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Abstract— Due to the recent popularity of context-sensitive 
applications, there is a growing need for reliable, long-lifetime 
ubiquitous sensor nodes. The severe energy-efficiency 
requirements of these energy-scarce devices require 
complementing traditional circuit-level energy saving techniques, 
with architecture-level methods. Traditional approaches such as 
exploiting parallelism have however limited impact in sensor 
node processors, due to their control-dominated and event-based, 
irregular data processing workload patterns. Executing event-
based tasks in specialized finite state machines relieves the on-
board microcontroller, however, at the penalty of reduced post-
manufacturing configurability. An architecture  proposal for  
configurable finite state machines assisting sensor node 
processors is presented, which allows saving energy through task 
off-load while maintaining system flexibility. Simulations 
demonstrate 46% energy savings when compared to a sensor 
node that executes tasks in a microcontroller. This gain comes at 
relatively minor area overhead. 

Keywords—Configurable finite state machines, configurable 
datapath, event based processing, ultra-low power sensor. 

I. INTRODUCTION 
It is through sensors that an application can observe the 

physical world, process data, and make decisions based on 
these measurements. In some cases only one accurate sensor is 
needed while in others, data is gathered through a network of 
smaller low-cost sensors, which are often connected wirelessly.  
Regardless of their degree of specialization, and whether they 
can be found  in cellphones, medical equipment, cars or 
houses, sensors are starting to permeate every aspect of a user’s 
environment, where they need to sense and process as much 
data as possible before their batteries are depleted and need to 
be recharged. In cases where conventional charging is not 
possible and energy is harvested from the environment, the 
energy budget of the application might be even more stringent. 
As a result, keeping energy consumption to a minimum is a 
critical design parameter when designing sensor nodes.  

Focusing on the energy consumption of the processing 
subsystem of the sensor node, several energy saving techniques 
have been proposed. These are mainly traditional circuit-level 
techniques which have been ported to sensor node applications, 
such as advanced power gating, clock gating, or voltage and 
frequency scaling techniques (see Section II.B). Also several 

architectural modifications have been proposed, e.g. 
introducing dedicated accelerators and increased parallelism to 
off-load the main processor core (see Section II.C). However, 
the impact of these approaches is limited in common sensor 
node applications characterized by control-dominated and 
event-based, irregular workload patterns.  

Recently, it has been shown that significant energy can be 
saved in typical sensor node scenarios, by selectively off-
loading control tasks to dedicated finite state machines outside 
the core [6]. This however comes at the inacceptable cost of 
losing all post-manufacturing configuration capabilities. This 
work will advance the state-of-the-art concerning this concept 
through the introduction of configurable FSMs, in order to 
exploit the introduced energy savings opportunities, while 
maintaining sufficient flexibility. To this end, this paper will 
both introduce a parameterized architectural framework for 
configurable FSMs for sensor node task off-load, as well as 
assess the energy and area penalties of the introduced 
flexibility to find the best trade-off in terms of system 
configurability. 

 This paper is organized as follows: Section II briefly 
introduces the main functional blocks of the targeted sensor 
node system, and reviews state-of-the-art energy saving 
techniques in sensor node processors at circuit and architectural 
level. Subsequently, Section III presents the concept of 
Configurable Finite State Machines, their operating principle 
and architecture. A cost analysis in terms of area is done based 
on the configuration parameters of the architecture. A case 
study based on an ECG sensor node is used in Section IV to 
quantify the obtained results in a realistic setting. Finally, 
Section V concludes the paper and discusses future application 
opportunities. 

II. SENSOR NODE OVERVIEW 
Before introducing the configurable FSMs and assessing their 
benefits, it is important to understand the architecture and 
energy consumption of a sensor node. 



