

Citation J. C. P. Ramos and M. Verhelst,

2013 8th International Workshop on Reconfigurable and Communication-

Centric Systems-on-Chip (ReCoSoC), Darmstadt, 2013, pp. 1-7.

doi: 10.1109/ReCoSoC.2013.6581533

Archived version Author manuscript: the content is identical to the content of the published

paper, but without the final typesetting by the publisher

Published version https://ieeexplore.ieee.org/document/6581533/

Journal homepage https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6575424

Author contact jcarlosp@esat.kuleuven.be

(article begins on next page)

Flexible, Ultra-Low Power Sensor Nodes through
Configurable Finite State Machines

Juan Carlos Peña Ramos
ESAT-MICAS
K.U. Leuven

Leuven, Belgium
jcarlosp@esat.kuleuven.be

Marian Verhelst
ESAT-MICAS
K.U. Leuven

Leuven, Belgium
marian.verhelst@esat.kuleuven.be

Abstract— Due to the recent popularity of context-sensitive
applications, there is a growing need for reliable, long-lifetime
ubiquitous sensor nodes. The severe energy-efficiency
requirements of these energy-scarce devices require
complementing traditional circuit-level energy saving techniques,
with architecture-level methods. Traditional approaches such as
exploiting parallelism have however limited impact in sensor
node processors, due to their control-dominated and event-based,
irregular data processing workload patterns. Executing event-
based tasks in specialized finite state machines relieves the on-
board microcontroller, however, at the penalty of reduced post-
manufacturing configurability. An architecture proposal for
configurable finite state machines assisting sensor node
processors is presented, which allows saving energy through task
off-load while maintaining system flexibility. Simulations
demonstrate 46% energy savings when compared to a sensor
node that executes tasks in a microcontroller. This gain comes at
relatively minor area overhead.

Keywords—Configurable finite state machines, configurable
datapath, event based processing, ultra-low power sensor.

I. INTRODUCTION
It is through sensors that an application can observe the

physical world, process data, and make decisions based on
these measurements. In some cases only one accurate sensor is
needed while in others, data is gathered through a network of
smaller low-cost sensors, which are often connected wirelessly.
Regardless of their degree of specialization, and whether they
can be found in cellphones, medical equipment, cars or
houses, sensors are starting to permeate every aspect of a user’s
environment, where they need to sense and process as much
data as possible before their batteries are depleted and need to
be recharged. In cases where conventional charging is not
possible and energy is harvested from the environment, the
energy budget of the application might be even more stringent.
As a result, keeping energy consumption to a minimum is a
critical design parameter when designing sensor nodes.

Focusing on the energy consumption of the processing
subsystem of the sensor node, several energy saving techniques
have been proposed. These are mainly traditional circuit-level
techniques which have been ported to sensor node applications,
such as advanced power gating, clock gating, or voltage and
frequency scaling techniques (see Section II.B). Also several

architectural modifications have been proposed, e.g.
introducing dedicated accelerators and increased parallelism to
off-load the main processor core (see Section II.C). However,
the impact of these approaches is limited in common sensor
node applications characterized by control-dominated and
event-based, irregular workload patterns.

Recently, it has been shown that significant energy can be
saved in typical sensor node scenarios, by selectively off-
loading control tasks to dedicated finite state machines outside
the core [6]. This however comes at the inacceptable cost of
losing all post-manufacturing configuration capabilities. This
work will advance the state-of-the-art concerning this concept
through the introduction of configurable FSMs, in order to
exploit the introduced energy savings opportunities, while
maintaining sufficient flexibility. To this end, this paper will
both introduce a parameterized architectural framework for
configurable FSMs for sensor node task off-load, as well as
assess the energy and area penalties of the introduced
flexibility to find the best trade-off in terms of system
configurability.

