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Abstract

In this paper we optimize the regulation of an intersection of two routes connecting
one origin-destination pair and study the effects of priority rules, traffic lights and tolls.
We show that when the intersection is regulated by a priority rule the optimal policy is
generally to block one of the two routes. When the intersection is regulated by traffic
lights, it can only be optimal to leave both routes open when both routes are subject
to congestion or if a toll is levied.
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1 Introduction

Despite decades of research on the optimization of intersections, the poor regulation of in-
tersections is a matter of huge frustration amongst many drivers today. The complexity of
the problem makes the optimization of intersections a tough nut to crack. Understanding
the causal mechanisms that govern the optimal regulation of intersections is therefore es-
sential in dealing with complex network problems. Not least because externalities, resulting
from the behavior of drivers, can lead to results that defy intuition.

The first traffic signal control model was studied by Webster (1958). This model assumes
traffic flows to be unaffected by the signal settings. This reduces the model to an isolated
control problem in which signal settings are optimized for given flows on the network. The
need to take into account the effects of the change in traffic light settings on the network
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flow was first emphasized by Allsop (1974). This insight has generated two approaches in
the literature that address the interaction between control and assignment: (1) the iterative
procedure and (2) the global optimization approach (Cantarella et al. (1991)).

The iterative procedure iteratively solves the signal setting problem for a fixed flow pattern
and the assignment problem for fixed signal settings until two successive flow patterns or
signal settings converge (Allsop and Charlesworth (1977), Cantarella et al. (1991), Gartner
et al. (1980), Lee and Hazelton (1996)). A dynamic approach is proposed by Hu and Mah-
massani (1997) and Lo et al. (2001). With a simple example, Dickson (1981) showed that
the total network cost can increase during the iterative procedure. The iterative procedure
does thus not necessarily lead to the optimal solution.

When the global optimization approach is applied, some network objective function is op-
timized while taking into account the equilibrium route choice behaviour of the drivers
(Chiou (1999), Cipriani and Fusco (2004), Fisk (1984), Marcotte (1983), Sheffi and Powell
(1983), Yang and Yagar (1995)). The global optimization problem can be modelled as a
bilevel programming problem in which the upper level deals with the control problem and
the lower level with the user equilibrium assignment problem. The dynamic approach is
studied by Abu-Lebdeh and Benekohal (2003).

Smith (1979) provided the necessary mathematical fundamentals of the traffic control and
assignment problem by stating the conditions under which the problem has a unique and
stable solution. In later work, he proposes and elaborates a local traffic control policy
(called P0) that maximizes network capacity (Smith (1980, 1981)). In successive papers,
Smith extends his work on the combined traffic assignment and control problem (see e.g.
Smith and Van Vuren (1993)).

Relatively few papers address both signal optimization and road pricing. Clegg et al. (2001)
explored the use of both instruments by specifying an algorithm that continuously moves
current traffic flows, green-times and road prices within the model toward locally-optimal
values. Chiou (2007) proposes a globally convergent iterative scheme designed to heuristi-
cally search for a local optimum.

Fisk (1984) was the first to model the combined assignment and control problem as a
Stackelberg game. Chen and Ben-Akiva (1998) developed a dynamic model dealing with
the combined assignment and control problem and formulated it as a Cournot, Stackelberg
and monopoly game. Overall, there have only been a limited number of authors focussing
on the game theoretical perspective of the combined assignment and control problem. For
an overview, see Hollander and Prashker (2006).

This paper follows Fisk’s example in modelling the combined assignment and control prob-
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lem as a Stackelberg game. In this game the leader (traffic authority) moves first and bases
his decision on the expected reaction of the follower (the drivers). The behaviour of the
drivers can also be represented as a game, because the congestion on one road is dependent
upon how many users choose to use the same road. We will assume that the followers
behave according to the noncooperative principle of Nash (1951).
To obtain an optimal and tractable solution for the intersection problem, we use a simple
two-road intersection, that can be controlled by either a priority rule or traffic lights. This
simplified network structure can represent different types of routes and different modes of
transport that are either congestible or insensitive to congestion.

The remainder of this paper is organized as follows: Section 2 focuses on the case in which
the intersection is regulated by a priority rule. Section 3 presents the main results when
the intersection is regulated by traffic lights. Section 4 offers a comparison between the
regulation by traffic lights and by a priority rule. Section 5 illustrates the theory by means
of two applications and Section 6 offers a conclusion.

2 Priority

In this section, the intersection is regulated by a priority rule. In Section 2.2, Route 2 is
considered to have unlimited capacity, while Route 1 is subject to congestion. In Section
2.3, we consider the case where both routes have limited capacity. The focus will be on
the main results and the intuition. The complete mathematical derivations are given in
Appendices. Before turning to the results, we will first set out the assumptions underlying
the priority model.

2.1 Assumptions underlying the priority model

N drivers want to go from point A to point B (Figure 1). They can either take Route 1 or
Route 2. The two routes intersect at point C and the intersection is regulated by a priority
rule. Six assumptions are imposed on the model representing the intersection regulated by
a priority rule.

A.1 Demand: total demand is inelastic and equals N.

A.2 Homogeneous users: all users are identical and try to minimize their expected user
cost. The stationary distribution of vehicles will be a Wardrop equilibrium (Wardrop
(1952)).

A.3 Arrival rate: the arrival rate is static.
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Figure 1: Outline of an intersection of two routes connecting one OD-pair (AB) regulated
by a priority rule.

A.4 Undersaturated conditions: the arrivals at the intersection on Route 2 in the time
interval 1

X1
don’t exceed the number of Route 2-drivers that can cross the intersection

in the time interval ( 1
X1
− v).

A.5 Priority: Route 1 always has priority.

A.6 Time cost of priority: v hours before a car on Route 1 passes C, cars on Route 2
already wait until the car on Route 1 has passed.

Proposition 1 When the intersection of two routes connecting one OD-pair is regulated
by a priority rule, the optimal policy is generally to block one of the two routes. The only
exception is the case where the marginal congestion cost on the minor route is greater than
half of the square of the marginal waiting cost (a2 > v2

2 ). In this scenario, the optimal
policy is to leave both routes open.