A. Architecture of a sensor node 
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Fig, 1  Main functional units of a sensor node 

In order to understand how the architectural changes 
proposed in this document affect a sensor node it is important 
to briefly introduce its main functional units, which are shown 
in Fig, 1. Sensor nodes usually are centered around a low-
power microcontroller unit (MCU) with local instruction and 
data memories, which is in charge of the data processing and 
general management. This is complemented by an interfacing 
subsystem with the sensing element (electrodes, 
accelerometers, etc.), a subsystem to communicate externally 
(wireless or wired) and a power management unit, e.g. 
executing power gating and frequency scaling strategies. A 
direct memory access (DMA) module is often introduced to 
share the data memory between the MCU and the input and 
output subsystems and allow efficient data movement without 
MCU involvement.  

The input sensor typically needs to be activated frequently 
in order to measure external parameters. The same applies to 
the external communication module, if it is assumed to be 
reactive to commands received from an external agent. The 
amount of time the microcontroller needs to be active hence 
depends not only on the time it takes to process the sensed data, 
but also on how involved it is in the sensor input and 
communication tasks. It is important to note that even in 
systems that use low power microcontrollers, SRAM memories 
consume a major portion of the total system energy [2]. This is 
particularly important in sensor nodes where most of the area 
and thus leakage energy that is dissipated come from the 
SRAM blocks in the system. 

B. Circuit level energy savings in sensor node processors 
Energy consumption in sensor nodes can be separated in 

that consumed by the analog components (sensors, 
transmitters) and that consumed by the digital circuitry (signal 
processing, communication protocols), this work focuses on 
the latter. Energy consumed by digital circuits can again be 
split into dynamic and static energy. Dynamic consumption is 
energy spent in the switching of transistors and can be 
described as CVDD

2 where C is the equivalent switching 
capacitance of the digital circuit, VDD is the supply voltage and 
f is the operating frequency. Static power consumption is 
caused by leakage currents in a CMOS gate, depends 
exponentially on the difference between the gate-source 
voltage VGS and threshold voltage VT, and is independent of 

the frequency and switching activity of a gate. The problem of 
static energy grows with each new generation of CMOS 
process technology, as VT is scaled down. 

Traditional circuit-level energy saving techniques for 
energy-efficient processors, can be split in design-time and run-
time techniques. Common design time techniques to reduce 
dynamic power consumption are the use of multi-Vdd, and 
multi Vt technologies. Multi-VDD approaches consist of 
lowering the VDD on certain non-timing-critical blocks. This, 
however, does not only make the delay in the block with 
reduced voltage slower, but also increases complexity in the 
communication between blocks with different voltages. On the 
other hand, multi-threshold (Vt) logic, uses transistors with 
high VT (and thus lower leakage) for sections that do not 
require high performance, and transistors with low VT for 
modules that do. Most libraries offer two or three VT versions 
of their cells. 

More aggressive saving techniques adapt circuit parameters 
at run-time to achieve increased savings. The most drastic 
approach, targeting the reduction of leakage power, is power 
gating. The principle is simple, shutting down the power 
supply of an unused logic block. Its implications are however 
significant, as it affects communication between blocks, the 
amount of time needed to enter and exit power gated modes, 
and the complexity that this adds to the overall control of the 
module. This is often complemented with aggressive methods 
of voltage scaling. Supplying an operating voltage close to the 
threshold level provides significant energy and leakage power 
reduction in logic and SRAM circuits, but suffers from strong 
process variations requiring advanced variation mitigation 
strategies [2]. Several of these techniques have been applied 
successfully in wireless sensor network (WSN) applications, 
such as dynamic voltage scaling (DVS) [3] and dynamic 
voltage and frequency scaling (DVFS) [4], in which the supply 
voltage and/or processing frequency is varied depending on the 
current circumstances. 

A much more detailed explanation of methods to reduce 
static and dynamic power consumption at circuit level can be 
found in [1]. 

C. Architectural energy savings in sensor node processors 
It is well known that through hardware customization and 

specialization at the architectural level, energy efficiency can 
be greatly improved. These techniques mainly focus on 
applications that are data-flow oriented with relatively simple 
control flows, and try to exploit the parallelism in compute-
intensive kernels by matching it at hardware level. This reduces 
execution time, which allows to lower the operation frequency 
of the design. By having more relaxed timing constraints, the 
design can operate at a lower supply voltage, and hence save 
dynamic energy.  