 This paper is organized as follows: Section II briefly
introduces the main functional blocks of the targeted sensor
node system, and reviews state-of-the-art energy saving
techniques in sensor node processors at circuit and architectural
level. Subsequently, Section III presents the concept of
Configurable Finite State Machines, their operating principle
and architecture. A cost analysis in terms of area is done based
on the configuration parameters of the architecture. A case
study based on an ECG sensor node is used in Section IV to
quantify the obtained results in a realistic setting. Finally,
Section V concludes the paper and discusses future application
opportunities.

II. SENSOR NODE OVERVIEW
Before introducing the configurable FSMs and assessing their
benefits, it is important to understand the architecture and
energy consumption of a sensor node.

A. Architecture of a sensor node

MCU

INSTRUCTION
MEMORY

DATA
MEMORY

POWER
MANAGER

SENSOR
INPUTDMA

EXTERNAL
COMM

Fig, 1 Main functional units of a sensor node

In order to understand how the architectural changes
proposed in this document affect a sensor node it is important
to briefly introduce its main functional units, which are shown
in Fig, 1. Sensor nodes usually are centered around a low-
power microcontroller unit (MCU) with local instruction and
data memories, which is in charge of the data processing and
general management. This is complemented by an interfacing
subsystem with the sensing element (electrodes,
accelerometers, etc.), a subsystem to communicate externally
(wireless or wired) and a power management unit, e.g.
executing power gating and frequency scaling strategies. A
direct memory access (DMA) module is often introduced to
share the data memory between the MCU and the input and
output subsystems and allow efficient data movement without
MCU involvement.

The input sensor typically needs to be activated frequently
in order to measure external parameters. The same applies to
the external communication module, if it is assumed to be
reactive to commands received from an external agent. The
amount of time the microcontroller needs to be active hence
depends not only on the time it takes to process the sensed data,
but also on how involved it is in the sensor input and
communication tasks. It is important to note that even in
systems that use low power microcontrollers, SRAM memories
consume a major portion of the total system energy [2]. This is
particularly important in sensor nodes where most of the area
and thus leakage energy that is dissipated come from the
SRAM blocks in the system.

B. Circuit level energy savings in sensor node processors
Energy consumption in sensor nodes can be separated in

that consumed by the analog components (sensors,
transmitters) and that consumed by the digital circuitry (signal
processing, communication protocols), this work focuses on
the latter. Energy consumed by digital circuits can again be
split into dynamic and static energy. Dynamic consumption is
energy spent in the switching of transistors and can be
described as CVDD

2 where C is the equivalent switching
capacitance of the digital circuit, VDD is the supply voltage and
f is the operating frequency. Static power consumption is
caused by leakage currents in a CMOS gate, depends
exponentially on the difference between the gate-source
voltage VGS and threshold voltage VT, and is independent of

the frequency and switching activity of a gate. The problem of
static energy grows with each new generation of CMOS
process technology, as VT is scaled down.

Traditional circuit-level energy saving techniques for
energy-efficient processors, can be split in design-time and run-
time techniques. Common design time techniques to reduce
dynamic power consumption are the use of multi-Vdd, and
multi Vt technologies. Multi-VDD approaches consist of
lowering the VDD on certain non-timing-critical blocks. This,
however, does not only make the delay in the block with
reduced voltage slower, but also increases complexity in the
communication between blocks with different voltages. On the
other hand, multi-threshold (Vt) logic, uses transistors with
high VT (and thus lower leakage) for sections that do not
require high performance, and transistors with low VT for
modules that do. Most libraries offer two or three VT versions
of their cells.