2.2 Only one route subject to congestion

Let a1 be the increase in average cost on Route 1 when one vehicle is added, we call it the
sensitivity to congestion; let Xi equal the flow on route i ; let ω be the resource cost for a
trip from A to C; let φi stand for the minimal time cost from A to C of route i ; and let
v2X1
2 be the expected waiting time cost1 on Route 2 at the intersection. When two parallel

routes connect one OD-pair, the government can use three possible policies: to block Route
1, to block Route 2, or to leave both routes open. The users in turn can react in three ways

1The waiting time cost function is derived in F.
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to any chosen policy: to only take Route 1, to only use Route 2, or to use both routes. If
the government decides to block Route 1, then all drivers need to take Route 2 and the
total cost will equal (ω + φ2)N . If, on the other hand, the government blocks Route 2,
then the user equilibrium will be X1 = N and the total cost will be (a1N + ω + φ1)N . If,
however, the government decides to leave both routes open, the equilibrium reaction of the
drivers will be X1 = N if a1N +φ1 < φ2+

v2(N−1)
2 , X2 = N if φ1 > φ2 and the drivers will

use both routes if φ1 < φ2 < a1N +φ1− v2(N−1)
2 . In this last case the Wardrop equilibrium

implies
(
ω + φ2 +

v2Xe
2

2

)
N as total cost. The user equilibrium in which both routes are

used is, however, never optimal from the government’s point of view. Therefore, it is always
optimal to block one of the two routes.
Which route to block depends on the relative cost of both routes: a rational authority
minimizing the social cost closes Route 1 if a1N + φ1 > φ2, and Route 2 if a1N + φ1 < φ2.
Remark that if the interior equilibrium exists, it is always optimal to block the route
with limited capacity. This result can be explained intuitively. If both routes are used,
drivers on the minor (uncongested) route incur a waiting cost, whereas if only the minor
(uncongested) route were to be used, no waiting cost would be incurred and, compared to
the interior solution, no other additional costs are incurred. If on the other hand only the
congested route were to be used, then the total cost would be higher than for the interior
solution due to additional congestion costs. We have shown this result for linear average
cost functions, but this result holds more generally for any travel cost function in which
the running time is a continuous nonlinear nondecreasing function of the flow. Indeed, the
main driver of the result is the additional waiting time externality that is imposed when
using both Route 1 and Route 2. If there is an internal solution where both user costs are
equal, it is always optimal to have all users only using Route 2 as this cost is always lower
by avoiding the priority waiting costs.

In the absence of a government intervention blocking one road, the driver will often make
the sub-optimal choice. Indeed, whenever a1N + φ1 − v2(N−1)

2 < φ2 < a1N + φ1, the user
equilibrium is X1 = N , while X2 = N would be optimal. On the other hand, whenever
φ1 < φ2 < a1N + φ1 − v2(N−1)

2 there will be an equilibrium in which both routes are used,
while it would be optimal to have all drivers on Route 2. Figure 2 illustrates this second
situation. The Wardrop equilibrium is given by the intersection of the average cost-curves
of Route 2 and Route 1 (point G)2. It is clear that the total cost for the interior solution
equals ABCD, while the total cost would only equal ABFE if Route 1 had been blocked.
This can be seen as an illustration of the Braess paradox (Braess (1968)). In the Braess
paradox, adding one additional link can increase total travel cost. Braess’ paradox occurs
because the congestion externality is not taken into account by the drivers. Here, we also

2Note that for interior solutions every additional user on Route 1 imposes an extra waiting cost for the
drivers on Route 2. This explains the upward sloping AC curve of Route 2 for increasing X1.
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Figure 2: The solution in which all travellers use Route 2 (E) is optimal. However, without
intervention, the interior solution (G) will be the user equilibrium.

add a link and, in this case, it is the external waiting cost that users on the main road
impose on the users of the minor road that can increase the total travel cost.

2.3 Both routes subject to congestion

The suboptimality of an interior solution continues to hold for the case in which both routes
are subject to congestion and a2 ≤ v2

2 (with a2 the sensitivity to congestion of Route 2).
However, when a2 ≥ v2

2 , the total cost can be at lowest when both routes are used in
equilibrium.

In the Stackelberg game the traffic authority (leader) moves first and bases his decision on
the expected reaction of the drivers (follower). Figure 3 illustrates this sequential game and
shows the different options for the government and the possible reactions of the drivers.
When the government decides to close Route 1, the user equilibrium will be X2 = N , and
the total cost will be (a2N + ω + φ2)N . When only Route 1 is accessible, X1 = N will be
the only equilibrium, and the total cost will amount to (a1N+φ1+ω)N . When both routes
are accessible, the user equilibrium that will be in place depends on the relative value of
the parameters: X2 = N if a2N + φ2 < φ1; X1 = N if a1N + φ1 < φ2 +

v2

2 (N − 1); and
0 < Xe

1 < N in all other cases.

Taking into account the reaction of the drivers, the government will block one of the two

6



Figure 3: The total travel costs resulting from a Stackelberg game.

routes if a2 < v2

2 , and leave both routes open if a2 ≥ v2

2 . The optimal policy thus depends
on the ratio of the congestion coefficient (a2) to the reaction time (v). If a2 < v2

2 , the
situation is similar to the case where only one route is subject to congestion and then it is
always optimal to block one of the two routes. If a2 ≥ v2

2 and the government leaves both
routes open, it can be shown that in the user equilibrium the lowest cost will be attained.
In graphical terms, a2 < v2

2 boils down to an upward sloping (in X1) average cost curve of
Route 2, while a2 > v2

2 boils down to a downward sloping ACroute2-curve. The underlying
logic is that if a2 ≥ v2

2 , the extra congestion cost of having all travellers on Route 2 is more
costly than the saving in waiting costs. If, however, a2 < v2

2 , the opposite is true.

3 Traffic lights

In this section, the two-road intersection is regulated by traffic lights. Following the same
approach as in the previous section, first only one route is considered to have limited

7



Figure 4: The interior solution (G) is optimal. No government intervention is needed to
reach the optimal solution.

capacity, and subsequently both routes are considered to have limited capacity.

3.1 Assumptions underlying the traffic lights model

Figure 5: Outline of an intersection of two routes connecting one OD-pair (AB) regulated
by traffic lights.
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Five assumptions are imposed on the model representing the intersection regulated by traffic
lights.

A.1 Demand: total demand is inelastic and equals N. This assumption is relaxed in Section
3.3.2.

A.2 Homogeneous users: all users are identical and try to minimize their expected user
cost. The stationary distribution of vehicles will be a Wardrop equilibrium.

A.3 Arrival rate: the arrival rate is static.

A.4 Undersaturated conditions: vehicle queues are only created during red phases, and
fully dissipate during green phases. This assumption is relaxed in Section 3.2.1.

A.5 Cycle time: to simplify matters, the cycle time3 ‘c’ is held fixed. Hence, it follows that
including intergreen time in the analysis is not relevant and will thus be ignored.

