335

) are described. These nanobodies inhibit specifically TAFIa 

activity resulting in an inhibition up to 99 % at a 16-fold molar excess of nanobody over TAFIa, 

IC50’s range between 0.38- and > 16-fold molar excess. In vitro clot lysis experiments in the 

absence of thrombomodulin (TM) demonstrate that the nanobodies exhibit profibrinolytic 

effects. However, in the presence of TM, one nanobody exhibits an antifibrinolytic effect 

whereas the other nanobodies show a slight antifibrinolytic effect at low concentrations and a 

pronounced profibrinolytic effect at higher concentrations. This biphasic pattern was highly 

dependent on TM and t-PA concentration. The nanobodies were found to bind in the active-site 

region of TAFIa and their time-dependent differential binding behavior during TAFIa inactivation 

revealed the occurrence of a yet unknown intermediate conformational transition. 

Conclusion: These nanobodies are very potent TAFIa inhibitors and constitute useful tools to 

accelerate fibrinolysis. Our data also demonstrate that the profibrinolytic effect of TAFIa 

inhibition may be reversed by the presence of TM. The identification of a new conformational 

transition contributes to new insights on the conformational inactivation of the unstable TAFIa. 
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INTRODUCTION 

Plasmin-mediated partial degradation of fibrin clots exposes terminal lysine residues. These 

residues enhance the cofactor activity of fibrin degradation products in the activation of 

plasminogen by t-PA 
1
. The activated form of thrombin activatable fibrinolysis inhibitor (TAFIa), 

also known as carboxypeptidase U (CPU) 
2
 or plasma carboxypeptidase B 

3
, attenuates 

fibrinolysis by removing these lysine residues 
4
. This results in decreased plasmin formation and 

prolongation of clot lysis time 
5
. TAFI circulates in the blood as a 56 kDa zymogen. It can be 

activated into the active enzyme, TAFIa (Ala
93

-Val
401

; 36 kDa), by thrombin, 

thrombin/thrombomodulin complex and plasmin with release of the activation peptide (Phe
1
-

Arg
92

; 19 kDa) 
4, 6-8

. The TAFIa moiety is very unstable and is converted spontaneously into an 

inactive form (TAFIai) through a conformational change 
7, 9

. 

An increased risk for angina pectoris, venous thrombosis and coronary artery disease has been 

reported to be associated with elevated TAFI levels. In different animal models for thrombosis, 

inhibition of TAFIa by a small molecule enhanced thrombolytic therapy without increasing the 

bleeding risk 
10

. Therefore the development of a specific TAFIa inhibitor is of interest for use as 

an adjuvant in thrombolytic therapy and is an interesting tool to investigate the 

pathophysiological role of TAFIa in vivo. 

So far, no endogenous TAFIa inhibitors are known. Inactivation of TAFIa mainly depends on its 

thermal instability 
9
 leading to a conformational change 

7
. Two naturally occurring TAFIa isoforms 

show a temperature-dependent instability with a half life at 37 °C of 8 and 15 minutes for TAFIa 

isoforms Thr
325

and Ile
325

, respectively 
11

. A more stable TAFIa mutant, TAFIa –A
147

-C
305

-I
325

-I
329

-

Y
333

-Q
335

 (TAFIa-ACIIYQ), with a 180-fold longer half life, compared to that of TAFI-wt, has been 

reported 
12

. 

Many TAFI(a) inhibitors, inhibiting the TAFI(a) function through multiple mechanisms have been 

described. Even though some of these are potent TAFIa inhibitors, most of them lack specificity 

13
. To circumvent the lack of specificity, monoclonal antibodies have been developed towards 

TAFI 
14-16

. The reported monoclonal antibodies interfere with TAFI function either by inhibiting its 

conversion to TAFIa 
15, 16

 or by direct interference with the TAFIa activity or stability 
14

. GEMSA 

and PTCI, both competitive inhibitors of TAFIa, show a biphasic in vitro effect: prolongation of 

clot lysis time at low concentrations and enhancing lysis at higher concentrations 
17, 18

. The 

rationale behind this observation can be explained by an equilibrium between free and inhibitor 

bound TAFIa. While free TAFIa is rapidly and irreversibly inactivated, the bound form is protected 
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against conformational inactivation and refills the free pool by dissociating from its inhibitor in 

order to maintain the equilibrium 
17, 18

. 

Besides conventional antibodies, the serum of Camelidae contains considerable amounts of 

unique antibodies, naturally devoid of the light chain and lacking the CH1-domain 
19

. These 

functional antibodies, referred to as heavy-chain antibodies, bind their targets by a single 

domain, i.e. the variable domain of the heavy-chain antibodies (VHH) or Nanobody 
20

. VHHs 

comprise 3 antigen-binding loops of which the first and third loop (i.e. the complementarity 

determining region-1 and 3 (CDR1 and CDR3)) are longer than the CDR1 and CDR3 of variable 

domains of classic antibodies. The potent enzyme inhibiting properties of VHHs are ascribed to 

their long CDR3 loop 
21, 22

.  

Even though nanobodies towards TAFI have been reported recently, none of those showed a 

specific and exclusive inhibition of the enzymatic activity of TAFIa 
23

. We hypothesized that 

immunization with a more stable, activated TAFI variant (TAFIa-A
147

-C
305

-I
325

-I
329

-Y
333

-Q
335

) might 

result in the generation of potent, TAFIa-specific inhibitory nanobodies binding in the active site. 
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MATERIALS AND METHODS 

Materials 

Wild-type recombinant TAFI-T
147

-I
325

 (TAFI-TI), recombinant TAFI –A
147

-C
305

-I
325

-I
329

-Y
333

-Q
335

 

(TAFI-ACIIYQ), recombinant TAFI-A
147

-C
305

-I
325

 (TAFI-AI-Cys
305

) and recombinant TAFI-A
147

-C
305

-

I
325

-I
329

 (TAFI-AI-Cys
305

Ile
329

) were prepared as described before 
12, 15, 24

. All the experiments were 

performed with TAFI-TI unless indicated otherwise. Oligonucleotides used for cloning and 

sequencing were obtained from Sigma-Aldrich (St Louis, MO, USA), Pfx50 DNA polymerase was 

purchased from Invitrogen (Merelbeke, Belgium) and restriction enzymes were provided by New 

England Biolabs (Hertfordshire, UK). The polymerase chain reaction (PCR) was performed with 

the Mastercycler Gradient from Eppendorf (Hamburg, Germany). Plasmid DNA purification was 

performed with the Nucleobond
TM

 AX500 kit (Machery-Nagel, Düren, Germany). The DNA was 

sequenced by LGC genomics (Berlin, Germany). 

Human thrombin and plasmin were purchased from Sigma-Aldrich and Enzyme Research Labs 

(South Bend, UK). Rabbit thrombomodulin (TM) was obtained from American Diagnostics 

(Greenwich, CT, USA). H-D-phenylalanine-L-propyl-L-arginine chloromethyl ketone (PPACK), 

aprotinin, hippuryl-L-arginine, guanidinoethyl-mercaptosuccinic acid (GEMSA) and potato tuber 

carboxypeptidase inhibitor (PTCI) were obtained from Biomol Research labs (Plymouth meeting, 

PA, USA), Fluka (Buchs, Switzerland), Bachem (Bubendorf, Switzerland), Calbiochem (La Jolla CA, 

USA) and Sigma-Aldrich respectively. Tissue-type plasminogen activator (t-PA) was a kind gift 

from Boehringer Ingelheim (Brussels, Belgium). Citrated plasma of 27 healthy individuals, 

collected with their written consent, was pooled for clot lysis experiments. 

Nanobody library construction, expression and purification  

The construction of the nanobody library was performed as described 
23

 using activated TAFI-

ACIIYQ (TAFIa-ACIIYQ) as immunogen. Briefly, an alpaca (Vicugna pacos) was immunized by 7 

weekly subcutaneous injections of 100 µg TAFIa-ACIIYQ mixed with Gerbu LQ#3000 (from Gerbu 

Biotechnik GmBH, Germany) adjuvant. Four days after the last injection blood samples were 

collected and lymphocytes were isolated. After isolation and purification of total RNA, the cDNA 

was obtained by reverse transcription and the VHH gene repertoire was amplified by PCR. 

Subsequently, the PCR products were digested with PstI and NotI restriction enzymes and ligated 

into the phagemid vector pHEN4. After transformation in E. coli the VHH repertoire, was 

displayed on phage and the binders were selected via panning against TAFIa-ACIIYQ and TAFI-

ACIIYQ, resulting in the a- and i-series, respectively. Identification of positive clones was 
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performed by ELISA and identical clones were detected via sequencing. For the positive clones 

the DNA encoding the VHH was recloned into the production vector pHEN6c using PstI and BstEII 

restriction enzymes. The constructs were transformed into E. coli WK6 cells, and nanobody 

expression was induced as described previously 
22

. The periplasmic extract was isolated and 

dialyzed against 20 mmol/L Tris-HCl, 0.5 mol/L NaCl (pH 7.9) and filtered through a 0.45 µm filter 

prior to loading on a His-Trap HP column (GE Healthcare). Bound proteins were eluted using an 

imidazole gradient (0-350 mmol/L imidazole in 20 mmol/L Tris HCl, 0.5 mol/L NaCl; pH 7.9). 

Nanobody containing fractions were selected via SDS-polyacrylamide gel electrophoresis (PAGE) 

(Phast-Gel
TM

 gradient 10-15% gels) by coomassie staining. Finally the selected fractions were 

dialyzed against phosphate buffered saline (PBS; 140 mmol/L NaCl, 2.7 mmol/L KCl, 8 mmol/L 

Na2HPO4, 1.5 mmol/L KH2PO4; pH 7.4). 

Evaluation of the overall inhibitory effect of the nanobodies on TAFI activation and TAFIa 

activity 

The overall inhibitory effect of the nanobodies on TAFI was determined as described before 
15

 

with minor modifications. TAFI (45 nmol/L, concentration during activation) was diluted in HEPES 

buffer (25 mmol/L HEPES, 137 mmol/L NaCl, 3.5 mmol/L KCl and 0.1% BSA; pH 7.4) and 

incubated for 10 min at 25 °C with either buffer or nanobody at concentrations ranging from 

0.25- to 16-fold molar ratio of nanobody over TAFI. Subsequently, TAFI was activated by addition 

of thrombin, thrombomodulin and CaCl2, at a concentration (during activation) of 20 nmol/L, 5 

nmol/L and 5 mmol/L, respectively. After 10 min at 25 °C, activation was terminated by addition 

of PPACK (37.5 µmol/L, final concentration) and the substrate hippuryl-arginine (Hip-Arg, 4 

mmol/L, concentration during substrate conversion) was added to the activation mixture and 

conversion was allowed to proceed for 15 min at 25 °C. The substrate conversion was stopped by 

addition of 20 µl HCl (1 mol/L) followed by neutralization with 20 µl NaOH (1 mol/L) and 

buffered with 25 µl Na2HPO4 (1 mol/L; pH 7.4). After addition of 30 µl 6% cyanuric chloride (in 

1,4-dioxane), the mixture was vortexed (5 min) and centrifuged (Eppendorf centrifuge 5415D) at 

max speed for 2 min. Aliquots of 100 µl were transferred into a 96-well microtiterplate and the 

absorbance was measured at 405 nm. By comparison of the enzymatic activity generated upon 

activation of TAFI in the absence or presence of nanobody (Nb), the inhibiting capacity was 

calculated and expressed as percentage of inhibition (([OD]
no Nb

- [OD]
with Nb

)/([OD]
no Nb

) x 100 = % 

inhibition). In this assay a reduced TAFIa activity could be due to either interference with the 

activation process or by a direct interference with TAFIa enzymatic activity.  
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Alternatively, the effect of the nanobodies on plasmin-mediated activation and thrombin 

mediated activation of TAFI was also investigated. For plasmin, the above procedure was 

followed except for i) the use of plasmin (500 nmol/L, during activation) instead of 

thrombin/thrombomodulin; ii) addition of aprotinin (1.25 µmol/L, final concentration instead of 

PPACK); iii) incubation with hippuryl-arginine for 30 min at 25 °C. For thrombin-mediated 

activation, thrombin was used at 100 nmol/L (during activation step) and the activation time was 

prolonged to 2 hours. Because of the thermal instability of TAFIa at 25 °C (resulting in too low 

TAFIa levels for reliable quantitative evaluation under these conditions) TAFI was replaced by 

TAFI-A
147

-C
305

-I
325

-I
329

-Y
333

-Q
335

 (45 nmol/L, concentration during activation). The activation was 

stopped with PPACK (187.5 µmol/L, final concentration). 

Evaluation of the effect of the nanobodies on the conversion of TAFI to TAFIa 

TAFI (857 nmol/L, concentration during activation) was diluted in Tris buffer (20 mmol/L Tris, 0.1 

mol/L NaCl; pH 7.4) and mixed with either buffer or nanobody (16-fold molar excess of 

nanobody over TAFI) for 10 min at 37 °C. Subsequently the mixture was activated by 

thrombin/thrombomodulin (20 nmol/L and 5 nmol/L, respectively) and CaCl2 (5 mmol/L) at 37 °C 

for 10 min. The activation was stopped with 30 µmol/L PPACK. Addition of sodium dodecyl 

sulfate (SDS; 1% final concentration) was followed by heating for 30 seconds at 100 °C. The 

fragments separated by SDS-polyacrylamide gel electrophoresis (PAGE) (Phast-Gel
TM

 gradient 10-

15% gels) were visualized by silver staining 
15

. As plasmin is also able to activate TAFI, a similar 

setup was designed for the evaluation of the effect of nanobodies on plasmin-mediated 

activation. The thrombin/thrombomodulin and PPACK however were replaced by plasmin (333 

nmol/L) and aprotinin (960 nmol/L), respectively. Finalization of the experiment was performed 

as described above. 

Evaluation of the direct inhibitory effect of the nanobodies on the TAFIa activity 

For the determination of the direct inhibitory effect of nanobodies on the TAFIa activity, TAFI (45 

nmol/L, concentration during activation) was diluted in HEPES and activated by addition of 

thrombin, thrombomodulin and CaCl2 (20 nmol/L, 5 nmol/L and 5 mmol/L, respectively). After 10 

min at 25 °C activation was terminated by addition of PPACK (37.5 µmol/L, final concentration). 

Subsequently an equal volume of either buffer or nanobody (resulting in a Nb:TAFI molar ratio 

ranging from 0.25 to 16) was added and the mixture was incubated at 25 °C for 10 min. 

Subsequently TAFIa activity was determined as described above and the percentage of inhibition 

of the TAFIa activity was calculated relative to the TAFIa activity in the absence of nanobody. 
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Evaluation of the effect of the nanobodies on fibrinolysis 

Clot lysis was performed in microtiterplates as described before 
25

 with minor modifications. 

Plasma was pooled and mixed with either buffer or nanobodies diluted in Tris/Tween buffer (10 

mmol/L Tris, 0.01% Tween 20, pH 7.5). The final concentrations of the nanobody resulted in a 

Nb:TAFI molar ratio ranging from 0.25 to 16, assuming a TAFI concentration of 179 nmol/L in 

plasma. A control nanobody, VHH-TAFI-a204, previously demonstrated to prevent TAFI 

activation and to exhibit profibrinolytic activity comparable to that of PTCI 
23

, was also included. 

After incubation for 10 min at 37 °C, t-PA was added. Subsequently, aliquots of 80 µl were 

transferred, in duplicate, to microtitre wells each containing 20 µl 53 mmol/L CaCl2 resulting in 

the following final concentrations: 30% pooled plasma, 120 pmol/L t-PA, 10.6 mmol/L CaCl2. The 

plate was incubated at 37 °C and read at 405 nm at 2 min intervals to determine the 50% clot 

lysis time, defined as the time needed from full clot formation (i.e. maximum turbidity) to the 

midpoint of the maximal turbid to clear transition. Under these conditions, clot lysis times (CLT) 

were 89.5 ± 12.1 min (inter-assay coefficient of variation 14%) and 134 ± 12 min (inter-assay 

coefficient of variation 9%) in the absence and presence of 1 nmol/L TM respectively. The 

reduction of clot lysis time was calculated relative to the clot lysis time in the absence of 

nanobody (CLT+Nb/CLT-Nb). Under these conditions the “positive” control VHH-TAFI-a204 
23

 

yielded a CLT+Nb/CLT-Nb value of 0.56 ± 0.07 and 0.36 ± 0.02 in the absence and presence of TM, 

respectively, reflecting a full inhibition of TAFI(a). 

Alternatively, clot lysis experiments were performed with an increased amount of t-PA (final 

concentration: 360 pmol/L) and/or in the presence of various concentrations of added 

thrombomodulin (final exogenous concentration 0.5, 1, 5 nmol/L).  

Evaluation of binding of the nanobodies to various TAFI forms  

The affinity constants for binding of the nanobodies to TAFI(a) were determined by Surface 

Plasmon Resonance using a Biacore 3000 analytical system (Biacore, Uppsala, Sweden) equipped 

with the CM5 sensor chip as described before 
23

. The nanobodies were covalently coupled up to 

400 resonance units (using a concentration of 5 µg/ml in 10 mmol/L of acetate buffer pH 4.5). 

Purified TAFI variants (TAFI or TAFIa) (TAFI was activated as described below) were injected (180 

µl) at concentrations between 5 and 200 nmol/L (in HBS-EP, Biacore, Uppsala, Sweden) at a flow 

rate of 30 µl/min, followed by a dissociation of 6 min. After each cycle the regeneration of the 

chip was performed by 10 µl of glycine-HCl (10 mmol/L pH 2.5, Biacore). Association and 
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dissociation rate constants were calculated with BIAcore 3000 evaluation software using the 

Langmuir binding model (Local fit). 

For these experiments, activated TAFI (TAFIa) was generated by activation of TAFI variants 

(concentration during activation: 857 nM in Tris buffer; 20 mmol/L, 100 nmol/L NaCl, pH 7.4) 

with thrombin and thrombomodulin (20 and 5 nM, respectively) in the presence of CaCl2 (5 mM) 

for 10 minutes at 37 °C. The reaction was arrested by addition of PPACK (30 µM). Subsequently, 

the samples were incubated at 37 °C. Fractions were taken after different incubation times at 37 

°C for concomitant TAFIa activity determination and binding to the nanobodies (Biacore). The 

experiments were carried out with TAFI-TI for the five nanobodies and in addition with TAFI-AI-

Cys
305

 and TAFI-AI-Cys305-Ile329
 
for VHH-TAFI-a428 and VHH-TAFI-i391.  

Well-known TAFIa inhibitors like PTCI and GEMSA bind in the active site of TAFIa. We 

hypothesized that the nanobodies bind in the same region. Therefore competition experiments 

were designed in which TAFI is activated as described above followed by inhibition of TAFIa with 

either GEMSA (concentration ranging from 64000- to 250-fold molar ratio over TAFIa) or PTCI 

(concentration ranging from 100- to 0.1-fold molar ratio over TAFIa) (10 min incubation time at 

25 °C). Four-fold serial dilutions of each inhibitor were tested in parallel using Surface Plasmon 

Resonance analysis to quantify residual binding of TAFIa to the nanobodies and using a 

chromogenic assay (as described above) to quantify residual TAFIa activity.  
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RESULTS 

One hundred positive clones producing nanobodies towards TAFI(a) were identified. Evaluation 

of amino acid sequence identity, within the CDR3 region, revealed 16 clusters. Nanobodies of the 

same cluster are expected to target the same epitope on the antigen 
26

. Subsequently 25 

nanobodies (2 of each cluster or 1 for clusters with only one nanobody) were selected for 

production and purification. Evaluation of their inhibitory effects on TAFI activation and/or TAFIa 

activity revealed that the nanobodies from 5 clusters exclusively inhibit TAFIa activity, those of 3 

clusters exhibit mainly inhibition of plasmin-mediated activation, nanobodies from 1 cluster 

exhibit mainly inhibition of T/TM-mediated activation and nanobodies from 7 clusters show no 

TAFI inhibitory effect. This paper focuses on the inhibitory features of the nanobodies exclusively 

interfering with the TAFIa activity. Therefore the strongest inhibitor out of each cluster was 

selected for further characterization (i.e. VHH-TAFI-a425, VHH-TAFI-a428, VHH-TAFI-i342, VHH-

TAFI-i373 and VHH-TAFI-i391). 

Characterization of the TAFI activation inhibitory properties of the nanobodies 

Addition of VHH-TAFI-a425, VHH-TAFI-a428, VHH-TAFI-i342, VHH-TAFI-i373 and VHH-TAFI-i391 

prior to TAFI activation revealed a reduction of TAFIa activity of 67.7 % ± 3.3, 47.9 % ± 3.9, 38.6 

% ± 4.9, 73.8 % ± 3.7 and 99.2 % ± 0.5, (mean ± SD, n≥3) respectively, at a 16-fold molar excess of 

nanobody. Conversely, these five nanobodies did not affect activation of TAFI to TAFIa as 

evaluated by SDS-PAGE analysis of the fragmentation pattern after activation (data not shown). 

Taken together, these data are compatible with an exclusive effect on TAFIa activity. 

 

Figure 2.1: Concentration dependent inhibition of TAFIa by nanobodies: VHH-TAFI-i391 ; VHH-TAFI-a425 ; 

VHH-TAFI-i373 ; VHH-TAFI-a428 ; VHH-TAFI-i342  in a molar ratio ranging between 16- and 0.25-fold 

molar ratio of nanobody over TAFIa. TAFI (45 nM) was activated with T/TM at 25 °C for 10 min. Activation was stopped by 

addition of PPACK, nanobodies were added at the indicated ratio’s and the residual TAFIa activity was measured. Mean ± 

SD, n ≥ 3. 
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Characterization of the direct inhibitory effect of the nanobodies on the TAFIa activity 

At a 16-fold molar ratio over TAFI, VHH-TAFI-i391 completely inhibited TAFIa activity (98.8 % ± 

0.5), the other four nanobodies showed a moderate inhibition between 46.6 % ± 3.9 and 76.1 % 

± 6.0 (mean ± SD, n≥3 Table 2.1). Dose-response experiments revealed a maximum inhibition for 

VHH-TAFI-i391 at a 2- to 4-fold molar excess of nanobody over TAFI, whereas for the other 

nanobodies maximum TAFIa inhibition was not reached at the highest concentration tested 

(Figure 2.1). This resulted in an IC50 of 0.38 (molar ratio over TAFI) for VHH-TAFI-i391. For VHH-

TAFI-a425 and VHH-TAFI-i373 an IC50 of 5.1 and 5.9, respectively, could be calculated based on 

the theoretical maximum, for VHH-TAFI-a428 and VHH-TAFI-i342 the IC50 exceeded 16 (Table 

2.1). 