More aggressive saving techniques adapt circuit parameters
at run-time to achieve increased savings. The most drastic
approach, targeting the reduction of leakage power, is power
gating. The principle is simple, shutting down the power
supply of an unused logic block. Its implications are however
significant, as it affects communication between blocks, the
amount of time needed to enter and exit power gated modes,
and the complexity that this adds to the overall control of the
module. This is often complemented with aggressive methods
of voltage scaling. Supplying an operating voltage close to the
threshold level provides significant energy and leakage power
reduction in logic and SRAM circuits, but suffers from strong
process variations requiring advanced variation mitigation
strategies [2]. Several of these techniques have been applied
successfully in wireless sensor network (WSN) applications,
such as dynamic voltage scaling (DVS) [3] and dynamic
voltage and frequency scaling (DVFS) [4], in which the supply
voltage and/or processing frequency is varied depending on the
current circumstances.

A much more detailed explanation of methods to reduce
static and dynamic power consumption at circuit level can be
found in [1].

C. Architectural energy savings in sensor node processors
It is well known that through hardware customization and

specialization at the architectural level, energy efficiency can
be greatly improved. These techniques mainly focus on
applications that are data-flow oriented with relatively simple
control flows, and try to exploit the parallelism in compute-
intensive kernels by matching it at hardware level. This reduces
execution time, which allows to lower the operation frequency
of the design. By having more relaxed timing constraints, the
design can operate at a lower supply voltage, and hence save
dynamic energy.

Exploiting parallelism might, however, not be as useful in
the context of sensor nodes, where nodes usually remain
inactive for long periods of time. As a node is typically
triggered by external events, its processing is of irregular
nature and control-flow rather than data-flow dominated [5].
Even though the processing of the sensed values can be
improved through the traditional techniques mentioned before,

the resulting reduction in energy consumption will be less
significant, as the contribution of static leakage currents is now
much more dominant when compared to dynamic energy
consumption.

 In sensor nodes, the processor’s energy is mainly dissipated
in its local memories [1]. An interesting approach presented in
literature [6] is to off-load event-related tasks from the
microcontroller to hardwired finite state machines (FSMs),
which can execute control tasks in a much more efficient
manner. By doing this, the microcontroller can be power gated
most of the time, and the memories kept in data retention mode
to minimize static power consumption. This approach brings
opportunities towards a reduction of energy consumption with
two orders of magnitude [5], but has the disadvantage that
FSMs are hardwired into the silicon. The latter inhibits any
post-production changes to the control flow, making it
impossible to correct bugs, comply with standard updates, or
change the node’s behavior for any other reason.

The contribution of this work is to go one step further by
making these FSMs configurable, in order to maintain the
advantages mentioned above while keeping sufficient
flexibility. By making FSMs configurable there is, however, an
area and thus leakage overhead compared to the hardwired
implementation. The goal of this work is two-fold: 1.)
Introduce a parameterized architectural framework for
configurable FSMs for sensor node task off-load; 2.) assess the
energy and area penalties of the introduced flexibility to find
the right degree of how configurability for the introduced
FSMs.

III. CONFIGURABLE FINITE STATE MACHINE (CFSM)

A. Operating principle
Traditional, fixed FSMs have the following components:

• A set of states: Only one can be active at a particular
point in time, and a state will have one or multiple
connections to other states.

• A set of inputs: Depending on the current state, a
transition to the next state is triggered by certain
inputs.

• Transition logic: Each state has a set of transitions,
either to itself or to other states. The transition logic
determines the next state based on the current state
and the inputs to the FSM.

• Set of outputs: The outputs of the FSM. These outputs
can either depend on the inputs and the current state
(called a “Mealy FSM”), or only depend on the
current state (hence called a “Moore FSM”). The
implementation presented here focuses on Moore
FSMs.

The first step in building a Configurable FSM (CFSM) is to
determine which parameters should be flexible after
manufacturing. First of all, a flexible FSM requires the
transition logic to be programmable, so that the user can
modify the transitions between states. Secondly, the output
logic must also be programmable, to determine the relationship

between the state and the FSM’s output. Finally, it has also
been noted that many state machines rely on counters to e.g.
wait for a certain amount of cycles or to execute a particular
task. Hence, a set of programmable counters has to be
included.