In this paper, the variable ‘r’ represents the red time on Route 2 and will be the main
control variable. The corresponding green time on Route 2 will thus be (c-r) and a reverse
scenario holds for Route 1. As there will be alternating red times to avoid collisions at
the intersection, both routes will experience an expected traffic light waiting time cost
(T1 (c, r) , T2 (c, r)). It is clear that the traffic light waiting cost functions are increasing in
the red time and decreasing in the green time (∂T1(c,r)∂r < 0, ∂T2(c,r)∂r > 0). Furthermore, the
expected traffic light waiting functions are discontinuous and jump to infinity when it is
always red.

3.2 Only one route subject to congestion

In this section, only one route is considered to have limited capacity. In Section 3.2.1 the
optimal policy is determined for the case in which the traffic authority can only control the
traffic lights. In Section 3.2.2 the traffic authority can use both signal settings and a toll
to minimize total costs.

3.2.1 Traffic lights without road pricing

Proposition 2 When the intersection of two routes connecting one O-D pair is regulated
by traffic lights and only one of the two routes is congested, a signal setting whereby drivers
choose to use both routes can never be an optimal policy.

Table 1 shows that a rational government will never decide on an alternating signal setting
when both routes are substitutes. Indeed, let Ti (c, r) be the expected waiting time cost on

3that is the duration of the sum of green time and red time.
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Signal setting X1 = N X2 = N 0 < X1 < N

r = c (a1N + φ1 + ω)N ∞ ∞
r = 0 ∞ (ω + φ2)N ∞
0 < r < c (a1N + ω + φ1 + T1)N (ω + φ2 + T2)N (ω + φ2 + T2)N

Table 1: The total travel cost for every (r, UE)-combination

route i at the intersection4. As Ti (c, r) is positive when 0 < r < c, the total travel cost
for an alternating signal setting will always be higher than for r = c or r = 0. Which of
the two non-alternating signal settings will be optimal is dependent on the values of the
parameters a1, N, φ1 and φ2. When a1N +φ1 < φ2, r = c is the optimal solution and when
a1N + φ1 ≥ φ2, r = 0 will be implemented.5

Figure 6: A corner solution constitutes the optimal solution; in this case: X2 = N .

The suboptimality of an alternating signal (0 < r < c) in case the intersection is regulated
by traffic lights and only one route is subject to congestion, can be explained intuitively.
When the user equilibrium is X2 = N or X1 = N (i.e. φ2 + T2 (c, r) < φ1 + T1 (c, r) or

4We will assume that the saturation flow s is very large in comparison to the arrival rate Xi, so that the
traffic light waiting time due to departure delay is negligible.

5The optimality of only one route (mode) connecting one OD pair remains valid in the case where both
routes have unlimited capacity. The total minimal cost then equals (ω + φi)N with i the route index that
procures the lowest minimal time cost.
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a1N + φ1 + T1 (c, r) < φ2 + T2 (c, r) respectively), drivers have to wait at the traffic light
while there is no one crossing the intersection. The intuition behind the suboptimality of
an alternating signal setting when the user equilibrium is 0 < Xe

1 < N is shown in Figure
6. If the duration of red light for Route 2 is reduced, then the expected average waiting
time on Route 1 increases, indicated by an upward shift of the ACroute1 curve in Figure 6.
At the same time, the expected average waiting time for Route 2 decreases, corresponding
to a downward shift of the ACroute2 curve. This forces the switching point G to the left,
hence less people travel on Route 1 with a simultaneous decrease in total cost. From the
graph it is clear that the lowest cost (area ABFE) will be achieved when it is always green
for drivers on Route 2 (grey line). It is noted that the ACroute1 curve would lie infinitely
high in this situation.

This can be vivified by the following example: consider the situation in which demand from
point A to point B is relatively inelastic. Suppose A and B are connected by a tram6 and
a road plagued by traffic congestion. Users are indifferent between the two modes, only
the user cost matters. The tram line intersects the road trajectory, and this intersection
is regulated by traffic lights. In this situation, even though counterintuitive, the optimal
policy would either be to close the road and only maintain the tram, or to remove the tram
and only keep the road, depending on the relative costs of the two scenarios.

Proposition 2 can be generalized to average cost function in which the running time compo-
nent is a continuous nonlinear nondecreasing function of the flow. Indeed, the main driver of
the result is that any interior solution can be improved by either giving only green to Route
2 or giving only green to Route 1. So the result does not depend on the precise curvature of
the average cost function of Route 1. Furthermore, when we relax the assumption that the
waiting time due to departure delay is negligible 7, the result obtained in this subsection
is still valid, since any interior solution is more costly than the solution for either r = 0 or
r = c.

Finally, we can show that Proposition 2 can also be generalized to saturated traffic condi-
tions. Remark first that saturated traffic conditions can only occur for alternating signal
settings. Indeed, if r = 0 or r = c, the traffic light can not be the restricting factor. Suppose
that the demand and the relative time and resource costs are such that there exists a signal
setting for which the amount of drivers arriving at the intersection on Route 1 is larger
than the amount of drivers that can exit the intersection. That is, there is an r for which
Xe

1c > s1r, with c the cycle time, Xe
1 the equilibrium flow on Route 1, s1 the saturation

6The tram is assumed to be relatively insensitive to congestion and a substitute for the car.
7In this case, the user cost for Route 1 is a1X1+φ1+ω+ (c−r)2

2c
(
1−X1

s1

) and the user cost for Route 2 equals

φ2 + ω + r2

2c
(
1−X2

s2

) .
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Figure 7: The total cost when traffic conditions are saturated is at least as high as when
conditions are undersaturated.

flow and r the green time for Route 1 per cycle. In this case, a queue will develop on
Route 1, the time cost for Route 1 will go up, and the drivers will shift from Route 1 to
Route 2. If the capacity on Route 2 is not sufficient to accommodate the excess demand
of Route 1, then the total demand (N) will decrease8, which results in a loss of surplus. If
Route 2 has enough spare capacity to accommodate the shifting Route 1 drivers, then we
know from Yang and Yagar (1995) that in the steady state, Xe

1c equals s1r and the queue
waiting time cost will be such that the user cost on Route 1 and Route 2 is equal. From
Figure 7 (graph on the left-hand side) it is clear that the total cost in this case is as high
as the total cost for the same signal setting in the undersaturated case. Figure 7 (graph
on the right-hand side) furthermore shows that if Route 2 has the limiting capacity, the
total cost is higher than the total cost for the same signal setting in the undersaturated case.