 

Table 2.1: Evaluation of TAFIa inhibiting nanobodies 

 
  % Inhibition of IC50-value

(2)
 CLT+Nb/CLT-Nb CLT+Nb/CLT-Nb 

  TAFIa activity
(1)

 - TM
(1)

 + TM
(1)

 

- Nb / / 1 1 

VHH-TAFI-a425 76.1 ± 6.0 5.1 0.61 ± 0.04
** 

0.71 ± 0.11
(NS)

 

VHH-TAFI-a428 50.9 ± 9.7 > 16 0.70 ± 0.01
**

 1.82 ± 0.24
*
 

VHH-TAFI-i342 46.6 ± 3.9 > 16 0.56 ± 0.03
*
 0.68 ± 0.13

(NS)
 

VHH-TAFI-i373 69.8 ± 1.6 5.9 0.58 ± 0.02
*
 0.71 ± 0.11

(NS)
 

VHH-TAFI-i391 98.8 ± 0.5 0.38 0.53 ± 0.02
**

 0.42 ± 0.03
**

 
(1)

 Molar ratio VHH:TAFI = 16; 
(2) 

Expressed as ‘molar ratio VHH:TAFI’; Statistical significance (paired t-

test) of difference compared to the data obtained in the absence of nanobody: 
(**)

 p<0.005; 
(*) 

p<0.05; 
(NS)

 not significant. CLT: clot lysis time. All data represent mean ± SD, n ≥ 3 

 

Effect of the nanobodies in an in vitro clot lysis experiment 

In absence of exogenous TM, the nanobodies, at a 16-fold molar excess over TAFI, reduced the 

clot lysis time yielding CLT+Nb/CLT-Nb values between 0.53 and 0.70 (Table 2.1). Dose-response 

curves (Figure 2.2) revealed that this effect on clot lysis was most pronounced for VHH-TAFI-i391 

whereas VHH-TAFI-a428 only showed a minor dose-dependent effect. In the presence of 1 

nmol/L TM, VHH-TAFI-a428 showed a dose-dependent increase of the clot lysis time (Figure 

2.2B) whereas VHH-TAFI-a425, VHH-TAFI-i373, VHH-TAFI-i342 and VHH-TAFI-i391 showed a 

biphasic concentration effect with a transient increase in clot lysis time at lower concentrations 

of nanobody. The increase in clot lysis time was maximal around a 0.25-fold molar ratio of 
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nanobody VHH-TAFI-i391 over TAFI (Figure 2.2B) and at a 1- to 2-fold molar ratio of nanobody 

TAFI for VHH-TAFI-a425, VHH-TAFI-i373 and VHH-TAFI-i342 over TAFI (data not shown). 

Figure 2.2: Concentration dependent effect of nanobodies on in vitro clot lysis time: Citrated plasma was incubated with 

VHH-TAFI-i391 (full line) and VHH-TAFI-a428 (dashed line), at different ratio’s over TAFI, prior to clot formation and in the 

absence (panel A) and presence (panel B) of 1 nmol/L thrombomodulin, lysis was induced by addition of 120 pmol/L t-PA. 

CLT: Clot lysis time, Mean ± SD, n ≥ 3. 

 

To evaluate the effect of TM on this biphasic pattern, experiments were designed with varying 

concentrations of TM (0, 0.5, 1, 5 nmol/L). As can be deduced from the data in figure 3, VHH-

TAFI-a428 resulted in a prolongation of clot lysis time at all TM concentrations with the strongest 

increase observed at 5 nmol/L TM. For VHH-TAFI-i391 again this effect was transient in function 

of the nanobody concentration. In order to further explore the nature of the (transient) increase 

of clot lysis time by these TAFIa inhibiting nanobodies, the effect of a higher concentration of t-

PA was also investigated. Under these conditions (360 pmol/L t-PA and 1 nmol/L TM) 

prolongation of clot lysis time was no longer observed at any of the nanobody concentrations 

(Figure 2.4). 
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Figure 2.3: Concentration dependent effect of thrombomodulin on in vitro clot lysis time: Citrated plasma was incubated 

with different concentrations TM ( 5 nmol/L; 1 nmol/L; 0.5 nmol/L; 0 nmol/L) prior to 

clot formation. Clot lysis (t-PA, 120 pmol/L, induced) times were determined, in the presence of various ratio’s of VHH-TAFI-

i391 (panel A) and VHH-TAFI-a428 (panel B) over TAFI. CLT: Clot lysis time, Mean ± SD, n ≥ 3. 

 

  

 

 

 

 

 

 

Figure 2.4: Concentration dependent effect of t-PA on in vitro clot lysis time: Citrated plasma was incubated with different 

concentrations of t-PA ( 120 pmol/L and 360 pmol/L) prior to clot formation, the effect on clot lysis time 

was determined in the presence of various ratio’s of VHH-TAFI-i391 (panel A) and VHH-TAFI-a428 (panel B) over TAFI. CLT: 

Clot lysis time, Mean ± SD, n ≥ 3. 

 

 

Role of the active site in the TAFIa-nanobody interaction 

Affinities of the nanobodies towards the proenzyme TAFI and its activated form TAFIa were 

measured by Surface Plasmon Resonance analysis. The nanobodies bind only to TAFIa, and not 

the proenzyme TAFI (Table 2.2). 
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Table 2.2: Binding parameters for nanobodies towards TAFI(a) 

  TAFI TAFIa 

  KA (M
-1

) KA (M
-1

) 

VHH-TAFI-a425 NB 2.79 ± 0.20 x 10
8
 

VHH-TAFI-a428 NB 0.90 ± 0.11 x 10
8
 

VHH-TAFI-i342 NB 0.45 ± 0.01 x 10
8
 

VHH-TAFI-i373 NB 0.38 ± 0.03 x 10
8
 

VHH-TAFI-i391 NB 6.88 ± 0.38 x 10
8
 

All data represent mean ± SD, n ≥ 3, 

NB = no binding 

 

To evaluate the role of the involvement of the active site in the interaction between nanobodies 

and TAFIa, the effect of temperature (37 °C) induced inactivation of TAFIa on the binding by 

nanobodies was investigated (Figure 2.5 A). As expected, TAFIa activity decreased upon heat 

inactivation with a half-life of 10.2 ± 0.5 min. Even though binding of nanobodies to TAFIa 

disappears upon inactivation of TAFIa, this loss of binding is significantly delayed relative to the 

loss of activity. A similar trend was observed for the other three nanobodies (data not shown). 

Temperature-dependent inactivation of TAFIa did not change the binding to the control 

nanobody VHH-TAFI-a360 (exhibiting equal binding to the proenzyme TAFI and its activated form 

TAFIa). Loss of binding due to proteolytic cleavage is excluded by determination of the TAFI 

fragmentation pattern by SDS-PAGE (data not shown).  
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Figure 2.5: Effect of TAFIa inactivation or inhibition on nanobody binding. Activated TAFI was obtained by activation of 

TAFI by thrombin/thrombomodulin and subsequent addition of PPACK. Panel A: Activated TAFI was incubated for different 

time periods at 37 °C and at each time point residual TAFIa activity (open bars) and concomitant binding to the nanobodies 

(VHH-TAFI-i391, black bars; VHH-TAFI-a428, grey bars; VHH-TAFI-a360, hatched bars) was determined. Panel B and C: 

Activated TAFI was incubated with either GEMSA (panel B) or PTCI (panel C) at different molar ratio’s over TAFIa and for 

each condition residual TAFIa activity (open bars) and concomitant binding to the nanobodies (VHH-TAFI-i391, black bars; 

VHH-TAFI-a428, grey bars; VHH-TAFI-a360, hatched bars) was determined. Data represent mean ± SD, n ≥ 3. 

 

Subsequently, we evaluated the effect of well-known, small active-site inhibitors on the 

TAFIa/nanobody interaction. Incubation of TAFIa with increasing concentrations of GEMSA or 

PTCI resulted in reduction of TAFIa activity (Figure 2.5 B and 2.5 C). Under these conditions, a 

concomitant reduction of the TAFIa-GEMSA or TAFIa-PTCI complex binding to all nanobodies was 

observed. Addition of GEMSA at 64000-fold molar ratio over TAFIa resulted in a residual TAFIa 

activity of 4.2 % ± 1.1 (mean ± SD, n≥3 Figure 2.5 B). Accordingly, the residual binding to VHH-

TAFI-i391 and VHH-TAFI-a428 was 1.4 % ± 0.7 and 21.9 % ± 1.5 (mean ± SD, n≥3), respectively. At 

lower concentrations of GEMSA, the effects on the binding were comparable to the effects on 

the activity. A similar effect was observed for other nanobodies (data not shown). The same 

trend was observed with PTCI for which a 100-fold molar ratio over TAFIa resulted in a residual 

1.01.52.0molar rat io of Nb over TAFI CLT+Nb/CLT-Nb
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TAFIa activity of 3.1 % ± 0.7 (mean ± SD, n≥3) and a complete blocking of the binding to the 

nanobodies (Figure 2.5 C). 
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DISCUSSION 

Activated thrombin activatable fibrinolysis inhibitor (TAFIa) removes C-terminal lysine residues 

from partially degraded fibrin. These C-terminal lysine residues accelerate the plasminogen to 

plasmin conversion by t-PA. Therefore TAFIa reduces plasmin formation, which results in a 

delayed clot lysis hampering fibrinolysis. Two different mechanisms of TAFI inhibition can be 

identified: inhibition of the conversion from TAFI to TAFIa or direct inhibition of TAFIa. 

Thrombolytic therapy based on t-PA or on new generation plasminogen activators all show 

similar bleeding complications 
27

. Combination therapy with TAFI inhibitors might reduce these 

complications while enhancing the thrombolytic efficacy 
28

. Many small synthetic TAFI inhibitors 

have been reported. However, most of these inhibitors lack specificity 
13

. Antibody-based 

inhibitory approaches are highly specific but conventional monoclonal antibody-based inhibition 

encounters immunogenicity concerns. Nanobodies are the smallest naturally-occurring antigen 

binding antibody fragments with superior features such as high solubility, stability, low 

immunogenicity and high affinity towards their targets. Furthermore, nanobodies have been 

proven to be successful enzyme inhibitors 
21

. We therefore aimed to develop nanobodies 

specifically inhibiting TAFIa activity. 

Since TAFIa is very unstable, we hypothesized that immunization with a more stable variant 

could enhance our chances in retrieving a TAFIa inhibitor. Indeed, based on sequence identity of 

the CDR3 regions, a panel of 16 clusters was obtained of which 5 comprise nanobodies that 

specifically inhibited TAFIa activity. VHH-TAFI-i391 showed (at a 2-fold molar excess over TAFI) 

almost 100% inhibition of TAFIa activity and a strong reduction of clot lysis time comparable with 

the previously reported effects of VHH-TAFI-a204 (nanobody interfering with the activation of 

TAFI) and the well known TAFIa inhibitor PTCI 
23

.  

Panning against activated and intact TAFI (resulting in the a-series and i-series, respectively) 

yielded a diverse set of nanobodies. Surprisingly, some nanobodies of the i-series showed 

specific binding to TAFIa, in spite of their selection towards intact TAFI. This apparent 

discrepancy could be explained by the possibility that TAFI, passively adsorbed to the 

microtiterplate, might undergo a conformational change (as observed for other antigens 
29

) 

thereby displacing the activation peptide aside and making the catalytic cleft more accessible for 

nanobody interaction. 

The nanobodies clearly have profibrinolytic properties but under certain conditions their 

presence leads to a prolongation of clot lysis time. Similar properties have been observed for 
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GEMSA and PTCI, both reversible inhibitors 
18

. They interact with the enzymatic pocket and 

enhance clot lysis at higher concentrations while stabilizing fibrin clots at low concentrations due 

to their TAFIa stabilizing properties 
18

. This biphasic pattern is also observed with the TAFIa 

inhibitory nanobodies and appears to be dependent on the concentration of the nanobody, TM 

and t-PA. Similarly Walker et al. 
17

 demonstrated that the effect of competitive inhibitors is 

dependent on inhibitor, TAFIa and t-PA concentrations. These observations are in line with the 

threshold dependent mechanism of TAFIa 
30, 31

. As long as TAFIa activity remains above this 

threshold, lysis is prevented from proceeding into the propagation phase. By increasing the 

concentration of t-PA, the threshold value increases and TAFIa activity drops faster below this 

value leading to an enhanced fibrinolysis. Conversely, an increase of TM leads to higher TAFIa 

concentrations and consequently it takes longer to drop below the threshold, leading to a 

prolongation of clot lysis time. The observation that VHH-TAFI-a428 does not show a biphasic 

pattern but consistently prolongs lysis implies that under those particular conditions (i.e. the 

combined effect of the initial burst of TAFIa formation and the stabilization of TAFIa by the 

nanobody) TAFIa activity remains above the threshold at all concentrations. Our data 

demonstrate that any active-site inhibitor of TAFIa may under particular conditions, paradoxally, 

prolong fibrinolysis. It should be noted that the nanobodies described above are highly specific 

for human TAFIa and do not cross-react with mouse or rat TAFIa (data not shown), thereby 

excluding their evaluation in animal models. 

 

Evaluation of the binding characteristics under various conditions, i.e. the proenzyme (TAFI), 

activated TAFI (TAFIa), temperature-inactivated TAFIa (TAFIai) and active-site blocked TAFIa 

(either by GEMSA or PTCI), strongly suggests that the nanobodies bind in the enzymatic pocket. 

However, other possibilities such as an association outside the catalytic site, but inducing a long-

range conformational switch in the active site cannot be excluded. These properties also allowed 

us to use these nanobodies to monitor the accessibility of the active site and the conformational 

transitions associated with the temperature-dependent inactivation of TAFIa. The delayed loss of 

binding of the nanobodies upon inactivation of TAFIa compared to the loss of TAFIa activity 

suggests the existence of a transient inactive TAFIai-form which is still able to bind to the 

nanobodies and which is subsequently converted to another inactive but non-binding TAFIai-

form. Boffa et al. 
7
 reported that inactivation of TAFIa is associated with two consecutive 

conformational transitions characterized by k1 (0.5 min
-1

) and k2 (0.064 min
-1

) (scheme 1). Only 

the second, rate limiting, step results in inactivation.  
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TAFIa1 
�

 TAFIa2 
�

 TAFIai     (scheme 1) 

Our current observations suggest the presence of two inactive TAFIai conformations, i.e. one in 

which the binding for the nanobodies is still available and one in which this binding site becomes 

inaccessible. Therefore, combined with the observations of Boffa et al. 
7
 the conformational 

changes occurring upon inactivation of TAFIa can be described as three consecutive 

conformational transitions, starting from TAFIa1 and leading subsequently to the formation of 

TAFIa2, TAFIai1 and TAFIai2 with corresponding k1, k2 and ki1 respectively (scheme 2).  

TAFIa1 
�

 TAFIa2 
�

 TAFIai1 
��

 TAFIai2     (scheme 2) 

TAFIa1, TAFIa2 and TAFIai1 bind to the nanobodies, TAFIai2 represents the non-binding 

conformation. At the start of the reaction only TAFIa1 is present and the concentration is set 

[TAFIa1]0 = 1. The concentration at each time for TAFIa1, TAFIa2 and TAFIai1 can therefore be 

calculated according to equation 1, 2 and 3, respectively (Eq.1-Eq.3). 

[TAFIa1] = exp(-k1t)     (Eq.1) 

[TAFIa2] = �

� �

(exp(-k1t) - exp(-k2t))   (Eq. 2) 

[TAFIai1] =  � �

� �

 exp(-(k1+k2-ki1)t-ki1t) ( �

� ��

 +  �

� ��

 )+ 
� �

�

������

�

�������
��

� �

  

(Eq. 3) 

Then, the total concentration of all the binding forms can be calculated as the sum of TAFIa1, 

TAFIa2 and TAFIai1. The experimental binding data (Figure 2.6, open circles), representing the 

binding of the total of TAFIa1, TAFIa2 and TAFIai1, were fitted using the combined equations 1, 2 

and 3 using a value of 0.5 min
-1

 for k1 as reported by Boffa et al. 
7
 and using an experimental k2-

value (for TAFI-TI) of 0.068 min
-1

, derived from the half-life of 10.2 min ± 1.4 (mean ± SD, n=3), 

based upon loss of TAFIa activity. The latter value is very close to the one reported by Boffa et al. 

7
 i.e. 0.064 min

-1
 ± 0.001 corresponding to a half-life of 10.8 min. For TAFI-TI the fitting of the 

experimental binding data of VHH-TAFI-a428 and VHH-TAFI-i391 to the combined equations 
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Figure 2.6: Activity of TAFIa (dashed line) and concomitant binding of TAFIa1, TAFIa2 and TAFIai1 (open circles) to the 

nanobodies at different incubation time periods and fitting of the data as described (full line). Activated TAFI variants, 

TAFI-TI (panel A and D), TAFI-AI-Cys
305

 (panel B and E) and TAFI-AI-Cys
305

-Ile
329

 (panel C and F) were obtained by activation 

with thrombin/thrombomodulin and subsequent addition of PPACK. The activated TAFI variants were then incubated for 

different time periods at 37 °C and for each time point the residual TAFIa activity (dashed line, as determined by substrate 

conversion) and concomitant binding to the nanobodies (open circles, three data for each nanobody and TAFI variant) was 

determined. The binding data for VHH-TAFI-a428 (panel A, B and C) and VHH-TAFI-i391 (panel D, E and F) were fitted (full 

line) to the sum of equations 1-3 (see text). 

 

(Figure 2.6 A and D, R
2
 = 0.99 and 0.98 respectively) is compatible with the existence of a second 

TAFIai formation and resulted in a ki1-value of 0.0623 min
-1

 ± 0.0044 (mean ± SD, n=3) as 

determined by VHH-TAFI-a428 and 0.0377 min
-1

 ± 0.0021 (mean ± SD, n=3) as determined by 

VHH-TAFI-i391. The occurrence of a transient inactive TAFIai1 conformation was confirmed by 

further investigations on TAFI mutants with different half-lifes. For TAFI-AI-Cys
305

 an 

experimental k2-value of 0.0217 was used, derived from the half-life of 32.2 min ± 2.8 (mean ± 

SD, n=3), based upon loss of TAFIa activity. Fitting of the experimental binding data of VHH-TAFI-

a428 and VHH-TAFI-i391 to the combined equations (Figure 2.6 B and E, R
2
 = 0.99 and 0.95 
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respectively) resulted in ki1-values of 0.0203 ± 0.0018 and 0.0169 ± 0.0017 (mean ± SD, n=3). For 

TAFI-AI-Cys
305

-Ile
329

 the experimental k2-value of 0.0138 was used, derived from the half-life of 

50.6 min ± 7.2 (mean ± SD, n=3), based upon loss of TAFIa activity. For this mutant, fitting the 

experimental binding data of VHH-TAFI-a428 and VHH-TAFI-i391 (Figure 2.6 C and F, R
2
 = 0.99 

and 0.96 respectively) resulted in ki1-values of 0.0132 min
-1

 ± 0.0003 and 0.0102 min
-1

 ± 0.0005, 

respectively (mean ± SD, n=3). It is of interest to note that the ki1-values appear to be related to 

the k2-values. It is tempting to speculate that this might indicate that the molecular 

determinants involved in the stabilization of TAFIa activity also play a role in the newly identified 

conformational transition.  

It has been reported that inactivated TAFIa has the tendency to aggregate into large non-soluble 

particles 
32

 and therefore our current findings could be linked to the formation of aggregates. 

We believe however that this is unlikely (since no irregular sensorgrams were observed and 

binding data with a control nanobody, VHH-TAFI-a360, also support a monomeric state for 

TAFIa). Overall the data confirm our hypothesis that after the conformational change resulting in 

a loss of activity, the nanobodies still bind and only after a subsequent conformational change, 

loss of nanobody binding occurs. The appropriate mathematical formula’s describing these 

conformational transitions allowed the calculation of the respective k-values. The statistical 

parameters of the regression analysis provide evidence for the validity of the proposed model 

Taken together, we have developed very potent and specific TAFIa inhibiting nanobodies and 

demonstrated their profibrinolytic properties. In addition, these unique nanobodies were shown 

to be excellent tools to investigate TAFIa conformational changes and allowed the discovery of a 

previously unknown TAFIai form. 
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SUMMARY 

Background: Downregulation of fibrinolysis due to cleavage of C-terminal lysine residues from 

partially degraded fibrin is mainly exerted by the carboxypeptidase activity of activated 

thrombin-activatable fibrinolysis inhibitor (TAFIa). Recently, some intrinsic carboxypeptidase 

activity (= zymogen activity) was reported for the proenzyme (TAFI), however, there is some 

discussion about its function and effect. 

Objective: We aimed to identify and characterize nanobodies towards mouse TAFI that stimulate 

the zymogen activity and test their effect in an in vitro clot lysis assay and an in vivo mouse 

thromboembolism model.  

Methods and results: Screening of a library of nanobodies towards mouse TAFI (mTAFI) revealed 

one nanobody (VHH-mTAFI-i49) that significantly stimulates the zymogen activity of mTAFI from 

undetectable (< 0.35 U/mg) to 4.4 U/mg (at a 16-fold molar ratio over mTAFI). The generated 

carboxypeptidase activity is unstable at 37 °C. Incubation of mTAFI with VHH-mTAFI-i49 revealed 

a time-dependent reduced activatability of mTAFI. Extensive in vitro clot lysis experiments 

revealed an enhanced clot lysis due to a reduced activation of mTAFI during clot formation. In 

vivo application of VHH-mTAFI-i49 in a mouse thromboembolism model dose-dependently 

decreased the fibrin deposition in the lungs of thromboembolism-induced mice. Epitope 

mapping disclosed that Arg
227

 and Lys
212

 are important for the nanobody/mTAFI interaction and 

suggest destabilization of mTAFI by disrupting the stabilizing interaction between the activation 

peptide and the dynamic flap region.  