Exploiting parallelism might, however, not be as useful in 
the context of sensor nodes, where nodes usually remain 
inactive for long periods of time. As a node is typically 
triggered by external events, its processing is of irregular 
nature and control-flow rather than data-flow dominated [5]. 
Even though the processing of the sensed values can be 
improved through the traditional techniques mentioned before, 



the resulting reduction in energy consumption will be less 
significant, as the contribution of static leakage currents is now 
much more dominant when compared to dynamic energy 
consumption. 

 In sensor nodes, the processor’s energy is mainly dissipated 
in its local memories [1]. An interesting approach presented in 
literature [6] is to off-load event-related tasks from the 
microcontroller to hardwired finite state machines (FSMs), 
which can execute control tasks in a much more efficient 
manner. By doing this, the microcontroller can be power gated 
most of the time, and the memories kept in data retention mode 
to minimize static power consumption. This approach brings 
opportunities towards a reduction of energy consumption with 
two orders of magnitude [5], but has the disadvantage that 
FSMs are hardwired into the silicon. The latter inhibits any 
post-production changes to the control flow, making it 
impossible to correct bugs, comply with standard updates, or 
change the node’s behavior for any other reason.  

The contribution of this work is to go one step further by 
making these FSMs configurable, in order to maintain the 
advantages mentioned above while keeping sufficient 
flexibility. By making FSMs configurable there is, however, an 
area and thus leakage overhead compared to the hardwired 
implementation. The goal of this work is two-fold: 1.) 
Introduce a parameterized architectural framework for 
configurable FSMs for sensor node task off-load; 2.) assess the 
energy and area penalties of the introduced flexibility to find 
the right degree of how configurability for the introduced 
FSMs. 

III. CONFIGURABLE FINITE STATE MACHINE (CFSM) 

A. Operating principle 
Traditional, fixed FSMs have the following components:  

• A set of states: Only one can be active at a particular 
point in time, and a state will have one or multiple 
connections to other states. 

• A set of inputs: Depending on the current state, a 
transition to the next state is triggered by certain 
inputs. 

• Transition logic: Each state has a set of transitions, 
either to itself or to other states. The transition logic 
determines the next state based on the current state 
and the inputs to the FSM. 

• Set of outputs: The outputs of the FSM. These outputs 
can either depend on the inputs and the current state 
(called a “Mealy FSM”), or only depend on the 
current state (hence called a “Moore FSM”). The 
implementation presented here focuses on Moore 
FSMs. 

The first step in building a Configurable FSM (CFSM) is to 
determine which parameters should be flexible after 
manufacturing. First of all, a flexible FSM requires the 
transition logic to be programmable, so that the user can 
modify the transitions between states. Secondly, the output 
logic must also be programmable, to determine the relationship 

between the state and the FSM’s output. Finally, it has also 
been noted that many state machines rely on counters to e.g. 
wait for a certain amount of cycles or to execute a particular 
task. Hence, a set of programmable counters has to be 
included.  

All this configuration information has to be stored in a local 
memory or register file. The maximum number of states will 
determine the amount of memory needed, and should be kept 
as small as possible, while maintaining flexibility. The 
architecture introduced in Section III.B, therefore contains 
several measures to reduce memory footprint, without affecting 
programmability where required. This involves the 
introduction of a default transition from every allowed state, 
which keeps the transition logic simple, as well as limiting the 
maximum number of transitions that each state can have.  

B. Architecture of a CSFM 
To fulfill the configuration requirements stated above, the 

proposed implementation consists of the hardware blocks 
shown in Fig. 2. The modules in the architecture can be 
broadly divided in two groups, the ones that provide 
configurability to the FSM, and the logic that is present in any 
FSM. 
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Fig. 2 CFSM main operating blocks 

The FSM is configured through three register files, from 
now on referred to as “maps”, so that the states, transitions, 
counter configuration and outputs can be modified post-
production by the user: These maps (except the counter 
configuration) have one entry per state, and are addressed by 
the current state. 



• Default map (DMAP): A register file that stores the 
default transition for each state. By having one default 
transition, the transition logic and the transition map 
can be greatly simplified.  