From the analysis of the undersaturated case, we know that the total cost for an alternating
signal setting is always higher than for either r = 0 or r = c. If traffic conditions can be
saturated, then the optimal signal setting can lead to either saturated or undersaturated
conditions. Given that we have shown that for saturated conditions, the total cost is at
least as high as for the same signal setting in the undersaturated case, we can conclude that
also in the saturated case it is optimal to use only one of the two routes.

3.2.2 Traffic lights and road pricing

In this subsection, both signal settings and a toll (τ) are instruments the authorities can
use to minimize total costs. The toll is levied on the route subject to congestion, and the
toll revenues are subtracted from the total cost. Note that with fixed demand, a toll on

8We have assumed inelastic demand. This, however, is always relatively inelastic, because if the user
cost becomes infinitely large on both routes, the drivers will refrain from making the trip.
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Route 1 is equivalent to a subsidy to the users of Route 2.

Proposition 3 When the intersection of two routes connecting one O-D pair is regulated
by traffic lights and only one route is subject to congestion, then an alternating signal setting
can be optimal iff a toll is possible.

Signal setting and toll X1 = N X2 = N 0 < X1 < N

r = c (a1N + ω + φ1)N ∞ ∞
r = 0 ∞ (φ2 + ω)N ∞
0 < r < c, τ > 0 (a1N + ω + φ1 + T1)N (φ2 + ω + T2)N (a1X

e
1 + ω + φ1 + T1)N + τXe

2

Table 2: The total travel cost for every (τ , r, UE)-combination

From Table 2 it is clear that a rational authority will only implement an alternating signal
setting if both routes are used in the user equilibrium. It can be shown that if there
exists an optimal alternating signal setting and an optimal toll (i.e. if 2a1N > c and
2a1N − c

2 + φ1 > φ2 > φ1 +
c
2), both routes are used. So, the optimal (r, τ) combination

can be obtained as the solution of the following minimization problem:

min
X1,X2,r,τ

(a1X1 + ω + φ1 + T1 (c, r) + τ)X1 + (ω + φ2 + T2 (c, r))X2 − τX1 (1)

s.t.
X1 +X2 = N (2)

a1X1 + ω + φ1 + T1 (c, r) + τ = ω + φ2 + T2 (c, r) (3)

0 ≤ r ≤ c (4)

X1 > 0 (5)

X2 > 0 (6)

τ > 0 (7)

Now that a toll can be levied, the external costs on Route 1 are taken into account in the
user equilibrium. The optimal toll is (A):

τ =
φ2 − φ1 + T2 (c, r)− T1 (c, r)

2
(8)

Assuming undersaturated traffic conditions, i.e. queues at the intersection are only created
during the red phases and dissolved during the green phases, the traffic light functions take
the following form for 0 < r < c (see F):

T1 (c, r) =
(c− r)2

2c
(9)

T2 (c, r) =
r2

2c
(10)
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The optimal toll can then be written as follows:

τ =
φ2 − φ1 − c

2 + r

2
(11)

As ∂τ/∂r > 0, the optimal toll on Route 1 is increasing in r (the green time on Route 1).
The intuition is the following: if the green time increases on the congested route, people
will switch from Route 2 to Route 1 to take advantage of the extra green time. However,
this causes Route 1 to be even more congested. As individuals do not take into account the
effect of their switching on the existing drivers on Route 1, the toll has to increase in order
to reach a social optimum for given traffic light settings.
The dependence of the optimal toll on the optimal traffic light setting drives the statement
that the implementation of optimal signal settings can lead to a higher acceptance of toll
roads. First, in the absence of a toll, the optimal policy is to block one of the two routes.
When a toll becomes available on Route 1, it can be optimal to open both routes, which
increases the possibilities for the drivers. Second, consider a suboptimal signal setting with-
out toll where the congested Route 1 receives a very low green time. When a toll can be
implemented on Route 1, one can increase the green time on Route 1.

The optimal r is defined by the following equation in which N represents the total amount
of vehicles, τ the toll, a1 the sensitivity to congestion on Route 1, and Ti (c, r) the expected
waiting time cost on route i at the intersection (A).(

−N +
τ

a1

)
∂T2 (c, r)

∂r
=

τ

a1

∂T1 (c, r)

∂r
(12)

Combining equations (8) and (12) allows us to identify the optimal r as the solution of the
following equation:

(φ2 − 2a1N − φ1 + T2 − T1)
∂T2 (c, r)

∂r
= (φ2 − φ1 + T2 − T1)

∂T1 (c, r)

∂r
(13)

Assuming undersaturated traffic conditions and using the results from F, the optimal r as
a function of the exogenous parameters can be obtained from equation (13):

r∗ =

(
φ1 − φ2 + c

2

)
c

−2a1N + c
(14)

When 2a1N − c < 0, the optimal (r, τ) combination is a saddle point, and consequently the
minimum will be near the boundary (A). On the other hand, if 2a1N − c ≥ 0, the optimal
(r, τ) combination provides the minimum attainable costs.
To identify the optimal policy, the total cost needs to be compared for all three policies.
When the user equilibrium is X2 = N or X1 = N , tolls and traffic lights are not needed.
Therefore, the total costs equal (ω + φ2)N in case r = 0, and (a1N + ω + φ1)N in case

14



r = c.

If the optimal alternating signal setting exists, i.e. if 2a1N > c and 2a1N − c
2 + φ1 > φ2 >

φ1 +
c
2 , then the corresponding cost is always lower than the cost for r = 0 or r = c (H). If

an optimal alternating signal setting does not exist, then it is optimal to implement r = c
if φ2 > φ1 + a1N , whereas it is optimal for Route 2 if φ2 ≤ φ1 + a1N .

Figure 8: The interior solution (I) is optimal.

Figure 8 schematically depicts the situation in which a toll is levied on the limited capacity
route in a two-road network and the intersection is regulated by traffic lights. In this graph
the signal settings are considered optimal. It is clear that an interior solution exists (point
I). A switch toward the corner solution X2 = N is accompanied by a cost reduction equal
to the area ABCD. This equals:

N
r∗2

2c
= N

(
φ1 − φ2 + c

2

)2
c

2 (−2a1N + c)2
(15)

However, the toll revenue obtained at the interior solution equals area AIFE. This is:

X1τ(X1) =

(
φ2 − φ1 + r∗ − c

2

)2
4a1

(16)

In G, it is shown that area AIFE> area ABCD. Therefore, in this case, the interior optimum
is better than the corner solution X2 = N . This confirms the previous statement that if an
interior optimum exists, it leads to lower costs than the corner solutions.
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Figure 8 also shows that, if the optimal τ is levied and if the traffic light settings are
optimal, the user equilibrium corresponds to the social optimum. This makes sense, as the
externality is internalized by the toll.