Conclusion: The novel, nanobody-induced, reduced activatability of mTAFI demonstrates to be a 

very potent manner to enhance clot lysis.  
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INTRODUCTION 

Thrombin-activatable fibrinolysis inhibitor (TAFI) is a 56-kDa protein predominantly secreted by 

the liver 
1
 and present in blood at a concentration between 4 and 15 µg/mL 

2, 3
. TAFI can be 

activated by plasmin, thrombin and the complex thrombin/thrombomodulin (T/TM) resulting in 

the release of the activation peptide (20 kDa) from the TAFIa moiety (36 kDa) 
4-7

. The TAFIa 

moiety cleaves C-terminal lysine residues from partially degraded fibrin, thereby attenuating its 

cofactor function in the t-PA-mediated plasmin generation, this ultimately leads to an impaired 

fibrinolysis 
8
.  

There are no known physiological TAFIa inhibitors to regulate its activity, however, a 

temperature-dependent instability of TAFIa is observed 
9
. The mechanism behind this instability 

has been revealed by solving the crystal structure of TAFI 
10

. The structure demonstrates 

stabilizing interactions between Val
35

 and Leu
39

, located within the activation peptide, and Tyr
341 

in the dynamic flap region (amino acids: Phe
296

 to Trp
350

). Upon activation of TAFI, the activation 

peptide is released and due to the loss of stabilizing interactions, an increased mobility of the 

dynamic flap region is observed. Consequently, this results in conformational changes within the 

catalytic cleft that lead to inactivated TAFIa 
10, 11

. 

Besides TAFIa, also the TAFI zymogen exerts some intrinsic carboxypeptidase activity (= zymogen 

activity). Valnickova et al. 
12

 reported that the zymogen activity is active towards large peptide 

substrates and is able to attenuate fibrinolysis in an in vitro t-PA-induced clot lysis assay. 

However, Willemse et al. 
13

 suggested that Valnickovas clot lysis was compromised by in vitro 

activation of TAFI. Foley et al. 
14

 demonstrated that TAFI is effective in cleaving a small substrate 

but due to its inability to cleave plasmin-modified fibrin, it has no effect on the attenuation of 

fibrinolysis. On the other hand Mishra et al. 
15

 described two nanobodies that stimulate the 

zymogen activity of TAFI. Addition of these nanobodies to TAFI-depleted plasma, that was 

reconstituted with a non-activatable TAFI mutant, TAFI-TI-R92A, results in a significant 

prolongation of clot lysis time.  

The previously described zymogen stimulating nanobodies 
15

 showed no cross-reactivity towards 

mouse TAFI (mTAFI) and therefore could not be tested in in vivo mice experiments. In this study, 

we aimed to generate nanobodies towards mTAFI, identify zymogen stimulating nanobodies and 

test their properties in vitro as well as in vivo.   
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MATERIALS AND METHODS 

Materials 

Mouse TAFI was produced as described before 
16

. Oligonucleotides for cloning and sequencing 

were purchased from Sigma-Aldrich (St Louis, MO, USA) and Pfx50 DNA polymerase and 

restriction enzymes were provided by Life Technologies (Merelbeke, Belgium) and New England 

Biolabs (Hitchin, UK), respectively. The polymerase chain reaction (PCR) was performed with the 

Mastercycler Gradient from Eppendorf (Hamburg, Germany) and plasmid DNA purification was 

performed with the NucleobondTM AX500 kit (Machery-Nagel, Düren, Germany). The DNA was 

sequenced by LGC genomics (Berlin, Germany). 

Human thrombin and plasmin were purchased from Sigma-Aldrich and Enzyme Research 

Laboratories (South Bend, UK). Rabbit thrombomodulin (TM) was obtained from American 

Diagnostics (Greenwich, CT, USA). H-D-phenylalanine-L-propyl-L-arginine chloromethyl ketone 

(PPACK), aprotinin, hippuryl-L-arginine and potato tuber carboxypeptidase inhibitor (PTCI) were 

obtained from Biomol Research Laboratories (Plymouth meeting, PA, USA), Fluka (Buchs, 

Switzerland), Bachem (Bubendorf, Switzerland) and Sigma-Aldrich, respectively. Tissue-type 

plasminogen activator (t-PA) and mouse plasma were kind gifts from Boehringer Ingelheim 

(Brussels, Belgium) and Servier (Suresnes, France), respectively. Ocriplasmin (microplasmin) was 

a kind gift from ThromboGenics (Leuven, Belgium). 

Nanobody library construction, expression and purification 

The construction of the nanobody library was performed as described before 
11

 using mouse 

TAFI (mTAFI) as antigen. Therefore, an alpaca (Vicugna pacos) was subcutaneously injected with 

100 µg per week (7 weeks) of mTAFI mixed with Gerbu LQ#300 adjuvant (Gerbu Biotechnik 

GmBH, Germany). Four days after the last immunization, blood was drawn and lymphocytes 

were isolated. Subsequently, total RNA was isolated and transformed into cDNA by reverse 

transcription. The cDNA was amplified by PCR and followed by digestion with PstI and NotI 

before ligation into pHEN4, a phagemid vector. By transformation of the pHEN4 vector into E. 

coli, the total VHH repertoire was displayed on phage and binders were selected via panning 

towards mTAFI. Binders were identified by ELISA and their respective DNA sequences were 

determined. The DNA, encoding VHH, was recloned in the pHEN6c production vector using PstI 

and BstEII restriction enzymes. These constructs were then transformed into E.coli WK6 cells and 

periplasmic nanobody expression was induced by IPTG (1 mM, 18 h) as described previously 
17

. 

The periplasmic proteins were extracted, dialyzed against Tris-HCl (20 mmol/L), NaCl (0.5 mol/L; 
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pH 7.9) and filtered through a 0.45-µm filter prior to loading on a His-Trap HP column (GE 

Healthcare, Uppsala, Sweden). Bound nanobodies were eluted using an imidazole gradient (0-

350 mmol/L imidazole in 20 mmol/L Tris-HCl, 0.5 mol/L NaCl; pH 7.9). Nanobody-containing 

fractions were selected via SDS-polyacrylamide gel electrophoresis (PAGE) (Phast-Gel
TM

 gradient 

10-15% gels, GE Healthcare, Uppsala, Sweden) by coomassie staining. Finally the selected 

fractions were pooled and dialyzed against phosphate-buffered saline (PBS; 140 mmol/L NaCl, 

2.7 mmol/L KCl, 8 mmol/L Na2HPO4, 1.5 mmol/L KH2PO4; pH 7.4). 

Evaluation of the effect of VHH-mTAFI-i49 on the zymogen activity of mTAFI 

The effect of VHH-mTAFI-i49 on the zymogen activity was evaluated as described before 
15

 with 

minor modifications. Therefore, mTAFI (45 nmol/L, concentration during incubation with 

nanobody) in HEPES buffer (25 mmol/L HEPES, 137 mmol/L NaCl, 3.5 mmol/L KCl and 0.1% BSA; 

pH 7.4) was incubated with nanobody (concentration varying between 0.5- and 64-fold molar 

ratio nanobody:mTAFI) at 25 °C for 10 min followed by addition of Hip-Arg (4 mmol/L, 

concentration during substrate conversion) and allowed to proceed for 15 min at 25 °C. The 

reaction was arrested by addition of 20 µL HCl (1 mol/L), then neutralized by 20 µL NaOH (1 

mol/L) and buffered by 25 µL Na2HPO4 (1 mol/L; pH 7.4). Subsequently, 6% cyanuric chloride (in 

1,4-dioxane) was added and the mixture was vortexed for 5 min followed by centrifugation 

(Eppendorf centrifuge 5415D) for 2 min at 13,200 rpm. The supernatant was then transferred 

into a 96-well microtiter plate and the absorbance measured at 405 nm. The generated zymogen 

activity (expressed as U/mg, one unit (U) carboxypeptidase activity is defined as the amount of 

enzyme converting 1 micromole of substrate per minute at 25°C) was calculated based on a 

hippuric acid standard. The limit of detection (LOD) is defined as blank plus 3 x the SD of the 

blank. 

The stability of the VHH-mTAFI-i49-induced zymogen activity was investigated by incubation of 

the mTAFI with VHH-mTAFI-i49 for 10 min at 25 °C prior to incubation for different time periods 

(5, 10, 20, 40, 60 and 120 min) at 25 or 37 °C. The residual activity was determined by 

chromogenic assay as described above. 
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Evaluation of the effect of VHH-mTAFI-i49 on the activatability of mTAFI 

Since the VHH-mTAFI-i49-induced zymogen activity appeared to be unstable, the concomitant 

time-dependent effect of VHH-mTAFI-i49 on the activatability of mTAFI was evaluated. 

Therefore, mTAFI was incubated with VHH-mTAFI-i49 for 0, 15, 30 or 60 min at 37 °C and the 

activity was measured as described above (zymogen activity) or after activation (25 °C, 10 min) 

by thrombin/thrombomodulin (20 nmol/L and 5 nmol/L,
 
respectively) in the presence of CaCl2 (5 

mmol/L). The activation was arrested by PPACK (37.5 µmol/L, final concentration) and 

subsequently the substrate Hip-Arg (4 mmol/L, concentration during substrate conversion) was 

added to this activation mixture and allowed to proceed for 15 min at 25 °C. Quantification of 

the generated activity (activatability) was performed as described above. HEPES buffer and VHH-

mTAFI-i63 (a nanobody with no functional effect on mTAFI) were included as controls. 

Affinity determination  

The evaluation of the binding properties of VHH-mTAFI-i49 to mTAFI was done by Surface 

Plasmon Resonance (SPR) using a Biacore 3000 analytical system (GE Healthcare, Uppsala, 

Sweden) equipped with a CM5 sensor chip as described before 
11

. Briefly, nanobody was 

covalently coupled up to 400 RU (using a concentration of 5 µg/mL nanobody in acetate buffer 

10 mmol/L; pH 4.5). Purified mTAFI was diluted in HBS-EP buffer (Biacore) to concentrations 

between 6.25 and 200 nM and injected at a flowrate of 30 µL/min followed by a dissociation. 

The chip was regenerated after each cycle with glycine (10 mmol/L; pH 1.5). Association and 

dissociation rate constants were calculated using the BIAcore 3000 evaluation software 

(Langmuir binding, local fit). Control experiments were carried out with control nanobodies VHH-

mTAFI-i63 and VHH-rTAFI-i81 (a nanobody that binds mTAFI on a different epitope than VHH-

mTAFI-i49). 

Evaluation of the effect of VHH-mTAFI-i49 on fibrinolysis 

Clot lysis experiments were performed as described before 
11

 with minor modifications. Plasma 

obtained from three mice was pooled, diluted (2-fold) with TRIS/Tween buffer (10 mmol/L Tris, 

0.01% Tween 20; pH 7.5) and mixed with either TRIS/Tween buffer or VHH-mTAFI-i49 at a 

concentration ranging between 0.5 and 16-fold molar ratio nanobody:mTAFI (assuming a mTAFI 

concentration of 90 nmol/L). TM was added and the mixture was incubated at 37 °C for 1 h. 

After the 1 h incubation period, t-PA was added and subsequently 80 µL of this mixture was 

transferred into microtiter wells which contained 20 µL CaCl2 (53 mmol/L) resulting in the 

following final concentrations: 30% pooled plasma, 700 pmol/L t-PA, 5 nmol/L TM and 10 
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mmol/L CaCl2. The plate was then incubated at 37 °C and the absorbance measured at 405 nm 

every 2 min to determine the 50% clot lysis time. The 50% clot lysis time is defined as the time 

needed from full clot formation (i.e. maximum turbidity) to the midpoint of the maximal turbid 

to clear transition. Control experiments were carried out with a 16-fold molar excess of VHH-

mTAFI-i63 (a nanobody with no functional effect on mTAFI) 

To explore the link between nanobody-induced zymogen activity, the subsequent decreased 

activatability and the effect in clot lysis, mTAFI(a) activity was evaluated during the in vitro clot 

lysis assay. Therefore, TAFI-related activity (zymogen activity and/or TAFIa activity) was 

determined during the 1h incubation period prior to clot formation as well as after induction of 

the clot and during the subsequent lysis. Pooled plasma (30% final concentration) was mixed 

with either HEPES buffer or VHH-mTAFI-i49 (16-fold molar ratio over mTAFI) in the presence of 

TM (5 nmol/L, final concentration). Fractions (80 µl) were collected prior to clot formation (i.e. at 

time points -60, -55, -50, -30, -5 min) and were mixed with 20 µL HEPES buffer followed by 

addition of PPACK and aprotinin to inhibit thrombin and plasmin activity (final concentrations: 25 

µmol/L and 0.70 µmol/L, respectively) and stored on ice until carboxypeptidase activity 

measurement. After 60 minutes pre-incubation with VHH-mTAFI-i49 (i.e. t = 0) t-PA (700 pmol/L, 

final concentration) and CaCl2 (10 mmol/L, final concentration) were added. Then, clot lysis at 

37°C was followed and samples were collected at different time points (0, 3, 6, 9, 15, 30 and 60 

min), mixed with PPACK and aprotinin (final concentrations: 25 µmol/L and 0.70 µmol/L, 

respectively) and stored on ice before carboxypeptidase activity was determined. 

The carboxypeptidase activity was measured in a chromogenic assay as described above with 

minor modifications. The samples were first diluted (1:2) in HEPES buffer (25 mmol/L HEPES, 137 

mmol/L NaCl, 3.5 mmol/L KCl and 0.1% BSA; pH 7.4) either in the presence or absence of PTCI 

(0.15 mmol/L, final concentration). PTCI was added to distinguish between mTAFIa 

activity/zymogen activity and CPN activity. The mixtures were then incubated with Hip-Arg (5 

mmol/L, final concentration) for 30 min at 25 °C to allow substrate conversion, the reactions 

were stopped and the colour development was measured as described above and hippuric acid 

was used as a standard to calculate the specific activity. The activity observed in the presence of 

PTCI (i.e. CPN activity) was subtracted from the total activity to obtain the TAFI-related activity. 

Evaluation of the effect of VHH-mTAFI-i49 in a mouse thromboembolism model  

To evaluate the profibrinolytic properties, the nanobody was tested in an in vivo 

thromboembolism model as described before 
18

 with minor modifications. Therefore, VHH-
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mTAFI-i49 (2.6, 2.0, 1.3 or 0.33 mg/kg corresponding to a 24-, 18-, 12- and 2-fold molar ratio 

nanobody:mTAFI) were injected intravenously in overnight fasted non-anesthetized female Swiss 

mice (Janvier). Endotoxins were removed from nanobody preparations (administration to mice: 

< 5 EU/kg) using PROSEP-RemTox (Millipore). After 5 min, human tissue factor (2.5 µg/kg, Dade 

Innovin reagent, Siemens) was administered to induce thrombi in the lungs. Reference mice 

receiving saline instead of nanobody and saline instead of tissue factor were also included. After 

5 min, the mice were anesthetized with pentobarbital (Nembutal; 60 mg/kg) and 5 min later 500 

IU of heparin (Heparin Leo) was administered in the vena cava. Three minutes later, lungs were 

perfused with saline containing heparin (10 IU/mL). Then, left lung was isolated and stored at -80 

°C until homogenization. Homogenization was performed by a tissue homogenizer (Ribolyzer 

Fast Prep 24 System, MP Biomedicals) and addition of 4 mL of PBS per gram of lung tissue. The 

soluble fraction was removed and the pellet, containing the insoluble fibrin, was resuspended. 

Subsequently ocriplasmin (2 µM, 37 °C, 4 h,), was added to convert fibrin into soluble fibrin 

degradation products (FbDP’s). Aprotinin (4 µmol/L, final concentration) was added to stop the 

action of plasmin and after centrifugation, the supernatant was collected. FbDP’s and thereby 

the corresponding fibrin deposition was determined by a mouse fibrinogen ELISA kit with 

reactivity for FbDP’s (Immunology Consultants Laboratory, Portland). The experimental protocol 

was approved by the KU Leuven Ethical Committee for Animal Experiments (P112-2012). 

Epitope mapping  

In an initial step, different TAFI chimeras 
16,19

 were tested to unravel the binding region of VHH-

mTAFI-i49. Desired alanine mutations to prepare single and double mutants were introduced by 

site-directed mutagenesis. Primers were designed to replace selected codons by GCT, GCC, GCA 

or GCG encoding for alanine in the template pcDNA3.1V5hisA-mTAFI. The his-tagged TAFI 

variants (including his-tagged ‘wild-type’ mTAFI) were expressed in HEK293T cells and an initial 

evaluation of the impact of the mutation on the effect of VHH-mTAFI-i49 was performed on the 

conditioned medium. Mutants for which an altered susceptibility for VHH-mTAFI-i49 was 

observed were purified and subjected to a more detailed analysis. 

Statistical analysis 

Quantitative data are presented as mean ± standard deviation (SD) unless indicated otherwise. 

Statistical analysis (paired t-test and one-way ANOVA with Dunnett’s multiple comparison test) 

were performed by GraphPad Prism (GraphPad Prism 5 Software).  
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RESULTS 

Forty-eight unique nanobodies towards mTAFI(a) were identified and based on the amino acid 

sequence of the CDR3 region divided into 17 clusters. Nanobodies within one cluster are 

expected to target the same epitope 
20

 and to have similar functional properties. One to three 

nanobodies from each cluster were selected for production and purification and subsequently 

evaluated for inhibitory and zymogen stimulating properties towards mTAFI. Eleven out of 17 

selected nanobodies showed inhibitory or zymogen stimulating properties towards mTAFI: 5 

clusters mainly inhibit the plasmin-mediated activation of TAFI, 1 cluster mainly inhibits the 

T/TM-mediated activation, 3 clusters revealed a combination of inhibitory properties for 

plasmin- and T/TM-mediated activation and 2 nanobodies stimulated the zymogen activity of 

mTAFI. This paper focuses on the most potent zymogen stimulating nanobody, VHH-mTAFI-i49.  

Evaluation of the effect of VHH-mTAFI-i49 on the zymogen activity of mTAFI   

The induced zymogen activity observed upon incubation of mTAFI for 10 min at 25 °C with a 16-

fold molar excess of VHH-mTAFI-i49 over mTAFI was 4.4 ± 0.5 U/mg, while in the absence of 

VHH-mTAFI-i49 the zymogen activity was less than 0.35 U/mg (= LOD). A dose response curve 

reveals that incubation of mTAFI with nanobody increases the zymogen activity in a dose-

dependent manner, however, the maximal stimulation seems not to be reached even at a 64-

fold molar ratio of nanobody over mTAFI (Figure 3.1).  
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Figure 3.1: Dose-response curve of VHH-mTAFI-i49 on the zymogen activity of mTAFI (Mean ± SD; n ≥ 3). 

 

Direct cleavage of Hip-Arg by VHH-mTAFI-i49 was excluded based upon evaluation of a 

chromogenic assay in the absence of mTAFI (data not shown). Generation of activated mTAFI 
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(mTAFIa) by VHH-mTAFI-i49 was excluded by visualization of the fragmentation pattern of mTAFI 

in the presence of VHH-mTAFI-i49 (i.e. mTAFI remained intact, data not shown). 

Incubation of mTAFI with VHH-mTAFI-i49 and evaluation of the zymogen activity at different 

time points revealed that the induced zymogen activity is thermally unstable. The half-life of the 

induced zymogen activity at 25 °C and 37 °C was 73 ± 25 min and 8.1 ± 0.8 min, respectively.  

Evaluation of the effect of VHH-mTAFI-i49 on the activatability of mTAFI 

Incubation of mTAFI with a 16-fold molar excess of VHH-mTAFI-i49 over mTAFI at 37 °C resulted 

in an immediately induced zymogen activity of 6.5 ± 0.7 U/mg (no pre-incubation) followed by a 

time-dependent decrease at 37 °C resulting in 2.2 ± 0.4, 0.98 ± 0.1 and < 0.35 U/mg after 15, 30 

and 60 min, respectively (Figure 3.2 A, open bars). Under these conditions, the zymogen activity 

in the presence of VHH-mTAFI-i63, a control nanobody with no functional effect, or in the 

presence of HEPES buffer was < 0.35 U/mg for all time points (Figure 3.2 A).  

 

 

 

 

 

 

 

 

Figure 3.2: Zymogen activity (A) and activatability (B) after different incubation periods at 37 °C. (A) The generated 

zymogen activity of mTAFI, as determined by Hip-Arg substrate conversion, upon incubation for different time periods (0, 

15, 30 and 60 min) with VHH-mTAFI-i49, VHH-mTAFI-i63 or HEPES buffer (open, hatched and black bars, respectively). (B) 

Residual activatability (by T/TM) of mTAFI after incubation for different time periods with VHH-mTAFI-i49, VHH-mTAFI-i63 

or HEPES buffer open, hatched and black bars, respectively) (Mean ± SD; n = 3). 

 

Strikingly, subsequent activation (by T/TM) of the mTAFI/VHH-mTAFI-i49 mixture at 0, 15, 30 and 

60 min resulted in a TAFIa activity of 20 ± 2.0, 8.9 ± 1.6, 4.1 ± 0.7 and 1.4 ± 0.4 U/mg, 

respectively (Figure 3.2 B, open bars). In the presence of VHH-mTAFI-i63, the activation of mTAFI 

after 0, 15, 30 and 60 min resulted in a TAFIa activity of 20 ± 2.5, 17 ± 3.2, 14 ± 1.6 and 12 ± 1.4 

U/mg, respectively, and comparable to that observed in the presence of HEPES buffer (Figure 3.2 

B, hatched and black bars). These results indicate a significant reduction of the activatability of 

mTAFI of 1, 47, 71 and 89% after 0, 15, 30 and 60 min, respectively, in the presence of VHH-
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mTAFI-i49 compared to that observed in the presence of VHH-mTAFI-i63. The reduced 

activatability was also confirmed for plasmin-mediated activation of mTAFI after incubation of 

mTAFI with VHH-mTAFI-i49 (data not shown). 