All this configuration information has to be stored in a local
memory or register file. The maximum number of states will
determine the amount of memory needed, and should be kept
as small as possible, while maintaining flexibility. The
architecture introduced in Section III.B, therefore contains
several measures to reduce memory footprint, without affecting
programmability where required. This involves the
introduction of a default transition from every allowed state,
which keeps the transition logic simple, as well as limiting the
maximum number of transitions that each state can have.

B. Architecture of a CSFM
To fulfill the configuration requirements stated above, the

proposed implementation consists of the hardware blocks
shown in Fig. 2. The modules in the architecture can be
broadly divided in two groups, the ones that provide
configurability to the FSM, and the logic that is present in any
FSM.

TRANSITION
MAP

REGISTER FILE

OUTPUT MAP
REGISTER FILE

TRANSITION
LOGIC

CU
RR

EN
T

ST
AT

E

COUNTER
MODULECOUNTER

MAX MAPUPDATE

DEFAULT MAP
REGISTER FILE

CU
RR

EN
T

ST
AT

E
O

U
TP

U
TS

CO
U

N
TE

R
FL

AG
S

IN
PU

TS
EX

TE
RN

AL
 C

O
N

FI
G

U
RA

TI
O

N

UPDATE

UPDATE

UPDATE

Fig. 2 CFSM main operating blocks

The FSM is configured through three register files, from
now on referred to as “maps”, so that the states, transitions,
counter configuration and outputs can be modified post-
production by the user: These maps (except the counter
configuration) have one entry per state, and are addressed by
the current state.

• Default map (DMAP): A register file that stores the
default transition for each state. By having one default
transition, the transition logic and the transition map
can be greatly simplified.

• Max counter map (CMAX): In this register file
different maximum values for the counters are stored.
This map is not addressed by the current state as it has
one entry per counter in the architecture, and is always
connected to it.

• Transition map (TMAP): A register file that stores the
configuration of the transition logic for each state.
How this is implemented will be explained in detail in
Section III.C.

• Output map (OMAP): A register file that stores the
output of each state. These outputs directly
communicate with the external hardware modules. It
also has bits that configure the behavior of the
counters in each state (increment, reset).

• Update modules: Through this interfaces the maps in
the CFSM can be reconfigured by the microcontroller
or by a boot loader module directly from memory.

The rest of the modules in the design are present in most
FSM implementations (current state register, transition logic,
counters) and are not configurable by the user post-production.

• Transition module: A combinational module that
depending on the current output of the Transition map
and the inputs determines the next state.

• Current state register: A register holding the current
state value. This value is moreover used as the address
for all the maps to extract currently relevant entries. It
is also an output of the CFSM, in case external logic
can benefit from knowledge of the current state.

• Counter module: One or more counters can be added
to the design (not configurable in post-production);
they read the Max counter map and raise a status flag
when the counter overflows. This flags can be used
with the inputs in the transition module to produce the
next state.

The viability of replacing a hardwired FSM with a CFSM
depends then on its size and energy consumption penalties,
which will be mainly dominated by the size of DMAP, TMAP
and OMAP. The parameters that we will use to describe the
architecture and quantify these penalties are the following:
STATE_N represents the maximum number of states in the
CFSM, TRIGGER_N represents the number of input bits,
OUTPUT_N represents the number of output bits,
COUNTER_N represents the number of counters and thus the
number of output counter flags that will be available in the
CFSM, COUNTER_W represents the maximum value a
counter can reach, and TRANS_N represents the maximum
number of transactions per state.

The look-up tables of DMAP, OMAP and TMAP have
STATE_N entries. The width of each entry is defined as
follows:

• As DMAP stores only the index to the default
transition state for each state, it requires
log2(STATE_N) bits.

• OMAP stores for every possible state, all the outputs
of the CFSM, so each entry has OUTPUT_N bits.