3.3 Both routes subject to congestion

We will first focus on the case in which demand is inelastic and then extend the analysis to
include elastic demand.

3.3.1 Inelastic demand

Proposition 4 When the intersection of two congested routes connecting one O-D pair is
regulated by traffic lights, the optimal alternating signal setting is independent of the total
flow and is given by r = a2c

a1+a2
.

The government first decides on the signal settings and the drivers subsequently determine
which route to take. Figure 9 illustrates this sequential game and shows all the feasible
signal settings and the reaction of the drivers to each of these signal settings. The third
branch, representing the decision of the government to implement an alternating signal
setting (0 < r < c), considers all red times between zero and c.
It can be shown that, if there exists an alternating signal setting for which the total cost is
lower than for any non-alternating r ( i.e., if a1Xe

1 +T1 (c, r) < a1N and a2Xe
2 +T2 (c, r) <

a2N), then the user equilibrium for this r is the one in which both routes are used. Hence,
the optimal alternating signal setting is the solution of the following optimization problem:

min
X1,X2,r

(a1X1 + ω + φ1 + T1 (c, r))X1 + (a2X2 + ω + φ2 + T2 (c, r))X2 (17)

s.t.
X1 +X2 = N (18)

a1X1 + ω + φ1 + T1 (c, r) = a2X2 + ω + φ2 + T2 (c, r) (19)

0 < r < c (20)

X1 > 0 (21)

X2 > 0 (22)

The solution will be determined by:

a1
∂T2 (c, r)

∂r
= −a2

∂T1 (c, r)

∂r
(23)

16



Figure 9: The total costs when the combined assignment and control problem is modelled
as a Stackelberg game.

Assuming undersaturated traffic conditions, the explicit waiting time functions are given
by equations (9) and (10). Inserting these expressions in equation (23), and solving for r,
the proportion of red time for Route 2 equals:

r∗

c
=

a2
a1 + a2

(24)

Even though the minimal time costs add to the total costs and we would therefore expect
them to appear in the formula, they are not part of the optimal signal setting-formula.
This can be explained by observing that the drivers themselves take the minimal time cost
into account when choosing a route, while they omit the external congestion cost in their
decision criterium. This omission is corrected by the optimal signal setting. The optimal
red time on Route 2 increases in a2

a2+a1
. The more congestible Route 2 is compared to Route

1, the more users will take Route 1 and thus a larger cost reduction is expected from an
increase in green time on Route 1.
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The total cost that the optimal traffic light settings produce is given by the following
equation: (

2a1a2 (a1 + a2)N + 2a1 (a1 + a2) (φ2 − φ1) + a1a2c

(a1 + a2)
2 2

+ φ1 + ω

)
N (25)

If this cost is lower than (a1N + ω + φ1)N and (a2N + ω + φ2)N , then the optimal policy
is to implement r= a2c

a1+a2
. If, on the other hand, the parameters are such that (a1N + ω + φ1)N

is the lowest cost, then the optimal policy would be to only give green to Route 1. Finally,
if (a2N + ω + φ2)N is the lowest cost a rational authority would implement r = 0.

3.3.2 Elastic demand

Proposition 5 When the intersection of two congested routes connecting one O-D pair
is regulated by traffic lights, the optimal signal setting is independent of the elasticity of
demand.

Figure 10: Equilibrium with elastic demand curve.

Regardless of the number of drivers that go from A to C, both routes will be used in the
user equilibrium that comes about when the authorities implement an alternating signal
setting. Taking this into account, we can construct an aggregate average cost function (C).
The optimal alternating signal setting is the solution of the following maximization problem
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with XT the total flow in the network and (δ − πXT ) the demand function:

max
r,XT

∫ XT

0

(
(δ − πXT )−

(
2
a1a2
a1 + a2

XT + 2
a1φ2 + a2φ1
a1 + a2

+ 2ω +
a1T2 (c, r) + a2T1 (c, r)

a1 + a2

))
dXT

(26)
s.t.

2a1a2XT

a1 + a2
+

2 (a1φ2 + a2φ1)

a1 + a2
+ 2ω +

a1T2 (c, r) + a2T1 (c, r)

a1 + a2
= δ − πXT (27)

XT ≥ 0 (28)

c > r > 0 (29)

XT is determined by equalizing the elastic demand function (δ − πXT ) and the aggregate
average cost function (27) and can be written as follows:

XT =
(a1 + a2) δ − 2ω (a1 + a2)− 2a1φ2 − 2a2φ1 − a1T2 (c, r)− a2T1 (c, r)

(a1 + a2)π + 2a1a2
(30)

Assuming traffic conditions are undersaturated, equations (9) and (10) hold, and can be
introduced in the optimization function. The optimal red time is then given by :

r∗ = a2c

a1 + a2
(31)

This equation shows that the optimal red time is independent of the total flow within the
network and yields the same result as in the case with inelastic demand. Therefore, it can
be concluded that the optimal alternating signal settings are independent of the elasticity
of demand when both routes have limited capacity.

4 The choice between traffic lights and a priority rule

Proposition 6 If only one route is subject to congestion, then for all r <
√
v2c φ2−φ1

a1− v
2

2

traffic lights are better than a priority rule. Furthermore, the higher the total number of
drivers, the larger the cost advantage of traffic lights compared to a priority rule.

If for some reason both routes have to be used and if r can be chosen such that r <√
v2c φ2−φ1

a1− v
2

2

and 0 < r < c, then traffic lights are the better choice. This can be seen

as follows: if both routes have to be used when traffic lights are present, the total cost
amounts to (ω+φ2+

r2

2c )N . Comparing this with the total cost in a priority rule situation,(
ω + φ2 +

v2Xe
1

2

)
N , it is clear that if r

2

2c <
v2Xe

1
2 (this comes down to r <

√
v2cXe

1), traffic
lights reduce the total cost. The cost savings that accompany the transfer to traffic light
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regulation thus equal (
v2

φ2−φ1
a1−

v2
2

2 − r2

2c )N . If this value exceeds the additional annualized
investment cost, traffic lights are optimal.

A further examination on the condition on r (r <
√
v2c φ2−φ1

a1− v
2

2

) shows that traffic lights

become more interesting when drivers are more careful (higher v). This is explicable, a
higher v increases the lost time when the intersection is regulated by a priority rule, leading
to a favourable regulation of the intersection by traffic lights.