Affinity determination 

The association and dissociation rate constants (ka and kd) of VHH-mTAFI-i49 for mTAFI were 3.6 ± 1.3 

x 10
4
 L/mol.s and 8.5 ± 0.8 x 10

-4
 1/s, respectively and result in an affinity constant (KA) of 4.2 ± 1.2 x 

10
7
 L/mol. 

Evaluation of the effect of VHH-mTAFI-i49 on fibrinolysis 

To determine the effect of VHH-mTAFI-i49 on the clot lysis profile, plasma was pre-incubated 

with HEPES buffer with or without nanobody at 37 °C for 1 h prior to clot induction (CaCl2). 

Under these conditions, the 50% clot lysis time in the absence of VHH-mTAFI-i49 (HEPES buffer) 

was 80 ± 4.2 min (Figure 3.3). In the presence of VHH-mTAFI-i49, a dose-dependent decrease in 

50% clot lysis time was observed. At a 16-fold molar ratio of VHH-mTAFI-i49 over mTAFI, 50% 

clot lysis time shortened significantly (p < 0.001) to 28 ± 7.0 min (Figure 3.3). Under these 

conditions, VHH-mTAFI-i63 did not affect 50% clot lysis time (i.e. 81 ± 7.1 min). 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Dose-dependent reduction of the 50% clot-lysis time in the presence of different concentrations of VHH-

mTAFI-i49. Plasma was incubated at 37 °C for 1 h in the absence or presence of different concentrations of VHH-mTAFI-i49 

(fold molar ratio Nb:TAFI, ranging from 0 to 16) prior to clot formation (CaCl2) and lysis (t-PA) and 50% clot lysis times were 

determined (Mean ± SD; n = 3) (* p < 0.01; ** p < 0.001; ns = not significant; one-way ANOVA; Dunnetts multiple 

comparison test). 

 

To evaluate the link between the apparent profibrinolytic effect, the effect on TAFI zymogen 

activity and subsequent impaired activatability, TAFI related activity was quantified in this 

fibrinolysis experiment. In the presence of VHH-mTAFI-i49 there was an increased zymogen 
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activity with a maximum of 16 ± 1.1 U/L at time point -55 min. Subsequently, zymogen activity 

decreased to 5.4 ± 2.2 U/L at time point -5 min (Figure 3.4). In the absence of VHH-mTAFI-i49, 

very low TAFI-related activity was measured (0.6 ± 1.0 U/L at t = -5 min). After clot induction, 

there was an increased activity (zymogen + TAFIa) with a maximum of 6.9 ± 2.3 U/L and 5.5 ± 2.4 

U/L observed after 15 min in the presence and absence of VHH-mTAFI-i49, respectively. 

Figure 3.4: Clot lysis profile and concomitant mTAFI activity in the presence and absence of VHH-mTAFI-i49. Mouse 

plasma was first incubated at 37 °C for 60 min (t = -60 until t = 0) in the presence (green) or absence (red) of a 16-fold molar 

ratio of VHH-mTAFI-i49 over mTAFI. After 60 min (t = 0) clot formation was induced by CaCl2 and measured by absorption at 

405 nm (full line). Throughout the entire experiments TAFI-related activity (dashed lines) was determined (Mean ± SD; n = 

3). 

 

To calculate a comparative estimate of the total amount of TAFIa activity generated during clot 

formation and lysis, the area under the curve (AUC) and peak height were determined in the 

presence and absence of VHH-mTAFI-i49. To correct for the VHH-mTAFI-i49-induced zymogen 

activity (i.e. 4.3 ± 1.2 U/L at t = 0) the value of the total activity (zymogen + TAFIa) at each time 

point after clot formation was subtracted with the value of TAFI activity at t = 0 (= zymogen 

activity) before calculating the peak height and area under the curve. Both the AUC and peak 

height were significantly reduced in the presence of VHH-mTAFI-i49 compared to that observed 

in the absence of nanobody (paired t-test, p < 0.01 and p < 0.05, respectively) (Figure 3.5, panel 

A and B).  
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Figure 3.5: TAFIa generation during clot formation as determined by AUC (A) and peak height (B). The TAFIa AUC (panel A) 

and TAFIa peak height (panel B) after induction of clot formation in the presence (+) and absence (-) of VHH-mTAFI-i49 

(Mean ± SD; n = 3) (* p < 0.01; ** p < 0.05; paired t-test compared to absence of VHH-mTAFI-i49). 

 

Evaluation of the effect of VHH-mTAFI-i49 in a mouse thromboembolism model  

Fibrin deposition in the lungs of thromboembolism-induced mice was significantly lower in the 

presence of a 24-fold molar excess of VHH-mTAFI-i49 compared to that observed in the absence 

of nanobody (20 ± 7 µg/mL versus 160 ± 37 µg/mL, mean ± SEM, n ≥ 7) (p < 0.05, one-way 

ANOVA, Dunnett’s multiple comparison test) (Figure 3.6).  
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Figure 3.6: Fibrin deposition in the lungs after tissue factor (TF) treatment in the presence of saline or different 

concentrations of VHH-mTAFI-i49 (Mean ± SEM; n ≥ 3) (* p < 0.01; ns = not significant; one-way ANOVA; Dunnett’s multiple 

comparison test, compared to saline). 

 

Even though not statistical significant, there was a trend towards a dose-dependent decrease in 

fibrin deposition in the presence of an 2-,12 and 18-fold molar ratio of VHH-mTAFI-i49 over 
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mTAFI) was 94 ± 18 µg/mL, and was statistically not different from that in the absence of 

nanobody. Without thromboembolism induction, the fibrin deposition was 4.7 ± 0.7 µg/mL. 

Epitope mapping  

Based on the cross-reactivity of VHH-mTAFI-i49 with mouse and rat TAFI and the absence of cross-

reactivity with human TAFI, available mouse/human and rat/human TAFI chimeras were used to 

localize the binding region of the nanobody. Evaluation of the effect of VHH-mTAFI-i49 on the 

zymogen activity of mouse, rat and human TAFI and the 7 chimeras allowed us to restrict the binding 

of the nanobody to AA 215-241 (data not shown). Within this region Ala
222

, His
223

, Lys
224

, Arg
227

 and 

Val
229

 in mouse TAFI are different from those in human TAFI. These residues were mutated to alanine 

(except for Ala
222

 which was mutated to the corresponding amino acid, Phe, in human TAFI). 

Preliminary screening on conditioned medium revealed that only the mTAFI-R227A was less 

susceptible to zymogen stimulation by VHH-mTAFI-i49. Subsequently, charged amino acids within a 

radius of 20 ångström of Arg
227

 (based on the three-dimensional structure of human TAFI 
10

) were 

mutated to alanine (i.e. Glu
28

, Glu
38

, Lys
212

, Arg
220

 and Glu
254

). Screening on conditioned medium 

revealed that only mTAFI-K212A was less susceptible to zymogen stimulation by VHH-mTAFI-i49. For 

unknown reasons, mTAFI-R220A was not expressed. Based on the results obtained with conditioned 

media, mTAFI-K212A, mTAFI-R227A and the double mutant mTAFI-K212A/R227A were produced and 

purified. In addition, mTAFI and mTAFI-K224A
 
were also produced and purified

 
as controls. 

At a 16-fold molar excess of VHH-mTAFI-i49 over mTAFI variants an induced zymogen activity of 

4.4 ± 0.3, 3.0 ± 0.3, 0.15 ± 0.07, 0.51 ± 0.12 and 0.05 ± 0.08 U/mg was observed for mTAFI, 

mTAFI-K224A, mTAFI-K212A, mTAFI-R227A and mTAFI-K212A/R227A, respectively (Table 3.1). 

There was only a minor difference between the mutants regarding activatability by T/TM with 

the exception of mTAFI-R227A which generated a 2-fold increased activity (data not shown). 

 
Table 3.1: Affinity constant (KA) and zymogen activity stimulation of VHH-mTAFI-i49 towards mTAFI  

and mTAFI mutants 

 Zymogen stimulation 

(U/mg) 

KA (L/mol)  

mTAFI 4.4 ± 0.3 5.0 ± 1.2 x 10
7
 

mTAFI-K212A < 0.35 
*
 0.73 ± 0.59 x 10

7 
† 

mTAFI-K224A 3.0 ± 0.3 
*
 8.5 ± 0.4 x 10

7 
† 

mTAFI-R227A 0.51 ± 0.12 † 1.2 ± 0.4 x 10
7 

† 

mTAFI-K212A/R227A << 0.35 
*
 NB 

Mean 
 
± SD; n = 6; NB =  no binding, 

*
 p < 0.005; † p < 0.0001  

Paired t-test, compared to mTAFI.  

 

The affinity (KA) of VHH-mTAFI-i49 for mTAFI was 5.0 ± 1.2 x 10
7
 L/mol, mutation of Lys

224
 

resulted in a 1.7-fold increased affinity (Table 3.1). In line with the observed decreased effect of 
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VHH-mTAFI-i49 on the zymogen activity, mutations at position 212 and 227 resulted in a 7- and 

4-fold reduction of the affinity, respectively, which is mainly due to a strongly increased 

dissociation rate constant (data not shown). Combination of the mutations at position 212 and 

227 resulted in a lack of binding of VHH-mTAFI-i49. VHH-rTAFI-i81 (a control nanobody that 

binds mTAFI) exhibits similar affinities for mTAFI and all mTAFI mutants, indicating that the 

observed decreased affinity of VHH-mTAFI-i49 is not caused by overall conformational changes 

that could have been induced by any of the mutations.   
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DISCUSSION 

The intrinsic zymogen activity of TAFI and its function to cleave C-terminal lysine residues from 

partially degraded fibrin has been a matter of debate 
12-14

. Recently, two nanobodies were 

generated that stimulate the zymogen activity of human TAFI 
15

. Using TAFI depleted plasma 

reconstituted with a non-activatable TAFI mutant, the zymogen induction by these nanobodies 

resulted in a prolongation of clot lysis. This effect was explained by the translocation of the 

activation peptide, making the catalytic cleft accessible for larger substrates such as C-terminal 

lysines on partially degraded fibrin.  

Nanobody, VHH-mTAFI-i49, described in the current study induces an increased zymogen activity 

of mTAFI, but reduces the clot lysis time in an in vitro clot lysis experiment. Further experiments 

on purified mTAFI and synthetic small substrate (Hip-Arg) demonstrate that induction of 

zymogen activity leads to a time-dependent reduced activatability of mTAFI. Extensive in vitro 

clot lysis experiments in the presence of VHH-mTAFI-i49 were performed to support this 

hypothesis. Clot lysis profiles and concomitant TAFI activity were determined and revealed 

reduced TAFIa generation after clot induction in the presence of VHH-mTAFI-i49 (1 h incubation 

of plasma with VHH-mTAFI-i49 prior to clot formation). The significantly reduced TAFIa 

formation in the presence of VHH-mTAFI-i49 confirms that the profibrinolytic effect of VHH-

mTAFI-i49 is due to the reduced activatability of mTAFI. The absolute value of the total TAFI 

activity in the presence of VHH-mTAFI-i49 is higher compared to that in the absence of 

nanobody since this value is a combination of TAFI zymogen activity and TAFIa activity (the 

activity is measured by Hip-Arg and does not distinguish between the zymogen and TAFIa 

activity). The increased activity after clot induction can only originate from TAFIa generation 

during the clot formation (VHH-mTAFI-i49 has no stabilizing properties on TAFIa, data not 

shown) and is significantly lower (AUC and peak height) in the presence of VHH-mTAFI-i49. 

The epitope studies point out that Lys
212

 and Arg
227

 are important for nanobody interaction 

(Figure 3.7). Even though both functional assay and SPR analysis confirm the amino acids 

important for VHH-mTAFI-i49/mTAFI interaction, the reduction in affinity of VHH-mTAFI-i49 to 

mutants mTAFI-K212A and mTAFI-R227A was only 6.5- and 4-fold, respectively, while an almost 

complete absence of zymogen stimulation was observed for these mutants. There was no 

interaction between VHH-mTAFI-i49 and the double mutant mTAFI-K212A/R227A suggesting 

that these two amino acids are critically involved in the interaction. It cannot be fully excluded 

that the lack of susceptibility to zymogen stimulation by VHH-mTAFI-i49 would be due to an 
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intrinsic incapability of zymogen activity because of these mutations. However, this is very 

unlikely since all the mTAFI mutants have similar behavior to ‘wild-type’ mTAFI regarding e.g. 

activation by T/TM and binding to a control nanobody. Both amino acids, Lys
212

 and Arg
227

, are in 

close proximity of the activation peptide (Figure 3.7) and suggest that a translocation of the 

activation peptide by VHH-mTAFI-i49 may be responsible for the increased zymogen activity. 

Subsequently this translocation most likely compromises the stabilizing interactions between 

activation peptide and the dynamic flap region 
10

, thereby destabilizing TAFI prior to activation. 

However, allosteric changes induced by binding of VHH-mTAFI-i49 resulting in an alternative 

mode of inactivation cannot be fully excluded. 

It is tempting to speculate that there are different magnitudes of translocating the activation 

peptide of TAFI (uncovering the catalytic cleft and thereby inducing zymogen activity) 

distinguishing between small (Hip-Arg) and larger substrates (C-terminal lysine residues on 

partially degraded fibrin). We hypothesize that VHH-mTAFI-i49 stimulated zymogen activity does 

not to play a role in removing C-terminal lysine residues from partially degraded fibrin. This 

hypothesis is further supported by the observations of clot lysis profiles where the clot induction 

was performed when the stimulated zymogen activity is high (data not shown): after incubation 

of nanobody with plasma at 37 °C for 10 min (see Figure 3.4, time point -50 min). Under these 

conditions, there was a reduction of the clot lysis time by 61% in the presence of a 16-fold molar 

ratio of VHH-mTAFI-i49 over mTAFI compared to no addition of nanobody (18 min versus 46 min, 

respectively), whereas one would expect a prolongation of clot lysis time if the generated 

zymogen activity was able to remove C-terminal lysine residues. 
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Figure 3.7: Three-dimensional structure of thrombin-activatable fibrinolysis inhibitor (TAFI) and localization of the 

screened amino acids. Ribbon drawing of the TAFI structure with the activation peptide colored in gray, catalytic domain in 

green, dynamic flap region in blue and the cleavage site, Arg
92

, is depicted in purple (PBD ID 3D66). The screened amino 

acids for which mutation did not affect the zymogen stimulating properties of VHH-mTAFI-i49 are shown as orange spheres, 

the two amino acids for which mutation resulted in a reduced stimulation of zymogen activity by VHH-mTAFI-i49 are 

depicted in red. The amino acids important for the stabilizing interaction between the activation peptide (Val
35

 and Leu
39

) 

and the dynamic flap region (Tyr
341

) are shown as dark blue spheres. 

 

It was long believed that the only way to obtain carboxypeptidase activity of TAFI was by 

activating TAFI to TAFIa. The activation is performed by proteolytic cleavage at Arg
92

 resulting in 

the release of the activation peptide 
4
. It was discovered quite recently that also TAFI exerts 

some carboxypeptidase activity 
12

 and that this activity can be increased by binding of 

nanobodies 
15

. Based upon the current observations and our previous study 
15

 it is tempting to 

speculate that it should be feasible to raise nanobodies to other proenzymes (plasminogen, 

protein C, factors of the coagulation cascade…) exerting similar effects, i.e. an induction of the 

enzymatic activity in the absence of a proteolytical activation step. Such mechanism has already 

been described for the interaction between streptokinase and plasminogen. Upon binding of 
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streptokinase to plasminogen, the active site is exposed without conversion of “single-chain” 

plasminogen into “double-chain” plasmin 
21, 22

. In the case of TAFI, due to the instability of the 

generated zymogen activity, this leads to a reduced activatability and a subsequent unexpected 

functional effect. It is reasonable to assume that as a general concept other pro-enzymes could 

be ‘activated’ by binding of a specific nanobody which induce allosteric changes and thereby 

increase the affinity and/or catalytic rate constant of the substrate 
23

. 

Besides its role in the inhibition of fibrinolysis, TAFIa also plays an important role in inflammation 

24
 as it is able to inactivate several inflammatory mediators such as bradykinin, anaphylatoxins 

C3a and C5a and osteopontin 
25

. The TAFI zymogen is capable of cleaving small synthetic 

substrates 
14

 and it can be expected that the VHH-mTAFI-i49-induced zymogen activity exerts a 

similar or even increased activity. In view of the instability of the induced zymogen activity it is 

currently not clear what the applicability of VHH-mTAFI-i49 would be on the inflammatory 

components. Therefore, it would be interesting to test whether stimulating agents of the TAFI 

zymogen activity (such as VHH-mTAFI-i49) could be interesting tools to investigate anti-

inflammatory properties of the VHH-mTAFI-i49-induced zymogen activity. 

Multiple mechanisms have been reported inhibiting the function of TAFI by either interfering 

with the activation of TAFI (inhibition of thrombin-, T/TM- or plasmin-mediated activation by 

monoclonal antibodies or nanobodies) or by direct interference with enzymatic activity of 

activated TAFI (by low molecular weight compounds, antibodies or nanobodies) 
26

. In this 

manuscript we describe a new concept for interfering with the TAFIa generation i.e. reduction of 

activatability through zymogen depletion. Evaluation of this mechanism in an in vivo mouse 

thromboembolism model demonstrates that this approach results in a strong profibrinolytic 

effect and is thereby a step forward in the development of a new profibrinolytic drug. 
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SUMMARY 

Background: One of the main disadvantages of current t-PA thrombolytic treatment is the 

increased bleeding risk. Upon activation, thrombin activatable fibrinolysis inhibitor (TAFI) is a 

very powerful antifibrinolytic enzyme. Therefore, co-administration of a TAFI inhibitor during 

thrombolysis could reduce the required t-PA dose, thereby decreasing bleeding risks without 

compromising the efficacy.  

Objective: In this study we generate and characterize an inhibitory nanobody towards rat TAFI 

and evaluate its profibrinolytic property in vitro and in vivo. 

Methods and results: Nanobody VHH-rTAFI-i81 inhibits (at a 16-fold molar ratio nanobody over 

TAFI) the thrombin/thrombomodulin (T/TM)-mediated activation of rat TAFI (rTAFI) by 83 ± 1.8 

% with an IC50 of 0.46 (molar ratio nanobody over TAFI). The affinity (KA) of VHH-rTAFI-i81 for 

rTAFI, as determined by surface plasmon resonance (Biacore
®
), is 2.5 ± 0.2 x 10

10 
M

-1
 and 

illustrates a very strong binding. In an in vitro clot lysis assay, administration of VHH-rTAFI-i81 

strongly enhances the profibrinolytic effect of t-PA and reduces time to reach full lysis of t-PA-

mediated clot lysis. Epitope mapping discloses that Lys
392 

is of primary importance for the 

nanobody/rTAFI interaction besides minor contributions of Tyr
175 

and Glu
183

. In vivo application 

of VHH-rTAFI-i81 in a tissue factor-induced mouse thromboembolism model significantly 

decreases fibrin deposition in the lungs in the absence of exogenous administered t-PA. 

Conclusion: Nanobody VHH-rTAFI-i81 is a very potent inhibitor of T/TM-mediated TAFI 

activation. Co-administration of this nanobody and t-PA enhances the fibrinolytic efficacy. In an 

in vivo mouse thromboembolism model, VHH-rTAFI-i81 reduces fibrin deposition in the lungs.  
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INTRODUCTION 

Thrombin-activatable fibrinolysis inhibitor (TAFI) is a metallocarboxypeptidase mainly produced 

by the liver and present in the blood at a concentration between 5 and 15 µg/ml. TAFI can be 

cleaved at Arg
92

 by trypsin like enzymes such as plasmin, thrombin or the complex 

thrombin/thrombomodulin (T/TM) resulting in the generation of activated TAFI (TAFIa) 
1-4

. TAFIa 

exerts an anti-fibrinolytic effect by removing C-terminal lysine residues from partially degraded 

fibrin thereby diminishing plasmin generation resulting in attenuation of the blood clot 

dissolution 
1
. Up to date, there are no physiological inhibitors of TAFIa reported, but its function 

is regulated through the intrinsic, temperature-dependent instability. This results in inactivation 

of TAFIa by conformational changes 
3, 5, 6

. 

Current thrombolytic therapy, based on activation of the fibrinolytic system, consists of 

administration of a high dose of plasminogen activators. Even though very effective, one of the 

main disadvantages of this approach is an increased bleeding risk. Therefore, co-administration 

of a TAFI inhibitor during thrombolysis has been suggested to allow reduction of the required 

dose of thrombolytic agent, thereby potentionally decreasing the bleeding risk without 

compromising the efficacy 
7, 8

.  

Inhibitory nanobodies towards human TAFI(a) have been reported 
6, 9

 and demonstrate very 

strong profibrinolytic effects in vitro, however these nanobodies lack cross reactivity with mouse 

and/or rat TAFI (mTAFI and rTAFI) and therefore cannot be tested in an in vivo model. Human, 

mouse and rat TAFI have a very high sequence identity (rat to mouse 96% and mouse and rat to 

human 86%) and are considered to be biological equivalents with regard to a) activatability by 

T/TM b) strong temperature-dependent instability of TAFIa and c) antifibrinolytic effect during in 

vitro clot lysis 
10

. We aimed to develop and characterize inhibitory nanobodies towards rTAFI and 

test their application in an in vivo thromboembolism model.  
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MATERIALS AND METHODS 

Materials 

Wild-type recombinant rat TAFI and rat TAFI-CIYQ (rTAFI-C
305

I
329

Y
333

Q
335

) without his-tag were 

prepared as described before 
11, 12

. All experiments were performed with wild-type rTAFI unless 

indicated otherwise. Oligonucleotides, Pfx50 DNA polymerase and restriction enzymes were 

purchased from Sigma-Aldrich (St Louis, MO, USA), Life Technologies (Merelbeke, Belgium) and 

New England Biolabs (Hitchin, UK) respectively. Polymerase chain reactions (PCR) were 

performed with the Mastercycler Gradient from Eppendorf (Hamburg, Germany), plasmid DNA 

was purified with NucleobondTM AX500 kit (Machery-Nagel, Düren, Germany) and DNA 

sequencing was performed by LGC genomics (Berlin, Germany). Human thrombin, rabbit 

thrombomodulin (TM) and plasmin were purchased from Sigma-Aldrich, American Diagnostics 

(Greenwich, CT, USA) and Enzyme Research Laboratories (South Bend, UK), respectively. H-D-

phenylalanine-L-propyl-L-arginine chloromethyl ketone (PPACK), aprotinin and hippuryl-L-

arginine were obtained from Biomol Research Laboratories (Plymouth meeting, PA, USA), Fluka 

(Buchs, Switzerland) and Bachem (Bubendorf, Switzerland), respectively. Tissue-type 

plasminogen activator (t-PA) and rat plasma were kind gifts from Boehringer Ingelheim (Brussels, 

Belgium) and Servier (Suresnes, France) respectively. Ocriplasmin (microplasmin) was a kind gift 

from ThromboGenics (Leuven, Belgium). 