• In order to define the width of the TMAP, on more
detailed explanation is needed on the operating
principle of these transitions and their configurability.

C. Transitions and triggers – Compromises in flexibility
In a regular FSM a transition from one state to another can

occur depending on a certain combination of its inputs (or
internal counters). Some transitions can be triggered by one
input, while another might be triggered by a combination of
multiple bit words. In order to keep all options open in the
transition definition, the transition logic would have to be
utterly flexible, similar to an FPGA-like structure. The amount
of bits to configure this, and resulting area and energy penalty,
would be unacceptably large.

A compromise must hence be made between the
configurability of the transitions, and the resulting complexity
overhead. In this regards, two options will be explored:

1.) State transitions can only be triggered by single bit
inputs values, but the amount of possible transitions
per state is not limited (only limited by the number of
input bits, TRIGGER_N).

2.) Multi-bit combinations of input are supported as state
transition triggers, but limiting the amount of possible
transitions per state.

In the first option, every state transition of the CFSM is
triggered by the value of one bit of the input triggers. The
transition map hence stores for every current state, and for
every one of the TRIGGER_N input bits, which will be the
next state in case it is asserted.

An implementation as shown in Fig. 3, uses this transition
table data to compute the next state: The input bits are
demultiplexed to the OR-gate of the next state they are
triggering for. Each demultiplexer of active triggers therefore
generates a one-hot word representing the next state. The
amount of bits needed to configure each demultiplexer is hence
log2(STATE_N+1), with the extra bit required to signal if the
trigger is not used in the current state. The bitwise or of these
words gives the one-hot representation of the next state. If the
configuration is not done properly and the one-hot word has
two active bits, an error flag should be activated. If every no
trigger produces a transition and the one-hot word is zero, then
the default transition from DMAP is used. The number of bits
that each state hence requires in TMAP is
log2(STATE_N+1) TRIGGER_N.

NEXT STATE (ONE_HOT)

ONE HOT
TO BIN

NEXT STATE (BIN)

TRIGGER_N INPUT BITS TRANSITION CONFIG

ERROR_FLAG

== 0

DEFAULT
TRANSITION

Fig. 3 Transition module architecture

A second option is to allow multi-bit combinations to
trigger state transitions. This requires storing a mask word of
length TRIGGER_N for every allowed state transition. As it
would be unfeasible to do this for every other state in the FSM,
the maximum number of possible next states is limited in this
implementation to TRANS_N. As it should remain
programmable which next states these are, the state that each of
the TRANS_N transitions leads to would have to be stored as
well. Hence, a transition configuration map with a length of
log2(TRANS_N + 1) TRIGGER_N would be needed to store
the trigger masks, and a word with length of
(TRANS_N) log2(STATE_N) to store the next state for every
trigger combination. Unless the number of transitions is very
small, this ultimately leads to a larger number of registers in
the end. Two examples of this can be seen in Fig. 4, as two
implementations (FSM0, with 32 states, 8 inputs and 4 outputs
and FSM1 with 10 states, 4 inputs and 4 outputs) are compared
between options 1 and 2. It is clear that for option 2 the area
consumption grows quickly with the maximum number of
transitions. As a result, option 1 is selected and implemented in
this work.

0

500

1000

1500

2000

2500

3000

2 3 4 5 6 7 8 9 10

FSM0-Option1

FSM0-Option2

FSM1-Option1

FSM1-Option2

Fig. 4 Architecture comparison in number of flip-flops

The selection of this single-bit implementation option
means that any necessary multi-bit triggers have to be
consolidated outside the configurable FSM into single bit

triggers that the CFSM can handle. This can e.g. be done in a
hardwired way. Although this significantly reduces the CFSM
cost, one can argue that this limits the power of the CFSM to
be able to adapt to post-production updates. However, the
behavior of the CFSM can still be modified and new states can
be added, as long as the same triggers are used with regard to
the initial implementation, which still covers a wide range of
post-manufacturing updates, like changes in a startup sequence
or in the implementation of a serial protocol. The designer can
decide himself to provide additional triggers to keep the option
of using them in the future open, or can even decide to
implement a small configurable trigger generation block
outside the CFSM in case that flexibility is desired. A similar
trade-off can be made regarding the number of output bits
OUTPUT_N supported by the CFSM. The designer can decide
to have a reduced number of configurable outputs, and depend
instead on the current state output using the output bits for
future expandability (see e.g. ECG use case).