5 Two applications

In this section, some of the theoretical results obtained in the previous section are illustrated
with an example.
The first example appplies a result of Section 2.2: when the intersection of two routes
connecting one OD-pair, of which only one is congestible, is regulated by a priority rule
and the interior equilibrium exists, then the optimal policy is to block the congested route.
The second example extends the results obtained in Section 3.2 by including local traffic
within the problem setting.

5.1 A low-traffic city center

Figure 11: Commuters can take the car or the bycicle.

Consider a city where the inhabitants live on the edge of the city and work in the city
center. There is a bike path, as well as a congestible road connecting work and home, and
both are currently being used for commuting trips. In the city center, cyclists always have
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to give way to cars. Applying the results of Section 2.2 to this situation, we can conclude
that for this city, the optimal policy would be to make the city center a car-free zone.
A city center in which no motorized traffic at all is allowed, is however, unrealistic. After
all, shops have to be provisioned and emergency vehicles have to be able to enter the center.
A simple solution, already adopted in many cities, is to allow only certain vehicles to enter
the city center. This can be implemented using, for example, automatic rising bollards.

5.2 A bypass and a city road

A well-known situation in which one O-D pair is connected by two parallel roads is repre-
sented in Figure 12. Here, transit traffic can choose between Route 1 or Route 2 to reach
point C, while local traffic can only take Route 2. Let Route 1 (the bypass) have a large
capacity. Furthermore, we will assume that both local traffic and cut-through traffic con-
tribute to the city road congestion. Suppose that the traffic lights are regulated by a federal
authority whose objective is to minimize the total cost of all drivers.

Figure 12: Transit traffic will either take the city road or the bypass depending on the
signal settings.

Let

Xb be the number of transit drivers taking the bypass per hour;

Xv be the number of transit drivers taking the city road per hour;

av be the congestion sensitivity of the city road;

21



φv be the minimal time cost to get to point C using the city road;

φb be the minimal time cost to get to point C using the bypass;

R be the local traffic per hour;

N be the total transit traffic per hour;

Ti (c, r) be the total waiting time cost at the traffic light on route i ;

and r be the red time for the city road.

Signal setting Xb = N, Xv = N 0 < Xb < N

r = c ∞ ∞ ∞
r = 0 ∞ (φv + av(N +R))(N +R) ∞
0 < r < c (avR+ φv + Tv)R (av(N +R) + φv + Tv)(N +R) (φb + Tb)(N +R)

+(φb + Tb)N

Table 3: The total travel cost for every (r,UE)-combination in a bypass situation

In Table 3, the total cost is shown for every combination of policy and user equilibrium. A
glance at the table shows that a rational authority would never implement r = c. When
the city road always has green (r = 0), the only Nash equilibrium is Xv = N . The total
cost in this case amounts to (φv + av (R+N)) (R+N). Furthermore, the total cost for the
combination (Xv = N , 0 < r < c) is always larger than the total cost for the combination
(Xv = N , r = 0). Finally, it can be shown that the FOC of (φb + Tb)(N + R) w.r.t. r is
always negative. As a consequence, the lowest cost when both routes are used occurs at
the signal setting for which transit traffic is indifferent between using both routes and using
only the bypass. The total cost curve when Xb = N is convex. Here, the minimum of this
total cost curve equals r = Nc

N+R .
The previous observations narrow down the candidate solutions to either r = 0, r =
−avR − φv + φb +

c
2 or r = Nc

N+R . In order to determine the optimal signal setting, the
government has to compare the cost of the different solutions.

Suppose now that the city road has limited capacity, then how will this change the results?
From Section 3.2.1, we know that if a signal setting leads to saturated conditions on the city
road and both routes are used, the total cost will be the same as in the undersaturated case.
Consequently, the first order condition of the total cost function will again be negative and
the optimal solution will be the signal setting for which transit traffic is indifferent between
using both routes and using only the bypass.
The minimal green time for which all the local drivers are below capacity (r = c− Rc

sv
) will

be an element of the interval for which Xb = N . If r = c − Rc
sv

is greater than Nc
N+R , then
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either Nc
N+R , r = −avR−φv+φb+

c
2 , or r = 0, will be the optimal solution. If on the other

hand r = c − Rc
sv

is lower than Nc
N+R , then either r = c − Rc

sv
, r = −avR − φv + φb +

c
2 , or

r = 0, will be the optimal solution9.

It is clear that a local government, preferring minimal transit traffic in its city, would try to
avoid the (Xv = N) outcome. The local government can do this by increasing av or φv10.
Increasing av or φv raises the cost of the (Xv = N , r = 0) combination relatively more11,
which decreases the likelihood of the federal govenment implementing r = 0.
Today, many cities already apply this strategy. Indeed, speed bumps and speed limits are
put in place to increase φv and local governments limit the capacity of roads to increase av
(De Borger and Proost (2013)).

6 Concluding remarks

In this paper, we studied the effects of a priority rule, traffic lights, and a toll on an
intersection of two routes connecting one O-D pair. We derived the intersection regulation
that minimizes total travel cost, taking into account Wardrop’s principles and the delay at
the intersection.
We have four major results. First, if the intersection is regulated by a priority rule, the
optimal policy is generally to block one of the two routes. Second, if the intersection is
regulated by traffic lights, and only one route is congestible, the optimal policy is again to
block one route. However, the addition of a toll allows for an optimal alternating signal
setting. Third, if the intersection is regulated by traffic lights, the optimal alternating
signal setting is always independent of the elasticity of demand. Finally, if only one route
is subject to congestion, the superiority of a regulation by traffic lights over a priority rule
becomes more likely the lower the reaction time of the drivers, and the higher the cycle
time.
These results are important for three reasons. First, the counter-intuitive nature of these
results confirms the importance of a good understanding of the causal mechanisms that
govern the optimal regulation. Second, these insights allow to solve larger networks more
efficiently as well as more effectively. More efficient, because the increased insight in the
location of the optimal solution allows for a reduction in computation time. More effective,
because local optima can be detected more easily. Finally, the obtained results can be
applied in practice. Our results can be useful in different contexts. We primarly think
about two parallel roads (e.g. a road through an urban area and a parallel road bypassing

9The demand function of the local drivers is assumed inelastic, so it is relatively expensive to drive back
the demand. So even if for Nc