Nanobody library construction, expression and purification. 

A nanobody library was obtained as described before 
13

. Therefore, an alpaca (Vicugna pacos) 

was subcutaneously injected with 100 µg (weekly, during 7 weeks) of a mixture containing 

activated and intact rTAFI-CIYQ mixed with Gerbu LQ#300 (Gerbu Biotechnik GmBH, Germany). 

Blood was collected four days after the last immunization and lymphocytes were isolated. Total 

RNA was isolated from the lymphocytes and cDNA was obtained by reverse transcription. The 

VHH gene repertoire was amplified by PCR and PCR products were digested by PstI and NotI and 

ligated into the phagemid vector pMECS. Subsequently, the VHH-repertoire was displayed on 

phage after transformation in E.coli TG1 cells and binders were selected via panning either 

towards intact or activated rTAFI-CIYQ. Positive clones were identified by ELISA and identical 

clones were detected via sequencing. The plasmids of positive clones were transformed in E.coli 

WK6 cells and nanobody production was induced by IPTG as described before 
13

. The periplasmic 

proteins were extracted, isolated and dialyzed against 20 mmol/L Tris–HCl, 0.5 mol/L
 
NaCl (pH 

7.9) followed by filtration (0.45 µm) and loaded on a His-Trap HP column (GE Healthcare, 



Chapter 4 

73 

Uppsala, Sweden). Bound proteins were eluted by an imidazole gradient (0–350 mmol/L 

imidazole in 20 mmol/L Tris HCl, 0.5 mol/L NaCl; pH 7.9) and the nanobody containing fractions 

were selected via SDS-polyacrylamide gel electrophoresis (PAGE) (Phast-Gel
TM

 gradient 10–15% 

gels, GE Healthcare, Uppsala, Sweden) followed by coomassie staining. Selected fractions were 

dialyzed against phosphate-buffered saline (PBS; 140 mmol/L NaCl, 2.7 mmol/L KCl, 8 mmol/L 

Na2HPO4, 1.5 mmol/L KH2PO4; pH 7.4). 

Evaluation of the overall inhibitory effect of the nanobodies on TAFI activation and TAFIa 

activity 

The overall inhibitory effect of the nanobodies on rTAFI was determined using a chromogenic 

assay as described before 
6
 with minor modifications. Briefly, rTAFI (45 nmol/L, concentration 

during activation) was diluted in HEPES buffer (25 mmol/L HEPES, 137 mmol/L NaCl, 3.5 mmol/L 

KCl and 0.1% BSA; pH 7.4) and incubated for 10 min at 25 °C with either buffer or nanobody at 

concentrations ranging from 0.25- to 16-fold molar ratio of nanobody over rTAFI. Subsequently, 

TAFI was activated by addition of thrombin and thrombomodulin (20 nmol/L and 5 nmol/L 

respectively, concentration during activation) in the presence of CaCl2 (5 mmol/L) at 25°C for 10 

min. Addition of PPACK (37.5 µmol/L, final concentration) terminated the activation and 

subsequently the substrate Hip-Arg (hippuryl-arginine, 4 mmol/L, concentration during substrate 

conversion) was added and substrate conversion was allowed to proceed for 15 min at 25 °C. 

The conversion was stopped by addition of 20 µl HCl (1 mol/L) followed by neutralization with 20 

µl NaOH (1 mol/L) and buffered with 25 µl Na2HPO4 (1 mol/L; pH 7.4) prior to addition of 30 µl 

6% cyanuric chloride (in 1,4-dioxane). The solution was then vortexed (5 min) and centrifuged 

(Eppendorf centrifuge 5415D) at max speed for 2 min and 100 µl aliquots were transferred into a 

96-well microtiterplate and the absorbance measured at 405 nm. By comparison of the 

enzymatic activity generated upon activation of TAFI in the absence or presence of nanobody 

(Nb), the inhibiting capacity was calculated and expressed as percentage of inhibition (([OD]
no Nb

- 

[OD]
with Nb

)/([OD]
no Nb

) x 100 = % inhibition). In this assay a reduced TAFIa activity could be due to 

either interference with the activation process or by a direct interference with TAFIa enzymatic 

activity. The effect of the nanobodies on plasmin-mediated activation of rTAFI was evaluated as 

described above, except for the use of plasmin for activation (500 nmol/L, concentration during 

activation), addition of aprotinin to stop the activation (1.25 µmol/L, final concentration) and 

substrate conversion (Hip-Arg) for 30 min. VHH-mTAFI-i63 (a control nanobody with no 

functional effect on rTAFI) and HEPES buffer were included as controls. 
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Evaluation of the effect of VHH-rTAFI-i81 on the conversion of TAFI to TAFIa 

rTAFI (857 nmol/L, concentration during activation) was diluted in Tris buffer (20 mmol/L Tris, 

0.1 mol/L NaCl; pH 7.4) and incubated with either buffer or VHH-rTAFI-i81 (16-fold molar excess 

of nanobody over rTAFI). After an incubation period at 37 °C of 10 min, this mixture was 

activated by T/TM (20 nmol/L and 5 nmol/L, respectively) in the presence of CaCl2 (5 mmol/L) at 

37 °C for 10 min. The activation was stopped with 30 µmol/L PPACK, addition of sodium dodecyl 

sulfate (SDS; 1% final concentration) and heating at 100 °C for 30 seconds. The generated 

fragments were separated by SDS-polyacrylamide gel electrophoresis (PAGE) (Phast-Gel
TM

 

gradient 10-15% gels) and visualized by silver staining. A similar setup was designed for the 

evaluation of the effect of VHH-rTAFI-i81 on plasmin-mediated activation: T/TM was replaced by 

plasmin (333 nmol/L) and PPACK was replaced by aprotinin (960 nmol/L).  

Evaluation of the direct inhibitory effect of VHH-rTAFI-i81 on TAFIa 

rTAFI (45 nmol/L diluted in HEPES, concentration during activation) was activated by T/TM in the 

presence of CaCl2 (20 nmol/L, 5 nmol/L and 5 mmol/L, respectively) at 25 °C for 10 min before 

terminating with PPACK (37.5 µmol/L, final concentration). Subsequently, VHH-rTAFI-i81 

(resulting in a 16-fold molar ratio of nanobody over rTAFI) or buffer was added and the mixture 

was incubated at 25 °C for 10 min. The rTAFIa activity was determined by the chromogenic assay 

as described above and the percentage of inhibition of the rTAFIa activity was calculated relative 

to the rTAFIa activity observed in the absence of nanobody. 

To evaluate the effect of VHH-rTAFI-i81 on rTAFIa stability, rTAFIa was pre-incubated for 5 min at 

37°C with VHH-rTAFI-i81 followed by different incubation periods (0, 7.5, 15, 30, 75, 120 and 210 

min) at 37°C. The residual activity was determined as described above. The generated activity 

(expressed as U/mg, one unit (U) carboxypeptidase activity is defined as the amount of enzyme 

converting 1 micromole of substrate per minute at 25°C) was calculated based on a hippuric acid 

standard. VHH-mTAFI-i63 and HEPES buffer were included as controls. 

Affinity determination  

The affinity of VHH-rTAFI-i81 for rTAFI was determined by Surface Plasmon Resonance (SPR) 

using a Biacore 3000 analytical system (GE Healthcare, Uppsala, Sweden) as described before 
6
. 

VHH-rTAFI-i81 was covalently coupled (400 RU) to a CM5 sensor chip (using a concentration of 5 

µg/mL nanobody in acetate buffer 10 mmol/L; pH 4.5). rTAFI (diluted in HBS-EP buffer to 

concentrations between 6.25 and 200 nM) was injected at a flowrate of 30 µl/min followed by a 
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dissociation. After each cycle the sensor chip was regenerated by glycine (10 mmol/L, pH 1.5). 

The association and dissociation rate constants were determined using the BIAcore 3000 

evaluation software (Langmuir binding, local fit). 

Evaluation of the effect of VHH-rTAFI-i81 on fibrinolysis 

Clot lysis experiments were performed in microtiterplates as described previously 
14

 with minor 

modifications. Citrated rat plasma was mixed with either buffer or nanobody diluted in 

Tris/Tween buffer (10 mmol/L Tris, 0.01% Tween 20, pH 7.5). The final concentrations of VHH-

rTAFI-i81 resulted in a molar ratio ranging from 0.25 to 2 over rTAFI, assuming a rTAFI 

concentration of 90 nmol/L in plasma. After incubation at 37 °C for 10 min, t-PA was added and 

aliquots of 80 µl were transferred, in duplicate, to microtiter wells each containing 20 µl 100 

mmol/L CaCl2 resulting in the following final concentrations: 30 % plasma, 1000 pmol/L t-PA, 20 

mmol/L CaCl2. The plate was incubated at 37 °C and read at 405 nm at 2 min intervals. The area 

under the curve (AUC) was calculated (from time point 0 to 180 min) to quantify the effect on 

clot lysis. 

Alternatively, the efficacy of different concentrations of t-PA (0 - 900 pM) was evaluated in the 

presence or absence of VHH-rTAFI-i81 at a two-fold molar ratio over rTAFI. 

Evaluation of the effect of VHH-rTAFI-i81 in an in vivo mouse thromboembolism model  

The profibrinolytic properties of VHH-rTAFI-i81 were tested in an in vivo mouse 

thromboembolism model as described before 
15

 with minor modifications. VHH-rTAFI-i81 (0.22, 

0.66 or 1.3 mg/kg, corresponding to a 2-, 6- and 12-fold molar ratio over rTAFI) was injected 

intravenously in overnight fasted non-anesthetized female Swiss mice (Janvier). The endotoxins 

from nanobody preparations were removed (administration to mice < 5 EU/kg) using PROSEP-

RemTox (Millipore). Thromboembolism was induced after 5 min using human tissue factor (TF, 

2.5 µg/kg, Dade Innovin reagent, Siemens). Reference mice receiving saline instead of 

nanobodies or saline instead of TF were also included. Five minutes after TF injection the mice 

were anesthetized with pentobarbital (Nembutal; 60 mg/kg) and 5 minutes later 500 IU of 

heparin (Heparin Leo) was administered in the vena cava. Three minutes after heparin injection 

the lungs were perfused with saline containing heparin (10 IU/ml) and the left lung was isolated 

and stored at -80°C. Four ml of PBS was added per gram of lung followed by homogenization by 

a tissue homogenizer (Ribolyzer Fast Prep 24 System, MP Biomedicals). After three wash and 

centrifugation steps the soluble fractions were removed and the pellet, containing the insoluble 

fibrin, was resuspended. The resuspended pellet was incubated with ocriplasmin (microplasmin 
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2 µmol/L, 37°C, 4 hours) in order to convert the fibrin into soluble fibrin degradation products 

(FbDP’s). Aprotinin (4 µmol/L, final concentration) was added to stop fibrinolysis and after 

homogenization and centrifugation (max speed, 20 min) the supernatants was collected. A 

mouse fibrinogen ELISA kit (Immunology Consultants Laboratory, Portland) with cross-reactivity 

for FbDP’s was used to quantify the FbDP’s and thereby the corresponding fibrin deposition. The 

experimental protocol was approved by the KU Leuven Ethical Committee for Animal 

Experiments (P112-2012). 

Epitope mapping of VHH-rTAFI-i81  

Different TAFI mutants/chimeras were used to unravel the binding epitope of VHH-rTAFI-i81 
16

. 

Single mutations to alanine were introduced by site-directed mutagenesis using template 

pcDNA5/FRT-ratTAFI-6his. The ‘wild-type’ rTAFI and rTAFI variants were produced by HEK293T 

cells and initial evaluation of the inhibitory properties of VHH-rTAFI-i81 towards the TAFI 

variants was performed on the conditioned medium. Subsequently TAFI variants with altered 

susceptibility were purified using a His-Trap HP column and the effect of mutations on the 

affinity and inhibitory properties of VHH-rTAFI-i81 was determined. 

Statistical analysis 

Quantitative data are presented as mean ± standard deviation (SD) unless indicated otherwise. 

Statistical analysis (paired t-test and one-way ANOVA with Dunnett’s multiple comparison test) 

were performed by GraphPad Prism (GraphPad Prism 5 Software). 
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RESULTS 

After 3 rounds of panning, 227 out of 285 cherry picked clones were found to produce 

nanobodies towards rTAFI(a). Sequence determination revealed 82 unique nanobodies and 

these were divided into 15 clusters based on their CDR3 region. Nanobodies within one cluster 

are expected to target the same epitope 
17

. Therefore, one nanobody from each cluster was 

selected for production, purification and subsequent evaluation of inhibitory properties towards 

rTAFI. Six out of 15 selected nanobodies exhibit inhibitory properties towards rTAFI: three 

nanobodies mainly inhibit the T/TM-mediated activation, 2 nanobodies mainly inhibit the 

plasmin-mediated activation of TAFI, one nanobody inhibits T/TM- as well as plasmin-mediated 

activation. Based on the affinity of the inhibitory nanobodies, we selected VHH-rTAFI-i81, a 

nanobody that mainly inhibits the T/TM-mediated activation for further characterization. 

Evaluation of the effect of VHH-rTAFI-i81 on TAFI activation and TAFIa activity 

Addition of VHH-rTAFI-i81 to rTAFI leads to 83.2 ± 1.8 % inhibition of the T/TM-mediated 

activation of rTAFI (Table 4.1). A dose-response curve of the effect of VHH-rTAFI-i81 on T/TM-

mediated rTAFI activation, demonstrates 50% of the maximal inhibition at a molar ratio (VHH-

rTAFI-i81:rTAFI) of 0.46 (Figure 4.1).  

 

 

 

 

 

Figure 4.1: Dose-response curve for inhibition of the 

T/TM-mediated activation of rat TAFI by VHH-rTAFI-i81  

(mean ± SD, n ≥ 3). 

  

Surprisingly, inhibition of plasmin-mediated activation by VHH-rTAFI-i81 was -80 ± 11 % and 

addition of VHH-rTAFI-i81 after activation of rTAFI demonstrated an apparent inhibition of -52 ± 

1.6 % (Table 4.1). The inhibition of the T/TM-mediated activation of VHH-rTAFI-i81 was 

confirmed by evaluation by SDS-PAGE analysis of the rTAFI fragmentation pattern after 

activation (i.e. reduced proteolytical cleavage from TAFI to TAFIa, data not shown). 
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Table 4.1: Inhibition of the T/TM- and plasmin-mediated activation of rTAFI and inhibition of rTAFIa by  

VHH-rTAFI-i81  

 

% Inhibition of the T/TM-

mediated activation 

% Inhibition of the 

plasmin-mediated 

activation 

% Inhibition of rTAFIa 

 

VHH-rTAFI-i81 83 ± 2  -80 ± 11 -52 ± 2 

Ratio [nanobody]:[rTAFI] = 16-molar. Mean ± standard deviation, n ≥ 3 

 

Addition of different concentrations of VHH-rTAFI-i81 to rTAFIa followed by incubation for 

different time periods reveals a concentration-dependent increase in the half-life of rTAFIa 

activity from 2.4 ± 0.3 min and 2.4 ± 0.2 min in the presence of VHH-mTAFI-i63 and HEPES buffer 

respectively, to 9.6 ± 0.4 min, 24.7 ± 1.8 min,  33.9 ± 6.4 min and 43.7 ± 5.9 min in the presence 

of a 0.125-, 1-, 4- and 64-fold molar ratio VHH-rTAFI-i81 over rTAFIa respectively (Figure 4.2). 

 

Figure 4.2: Stabilizing properties of VHH-rTAFI-i81 on rTAFIa activity. Decay of rTAFIa activity (at 37°C) in the absence of 

nanobody ( ), in the presence of a control nanobody VHH-mTAFI-i63 ( , at a 16-fold molar ratio over rTAFI) and in 

the presence of varying concentrations of VHH-rTAFI-i81 (64- , 4- , 1-  and 0.125-fold  molar ratio 

over rTAFI) (mean ± SD, n ≥ 3). 

 

Affinity determination of VHH-rTAFI-i81 to TAFI 

The association and dissociation rate constants (ka and kd) for rTAFI were 1.8 ± 0.2 x 10
6 

M
-1

s
-1 

and 7.2 ± 0,9 x 10
-5

 s
-1

,
 
respectively and result in an affinity constant (KA) of 2.5 ± 0.2 x 10

10
 M

-1
. 

The affinity (KA) for mTAFI was 6.8 ± 1.2 x 10
9
 M

-1 
(with ka and kd of 1.4 ± 0.2 x 10

6 
M

-1
s

-1 
and 2.1 ± 

0.1 x10
-4

 s
-1

,  respectively). There was no binding to human TAFI. 
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Evaluation of the effect of VHH-rTAFI-i81 on fibrinolysis  

A dose-response curve of VHH-rTAFI-i81 in rat plasma in the presence of 1000 pM t-PA reveals 

that the maximal profibrinolytic effect is reached at an equimolar ratio of nanobody over rTAFI 

with a ratio AUC+Nb/AUC-Nb of 0.17 ± 0.03 (Figure 4.3). 

 

Figure 4.3: Dose-response curve of the profibrinolytic properties of VHH-rTAFI-i81 in plasma. The area under the curve 

(AUC) was determined for clot lysis profiles in the presence of different concentrations of VHH-rTAFI-i81 and expressed 

relative to the AUC in the absence of VHH-rTAFI-i81 (mean ± SD, n ≥ 3). 

 

A dose-response curve of t-PA in the presence and absence of a two-fold molar excess of VHH-

rTAFI-i81 demonstrated that (a) whereas in the absence of VHH-rTAFI-i81 lysis remains limited 

even at the highest concentration of t-PA (900 pM) (Figure 4.4, panel D), in the presence of a 

two-fold molar excess of VHH-rTAFI-i81 full lysis is achieved at t-PA concentration of 400 pM 

(Figure 4.4, panel C and D) and (b) the presence of VHH-rTAFI-i81 leads to a strong reduction in 

time to reach the maximal effect: 25 min compared to >180 min in the absence of VHH-rTAFI-i81 

(Figure 4.4). 
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Figure 4.4: Clot lysis profiles using different concentrations of t-PA in the absence (  ) or in the presence (  ) of VHH-

rTAFI-i81. VHH-rTAFI-i81 was used at a two-fold molar ratio over rTAFI in the presence of 0, 200, 400 and 900 pM t-PA 

(panel A, B, C and D, respectively). For each condition, a representative experiment out of three performed experiments is 

shown. 

 

The EC50 of t-PA (concentration of t-PA at which 50 % of its maximal effect was observed) was 

528 ± 39 pM in the absence of VHH-rTAFI-i81 and 208 ± 29 pM in the presence of a two-fold 

molar excess of VHH-rTAFI-i81 over rTAFI.  

Evaluation of the effect of VHH-rTAFI-i81 in an in vivo mouse thromboembolism model  

VHH-rTAFI-i81 cross-reacts with mTAFI and inhibits the T/TM-mediated activation of mTAFI by 

78 ± 3 % at a 16-fold molar ratio over mTAFI with an IC50 of 0.59 (fold molar ratio VHH-rTAFI-i81 

over mTAFI). Furthermore, VHH-rTAFI-i81 was also tested in an in vitro clot lysis experiment with 

mouse plasma and demonstrates a maximal effect at an equimolar ratio of VHH-rTAFI-i81 over 

mTAFI. Because of comparable characteristics of VHH-rTAFI-i81 towards mouse and rat TAFI and 

plasma, VHH-rTAFI-i81 could be evaluated in an in vivo mouse thromboembolism model. 

Without TF injection, the fibrin deposition in the lungs is 4.4 ± 0.4 µg/ml (mean ± standard error 

of mean). The fibrin deposition in the lungs upon induction of thromboembolism in the absence 

of VHH-rTAFI-i81 (0 x) was 183 ± 18 µg/ml (expressed as fibrinogen equivalents, see methods). In 

the presence of a 2-, 6- and 12-fold molar ratio of VHH-rTAFI-i81, the fibrin deposition was 132 ± 

28, 8 ± 2 and 14 ± 1 µg/ml respectively (Figure 4.5). 
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Figure 4.5: Fibrin deposition in the lung after thromboembolism induction in the presence of different concentrations of 

VHH-rTAFI-i81. Fibrin depositions (expressed as fibrinogen equivalents) in the left lungs upon thromboembolism induction 

in the presence of different concentrations of VHH-rTAFI-i81 (x-fold molar ratio of VHH-rTAFI-i81 over rTAFI) (mean ± SEM; 

n ≥ 3; * p < 0.001, one-way ANOVA, Dunnett’s multiple comparison test compared to 0x). 