• Max counter map (CMAX): In this register file 
different maximum values for the counters are stored. 
This map is not addressed by the current state as it has 
one entry per counter in the architecture, and is always 
connected to it. 

• Transition map (TMAP): A register file that stores the 
configuration of the transition logic for each state. 
How this is implemented will be explained in detail in 
Section III.C. 

• Output map (OMAP): A register file that stores the 
output of each state. These outputs directly 
communicate with the external hardware modules. It 
also has bits that configure the behavior of the 
counters in each state (increment, reset). 

• Update modules: Through this interfaces the maps in 
the CFSM can be reconfigured by the microcontroller 
or by a boot loader module directly from memory. 

The rest of the modules in the design are present in most 
FSM implementations (current state register, transition logic, 
counters) and are not configurable by the user post-production. 

• Transition module: A combinational module that 
depending on the current output of the Transition map 
and the inputs determines the next state. 

• Current state register: A register holding the current 
state value. This value is moreover used as the address 
for all the maps to extract currently relevant entries. It 
is also an output of the CFSM, in case external logic 
can benefit from knowledge of the current state. 

• Counter module: One or more counters can be added 
to the design (not configurable in post-production); 
they read the Max counter map and raise a status flag 
when the counter overflows. This flags can be used 
with the inputs in the transition module to produce the 
next state. 

The viability of replacing a hardwired FSM with a CFSM 
depends then on its size and energy consumption penalties, 
which will be mainly dominated by the size of DMAP, TMAP 
and OMAP. The parameters that we will use to describe the 
architecture and quantify these penalties are the following: 
STATE_N represents the maximum number of states in the 
CFSM, TRIGGER_N represents the number of input bits, 
OUTPUT_N represents the number of output bits, 
COUNTER_N represents the number of counters and thus the 
number of output counter flags that will be available in the 
CFSM, COUNTER_W represents the maximum value a 
counter can reach, and TRANS_N represents the maximum 
number of transactions per state. 

The look-up tables of DMAP, OMAP and TMAP have 
STATE_N entries. The width of each entry is defined as 
follows: 

• As DMAP stores only the index to the default 
transition state for each state, it requires 
log2(STATE_N) bits. 

• OMAP stores for every possible state, all the outputs 
of the CFSM, so each entry has OUTPUT_N bits. 

• In order to define the width of the TMAP, on more 
detailed explanation is needed on the operating 
principle of these transitions and their configurability. 

C. Transitions and triggers – Compromises in flexibility  
In a regular FSM a transition from one state to another can 

occur depending on a certain combination of its inputs (or 
internal counters). Some transitions can be triggered by one 
input, while another might be triggered by a combination of 
multiple bit words. In order to keep all options open in the 
transition definition, the transition logic would have to be 
utterly flexible, similar to an FPGA-like structure. The amount 
of bits to configure this, and resulting area and energy penalty, 
would be unacceptably large. 

A compromise must hence be made between the 
configurability of the transitions, and the resulting complexity 
overhead. In this regards, two options will be explored: 

1.) State transitions can only be triggered by single bit 
inputs values, but the amount of possible transitions 
per state is not limited (only limited by the number of 
input bits, TRIGGER_N).  

2.) Multi-bit combinations of input are supported as state 
transition triggers, but limiting the amount of possible 
transitions per state. 

In the first option, every state transition of the CFSM is 
triggered by the value of one bit of the input triggers. The 
transition map hence stores for every current state, and for 
every one of the TRIGGER_N input bits, which will be the 
next state in case it is asserted.  