D. Cost evaluation
Table 1 summarizes the total required number of registers

required by the architecture:
TABLE 1 REGISTER COST OF DESIGN

Module name Total number of flip-flops
DMAP STATE_N log2(STATE_N)
TMAP STATE_N log2(STATE_N+1) TRIGGER_N
OMAP STATE_N (OUTPUT_N+(COUNTER_N*2))
CMAX COUNTER_N COUNTER_W

Current state register log2(STATE_N)
Counter register COUNTER_N COUNTER_W

Table 2 shows the cost in terms of register count increase of
introducing an additional state, additional input, or additional
output bit into the CFSM.

TABLE 2 REGISTER COST OF INCREASING A PARAMETER

Increase in Parameter Cost in flip-flops
State log2(STATE_N) (1+TRIGGER_N)+OUTPUT_N
Input STATE_N log2(STATE_N+1)

Output STATE_N

IV. CASE STUDY: ECG SENSOR NODE

A. F0: Basic sensing scenario
In order to assess the effects of unloading tasks from the

MCU to FSMs, and assess the energy and area cost of the
introduction of CFSMs, an sensor node running an electro-
cardiogram (ECG) analysis task was simulated. The node
receives data from a sensor through an I2C module at a fixed
rate. The MCU interpolates the signal, executes the Pan-
Tompkins algorithm for QRS peak detection [7], first
executing some filtering and then searching for peaks in the
processed signal to detect the heart rate, while detecting and
discarding “noise” peaks. The node needs to communicate the
average number of samples between peaks once every minute.
Its architecture is depicted in Fig. 5. The operating scenario
where all tasks described above are executed in the core, will
be denoted as scenario ‘F0’.

OPTIMIZED
CORE

INSTRUCTION
MEMORY DATA

MEMORY

EVENT
MANAGER

SENSOR
INPUT
(I2C)DMA

TO PC
(UART)

PAN-TOMPKINS
ACCELERATOR

ECG MODULE

Fig. 5 ECG module architecture where FSMs handle event related tasks.

B. F1: Offloading to fixed FSMs
To assess the effectiveness of off-loading control-oriented

tasks to fixed FSMs, the following tasks were off-loaded from
the MCU to dedicated hardwired units:

• The I2C module, for the ECG sensor input

• The UART master module, to communicate with the
PC

• The event manager, which controls which modules
are clock gated and also acts as control for the DMA,
deciding who communicates with data memory, and
who communicates with the MCU.

This off-loading allows keeping the micro-controller more
frequently in sleep mode (clock gated, but not power gated in
our implementation), with its memories in data-retention mode
(lower leakage dispersion but data is not lost). While the
processor is asleep, the event manager is responsible to
configure the DMA to allow the sensor input module access to
data memory. Every time a new sample is detected, the event
manager wakes up data memory, writes the sample, and
powers it down. When a predefined number of samples have
been captured, the event manager powers up instruction
memory, configures the DMA to give the core access to data
memory, and wakes up the core. Once the samples have been
processed, the core sends the average number of samples
between peaks to the PC to reveal the computed heart rate. The
core subsequently enters sleep mode, and the event manager
clock-gates it, and puts both instruction and data memories
back into data retention mode. The Event manager then goes
again to wait for more samples. This scenario with fixed FSM
off-loading will be denoted by scenario ‘F1’.