 

Epitope mapping of VHH-rTAFI-i81 to rTAFI 

Since VHH-rTAFI-i81 does not cross-react with human TAFI, rat/human TAFI-chimeras could be 

used to unravel the binding region of the nanobody. Evaluation of the inhibitory effect of VHH-

rTAFI-i81 on rat and human TAFI and 4 chimeras (see methods) allowed us to restrict the binding 

region to AA 160-195. Within this region 9 AA (Tyr
175

, Val
176

, His
180

; Lys
182

, Glu
183

, Asn
184

, Thr
185

, 

Arg
188

 and His
192

) differ between human and rat TAFI and their alanine counterparts were 

produced in rTAFI. Only alanine mutations at position Tyr
175

 and Glu
183

 resulted in a reduced 

inhibition by VHH-rTAFI-i81, with a more pronounced effect for the mutation to alanine at 

position 175. Therefore charged AA within a radius of 20 ångström from Tyr
175

 were also 

mutated to alanine (Glu
99

, Glu
323

, Lys
327

, Lys
380

 and Lys
392

). From the latter mutants only rTAFI-

K392A was less susceptible for inhibition by VHH-rTAFI-i81. Based on these results using 

conditioned media, rTAFI-Y175A, rTAFI-E183A, and rTAFI-K392A were selected for purification. In 

addition rTAFI- H180A was included as a control. 

At a 16-fold molar ratio of VHH-rTAFI-i81 over rTAFI-variants, approximately 80% inhibition of 

the T/TM-mediated activation was observed for rTAFI and rTAFI-H180A (Table 4.2). Under these 

conditions the T/TM-mediated activation of rTAFI-Y175A, rTAFI-E183A and rTAFI-K392A was 

inhibited up to 20 ± 4 %, 36 ± 3 % and -3 ± 5 %, respectively. In line with these functional effects 

the affinity (KA) of VHH-rTAFI-i81 for rTAFI-Y175A, rTAFI-E183A, and rTAFI-K392A was reduced 

60-, 40- and 500-fold, respectively, compared to that for rTAFI (Table 4.2). 
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Table 4.2: Inhibition of the T/TM-mediated activation by VHH-rTAFI-i81 and  

affinity constants of VHH-rTAFI-i81 for rTAFI and rTAFI mutants 

 % Inhibition of the T/TM 

mediated activation by VHH-

rTAFI-i81 

KA (M
-1

) 

VHH-rTAFI-i81 

rTAFI  79 ± 1 126 ± 15 x 10
8
 

rTAFI-Y175A 20 ± 4 
**

 2.10 ± 0.25 x 10
8 ***

 

rTAFI-H180A 81 ± 2 
ns 

81.6 ± 14.7 x 10
8 ***

 

rTAFI-E183A 36 ± 3 
*
 3.10 ± 0.27 x 10

8 ***
 

rTAFI-K392A -3 ± 5 
**

 0.26 ± 0.06 x 10
8 ***

 

Mean 
 
± SD; n = 6; paired t-test compared to rTAFI; 

*** 
p < 0.0001; 

**
 p < 0.001;  

*
 p < 0.005; ns = not significant 

 

 The affinity for rTAFI-H180A was virtually unchanged (1.4-fold reduction) compared to rTAFI. 

The affinity of a control nanobody, VHH-mTAFI-i49 which binds to another epitope on rTAFI, 

exhibited similar binding affinities (KA values between 0.74 ± 0.07 x 10
8 

and 2.00 ± 0.20 x 10
8 

M
-1

) 

for all rTAFI variants tested. 

  



Chapter 4 

83 

DISCUSSION 

TAFIa plays an important role in the attenuation of fibrinolysis by removing C-terminal lysine 

residues from partially degraded fibrin. These lysine residues are an important cofactor in the t-

PA mediated plasminogen activation 
18

. Elevated TAFI levels have been associated with an 

increased risk of angina pectoris 
19

, venous thrombosis 
20

, coronary artery disease
21

, ischemic 

stroke 
22

 and myocardial infarction 
23

. A reduced bleeding tendency might be observed upon co-

administration of t-PA and a TAFI inhibitor since it could allow a reduction of the dose of t-PA 

without hampering the efficacy of the treatment 
24

. Nanobodies interfering with the activation 

of human TAFI to TAFIa 
9
 and nanobodies directly inhibiting human TAFIa 

6
 have been developed 

and under certain circumstances demonstrate strong profibrinolytic effects in vitro. 

Unfortunately these nanobodies lack cross-reactivity with mouse and rat TAFI and therefore 

could not be evaluated in vivo. Therefore we developed inhibitory nanobodies towards rat TAFI 

and evaluate their effects in an in vivo mouse thromboembolism model. 

 

VHH-rTAFI-i81 revealed, in the chromogenic assay, a strong inhibition of the T/TM-mediated 

rTAFI activation. However, the inhibition of the plasmin-mediated activation and the inhibition of 

the TAFIa activity revealed a negative percentage, consistent with increased TAFIa activity in the 

presence of VHH-rTAFI-i81 under these conditions. There are multiple plausible explanations for 

the increased activity. Firstly, it is known that plasmin is a weaker activator of TAFI, therefore 

after 10 min of activation with plasmin a mixture of intact and activated rTAFI is present. 

Stimulation of the TAFI zymogen activity by nanobodies has been described before 
25

 and could 

lead to an increased activity (activity generated by plasmin activation ànd induced zymogen 

activity). However, no increased zymogen activity was observed after incubation of rTAFI with 

VHH-rTAFI-i81 (data not shown). Secondly, it has been described 
26

 that plasmin proteolyses TAFI 

at several sites, i.e. cleavage may not only occur at Arg
92

 but also cleavage at Lys
327

 and Arg
330

. 

Cleavage at Lys
327

 and Arg
330

 leads to a non-active TAFI form since the cleavage product lacks the 

substrate binding site and residues involved in substrate specificity and hydrolysis. Epitope 

mapping (by chromogenic assay and affinity analysis of different rTAFI mutants) indicates that 

the key amino acid for VHH-rTAFI-i81 binding (Lys
392

) is almost 20 ångström away from Lys
327

 and 

Arg
330

. Furthermore, evaluation of the plasmin-induced fragmentation pattern of rTAFI in the 

presence of VHH-rTAFI-i81 does not indicate any changes in fragmentation pattern. It can 

therefore be concluded that the observed increase in TAFIa activity, upon plasmin-mediated 
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activation in the presence of VHH-rTAFI-i81 is not due to an impaired cleavage at positions 327 

or 330. Thirdly, rTAFIa is very thermally unstable with a half-life of around 2.5 min at 37°C. 

Therefore, an increased activity, observed upon plasmin-mediated activation in the presence of 

VHH-rTAFI-i81 could be due to a stabilizing effect of VHH-rTAFI-i81 on rTAFIa. Indeed, the half-

life of rTAFIa activity was strongly increased (10-fold in the presence of an equimolar 

concentration of VHH-rTAFI-i81) by VHH-rTAFI-i81. The TAFIa stabilizing properties of VHH-rTAFI-

i81 explain the apparent negative percentage of inhibition in the chromogenic assays (Table 4.1). 

The key amino acid for binding, Lys
392

,
 
is in close proximity of the dynamic flap region (AA 296-

350) (Figure 4.6) and the mobility of this region is important for the instability of TAFIa 
27

. It is 

therefore tempting to speculate that the observed increased TAFIa stability induced by VHH-

rTAFI-i81 is attributed to stabilization of the dynamic flap region. Of note, an active-site inhibitor, 

GEMSA, has also been shown to stabilize TAFIa through stabilization of the dynamic flap region. 

In the latter case, interaction with the dynamic flap region occurs through residues within the 

active-site pocket 
27

. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Three-dimensional structure of thrombin-activatable fibrinolysis inhibitor and localization of the screened 

amino acids. Ribbon drawing of the structure of TAFI with the catalytic domain in green, activation peptide in grey and the 

dynamic flap region (AA 296-350) in blue. Screened amino acids for which mutation had no effect on the VHH-rTAFI-i81 

induced inhibition of T/TM-mediated activation of rTAFI are depicted as orange spheres, amino acids for which mutation 

resulted in an impaired VHH-rTAFI-i81 induced inhibition of the T/TM-mediated activation and resulted in a reduced affinity 

for VHH-rTAFI-i81 are shown as red spheres. The Arg
92

, cleavage site for the release of the activation peptide is depicted in 

purple. 
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It should be noted that the molecular mechanism of inhibition of the T/TM-mediated activation 

of rTAFI by VHH-rTAFI-i81 is difficult to explain since the binding region is not in very close 

proximity of the Arg
92

 cleavage site. However, a study by Marx et al. already described that the 

region were VHH-rTAFI-i81 is binding (Tyr
175

, Glu
183

 and Lys
392

) is important in the activation of 

TAFI 
28

. They demonstrated that mutations at position 182 and 183 in human TAFI decreased the 

rate of activation by thrombin and the complex thrombin/thrombomodulin 2-3 fold. Accordingly, 

these mutations led to a six-fold reduced antifibrinolytic potential, demonstrating that these 

residues may somehow be involved in the TAFI-activating process. Possibly, binding of VHH-

rTAFI-i81 induces steric hindrance or allosteric changes resulting in a non-optimal positioning of 

TAFI for T/TM-mediated activation.  

The characterization and identification of the various effects of VHH-rTAFI-i81 on TAFI adds to 

previous observations that the development of TAFI(a) inhibitors should take into considerations 

many possible effects on TAFI(a). Indeed, reversible active-site inhibitors 
6, 29

 have been shown to 

stabilize TAFIa under certain conditions. Even though inhibition of the activation of TAFI was not 

expected to affect the stability of TAFIa, our current study demonstrates the opposite. Therefore 

caution should be taken into consideration in the development of TAFI inhibitors and a wide 

screening on new compounds through different TAFI assays is recommended. 

Whether the partially stabilizing effect of VHH-rTAFI-i81 on the TAFIa activity may compromise 

its profibrinolytic activity under certain conditions cannot be fully excluded. However previous 

studies using stabilized TAFIa variants have demonstrated that, even though stabilization has an 

effect on clot lysis, this effect (prolongation of clot lysis) is relatively small 
30

. According to our 

current experiments, the potent inhibitory activity appears to outweigh a possible stabilizing 

effect and overall result in a strong profibrinolytic effect in in vitro clot lysis as well as in the in 

vivo thromboembolism model. It is also important to note that in the in vivo model, VHH-rTAFI-

i81 exerts a profibrinolytic effect in the absence of a thrombolytic agent. This indicates that VHH-

rTAFI-i81 strongly enhances the endogenous fibrinolytic potential. A monoclonal anti-TAFI 

antibody, MA-TCK26D6, previously tested in the thromboembolism model in the presence of 

exogenous t-PA only showed a 55% reduction of fibrin deposition in the lungs 
15

 while VHH-rTAF-

i81 reduced the fibrin deposition by 96%. The strong effect might be related to the strong affinity 

of VHH-rTAFI-i81 for mTAFI (KA = 6.8 ± 1.2 * 10
9
) which is 10-fold higher than the affinity of MA-

TCK26D6.  
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In conclusion, VHH-rTAFI-i81 is a very potent inhibitor of the T/TM-mediated activation of rTAFI. 

Even though under certain circumstances we observed TAFIa stabilizing properties of VHH-rTAFI-

i81, co-administration with t-PA in an in vitro clot lysis assay leads to a strong enhanced 

profibrinolytic effect. In an in vivo mouse thromboembolism model VHH-rTAFI-i81 strongly 

reduces fibrin deposition in the absence of exogenously added t-PA. 
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SUMMARY 

Background: Many ELISAs have been developed to measure TAFI antigen levels. However, not 

the total antigen levels but the amount of activated TAFI (TAFIa) represents the enzymatic 

activity essential for its biological function. Previously reported ELISAs to quantify TAFIa 

demonstrate cross-reactivity with TAFIai, an inactivated TAFIa form. 

Objective: Development of a human TAFIa specific ELISA and quantitation of TAFIa levels in 

plasma from patients who suffered from venous thromboembolism. 

Methods and results: A sandwich-type ELISA was developed based on a highly selective TAFIa 

nanobody for capture and a HRP-conjugated monoclonal antibody directed against TAFI for 

detection. The assay demonstrated equal response to all four naturally occurring TAFIa isoforms 

and did not react with TAFIai. An excellent correlation between the response in ELISA and the 

generated TAFIa activity, as determined by chromogenic assay, is observed with purified 

recombinant TAFI as well as during in vitro clot lysis. Analyzing plasma samples revealed that 

patients with a history of a venous thrombotic event have significantly higher TAFIa levels 

compared to healthy controls. 

Conclusion: An ELISA specifically detecting TAFIa was developed. The ELISA is a useful tool to 

quantify TAFIa in different settings. 
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INTRODUCTION 

TAFIa, encoded by the CPB2 gene, is a metallocarboxypeptidase which is generated upon 

activation of the TAFI zymogen (56 kDa) by trypsin-like enzymes such as thrombin, plasmin or 

the thrombin/thrombomodulin complex. The activation consists of proteolytical cleavage of the 

Arg
92

-Ala
93

 bond resulting in the release of the activation peptide (20 kDa; Phe
1
-Arg

92
) from the 

active protease moiety, TAFIa (36 kDa; Ala
93

-Val
401

)
1-4

. Four naturally occurring isoforms exist 

with on position 147 either Ala or Thr and on position 325 Ile or Thr. The polymorphism at 

position 325 influences the half-life of TAFIa, the Thr
325

-isoform is characterized with a half-life of 

8 min at 37°C whereas the Ile
325

-isoform has a half-life of 15 min at 37°C 
5
. This temperature-

dependent instability is the consequence of a conformational change resulting in the formation 

of an inactive TAFIa form, TAFIai 
4, 6

. 

Clinical studies have demonstrated elevated levels of TAFI in cardiovascular diseases such as 

angina pectoris 
7
, venous thrombosis 

8
, coronary artery disease 

9
 and ischemic stroke 

10
. 

However, all of the studies were based on total TAFI antigen levels. Two monoclonal antibody-

based ELISAs to determine the released activation peptide and to determine TAFIa/TAFIai were 

developed by Ceresa et al. 
11

 and demonstrated higher plasma levels of both the activation 

peptide and TAFIa/TAFIai in patients with hyperlipidemia compared to healthy individuals. There 

was no difference in total TAFI antigen levels between the two groups. Using another ELISA, 

based on capture by potato tuber carboxypeptidase inhibitor (PTCI) and detecting both TAFIa 

and TAFIai 
12

 elevated levels of TAFIa/TAFIai were observed in sepsis patients 
13

. Alternatively, 

TAFIa can be determined through its activity, e.g. by its capacity to convert hippuryl-arginine to 

hippuric acid, which can subsequently be detected by a colorimetric reaction 
14

. A TAFIa assay 

based on the fact that TAFIa decreases the cofactor activity of high-molecular-weight fibrin 

degradation products in the stimulation of plasminogen cleavage was also developed 
15

. These 

functional assays however lack sufficient sensitivity and specificity 
14

 or require the use of 

reagents that are not generally available 
15

 thereby excluding implementation in a routine clinical 

setting. 

Besides conventional antibodies, the serum of Camelidae contains considerable amounts of 

unique antibodies, naturally devoid of the light chain and lacking the CH1-domain 
16

. These 

functional antibodies, termed heavy chain antibodies, bind their targets by a single domain, i.e. 

the variable domain of the heavy-chain antibodies (VHH) or Nanobody 
17

. Many VHHs show 

longer CDR3s (complementarity determining regions 3), often forming an extended loop which is 
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stabilized by a disulfide bridge. The potent enzyme binding properties of VHHs are ascribed to 

this protruding paratope 
18

. TAFIa binding nanobodies that specifically bind in the catalytic cleft 

of active TAFIa have been characterized 
19

. In the current study we exploited their high 

selectivity for TAFIa for the development of a sandwich-type ELISA in which such a nanobody is 

used as capture. 
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MATERIAL AND METHODS  

Materials 

Recombinant TAFI-T
147

-I
325

 (TAFI-TI), TAFI-A
147

-I
325

 (TAFI-AI), TAFI-T
147

-T
325

 (TAFI-TT), TAFI-A
147

-

T
325

 (TAFI-AT) were produced as described before 
20

. All the experiments were performed with 

TAFI-TI unless indicated otherwise. Five nanobodies towards TAFIa and 29 HRP-conjugated 

monoclonal antibodies towards TAFI were produced as described 
19, 21-23

. Human thrombin was 

purchased from Sigma-Aldrich. Rabbit thrombomodulin (TM) was obtained from American 

Diagnostics (Greenwich, CT, USA). H-D-phenylalanine-L-propyl-L-arginine chloromethyl ketone 

(PPACK), hippuryl-L-arginine and potato tuber carboxypeptidase inhibitor (PTCI) were obtained 

from Biomol Research labs (Plymouth PA, USA), Bachem (Bubendorf, Switzerland) and Sigma-

Aldrich respectively. Tissue-type plasminogen activator (t-PA) was a kind gift from Boehringer 

Ingelheim (Brussels, Belgium). A citrated human plasma pool (26 healthy volunteers), collected 

with their written consent, was prepared in-house and stored at -80°C. TAFI-depleted plasma 

(TDP) was prepared from the human plasma pool as described before 
20

. 

Construction of a sandwich type ELISA for the detection of TAFIa. 

Nanobodies were diluted to 4 µg/mL in PBS (140 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4 and 1.5 

mM KH2PO4, pH 7.4). Two hundred µL of this solution was transferred in each well of a 

polystyrene microtiter plate (Costar) and incubated for 72 h at 4°C. Subsequently, the plates 

were emptied and incubated with PBS containing albumin (1%) for 2 hours at room temperature. 

Then, the plates were washed with PBS containing 0.002% Tween 80 (PBS-Tween) and incubated 

with 200 µL/well storage solution (100 g/L mannitol and 20 g/L saccharose in water). After 4 min 

the wells are emptied and the plates stored at -20 °C. Immediately before use, the plates are 

washed with PBS-Tween. Samples were diluted in PBS containing 0.002% Tween 80 and 1 g/L 

BSA (PTA) by serial two-fold dilutions and applied on the plate (180 µL) at 4 °C for approximately 

18 h. Subsequently the plate was washed with PBS-Tween. Then, the wells were filled with 170 

µL of a HRP-conjugated monoclonal antibody (diluted 1:2000) in PTA, and incubated for 2 h at 

room temperature. The plates were washed with PBS-Tween and 160 µL of a citrate buffer 

buffer (0.1 M sodiumcitrate and 0.2 M sodiumphosphate, pH 5.0) containing 400 µg/mL o-

phenylenediamine and 0.003% hydrogen peroxide was added. After 1 h at room temperature 

the reaction was stopped by addition of 50 µl of 4 M H2SO4. The absorbance was measured at 

492 nm with an EL808 Ultra Microplate Reader (Bio-Tek instruments Inc).  
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Calibration was performed based on an in-house TAFIa standard which was prepared by 

activation of TAFI-TI (concentration during activation 90 nM) by thrombin and thrombomodulin 

(T/TM, 20 and 5 nM respectively) in the presence of CaCl2 (5 mM) at 25 °C for 10 min. The 

activation was arrested by PPACK (37.5 µM) and fractions were frozen at -80 °C. The TAFIa 

standard is diluted in PTA to 360 pM followed by serial two-fold dilutions.  

The activity of the TAFIa standard was determined in a chromogenic assay using hippuryl-

arginine 4 mM (at 25 °C for 15 min). The substrate reaction was arrested by HCl (1 M), 

neutralized by NaOH (1 M) and buffered with Na2HPO4 (1 M, pH 7.4). After addition of 6% 

cyanuric chloride (in 1,4-dioxane), the mixture was vortexed (5 min) and centrifuged (Eppendorf 

centrifuge 5415D) at maximal speed for 2 min. Then, aliquots of 100 µL were transferred into a 

96-well microtiterplate and the absorbance was measured at 405 nm. The TAFIa activity was 

determined based on a hippuric acid standard curve. One unit (U) carboxypeptidase activity is 

defined as the amount of enzyme converting 1 micromole of substrate per minute at 25°C. 

Reactivity of different TAFIa isoforms and TAFI(a) variants in the TAFIa ELISA 

Recombinant TAFI isoforms (TAFI-TI, TAFI-TT, TAFI-AT and TAFI-AI) were activated as described 

for the TAFIa standard. Subsequently one fraction was used to quantitate TAFIa antigen by the 

ELISA, another fraction was used to quantitate the TAFIa activity by the chromogenic assay. 

Cross-reactivity of the ELISA with intact TAFI was evaluated using TAFI-TI prior to activation as 

well as using a non-activatable TAFI mutant (TAFI-R92A) 
24

. In addition, reactivity with human 

carboxypeptidase N (30 nM) was also tested.  

Evaluation of the effect of conformational inactivation of TAFIa to TAFIai on the reactivity in 

the TAFIa ELISA 

TAFI (428.5 nM, concentration during activation) was diluted in Tris buffer (20 mM Tris, 0.1 M 

NaCl; pH 7.4) and activated at 37 °C for 10 min by T/TM (20 nM and 5 nM, respectively) in the 

presence of CaCl2 (5 mM). The activation was stopped by addition of 30 µM PPACK and the 

mixture was incubated at 37°C. Fractions were taken after different incubation periods (0, 5, 10, 

20, 30 and 60 min) and placed on ice. Subsequently, fractions were analyzed in the TAFIa ELISA 

and in the chromogenic TAFIa activity assay as described above.  
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Comparison of the reactivity of plasma, before and after activation of TAFI by T/TM, in the 

TAFIa ELISA 

Pooled human plasma was diluted (1/50) in HEPES buffer (25 mM HEPES, 137 mM NaCl, 3.5 mM 

KCl, pH 7.4 in the presence of 0.1% BSA). Fifty microliters of this dilution was incubated (25 °C for 

10 min) with T/TM (both 8 nM) in the presence of CaCl2 (concentrations during activation 6.8 

mM). The activation was arrested by addition of PPACK (38 µM). The samples were tested in the 

ELISA at a final plasma dilution of 1/500 followed by a two-fold dilution series in PTAE buffer 

(PTA buffer containing 5 mM of EDTA). Also “non-activated” plasma, subjected to an identical 

final dilution was tested in the ELISA. 

Recovery experiments 

TAFI (10 µg/ml or 2 µg/ml) was added to TAFI depleted plasma (TDP) or HEPES buffer, samples 

were diluted (1/50) and activated by T/TM (both 8 nM) in the presence of 6.8 mM CaCl2. The 

activation (at 25°C for 10 min) was arrested by PPACK (38 µM). The samples were then added to 

the plate (final plasma dilution 1/500) followed by serial two-fold dilutions in PTAE buffer. 

Recovery was calculated based upon a comparison of the response in plasma and HEPES buffer. 