N+R
the total cost is minimal, the loss in consumer surplus of the drivers that

no longer make the trip still reduces welfare.
10We only mention the parameters the local government can influence.
11( dTCr=0

dφv
>

dTC
r= Nc

N+R

dφv
and dTCr=0

dav
>

dTC
r= Nc

N+R

dav
)
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the city) or two parallel modes (e.g. a train and a road connecting two cities).
The results in this paper can be applied to solve one particular larger network problem. In
this network problem the two routes are a chain of individual components similar to the one
solved in this paper. If, for every component, it is optimal to use one and the same link12,
it can be concluded that it is optimal to maintain only one route. As this composition
technique can only be applied to a certain type of network problems, one future research
line is to extend the model to larger networks. Other future work includes the extension of
the model towards multiple government levels.
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Glossary

Parameters

δ maximum willingness-to-pay for a trip from A to B

ω resource cost per trip from A to C

φ1 minimal time cost to go from A to C using route 1

φ2 minimal time cost to go from A to C using Route 2

π marginal willingness-to-pay for a trip from A to B

a1 increase in average cost on Route 1 when one vehicle is added

a2 increase in average cost on Route 2 when one vehicle is added

c cycle length

N total inelastic demand from A to B

s1 saturation flow of Route 1

s2 saturation flow of Route 2

v time gap in which the users of the minor road are stationary at the intersection
before the crossing of a main road user

Control variables

τ toll fee

r duration of red per cycle given to Route 2

Variables

X1 flow on Route 1

X2 flow on Route 2

XT total flow in the network

25



A Derivation of τ* and r* and second order conditions for
X1 > 0, X2 > 0 (only 1 route liable to congestion)

min
X1,X2,r,τ

(a1X1 + ω + φ1 + T1 (c, r) + τ)X1 + (ω + φ2 + T2 (c, r))X2 − τX1 (32)

s.t.
X1 +X2 = N (33)

a1X1 + ω + φ1 + T1 (c, r) + τ = ω + φ2 + T2 (c, r) (34)

0 < r < c (35)

X1 > 0 (36)

X2 > 0 (37)

τ > 0 (38)

This can be rewritten as follows:

min
r,τ

(ω + φ2 + T2 (c, r))N − τ
(
φ2 − φ1 + T2 (c, r)− T1 (c, r)− τ

a1

)
(39)

φ2 − φ1 + T2 (c, r)− T1 (c, r)− τ > 0 (40)

a1N − φ2 + φ1 − T2 (c, r) + T1 (c, r) + τ > 0 (41)

0 < r < c (42)

−τ < 0 (43)

L (r, τ) = (−ω − φ2 − T2 (c, r))N + τ

(
T2 (c, r)− T1 (c, r) + φ2 − φ1 − τ

a1

)
(44)

−λ1 (−T2 (c, r) + T1 (c, r) + φ1 − φ2 + τ) (45)
−λ2 (−τ + T2 (c, r)− T1 (c, r)− a1N + φ2 − φ1) (46)
−λ3 (r − c)− λ4 (−r)− λ5 (−τ) (47)

Derivation to τ

∂L

∂τ
=

(
T2 (c, r)− T1 (c, r) + φ2 − φ1 − τ

a1

)
− τ

a1
− λ1 + λ2 + λ5 = 0 (48)

λ1 = 0, φ2 − φ1 + T2 (c, r)− T1 (c, r) > τ, (49)
λ1 (−T2 (c, r) + T1 (c, r) + φ1 − φ2 + τ) = 0 (50)
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λ2 = 0, a1N − φ2 + φ1 − T2 (c, r) + T1 (c, r) > −τ, (51)
λ2 (−τ + T2 (c, r)− T1 (c, r)− a1N + φ2 − φ1) = 0 (52)

λ5 = 0, −τ < 0, (53)
λ5 (−τ) = 0 (54)

For 0 < r < c:

τ =
φ2 − φ1 + T2 (c, r)− T1 (c, r)

2
(55)

Derivation to r

∂L

∂r
= −∂T2 (c, r)

∂r
N +

(
τ

a1
+ λ1 − λ2

)(
∂T2 (c, r)

∂r
− ∂T1 (c, r)

∂r

)
− λ3 + λ4 = 0 (56)

λ1 = 0, −T2 (c, r) + T1 (c, r) < −τ + φ2 − φ1, (57)
λ1 (−T2 (c, r) + T1 (c, r) + φ1 − φ2 + τ) = 0 (58)

λ2 = 0, T2 (c, r)− T1 (c, r) < τ + a1N − φ2 + φ1, (59)
λ2 (−τ + T2 (c, r)− T1 (c, r)− a1N + φ2 − φ1) = 0 (60)

λ3 = 0, r < c, λ3 (r − c) = 0 (61)

λ4 = 0, −r < 0, λ4 (−r) = 0 (62)

The second order conditions are given by the following equations:

∂2L

∂r2
= −N

c
< 0 (63)

∂2L

∂τ2
= − 2

a1
< 0 (64)

∂2L

∂rτ
=

1

a1
(65)

It is clear that if 2a1N ≥ c, then 2
a1
N
c −

1
a21
≥ 0 and so the optimal (τ , r) is a minimum.

However, if N < c
2a1

the optimal (τ , r) is a saddle point. In this case, the lowest point will
be near the corner.
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B Derivation of r* for X1 > 0, X2 > 0 (both routes liable to
congestion)

min
X1,X2,r

(a1X1 + ω + φ1 + T1 (c, r))X1 + (a2X2 + ω + φ2 + T2 (c, r))X2 (66)

s.t.
X1 +X2 = N (67)

a1X1 + ω + φ1 + T1 (c, r) = a2X2 + ω + φ2 + T2 (c, r) (68)

0 < r < c (69)

X1 > 0 (70)

X2 > 0 (71)

This can be written as follows:

min
r

(
a1

(
a2N + φ2 − φ1 + T2 (c, r)− T1 (c, r)

a1 + a2

)
+ ω + φ1 + T1 (c, r)

)
N (72)

s.t.
a2N + φ2 − φ1 + T2 (c, r)− T1 (c, r) > 0 (73)

a1N − φ2 + φ1 − T2 (c, r) + T1 (c, r) > 0 (74)

0 < r < c (75)

The corresponding Lagragian is given by:

L =

(
−a1

(
a2N + φ2 − φ1 + T2 (c, r)− T1 (c, r)

a1 + a2

)
− ω − φ1 − T1 (c, r)

)
N (76)

−λ1 (−a2N − φ2 + φ1 − T2 (c, r) + T1 (c, r)) (77)
−λ2 (−a1N + φ2 − φ1 + T2 (c, r)− T1 (c, r)) (78)
−λ3 (r − c)− λ4 (−r) (79)

The FOC are as follows:

∂L

∂r
= − a1N

a1 + a2

(
∂T2 (c, r)

∂r
− ∂T1 (c, r)

∂r

)
− ∂T1 (c, r)