An implementation as shown in Fig. 3, uses this transition 
table data to compute the next state: The input bits are 
demultiplexed to the OR-gate of the next state they are 
triggering for. Each demultiplexer of active triggers therefore 
generates a one-hot word representing the next state. The 
amount of bits needed to configure each demultiplexer is hence 
log2(STATE_N+1), with the extra bit required to signal if the 
trigger is not used in the current state. The bitwise or of these 
words gives the one-hot representation of the next state. If the 
configuration is not done properly and the one-hot word has 
two active bits, an error flag should be activated. If every no 
trigger produces a transition and the one-hot word is zero, then 
the default transition from DMAP is used. The number of bits 
that each state hence requires in TMAP is 
log2(STATE_N+1) TRIGGER_N.  
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Fig. 3 Transition module architecture 

A second option is to allow multi-bit combinations to 
trigger state transitions. This requires storing a mask word of 
length TRIGGER_N for every allowed state transition. As it 
would be unfeasible to do this for every other state in the FSM, 
the maximum number of possible next states is limited in this 
implementation to TRANS_N. As it should remain 
programmable which next states these are, the state that each of 
the TRANS_N transitions leads to would have to be stored as 
well. Hence, a transition configuration map with a length of 
log2(TRANS_N + 1) TRIGGER_N would be needed to store 
the trigger masks, and a word with length of 
(TRANS_N) log2(STATE_N) to store the next state for every 
trigger combination. Unless the number of transitions is very 
small, this ultimately leads to a larger number of registers in 
the end. Two examples of this can be seen in Fig. 4, as two 
implementations (FSM0, with 32 states, 8 inputs and 4 outputs  
and FSM1 with 10 states, 4 inputs and 4 outputs) are compared 
between options 1 and 2. It is clear that for option 2 the area 
consumption grows quickly with the maximum number of 
transitions. As a result, option 1 is selected and implemented in 
this work. 
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Fig. 4 Architecture comparison in number of flip-flops 

The selection of this single-bit implementation option 
means that any necessary multi-bit triggers have to be 
consolidated outside the configurable FSM into single bit 

triggers that the CFSM can handle. This can e.g. be done in a 
hardwired way. Although this significantly reduces the CFSM 
cost, one can argue that this limits the power of the CFSM to 
be able to adapt to post-production updates. However, the 
behavior of the CFSM can still be modified and new states can 
be added, as long as the same triggers are used with regard to 
the initial implementation, which still  covers a wide range of 
post-manufacturing updates, like changes in a startup sequence 
or in the implementation of a serial protocol. The designer can 
decide himself to provide additional triggers to keep the option 
of using them in the future open, or can even decide to 
implement a small configurable trigger generation block 
outside the CFSM in case that flexibility is desired. A similar 
trade-off can be made regarding the number of output bits  
OUTPUT_N supported by the CFSM. The designer can decide 
to have a reduced number of configurable outputs, and depend 
instead on the current state output using the output bits for 
future expandability (see e.g. ECG use case). 

D. Cost evaluation 
Table 1 summarizes the total required number of registers 

required by the architecture: 
TABLE 1 REGISTER COST OF DESIGN 

Module name Total number of  flip-flops 
DMAP STATE_N log2(STATE_N) 
TMAP STATE_N log2(STATE_N+1) TRIGGER_N 
OMAP STATE_N (OUTPUT_N+(COUNTER_N*2)) 
CMAX COUNTER_N COUNTER_W 

Current state register log2(STATE_N) 
Counter register COUNTER_N COUNTER_W 

 

Table 2 shows the cost in terms of register count increase of 
introducing an additional state, additional input, or additional 
output bit into the CFSM. 

TABLE 2 REGISTER COST OF INCREASING A PARAMETER 

Increase in Parameter Cost in flip-flops 
State log2(STATE_N) (1+TRIGGER_N)+OUTPUT_N 
Input STATE_N log2(STATE_N+1) 

Output STATE_N 

IV. CASE STUDY: ECG SENSOR NODE 

A. F0: Basic sensing scenario 
In order to assess the effects of unloading tasks from the 

MCU to FSMs, and assess the energy and area cost of the 
introduction of CFSMs, an sensor node running an electro-
cardiogram (ECG) analysis task was simulated. The node 
receives data from a sensor through an I2C module at a fixed 
rate. The MCU interpolates the signal, executes the Pan-
Tompkins algorithm for QRS peak detection [7], first 
executing some filtering and then searching for peaks in the 
processed signal to detect the heart rate, while detecting and 
discarding “noise” peaks. The node needs to communicate the 
average number of samples between peaks once every minute. 
Its architecture is depicted in Fig. 5. The operating scenario 
where all tasks described above are executed in the core, will 
be denoted as scenario ‘F0’. 