To evaluate the recoveries of low amounts of activated TAFI, 75 pM TAFIa or TAFIa-CIIYQ (a 

stable TAFIa mutant with a 180-fold increased stability 
25

) was added to diluted plasma (1/8 to 

1/512 dilution, 2-fold dilution series) or to buffer. The response observed in spiked plasma was 

corrected for the base-line response of plasma at the corresponding dilution. This corrected 

response was then compared to the response in buffer to calculate recoveries. 

TAFIa during in vitro clot lysis 

Clot lysis experiments were performed in microtiterplates as described before 
11

 with minor 

modifications. Turbidity, TAFIa antigen levels and TAFIa activity were measured during clot lysis. 

Therefore, pooled plasma (final concentration 30 %) was diluted in buffer (20 mM HEPES, 0.01% 

Tween 20; pH; 7.4), TM (0.5 nM) and t-PA (final concentration 480 pM) were added. Clot 

formation was induced by addition of CaCl2 (final concentration 10.6 mM). This reaction mixture 

was made in duplicate: one was used to determine the change in turbidity every 2 min at 405 

nm (EL808 Ultra Microplate Reader (Bio-Tek instruments Inc)). The other was used to aliquot 

samples at different time points and to stop the reaction by addition of PPACK (final 

concentration 46 µM) and aprotinin (1.28 µM). Then, the samples were placed on ice and TAFIa 

antigen was quantitated by the ELISA and TAFIa activity was quantitated by the chromogenic 
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assay (substrate conversion was allowed for 30 min at 25°C). To correct for the enzymatic 

activity of carboxypeptidase N in plasma, substrate conversion was also performed in the 

presence of PTCI (final concentration: 3 mM) and values obtained in the presence of PTCI were 

subtracted from the values obtained in the absence of PTCI in order to obtain the specific TAFIa 

activity. 

TAFIa, activation peptide and intact TAFI levels in plasma of healthy individuals  

Blood of 20 healthy individuals (10 female, 10 male; age between 22 and 55 years, average 35), 

was collected with their written consent. Blood was placed on ice until further processing. 

Plasma was prepared by centrifugation at 3500 rpm (Jouan CR412) for 20 min at 4°C and stored 

at -80°C. The plasma samples were analyzed on three different ELISAs: MA-T12D11/MA-T18A8-

HRP for the quantitation of the activation peptide, MA-T12D11/MA-T30E5A2-HRP for the 

quantitation of intact TAFI and VHH-TAFI-i391/MA-TCK26D6-HRP for the quantitation of TAFIa. 

Samples were appropriately diluted: ¼ in PTAE for quantification of TAFIa and the activation 

peptide and 1/160 in PTAE for intact TAFI. The activation peptide ELISA was calibrated based on 

the TAFIa standard, described above, assuming the presence of 360 pM of activation peptide. 

To evaluate potential ex vivo TAFI activation upon blood collection, blood was collected on 

citrate (BD Vacutainer 0.109 M sodium citrate) in the presence or absence of PPACK (7 µM, 

thrombin inhibitor) and aprotinin (8 µM, plasmin inhibitor).  

Evaluation of TAFIa in venous thromboembolism patients 

Eighty-eight patients diagnosed with a venous thrombotic event were included (average age 49 

years, average days between diagnosis and blood sample: 253 days). A control group comprised 

86 healthy individuals with no history of thrombosis (average age 35 years). Blood samples were 

collected in BD Vacutainer tubes (3.2% buffered sodium citrate) and plasma was prepared by 

centrifugation at 2000 rpm at 4°C for 20 min and stored at -20 °C until analysis. TAFIa levels were 

quantitated as described above and expressed relative to a plasma pool of healthy controls, 

prepared from blood obtained from 29 healthy individuals and processed and stored under 

conditions identical to those of the study samples. All patients gave written consent to 

participate in the IRB-approved “Vlaamse Erfelijkheidsstudie Crohn en Colitis ulcerosa” (VLECC), 

registry (B322201213950S53684). 
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Statistical analysis 

Quantitative data are presented as mean ± standard deviation (SD). Statistical analysis 

(paired/unpaired t-test and Mann Whitney test) were performed by GraphPad Prism (GraphPad 

Prism 5 Software). 
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RESULTS 

Five nanobodies, used as capture, were pair-wise tested with 29 HRP-conjugated monoclonal 

antibodies for detection. Based on the high affinity of VHH-TAFI-i391 for TAFIa 
19

 and the good 

sensitivity and linear response to TAFIa when used in combination with the well characterized 

MA-TCK26D6 
23

, this pair was selected for the development of an ELISA for the detection of 

TAFIa.  

Reactivity of different TAFIa isoforms and TAFI(a) variants in the ELISA 

A linear dose-response between 11 and 180 pM was observed for all TAFIa isoforms (TAFIa-TI, 

TAFIa-AT, TAFIa-AI and TAFIa-TT). To evaluate the relationship between TAFIa antigen 

determined by the ELISA and TAFIa activity determined by chromogenic assay, both values 

obtained for the various isoforms were compared (Figure 5.1).  

 

 

 

 

 

 

 

Figure 5.1: Correlation between TAFIa antigen levels and TAFIa activity. For the different TAFIa isoforms (TAFIa-TI , 

TAFIa-AT , TAFIa-AI  and TAFIa-TT ) TAFIa antigen levels are determined by the TAFIa ELISA and TAFIa activity by a 

chromogenic assay. A representative experiment out of three performed experiments is shown. 

 

The slopes for TAFIa-TI, TAFIa-AT, TAFIa-AI and TAFIa-TT were 0.83 ± 0.02, 0.82 ± 0.01, 0.79 ± 

0.01 and 0.81 ± 0.02 nmol/U , respectively and demonstrate a similar response for all TAFIa 

isoforms. The coefficients of determination exceed 0.99. The limit of detection (LOD) is 22.5 pM. 
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Recombinant intact TAFI revealed a response of 0.54 ± 0.05 % compared to that of TAFIa (Figure 

5.2, panel A). To determine whether this small response was due to an intrinsic cross-reactivity 

of intact TAFI or due to the presence of small amounts of activated TAFI, a TAFI mutant (TAFI-

R92A), which cannot be activated to TAFIa, was also included. The response of TAFI-R92A was 

30-fold higher compared to that of intact ‘wild-type’ TAFI but did not change upon treatment of 

TAFI-R92A with T/TM. No reactivity was observed for CPN up to 30 nM. 
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Figure 5.2: Response of different TAFI variants (panel A) and response of activated and non-activated plasma (panel B) in 

the ELISA. Difference in response between non-activated TAFI ( ), activated TAFI ( ) and TAFI-R92A before ( ) and 

after activation ( ) in the ELISA (panel A). Reactivity of plasma (panel B) before ( ) and after ( ) TAFI activation. A 

representative experiment out of three performed experiments is shown.  

 

Activation of TAFI in plasma resulted in TAFIa levels of 274 ± 15 nM. Non-activated plasma 

revealed a response of 0.13 ± 0.04 % versus activated plasma (Figure 5.2, panel B).  

Evaluation of the effect of conformational inactivation of TAFIa to TAFIai on the reactivity in 

the ELISA 

Incubation of TAFIa at 37°C results in loss of response in the TAFIa ELISA (Figure 5.3, panel A, full 

line). This loss in antigenic response coincides with the loss of activity (Figure 5.3, panel A, 

dashed line) indicating that the ELISA only reacts with TAFIa and not with TAFIai. The half-life for 

the loss of binding in the ELISA was 8.9 ± 3.3 min. The half-life of TAFIa activity, as determined by 

the chromogenic assay, was 8.5 ± 0.6 min. 
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Figure 5.3: Effect of inactivation of TAFIa on reactivity in the ELISA and TAFIa activity (panel A) and generation of TAFIa 

activity during clot formation and lysis (panel B). Residual binding of TAFIa in the ELISA (full square, full line) and 

concomitant TAFIa activity ( full circle, dashed line) after incubation of TAFIa for different time periods at 37°C (mean ± SD, 

n = 3) (panel A). A representative clot lysis profile (OD (405 nm); grey triangles) and concomitant TAFIa values determined 

by the TAFIa ELISA (TAFIa (nM); full circle, full line) and chromogenic assay (TAFIa (U/L); full square, dashed line) is shown 

(panel B). 

 

Recovery experiments 

Addition of TAFI to TAFI-depleted plasma followed by activation revealed a recovery of 104.7  ± 

9.2 % and 97.4  ± 12.1 % for 10 µg/ml and 2 µg/ml TAFI respectively. Experiments with 10 µg/ml 

TAFI showed an intra-assay coefficient of variation of 7.4 % and an inter-assay variability of 8.8 

%. Experiments with 2 µg/ml TAFI showed an intra-assay coefficient of variation of 10.6 % and an 

inter-assay variability of 12.5 %. The interdilution coefficients of variation were 7.5 % (n = 5; 

serial 2-fold dilutions) and 11.7 % (n = 3; serial 2-fold dilutions) for 10 µg/ml and 2 µg/ml TAFI, 

respectively. 

Addition of 75 pM TAFIa to 1/8 diluted plasma resulted in a recovery of 20 ± 5 % for TAFIa-TI and 

31 ± 5 % for TAFIa-CIIYQ. Recoveries increased gradually when using plasma at a higher dilution, 

reaching a plateau (59 % and 97 % for TAFIa-TI and TAFIa-CIIYQ, respectively) at a 1/128 dilution.  

TAFIa during in vitro clot lysis 

Generation of TAFIa antigen and activity was monitored during in vitro clot lysis. A good 

correlation (r = 0.98) was observed between TAFIa antigen as determined by the TAFIa ELISA and 

TAFIa activity as determined with the chromogenic assay (Figure 5.3, panel B). The maximal 

response in the ELISA as well as maximal TAFIa activity was observed 30 min after clot formation 

and corresponds to a TAFIa antigen concentration around 10 nM and a TAFIa activity of 30 U/L.  

TAFIa, activation peptide and intact TAFI levels in healthy individuals 

In plasma from 20 healthy individuals, levels of TAFIa, activation peptide and intact TAFI were 

457 pM (median; interquartile range = 332 pM to 708 pM), 335 pM (median; interquartile range 
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= 225 pM to 720 pM) and 106 nM (median; interquartile range = 97 nM to 129 nM), respectively. 

There was no correlation between the amount of TAFIa and activation peptide (Pearson r = 0.19, 

p = ns), TAFI and TAFIa (Pearson r = 0.09, p = ns) and TAFI and activation peptide (Pearson  

r = -0.03, p = ns) in plasma (Figure 5.4, panels A, B and C, repsectively).  

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Correlations between different TAFI derivatives in plasma (A, B, C) and impact of different blood collections 

on plasma TAFIa levels (D). Correlation between levels of activation peptide and TAFIa (panel A), intact TAFI and TAFIa 

(panel B) and intact TAFI and activation peptide (panel C) in plasma of 20 healthy volunteers. Full lines represent linear 

regressions (panel A, B and C). Plasma TAFIa levels upon blood collection on citrate either in the absence or in the presence 

of PPACK (P) and aprotinin (A) (panel D).  

 

Furthermore no correlation was observed between TAFIa levels and age and no significant 

difference was observed in TAFIa levels between male and female (unpaired t-test). There was 

no significant difference (paired t-test) in TAFIa levels in plasma prepared from blood collected in 

the presence or absence of PPACK and aprotinin, thereby excluding ex vivo activation of TAFI 

upon blood collection (Figure 5.4, panel D). 

Evaluation of TAFIa in venous thromboembolism patients 

TAFIa levels in plasma from HC were 93.3 % (median; interquartiles: 59.3 % to 146.7 %) whereas 

TAFIa levels in plasma from patients with a history of VTE were significantly higher 171.7 % 

(median; interquartiles: 104.9 % to 279.8 %) (Mann Whitney p < 0.0001) (Figure 5.5).  
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Figure 5.5: TAFIa levels in venous thromboembolism. TAFIa levels in healthy controls (HC) and venous thromboembolism 

patients (VTE) ( * Mann Whitney: p < 0.0001). 

 

There was no correlation between TAFIa levels and age in the HC and the VTE group. A 

significant difference in TAFIa levels was observed between male and female in the HC group 

(126 % and 92 %, respectively; p < 0.05, unpaired t-test), but not in the VTE group (160 % and 

176 % for male and female, respectively). 
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DISCUSSION 

TAFIa is formed upon proteolytical cleavage of TAFI by T, T/TM or plasmin and exerts an 

antifibrinolytic effect. However, TAFIa is thermally unstable and undergoes conformational 

changes to TAFIai. All reported TAFIa ELISAs cross-react with inactive TAFIai. Since TAFIa is 

responsible for the enzymatic activity, measurement of TAFIa levels instead of intact TAFI is 

believed to be more relevant for studies on the association between TAFI(a) and cardiovascular 

diseases. Further evidence suggesting that measuring TAFIa instead of TAFI is more relevant is 

provided by the threshold dependent mechanism of TAFI. The principle of this mechanism 

implies that not the total amount of TAFI but the amount of TAFIa is critical in fibrinolysis 
26

. 

Therefore, we have developed a highly selective TAFIa ELISA without cross-reactivity with TAFIai. 

Indeed, simultaneous TAFIa activity determination by hippuryl-arginine and TAFIa antigen 

quantification in the ELISA, after incubation of TAFIa for different time periods at 37°C, 

demonstrate an excellent correlation between the loss of activity and the loss of TAFIa antigen 

detection (Figure 5.3, panel A). ELISAs for TAFI often exhibit different reactivities towards 

different TAFI isoforms 
20

. The currently described TAFIa ELISA shows an equal response to all 

four naturally occurring TAFIa isoforms. A 0.5 % response was found for intact TAFI suggesting a 

small degree of cross-reactivity of intact TAFI in the TAFIa ELISA. However, the apparent cross-

reactivity is in contradiction with the observation that VHH-TAFI-i391 only binds to TAFIa and not 

to TAFI in a Biacore setup 
19

. The cross-reactivity might be related to the reported zymogen 

activity of TAFI 
27

 since the TAFI-R92A mutant with a 5-fold increased zymogen activity 
24

 also 

demonstrated and increased response in the ELISA. However, comparison between “activated” 

and “non-activated” plasma demonstrate a reactivity in the TAFIa ELISA of only 0.13 % (before 

versus after activation). This apparent reactivity of “non-activated” plasma in the TAFIa ELISA can 

be due to either a cross-reactivity with intact TAFI or the presence of baseline levels of TAFIa or a 

combination of both. Indeed, it has been reported that besides intact TAFI also baseline levels of 

TAFIa are present in plasma 
15

, therefore the apparent cross-reactivity between TAFI and TAFIa is 

most likely an over estimation and the real cross-reactivity is most likely very low. Since no 

correlation is observed between intact TAFI and TAFIa in plasma of healthy volunteers, a 

significant contribution of “cross-reactive” intact TAFI from plasma in the TAFIa ELISA can be 

excluded. The cross-reactivity of 0.5% as observed between intact and activated TAFI might 

indeed be an in vitro artifact observed for recombinantly produced and purified TAFI. 
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The LOD (limit of detection) of the TAFIa ELISA described in this manuscript (22.5 pM) is 

comparable to the other antigen-based assays (LOD around 27 pM 
28

) and only slightly higher 

compared to the TAFIa activity-based assays (LOD around 10 pM 
15, 29

). Using our TAFIa ELISA, an 

average of 500 pM TAFIa was found in plasma of 20 healthy volunteers. Other studies using 

different assays report a broad range of average TAFIa levels in plasma: from no TAFIa 
29

 and 

very low TAFIa levels (20 pM) 
15

 in TAFIa activity-based assays, up to 450 pM 
12

 and 2300 pM 
28

 in 

TAFIa/TAFIai antigen-based assays. The reason for the discrepancy in TAFIa levels determined by 

either functional assays or antigen-based assays can only be partially explained by the cross-

reactivity of the antigen-based assays with TAFIai.  

The recovery experiments in which intact TAFI was added to TAFI-depleted plasma at 

“physiological” concentration and subsequently activated yielded good recoveries. However, 

spiking of TAFI-depleted plasma with low concentrations (75 pM) of TAFIa gave very poor 

recoveries. Plasma proteins interacting with TAFIa have been described (plasminogen and 

fibrinogen) 
30

, however they only had a minor influence on the poor recovery (data not shown). 

Even though the reason for the poor recovery is still unknown, experiments with an activated 

stable TAFIa mutant (TAFIa-CIIYQ) 
25

 yielded better recoveries suggesting that the intrinsic 

instability of TAFIa might be involved. To avoid reporting ambiguous absolute TAFIa antigen 

levels, TAFIa levels of the VTE study are therefore expressed relatively compared to the response 

of a plasma pool. 

Analysis of plasma samples from VTE patients demonstrate significantly increased levels of TAFIa 

compared to a control group (HC). This might suggest that individuals with higher TAFIa levels 

might have an increased risk for a venous thrombotic event but should be confirmed by 

prospective studies. It should be noted that the blood samples were collected on average 253 

days after the incidence of the thrombotic event, thereby excluding that the high TAFIa levels 

would merely be the consequence of TAFI activation during the thrombotic event. Even though 

the mean age of the patients in the VTE group is more than 10 years higher compared to the HC 

group, we anticipate that this is not the reason for the elevated TAFIa levels since no correlation 

between TAFIa levels and age was observed in neither of the two groups.  

In conclusion, to the best of our knowledge this is the first report on a TAFIa ELISA without cross-

reactivity with TAFIai. Application of the ELISA in different settings (purified TAFIa, clot lysis assay 

and plasma samples) allowed reliable quantitation of TAFIa levels. In addition, elevated levels of 



Chapter 5 

107 

TAFIa were detected in VTE patients. The simplicity of the use of this ELISA can facilitate further 

research on the role of TAFIa in different pathophysiological conditions. 
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Activated TAFI (TAFIa) exerts an antifibrinolytic effect by removing C-terminal lysine residues 

from partially degraded fibrin. The C-terminal lysine residues are an important co-factor for t-PA-

mediated plasminogen activation. The development of TAFI(a) inhibitors as profibrinolytic agents 

is therefore an attractive concept 
29

. Several naturally occurring and small synthetic TAFI 

inhibitors have been tested in different animal models and show an enhancement of 

endogenous fibrinolysis. However the most promising approach is the use of TAFI inhibitors in 

combination with t-PA, this would allow lowering the dose of t-PA thereby decreasing its side 

effects without compromising the efficacy of the treatment 
29

. The synthetic and naturally 

occurring TAFI inhibitors lack specificity. Generation of monoclonal antibodies resolved the 

specificity problem but in general, due to their mouse origin they induce immunogenicity and 

the production costs are quite high. Chimeric and humanized antibodies or smaller antibody 

fragments such as Fabs and scFvs could circumvent these immunogenicity problems, but 

antibody fragments have other problems such as low production yields and a tendency to 

aggregate. Nanobodies (single-domain fragments derived from heavy-chain-only antibodies) are 

one of the smallest antigen binding fragments with high specificity, good production yields and 

low immunogenicity 
109

. 

Therefore, the aim of this PhD project was to generate inhibitory nanobodies towards TAFI. 

Three immunizations with human TAFIa, mouse TAFI and rat TAFI were performed and resulted 

in the discovery of unique nanobodies. During the characterization of these inhibitory 

nanobodies serendipity comes into play: inhibitory nanobodies towards human TAFIa were able 

to identify a novel conformational transition in TAFIa (chapter 2), a nanobody towards mouse 

TAFI revealed a novel way to impair TAFI activation (chapter 3), a nanobody towards rat TAFI 

demonstrated a strong profibrinolytic effect but has TAFIa stabilizing properties (chapter 4) and 

the use of a nanobody in the development of a nanobody-based ELISA resulted in the first TAFIa 

ELISA without cross-reactivity with an inactive conformation of TAFIa (TAFIai) (chapter 5). 

 

Nanobodies towards human TAFIa 

Buelens et al. reported inhibitory nanobodies towards human TAFI 
41

 but no specific TAFIa 

inhibitory nanobodies were found. We aimed to generate TAFIa inhibitory nanobodies, however 

the development of nanobodies towards human TAFIa is hampered by the intrinsic instability of 

TAFIa (half-life at 37°C of approximately 10 min) 
22

. Therefore a TAFIa mutant 
23

, with a 180-fold 

increased stability was used for the immunization. Screening of the generated library of 



Chapter 6 

113 

nanobodies resulted in a diverse panel of inhibitory nanobodies. We focused on the specific 

TAFIa inhibitory nanobodies. 

Profibrinolytic effects were observed in the presence of these nanobodies in an in vitro clot lysis 

assay. Unexpectedly, the nanobodies demonstrate an antifibrinolytic effect in the presence of 

exogenous TM: transient (depending on concentration) for VHH-TAFI-i391 but occurring at all 

tested concentrations for VHH-TAFI-a428. Transient antifibrinolytic effects have been described 

for other reversible TAFIa inhibitors such as GEMSA and PTCI 
34

. Therefore, development of 

irreversible TAFIa inhibitors could possibly overcome this antifibrinolytic effect. However, the 

concentration window at which a slight antifibrinolytic effect is observed is rather small for VHH-

TAFI-i391 (see Figure 2.2 B, chapter 2). Furthermore, VHH-TAFI-i391 has the highest affinity of 

the nanobodies, suggesting that the concentration window at which the antifibrinolytic effect is 

observed is depending on the affinity. 

Due to their long CDR3 region, nanobodies are often found to bind in cavities of enzymes 
89

 and 

‘hidden’ epitopes, inaccessible for conventional antibodies 
119

. Therefore, it comes as no surprise 

that the TAFIa nanobodies were found to bind in the active-site region of TAFIa and their time-

dependent differential binding behavior, during TAFIa inactivation, revealed the occurrence of a 

yet unknown intermediate conformational transition. However, the generally accepted 

statement that nanobodies have a longer CDR3 region (13-27 AA) compared to VHH (9-17 AA) 
84

 

was not confirmed in this study. 
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Figure 6.1: Distribution of the nanobodies based on their CDR3 length. 