C. F2: Pan-Tompkins accelerator with fixed FSM
The bulk of the remaining processor tasks relate to

processing the ECG signals to extract the heart rate using the
Pan-Tompkins algorithm. External data accelerators are often
suggested to execute such processing more efficiently. To this
end, a configurable data path was implemented, which could be
programmed to serially perform several subtasks of the Pan-
Tompkins algorithm, consisting of a low-pass filtering stage, a
high-pass filtering stage, derivative computation, squaring and
finally an integration. The control of this accelerator, to
repeatedly set all its configuration bits to configure it to the
correct sequence of operating modes to implement Pan

Tompkins, is implemented first as a hardwired FSM. In this
usage scenario, the core hence has a configurable datapath,
with a fixed FSM to control it, shown in Fig. 6. The core goes
to sleep every time the Pan-Tompkins algorithm is processing,
and wakes up when done, to execute the remaining peak
search. This scenario is denoted as ‘F2’.

CONFIGURABLE
DATAPATH

CFSM

Fig. 6 Pan-Tompkins configurable datapath and control

D. F3: CFSM in Pan-Tompkins accelerator
The final step is to replace one of the hardwired FSMs with

a CFSM. In this section, replacing the FSM in the Pan-
Tompkins accelerator will be discussed, as it leads to another
example where the configurability of the CFSM needs to be
balanced carefully against its register count.

The hardwired FSM has nine states: IDLE, PUSH,
LOWPASS, HIGHPASS, DERIVATIVE, SQUARING,
INTEGRAL, REGISTER SHIFT, AND FINISH, there is only
one trigger, which signals a new value to process. The
particular thing about this FSM is that it requires configuring
the datapath of the accelerator, which is done through 22-bit
word. This would make OMAP quite big, while TMAP and
DMAP are very small in comparison.

As discussed in Section III.C, the designer can decide to
work with a smaller set of output bits, and construct part of the
configuration signal come externally to the CFSM based on the
current state register. The presented implementation did this for
the configuration bits of the accelerator, leaving four more in
the output register for future expandability. The resulting FSM
is very small, although the pattern of the operations can still be
changed. E.g., if the algorithm were to change to remove or
repeat some of the algorithmic stages, so that the CFSM could
be changed to cycle through the states in a different order. This
trade-off can be made by the designer at design time. The
resulting operating scenario, using the configurable FSM is
denoted as scenario ‘F3’.

E. Results in terms of area, performance and energy
The four implementation scenarios were simulated using

TSMC 40 nm technology at 1.1 volts, operating at 10 Mhz.
They will be compared quantitatively in terms of their area and
energy implications on the sensor processing subsystems. This
will allow to assess the energy saving opportunities of event
off-loading to external FSMs, as well as to assess the overhead
of introducing configurability into these FSMs.

• F0: No task off-loading, everything implemented on
the micro-controller core.

• F1: Event related tasks off-loaded from core to fixed
FSMs.

• F2: Scenario F1, with additional data processing off-
loaing to accelerator with fixed FSM.

• F3: FSM in accelerator is replaced by CFSM.

For each of these scenarios, Table 3 lists the total number
of combinational area and registers in the design (without
taking into account memories), The total area estimated,
including the area of data and instruction memories. Two
energy measures are shown, the first is for the processing of a
batch of samples (in this case 66), which depending on the
implementation might take more or less time, and the second is
the total energy consumption in a second, taking into account
the time the module is idle waiting for new samples.