OPTIMIZED 
CORE

INSTRUCTION 
MEMORY DATA 

MEMORY

EVENT 
MANAGER

SENSOR 
INPUT 
(I2C)DMA

TO PC
(UART)

PAN-TOMPKINS
ACCELERATOR

ECG MODULE

  
Fig. 5 ECG module architecture where FSMs handle event related tasks. 

B. F1: Offloading to fixed FSMs 
To assess the effectiveness of off-loading control-oriented 

tasks to fixed FSMs, the following tasks were off-loaded from 
the MCU to dedicated hardwired units:  

• The I2C module, for the ECG sensor input 

• The UART master module, to communicate with the 
PC 

• The event manager, which controls which modules 
are clock gated and also acts as control for the DMA, 
deciding who communicates with data memory, and 
who communicates with the MCU.  

This off-loading allows keeping the micro-controller more 
frequently in sleep mode (clock gated, but not power gated in 
our implementation), with its memories in data-retention mode 
(lower leakage dispersion but data is not lost). While the 
processor is asleep, the event manager is responsible to 
configure the DMA to allow the sensor input module access to 
data memory. Every time a new sample is detected, the event 
manager wakes up data memory, writes the sample, and 
powers it down. When a predefined number of samples have 
been captured, the event manager powers up instruction 
memory, configures the DMA to give the core access to data 
memory, and wakes up the core. Once the samples have been 
processed, the core sends the average number of samples 
between peaks to the PC to reveal the computed heart rate. The 
core subsequently enters sleep mode, and the event manager 
clock-gates it, and puts both instruction and data memories 
back into data retention mode. The Event manager then goes 
again to wait for more samples. This scenario with fixed FSM 
off-loading will be denoted by scenario ‘F1’. 

C.  F2: Pan-Tompkins accelerator with fixed FSM 
The bulk of the remaining processor tasks relate to 

processing the ECG signals to extract the heart rate using the 
Pan-Tompkins algorithm. External data accelerators are often 
suggested to execute such processing more efficiently. To this 
end, a configurable data path was implemented, which could be 
programmed to serially perform several subtasks of the Pan-
Tompkins algorithm, consisting of a low-pass filtering stage, a 
high-pass filtering stage, derivative computation, squaring and 
finally an integration. The control of this accelerator, to 
repeatedly set all its configuration bits to configure it to the 
correct sequence of operating modes to implement Pan 

Tompkins, is implemented first as a hardwired FSM. In this 
usage scenario, the core hence has a configurable datapath, 
with a fixed FSM to control it, shown in Fig. 6. The core goes 
to sleep every time the Pan-Tompkins algorithm is processing, 
and wakes up when done, to execute the remaining peak 
search. This scenario is denoted as ‘F2’.  
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Fig. 6 Pan-Tompkins configurable datapath and control 

D. F3: CFSM in Pan-Tompkins accelerator  
The final step is to replace one of the hardwired FSMs with 

a CFSM. In this section, replacing the FSM in the Pan-
Tompkins accelerator will be discussed, as it leads to another 
example where the configurability of the CFSM needs to be 
balanced carefully against its register count. 

The hardwired FSM has nine states: IDLE, PUSH, 
LOWPASS, HIGHPASS, DERIVATIVE, SQUARING, 
INTEGRAL, REGISTER SHIFT, AND FINISH, there is only 
one trigger, which signals a new value to process. The 
particular thing about this FSM is that it requires configuring 
the datapath of the accelerator, which is done through 22-bit 
word.  This would make OMAP quite big, while TMAP and 
DMAP are very small in comparison. 

As discussed in Section III.C, the designer can decide to 
work with a smaller set of output bits, and construct part of the 
configuration signal come externally to the CFSM based on the 
current state register. The presented implementation did this for 
the configuration bits of the accelerator, leaving four more in 
the output register for future expandability. The resulting FSM 
is very small, although the pattern of the operations can still be 
changed. E.g., if the algorithm were to change to remove or 
repeat some of the algorithmic stages, so that the CFSM could 
be changed to cycle through the states in a different order. This 
trade-off can be made by the designer at design time. The 
resulting operating scenario, using the configurable FSM is 
denoted as scenario ‘F3’. 