Determination of the length of the CDR3 region in the almost 200 generated nanobodies 

(towards human, mouse and rat TAFI) revealed an average CDR3 length of 13 AA, furthermore it 

should be noted that CDR3 regions with more than 20 AA are rather exceptional (Figure 6.1). 
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It has been proposed that the affinity of in vivo matured nanobodies is comparable to 

conventional antibodies (KD’s in nanomolar to subnanomolar range) 
89

. Nanobodies with 

nanomolar KD’s were frequently observed among all our characterized nanobodies from the 

three immunizations however, nanobodies with a higher affinity are rather exceptional (we only 

found two in the panel generated with rTAFI). It is rather unlikely that a different panning 

procedure (e.g. more panning rounds) would have generated stronger binders since a rather 

harsh elution procedure is used. Performing more panning rounds would decrease the diversity 

of nanobodies. 

Unfortunately, the human TAFIa nanobodies did not show any cross-reactivity with mouse or rat 

TAFI. The absence of cross-reactivity is striking because a high sequence identity is observed 

between human and mouse or rat TAFI (86 %). Furthermore, in the TAFIa catalytic cleft, all 

amino acids essential for substrate binding, substrate specificity and zinc binding are conserved 

between these species 
120

. Even though a high sequence similarity is observed in TAFI of these 

different species, the absence of cross-reactivity confirms the very high specificity of the 

nanobodies. Unfortunately this means that the human TAFIa nanobodies could not be evaluated 

in mouse or rat models for thrombosis. Therefore, new immunizations with mouse and rat TAFI 

were performed to obtain TAFI-inhibitory nanobodies that could be evaluated in vivo. 

 

Nanobodies towards mTAFI and rTAFI 

Screening of the library, obtained after immunization of an alpaca with mouse TAFI, resulted in 

the identification of nanobody, VHH-mTAFI-i49, with a strong profibrinolytic effect in the in vitro 

clot lysis experiment (chapter 3). The mechanism of action of this nanobody was puzzling since it 

enhanced the zymogen activity of mTAFI. The zymogen activity of TAFI is a rather new 

observation and the relevance has been a point of discussion 
62, 63

. Foley et al. 
64

 suggested that 

the intrinsic zymogen activity cannot attenuate fibrinolysis. VHH-mTAFI-i49 enhances the 

zymogen activity, but paradoxically it has a profibrinolytic effect in clot lysis experiments. 

By inducing the zymogen activity of TAFI, VHH-mTAFI-i49 most likely disrupts the stabilizing 

interactions between the activation peptide and the dynamic flap region in TAFI 
24

. Disruption of 

these stabilizing interactions in intact TAFI lead to a TAFI conformation which cannot be 

activated anymore. Therefore, this novel way of interfering with the activation might have a 

place in fibrinolytic therapy. Indeed, further proof of concept was given by application of VHH-
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mTAFI-i49 in the tissue factor-induced mouse thromboembolism model and clearly 

demonstrates enhanced lysis. 

Immunization of an alpaca with rTAFI resulted in a diverse panel of nanobodies, we focused on 

VHH-rTAFI-i81, an inhibitory nanobody with a high affinity (chapter 4). Full characterization of 

the effect of VHH-rTAFI-i81 revealed inhibitory effects on the T/TM-mediated activation of rTAFI 

however, also TAFIa stabilizing properties were observed. Even though the stabilizing effects of 

VHH-rTAFI-i81 might interfere with the inhibitory properties on the T/TM-mediated activation, 

strong profibrinolytic effects were observed in the in vitro clot lysis assay. Furthermore co-

administration of VHH-rTAFI-i81 and t-PA strongly enhances the degree of lysis and reduces time 

to reach full lysis in a t-PA-mediated clot lysis assay. Therefore it was no surprise that VHH-rTAFI-

i81 exerts a strong profibrinolytic effect in the mouse thromboembolism model. 

As observed with the human TAFIa nanobodies, VHH-mTAFI-i49 and VHH-rTAFI-i81 demonstrate 

a very high specificity and do not cross-react with human TAFI. However, mouse and rat TAFI 

have a sequence identity of 96 % 
120

. VHH-mTAFI-i49 cross-reacts with rat TAFI but the induced 

zymogen activity was lower in the latter. More importantly, VHH-rTAFI-81 cross-reacts with 

mouse TAFI with similar inhibitory capacities. This allowed the use of this nanobody in the 

mouse thromboembolism model. 

Different mouse models of venous thrombosis have been developed based on Virchow’s triad, 

the models induce changes in a) vessel wall b) pattern of blood flow or c) constituents of the 

blood an in this way cause thrombus formation. The tissue factor-induced mouse 

thromboembolism model 
38

 in which the nanobodies were tested is a very acute model with a 

high concentration of tissue factor and falls under category c). Therefore it might be interesting 

to evaluate the profibrinolytic effects of the nanobodies in other models. Models studying the 

role of the vessel wall in venous thrombosis introduce damage to walls by extravascular FeCl3 

application 
121

 or electrolytic activation 
122

 and give a reproducible, local thrombus formation. 

Models that alter the blood flow pattern have been performed by ligation induced flow 

restriction and results in a ‘damage free’ model 
123

. Furthermore it would be interesting to test 

the effect of the nanobodies in different mouse models, deficient for anticoagulation proteins, 

since TAFI inhibition might interfere with their spontaneous thrombotic phenotypes 
124

. 
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Development of a specific TAFIa ELISA 

The ambiguous results in different studies 
68, 69, 125, 126

 regarding the role of TAFI in cardiovascular 

diseases are most likely due to different populations, risk factors and also by the different 

quantitative methods used. The quantification of “total” antigen level is partially hampered by 

the different reactivities of different assays for the different TAFI isoforms 
71

. Furthermore, the 

threshold-dependent mechanism 
44

 points out that not the amount of intact TAFI but the 

amount of TAFIa is critical in the interference of fibrinolysis. Even though TAFIa ELISAs have been 

developed, they detect, besides TAFIa, also TAFIai which has no enzymatic activity. Therefore the 

development of an assay for the detection of TAFIa with no cross-reactivity for TAFIai is a critical 

step forward in further research on the pathofysiological role of TAFIa.  

Based on the nanobodies targeting TAFIa (chapter 2) we have developed a TAFIa ELISA with 

equal response for all TAFIa isoforms (chapter 5). The ELISA was used to evaluate the role of 

TAFIa in venous thrombosis and was able to demonstrate increased levels of TAFIa in patients 

with a venous thromboembolism.  

In a Biacore setting VHH-TAFI-i391 was able to detect conformational changes in TAFIa by 

interaction with three TAFIa conformations (chapter 2). However, in the ELISA setup, VHH-TAFI-

i391 in combination with MA-TCK26D6-HRP only detects the TAFIa forms with enzymatic 

activities (chapter 5). Even though this might sound as a contradiction, both methods are 

drastically different: in the Biacore experiments the reaction mixture (containing TAFIa/TAFIai) 

flows over a sensorchip (at 25°C) coated with VHH-TAFI-i391. In the ELISA setting, the reaction 

mixture is incubated overnight (at 4°C) and is only detected upon interaction with MA-TCK26D6-

HRP.  

The major advantage of this ELISA, compared to other TAFIa ELISAs, is that it does not cross-

reacts with TAFIai. Furthermore, in the TAFIa ELISA there is no interference of CPN, a major 

interfering factor in many TAFIa assays 
127

 and there is an equal response for all 4 TAFI isoforms. 

There is currently no standard activation protocol for TAFI. The standard used in our ELISA is an 

in-house activated TAFI standard, stored at -80°C. Activation of TAFI has been performed at 

different temperatures, incubation times and by different activators and concentration of these 

activators 
21, 73, 128

. However, since the different activators can also cleave TAFIa 
26

 and the TAFIa 

activity is thermally unstable, different extents of activation and deactivation can occur. We 

decided to activate TAFI at 25°C for 10 minutes, thereby minimizing the fast thermal decay of 

TAFIa. Furthermore we used T/TM as activator since a full activation is observed after 10 min. 
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For comparison between different assays it might be interesting that a standard protocol is put 

forward.  

 

Further perspectives 

Besides its role in the inhibition of fibrinolysis, TAFIa also plays an important role in inflammation 

129
 as it is able to inactivate several inflammatory mediators such as bradykinin, anaphylatoxins 

C3a and C5a and osteopontin 
130

. The relationship between C5a and TAFI is most studied 

compared to other inflammatory mediators. C5a can both recruit and activate neutrophils 
131, 132

, 

increase the vascular permeability 
133, 134

 and cause lysosomal degranulation resulting in 

histamine and TNF-α release 
135, 136

. In vivo studies demonstrated that wild-type mice showed 

significantly less inflammation compared to TAFI-deficient mice in a C5a-induced alveolitis model 

55
. Furthermore, wild-type mice were partially protected (compared to TAFI-deficient mice) 

against arthritis, induced by an anti-collagen antibody 
136

. Due to the TAFIa stabilizing properties 

of VHH-TAFI-a428 (chapter 2) this nanobody could have a potential anti-inflammatory effect 

since it would allow a prolonged TAFIa activity. On the other hand the TAFI zymogen is also 

capable of cleaving small synthetic substrates 
64

 and it can be expected that the VHH-mTAFI-i49-

induced zymogen activity (chapter 3) exerts an increased activity to inactivate the inflammatory 

mediators. Although in view of the instability of the induced zymogen activity it is currently not 

clear what the applicability of VHH-mTAFI-i49 would be on the inflammatory components. 

Therefore, it would be interesting to test whether stimulating agents of the TAFI zymogen 

activity (such as VHH-mTAFI-i49) could be interesting tools to investigate anti-inflammatory 

properties. 

Furthermore TAFI has also been associated with bleeding complications in hemophilia. These 

bleeding complications are not only due to an impaired coagulation but are also exacerbated by 

the inability of the coagulation system to protect the clot from rapid break down by the 

fibrinolytic system. This results in prolonged bleeding and recurrent re-bleeding typically 

observed in hemophilia patients 
46

. The enhanced fibrinolytic breakdown of the hemophilia clot 

is partially a result of reduced activation of TAFI 
50

 and treatment of hemophilia A patients with 

FVIII increases TAFI activation and normalizes protection of the clot against premature lysis 
51

. 

Since TAFIa is very thermally unstable, stabilization of TAFIa might be a novel, promising 

approach for the treatment of hemophilia. Therefore, VHH-TAFI-a428 (chapter 2) might be good 
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candidate to stabilize the blood clot and thereby reduce the bleeding tendency in hemophilia 

patients.  

Enhancement of the zymogen activity could also stabilize the blood clot if the induced zymogen 

activity is not only active for small substrates but also for partially degraded fibrin. Whether the 

induced zymogen activity is able to remove C-terminal lysine residues is most likely dependent 

on the degree of translocation of the activation peptide. Induction of a blood clot when the VHH-

mTAFI-i49-induced zymogen activity is at its maximum did not result in a stabilization of the clot 

(reflected by the absence of a prolongation of clot lysis time). Therefore it is unlikely that VHH-

mTAFI-i49 (chapter 3) would have an effect on stabilization of the blood clot in hemophilia 

patients. However, other agents inducing the zymogen activity in such a way that also larger 

substrates could be cleaved (by an increased extent of translocation of the activation peptide) 

might improve the clot stability. 

Even though the small size of nanobodies has some advantages (e.g. better clot penetration 
41

) 

the in vivo half-life is rather short (ca 35 min 
94

) due to the rather low molecular weight. This 

results in a fast renal clearance. The effect of the nanobodies in the acute in vivo 

thromboembolism model (chapter 3 and 4) was not hampered by their short half-life. However 

in studies where a prolonged half-life is required, different solutions to overcome this problem 

have been proposed such as PEGylation or the construction of bi/multivalent nanobody 

constructs 
94, 100

. Such bi/multivalent constructs could target both TAFI and other risk factors for 

thrombosis (e.g. PAI-1) and could lead to an enhanced treatment and a prolonged half-life. 
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ENGLISH SUMMARY 

Upon activation, thrombin-activatable fibrinolysis inhibitor (TAFI) delays lysis of blood clots. TAFI 

is activated by trypsin-like enzymes such as thrombin and plasmin to active TAFI (TAFIa). TAFIa 

removes C-terminal lysine residues on the surface of the blood clot, thereby hampering plasmin 

generation and lysis of clots. Therefore, TAFI(a) is considered to be a risk factor for 

cardiovascular diseases. Current thrombolytic therapy, mainly based on plasminogen activators 

(such as t-PA), is very effective but leads to severe side effects such as increased bleeding risks 

and neurotoxicity. Co-administration of TAFI(a) inhibiting agents and t-PA could decrease these 

side effects by reducing the required dose of t-PA without compromising the efficacy of the 

treatment. 

Nanobodies (derived from a unique subtype of camel antibodies) are one of the smallest antigen 

binding fragments. They are often very potent enzyme inhibitors and less immunogenic 

compared to conventional antibodies. We aimed to generate inhibitory nanobodies towards 

human, mouse and rat TAFI and to characterize their inhibitory properties in vitro and in vivo. 

During the characterization of these inhibitory nanobodies serendipity comes into play: 

inhibitory nanobodies towards human TAFIa were able to identify a novel conformational 

transition in TAFIa (chapter 2), a nanobody towards mouse TAFI revealed a novel way to impair 

TAFI activation (chapter 3), a nanobody towards rat TAFI demonstrated a strong profibrinolytic 

effect but has TAFIa stabilizing properties (chapter 4) and the use of a nanobody in the 

development of a nanobody-based ELISA resulted in the first TAFIa ELISA without cross-reactivity 

with an inactive conformation of TAFIa (TAFIai) (chapter 5). 

In the first part of this study (chapter 2) inhibitory nanobodies towards human TAFIa were 

identified and characterized. In vitro clot lysis experiments in the absence of thrombomodulin 

(TM) demonstrated that the nanobodies accelerate clot lysis. However, in the presence of TM, 

one nanobody delays clot lysis at all concentrations tested, whereas the other nanobodies exert 

a slight delay at low concentrations and a pronounced acceleration of clot lysis at higher 

concentrations. This biphasic pattern was highly dependent on the concentration of TM and t-

PA. Furthermore, the nanobodies were found to bind in the active-site region of TAFIa and their 

time-dependent differential binding behavior during TAFIa inactivation revealed the occurrence 

of a yet unknown intermediate conformational transition.  
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Screening of a library of nanobodies towards mouse TAFI (mTAFI) revealed one nanobody (VHH-

mTAFI-i49) that significantly stimulates the zymogen activity of mTAFI (chapter 3). The 

generated zymogen activity is unstable at 37 °C and incubation of mTAFI with VHH-mTAFI-i49 

revealed a time-dependent reduced activatability of mTAFI. In vitro clot lysis experiments in the 

presence of VHH-mTAFI-i49 revealed a strongly enhanced clot lysis due to a reduced activation 

of mTAFI during clot formation. In vivo application of VHH-mTAFI-i49 in a mouse 

thromboembolism model dose-dependently decreased the fibrin deposition in the lungs. 

Furthermore, epitope mapping suggested that this novel way of interfering with TAFI activation 

is a result of destabilization of mTAFI by disrupting stabilizing interactions between the 

activation peptide and the catalytic moiety. 

Chapter 4 focused on the most potent nanobody towards rat TAFI, VHH-rTAFI-i81, which mainly 

inhibits the thrombin/thrombomodulin (T/TM)-mediated activation of rat TAFI. In an in vitro clot 

lysis assay, co-administration of t-PA and VHH-rTAFI-i81 strongly enhanced the degree of lysis 

and reduced time to reach full lysis of t-PA-mediated clot lysis. In vivo application of VHH-rTAFI-

i81 in a mouse thromboembolism model significantly decreased fibrin deposition in the lungs.  

In chapter 5, the development of a specific TAFIa ELISA based on a TAFIa capturing nanobody 

(VHH-TAFI-i391) is described. The assay reacts equally well with all four naturally occurring TAFIa 

isoforms and does not cross-react with inactivated TAFIa. In an in vitro clot lysis assay, an 

excellent correlation is observed between the TAFIa activity determined by a functional assay 

and the TAFIa antigen determined by the ELISA. Analysis of plasma samples obtained from 

patients with a history of a venous thrombotic event demonstrated significantly higher TAFIa 

levels compared to healthy controls. 

In conclusion, this study demonstrates that nanobodies targeting TAFI(a) are useful as 

conformational probes, as tools for the development of diagnostic assays and as potent 

inhibitors of TAFI(a). The latter properties of these nanobodies make them well suited as 

putative lead compounds in the development of strategies to increase the endogenous 

fibrinolytic capacity in blood and to improve thrombolytic therapy. 
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NEDERLANDSTALIGE SAMENVATTING 

‘Thrombin-activatable fibrinolysis inhibitor’ (TAFI) vertraagt na activatie de bloedklonterafbraak. 

TAFI kan door trypsine-achtige enzymes zoals trombine en plasmine geactiveerd worden tot het 

actief enzyme TAFIa. TAFIa verwijdert C-terminale lysine residues aan het oppervlak van een 

bloedklonter, remt zo de plasmine productie en bijgevolg de afbraak van bloedklonters. Daarom 

wordt TAFI(a) beschouwd als een risicofactor voor cardiovasculaire aandoeningen. 

Trombolytische therapie, gebaseerd op plasminogeen activatoren (zoals t-PA) is zeer efficiënt 

maar kan leiden tot ernstige neveneffecten zoals een verhoogde bloedingneiging en 

neurotoxiciteit. Simultane toediening van TAFI(a) inhiberende agentia en t-PA zou deze 

neveneffecten kunnen verminderen doordat de hoeveelheid toe te dienen t-PA kan verlaagd 

worden zonder de efficaciteit van de therapie te verminderen. 

Nanobodies (afgeleid van een bijzondere soort van kameel antilichamen) zijn één van de kleinste 

antigen bindende fragmenten. Ze zijn dikwijls zeer potente enzyme inhibitoren en minder 

immunogeen in vergelijking met conventionele antilichamen. Het doel van deze studie was de 

aanmaak van inhibitorische nanobodies tegen humaan, muis en rat TAFI en de karakterisering 

van hun eigenschappen in vitro en in vivo. Tijdens de karakterisering werden enkele interessante 

ontdekkingen gedaan zoals de identificatie van een, tot nog toe onbekende, conformationele 

transitie van TAFIa (hoofdstuk 2), de identificatie van een unieke wijze om met behulp van een 

nanobody TAFI te destabiliseren zodat activatie onmogelijk wordt (hoofdstuk 3), een rat TAFI 

inhiberend nanobody heeft een sterk profibrinolytisch effect maar contradictorisch ook TAFIa 

stabiliserende eigenschappen (hoofdstuk 4) en het gebruik van een nanobody in de ontwikkeling 

van een ELISA dat heel selectief TAFIa herkent, maar niet TAFIai (hoofdstuk 5). 

In het eerste deel van deze studie (hoofdstuk 2) werden inhibitorische nanobodies tegen 

humaan TAFIa geïdentificeerd en gekarakteriseerd. In vitro clot lysis experimenten in de 

afwezigheid van trombomoduline (TM) toonden aan dat deze nanobodies de afbraak van de 

bloedklonter versnelden. Echter, in aanwezigheid van TM vertraagt één van de nanobodies de 

bloedklonter afbraak bij alle geteste concentraties terwijl een ander nanobody een lichte 

vertraging vertoonde bij lage concentraties maar een uitgesproken versnelling bij hogere 

concentraties. Het bifasisch patroon was zowel TM als t-PA afhankelijk. Er werd tevens 

aangetoond dat de nanobodies in de ‘active-site’ van TAFIa binden. Verder vertoonden de 

nanobodies een veranderend bindingspatroon voor TAFIa gedurende inactivatie van deze 

laatste. Op deze manier werd een nieuwe conformationele transitie in TAFIa aangetoond.  
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Screening van een panel van nanobodies tegen muis TAFI (mTAFI) leverde één nanobody (VHH-

mTAFI-i49) dat de zymogene activiteit van TAFI stimuleert (hoofdstuk 3). De gegenereerde 

zymogene activiteit is instabiel bij 37°C en incubatie van mTAFI met VHH-mTAFI-i49 resulteerde 

in een verminderde activeerbaarheid van mTAFI. In vitro clot lysis experimenten toonden een 

versnelde klonterafbraak aan in aanwezigheid van VHH-mTAFI-i49 door de verminderde 

activeerbaarheid van mTAFI. De toepassing van dit nanobody in een in vivo muis trombo-

embolisme model toonde een significant verminderde fibrine depositie in de longen aan. Verder 

suggereert de bindingsplaats van VHH-mTAFI-i49 een nanobody-geïnduceerd destabiliserend 

effect in mTAFI door interferentie met de stabiliserende interacties tussen het activatiepeptide 

en de dynamische flap regio.  

In hoofdstuk 4 werd gefocust op het meest potente nanobody tegen rat TAFI, VHH-rTAFI-i81, dat 

vooral de trombine/trombomoduline gemedieerde activatie van rTAFI inhibeert. In een in vitro 

clot lysis assay werd aangetoond dat simultane toediening van t-PA en VHH-rTAFI-i81 de totale 

lysis en snelheid van de lysis verbeterde. In vivo toepassing van VHH-rTAFI-i81 in een muis 

trombo-embolisme model toont een significante vermindering van de fibrine depositie in de 

longen aan.  

In hoofstuk 5 werd een TAFIa specifieke ELISA ontwikkeld met behulp van een TAFIa bindend 

nanobody (VHH-TAFI-i391). De vier natuurlijk voorkomende isovormen reageerden op identieke 

wijze in de ELISA terwijl geïnactiveerd TAFIa niet herkend werd. In een in vitro clot lysis 

experiment werd een excellente correlatie vastgesteld tussen de response in ELISA en de TAFIa 

activiteit. Analyse van plasma stalen toonde verhoogde TAFIa waarden aan in patiënten met een 

geschiedenis van een veneuze trombotische aandoening ten opzichte van gezonde controles. 

In conclusie, deze studie toont aan dat nanobodies tegen TAFI(a) ook diagnostische toepassingen 

hebben naast hun uitstekende inhibitorische eigenschappen. De beschikbaarheid van TAFI(a) 

inhiberende nanobodies opent nieuwe perspectieven voor de optimalisatie van trombolytische 

therapie. 
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