∂r
N (80)

−λ1
(
−∂T2 (c, r)

∂r
+
∂T1 (c, r)

∂r

)
− λ2

(
∂T2 (c, r)

∂r
− ∂T1 (c, r)

∂r

)
(81)

−λ3 + λ4 = 0 (82)
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−a2N − φ2 + φ1 − T2 (c, r) + T1 (c, r) < 0, λ1 = 0, (83)
λ1 (−a2N − φ2 + φ1 − T2 (c, r) + T1 (c, r)) = 0 (84)

−a1N + φ2 − φ1 + T2 (c, r)− T1 (c, r) < 0, λ2 = 0, (85)
λ2 (−a1N + φ2 − φ1 + T2 (c, r)− T1 (c, r)) = 0 (86)

r < c, λ3 = 0, λ3 (r − c) = 0 (87)
−r < 0, λ4 = 0, λ4 (−r) = 0 (88)

If the optimal r is inserted in constraints (73) and (74), then it becomes clear that the
interior solution is only feasible if:

2 (a1 + a2) (a2N + φ2 − φ1) > a1c− a2c (89)

and
2 (a1 + a2) (a2N − φ2 + φ1) > a2c− a1c (90)
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C Derivation of the aggregate AC

We will assume the properties of the routes connecting CB to be the same as those con-
necting AC.

AC1ac = a1X1ac + ω + φ1 + T1 (c, r)

AC2ac = a2X2ac + ω + φ2 + T2 (c, r)

AC1cb = a1X1cb + ω + φ1

AC2cb = a2X2ac + ω + φ2

demand =δ − π (X1 +X2)

XT =X1cb +X2cb = X1ac +X2ac

X1ac =
ACac − ω − φ1 − T1 (c, r)

a1
(91)

X2ac =
ACac − ω − φ2 − T2 (c, r)

a2
(92)

a1a2XTac = (a1 + a2)ACac − (a1 + a2)ω − a1(φ2 + T2 (c, r))− a2(φ1 + T1 (c, r)) (93)

ACac =
a1a2XTac

a1 + a2
+ ω +

a1
a1 + a2

(φ2 + T2 (c, r)) +
a2

a1 + a2
(φ1 + T1 (c, r)) (94)

ACcb =
a1a2XTcb

a1 + a2
+ ω +

a1
a1 + a2

(φ2) +
a2

a1 + a2
(φ1) (95)

ACcb+ACac =
2a1a2XT

a1 + a2
+ω+

2a1
a1 + a2

(φ2)+
2a2

a1 + a2
(φ1)+

a1
a1 + a2

(T2 (c, r))+
a2

a1 + a2
(T1 (c, r))

(96)
In Figure 13 the aggregated cost curve is shown. The kink in the cost curve is due to the
change from using only one route, to using both routes.
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Figure 13: The aggregate cost

D Derivation of the total cost for an intersection regulated
by a priority rule (both routes liable to congestion)

min
X1,X2

(a1X1 + ω + φ1)X1 +

(
a2X2 + ω + φ2 +

v2X1

2

)
X2 (97)

s.t.
X1 +X2 = N (98)

a1X1 + ω + φ1 = a2X2 + ω + φ2 +
v2X1

2
(99)

X1 > 0 (100)

X2 > 0 (101)

The total cost at the interior solution equals:

(a1X
e
1 + ω + φ1)N (102)

The total cost at the corner solution (X1 = N) equals:

(a1N + ω + φ1)N (103)

The total cost at the corner solution (X2 = N) equals:

(a2N + ω + φ2)N (104)
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E Derivation of r* when demand is elastic (both routes liable
to congestion)

To find r*, the derivative of the following equation to r is taken. After which it is checked
if r* satisfies the constraints.
The total cost equals:

δXe
T −

π

2
(Xe

T )
2− a1a2

a1 + a2
(Xe

T )
2−2ωXe

T −
2(a1φ2 + a2φ1)

a1 + a2
Xe
T −

a1T2 (c, r) + a2T1 (c, r))

a1 + a2
Xe
T

(105)
The derivation to r gives us the following condition:

∂Xe
T

∂r
Xe
T

(
π

2
+

a1a2
a1 + a2

)
= 0 (106)

The signal setting for which Xe
T = 0, would imply that no driver would make the trip and

the welfare would be equal to zero. In this case, the road could just as well be closed off.
The signal setting for which ∂Xe

T
∂r = 0 equals:

a2c

a1 + a2
(107)
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F Waiting time computation for one route

Figure 14: Composition of the cycle time

It is assumed that traffic conditions are undersaturated.
The average waiting time for drivers arriving when the traffic light is red:

r − d
2 + r − 3d

2 + r − 5d
2 + ......+ 3d

2 + d
2

r
d

=
r

2
(108)

Average waiting time for all drivers (arriving at the traffic light during the red or green
phase):

r
2
r
d
c
d

=
r2

2c
(109)

When the intersection is regulated by traffic lights, the waiting time for Route 2 (with r
red) equals:

r2

2c
(110)

and the waiting time for Route 1 (with c-r red) equals:

(c− r)2

2c
(111)

In cases where the intersection is regulated by a priority rule, the red time is replaced by
v (v seconds before a car on the main road passes the intersection, cars on the minor road
already wait until the car on the main road has passed the intersection), and the cycle time
is replaced by the interarrival time of cars on the main road ( 1

X1
). The waiting time for

cars on the minor road then equals:
v2X1

2
(112)
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G Area AIFE > area ABCD

Area AIFE- area CDEF >0(
φ2 − φ1 − c

2

)2
4a1

+

(
φ2 − φ1 + r ∗ − c

2

)
r∗

2a1
+
r∗2

4a1
−N r∗2

2c
> 0 (113)

(
φ2 − φ1 − c

2

)2
2a1

> 0 (114)
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H Comparison of the interior solution and the corner solu-
tions

TC(interior*) < TC(X2=N)(
(φ1 − φ2 + c

2)
2

2 (−2a1N + c)
+ ω + φ2

)
N < (ω + φ2)N (115)

(φ1 − φ2 + c
2)

2

2 (−2a1N + c)
< 0 (116)

As the left hand side is negative, this is always satisfied.
TC(interior*)< TC(X1=N)((

φ1 − φ2 + c
2)

2

2 (−2a1N + c)
+ ω + φ2

)
N < (a1N + ω + φ1)N (117)

(
φ1 − φ2 + c

2)
2

2 (−2a1N + c)
+ φ2 − φ1 < a1N (118)

As 2aN − c
2 + φ1 > φ2 for an interior optimum, this is always satisfied.
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