E. Results in terms of area, performance and energy 
The four implementation scenarios were simulated using 

TSMC 40 nm technology at 1.1 volts, operating at 10 Mhz. 
They will be compared quantitatively in terms of their area and 
energy implications on the sensor processing subsystems. This 
will allow to assess the energy saving opportunities of event 
off-loading to external FSMs, as well as to assess the overhead 
of introducing configurability into these FSMs. 



• F0: No task off-loading, everything implemented on 
the micro-controller core. 

• F1: Event related tasks off-loaded from core to fixed 
FSMs. 

• F2: Scenario F1, with additional data processing off-
loaing to accelerator with fixed FSM. 

• F3: FSM in accelerator is replaced by CFSM. 

For each of these scenarios, Table 3 lists the total number 
of combinational area and registers in the design (without 
taking into account memories), The total area estimated, 
including the area of data and instruction memories. Two 
energy measures are shown, the first is for the processing of a 
batch of samples (in this case 66), which depending on the 
implementation might take more or less time, and the second is 
the total energy consumption in a second, taking into account 
the time the module is idle waiting for new samples. 

TABLE 3 RESULTS SUMMARY 

 F0 F1 F2 F3 

Combinational area (gates) 5847 6203 8199 9013 

Non-combinational area (gates) 3658 3975 15142 17438 

Total area incl. memories(mm2) 0.2460 0.2468 0.2626 0.2663 

Energy consumed processing 66 
samples (uJ) 

8.8 8.79 1.50 1.51 

Power consumption (uW) 30.106 22.95 16.018 16.022 

 

As can be seen from the previous table, unloading only 
control tasks from the processor with fixed FSMs (Comparing 
F0 and F1) reduced energy consumption by 23% (Energy spent 
in one minute), even though the energy consumed by the data 
processing remained the same. By also unloading the bulk of 
the data processing to the accelerator (comparing F2 and F1), 
there was a significant reduction in the energy consumed to 
process the sensor data (x5.8, energy per batch of 66 samples), 
however, due to the large amount of leakage dissipated by the 
memories, the overall improvement in energy consumption was 
much smaller (x1.37 more efficient in overall energy per 
second). Finally, the table shows that by replacing the 
hardwired FSM for the CFSM does not significantly impacts 
area or performance, so the benefits of the hardwired FSM are 
kept while increasing flexibility. Comparing the energy spent 
in one second in F0 and F3, a reduction of 46% can be seen. 

V. CONCLUSIONS AND FUTURE WORK 
In this work introduced an architecture for configurable 

FSMs targeting the off-load of control tasks from sensor node 
processors in order to save energy, without giving up all 
programming flexibility. The paper assessed the tradeoffs of 
unloading tasks to hardwired FSMs, and the overhead of 
making them configurable. By off-loading event-related tasks 
from the core, it can be kept in low power mode as much as 
possible. In our case study, a reduction of 46% of the 
consumed energy in a given period of time was observed by 
using techniques at the software and architectural level, without 

implementing power gating and other gate level energy saving 
methods, which can still be combined with the proposed 
methodology. 

Our future work will assess the gains of combining the 
presented techniques with power gating and DVFS. More case 
studies are planned to assess energy saving opportunities in 
promising applications: 

a. Configurable I/O module: I/O ports in an ASIC can 
sometimes be a scarce resource. Often, the same set of ports is 
multiplexed between different communication and debug 
modules (e.g. I2C, JTAG, USB, etc.).  A CFSM might come in 
handy to support such multiplexing between different protocols 
in an area efficient way, and allow to make changes or updates 
to them after manufacturing. 

b. Configurable event/power manager: By making the 
power/event manager module configurable, the startup 
sequence and main control of a SoC can be flexible and much 
easier to debug. Currently, such flexibility can only be 
achieved by implementing node event- and power-control in a 
core with full instruction memory, representing significant 
energy overhead. 
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