TABLE 3 RESULTS SUMMARY

 F0 F1 F2 F3

Combinational area (gates) 5847 6203 8199 9013

Non-combinational area (gates) 3658 3975 15142 17438

Total area incl. memories(mm2) 0.2460 0.2468 0.2626 0.2663

Energy consumed processing 66
samples (uJ)

8.8 8.79 1.50 1.51

Power consumption (uW) 30.106 22.95 16.018 16.022

As can be seen from the previous table, unloading only
control tasks from the processor with fixed FSMs (Comparing
F0 and F1) reduced energy consumption by 23% (Energy spent
in one minute), even though the energy consumed by the data
processing remained the same. By also unloading the bulk of
the data processing to the accelerator (comparing F2 and F1),
there was a significant reduction in the energy consumed to
process the sensor data (x5.8, energy per batch of 66 samples),
however, due to the large amount of leakage dissipated by the
memories, the overall improvement in energy consumption was
much smaller (x1.37 more efficient in overall energy per
second). Finally, the table shows that by replacing the
hardwired FSM for the CFSM does not significantly impacts
area or performance, so the benefits of the hardwired FSM are
kept while increasing flexibility. Comparing the energy spent
in one second in F0 and F3, a reduction of 46% can be seen.

V. CONCLUSIONS AND FUTURE WORK
In this work introduced an architecture for configurable

FSMs targeting the off-load of control tasks from sensor node
processors in order to save energy, without giving up all
programming flexibility. The paper assessed the tradeoffs of
unloading tasks to hardwired FSMs, and the overhead of
making them configurable. By off-loading event-related tasks
from the core, it can be kept in low power mode as much as
possible. In our case study, a reduction of 46% of the
consumed energy in a given period of time was observed by
using techniques at the software and architectural level, without

implementing power gating and other gate level energy saving
methods, which can still be combined with the proposed
methodology.

Our future work will assess the gains of combining the
presented techniques with power gating and DVFS. More case
studies are planned to assess energy saving opportunities in
promising applications:

a. Configurable I/O module: I/O ports in an ASIC can
sometimes be a scarce resource. Often, the same set of ports is
multiplexed between different communication and debug
modules (e.g. I2C, JTAG, USB, etc.). A CFSM might come in
handy to support such multiplexing between different protocols
in an area efficient way, and allow to make changes or updates
to them after manufacturing.

b. Configurable event/power manager: By making the
power/event manager module configurable, the startup
sequence and main control of a SoC can be flexible and much
easier to debug. Currently, such flexibility can only be
achieved by implementing node event- and power-control in a
core with full instruction memory, representing significant
energy overhead.

ACKNOWLEDGMENT
The authors want to acknowledge Synopsys for their

support with the tool Processor Designer.

VI. BIBLIOGRAPHY
[1] M. Keating, D. Flynn, R. Aitken, A. Gibbons and K. Shi, Low Power

Methodology Manual For Systen-on-Chip Design, Springer, 2007.

[2] J. Kwong , Y. K. Ramadass, N. Verma and A. P. Chandrakasan, "A 65 nm
Sub-Vt Microcontroller with Integrated SRAM and Switched Capacitor
DC-DC Converter," IEE Journal of Solid-State Circuits, vol. 44, no. 1,
2009.

[3] W. Tuming, Y. Sijia and W. Hailong, "A Dynamic Voltage Scaling
Algorithm for Wireless Sensor Networks," in International Conference on
Advanced Computer Theory and Engineering, 2010.

[4] V.-T. Hoang, N. Julien and P. Berruet, "Design under Constraints of
Availability and Energy for Sensor Node in Wireless Sensor Network," in
Conference on Design and Architectures for Signal and Image Processing,
2012.

[5] M. A. Pasha, S. Derrien and O. Sentieys, "Ultra low-power FSM for
control oriented applications," International Symposium on Circuits and
Systems, pp. 1577-1580, May 2009.

[6] M. A. Pasha, S. Derrien and O. Sentieys, "System-level synthesis for
wireless sensor node controllers: A complete design flow," ACM
Transactions on Design Automation of Electronic Systems, January 2012.

[7] J. Pan and W. J. Tompkins, "A Real-Time QRS Detection Algorithm," in
IEEE Transactions on Biomedical Engineering, 1985.

	Open_Access_frontpage
	Paper_recosoc_jcpr_mv

