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     Abstract —The ability of load to respond to short-term varia-

tions in electricity prices plays an increasingly important role in 

balancing short-term supply and demand, especially during peak 

periods and in dealing with fluctuations in renewable energy 

supplies. However, price responsive load has not been included in 

standard models for defining the optimal scheduling of genera-

tion units in short-term. Here, elasticities are included to adjust 

the demand profile in response to price changes, including cross-

price elasticities that account for load shifts among hours. The 

resulting peak reductions and valley fill alter the optimal unit 

commitment. Enhancing demand response also increases the 

amount of wind power that can be economically injected. Fur-

ther, wind power uncertainty can be managed at a lower cost by 

adjusting electricity consumption in case of wind forecast errors, 

which is another way in which demand response facilitates the 

integration of intermittent renewables. 

Index Terms—Wind power generation, demand response, real-

time pricing, unit commitment 

I. INTRODUCTION 

omplex operational decisions have to be made in electric 

power markets. In time frames of one hour to one week 

ahead, mixed-integer and often nonlinear Unit Commitment 

(UC) models are applied to determine which units should be 

turned on and off [1]. Generation outputs are adjusted to load 

to maintain the system power balance. These optimization 

models are used to minimize generation costs or maximize 

profits, taking into account operational constraints. 

Typically, fixed hourly electric load levels, based on short-

term forecasts, are assumed in UC models. However, the on-

going roll-out of smart meters, which allow communication of 

short-term electricity prices, creates opportunities for greater 

participation of demand in electricity markets. Therefore, UC 

models should be enhanced to account for adjustments of 

electricity consumption levels in response to frequently com-

municated electricity prices. Demand-side participation can 

increase market efficiency (measured by net economic sur-

plus) by reducing loads when marginal benefits of consump-

tion are less than marginal costs, and by increasing consump-

tion when the reverse is the case. Net economic surplus (or 

social surplus) is widely used by economists in benefit-cost 

analyses, and is calculated here as the sum of consumer sur-

 
C. De Jonghe and R. Belmans are with the research group Electa (ESAT), 

Katholieke Universiteit Leuven, Belgium (e-mails: Cedric.DeJonghe 

@esat.kuleuven.be and Ronnie.Belmans@esat.kuleuven.be). B.F. Hobbs is 

with the Johns Hopkins University, Baltimore, MD 21218 USA (e-mail: 
bhobbs@jhu.edu). Dr. Hobbs is supported by the US National Science Foun-

dation under grants EFRI 0835879, OISE 1243482, ECCS 1230788 and by 

the USDOE Consortium for Electric Reliability Technology Solutions. 
Manuscript received February XY, 2012 

plus (net benefits to consumers) and producer surplus (profit). 

Additionally, the impact of wind power variability and limited 

predictability may be reduced by demand response, which 

must be accounted for in assessments of the value of smart 

meters and real-time prices. 

UC models generally simplify or neglect the demand-side. 

However, some models include demand-side bidding, a mech-

anism that enables consumers to actively participate in elec-

tricity trading, typically on power exchanges. This is facilitat-

ed by consumers allowing their loads to be rescheduled in 

order to balance supply and demand or to maintain security 

requirements [2]. A day-ahead market-clearing tool offering 

consumers the opportunity to reduce their energy costs by 

submitting a shifting bid has been presented in [3]. 

Some UC models incorporate non price-based demand re-

sponse such as Direct Load Control (DLC). The impact of 

DLC on UC decisions and the potential saving of using DLC 

as system spinning reserve are illustrated in [4]. DLC is in-

cluded in a UC model in [5] with a focus on air conditioning 

loads. In [6], deferrable loads are coupled with the supply of 

renewable energy generation, using dynamic programming; 

however, that paper disregards the elasticity of the demand-

side and the corresponding consumer surplus. An alternative 

approach to represent responsive load is to explicitly model 

consumers’ optimal decision making, explicitly considering 

timing and amount of use, e.g., about storage or deferring 

loads. However, this would result in a bilevel modeling struc-

ture for a UC model, in which generator schedules are opti-

mized subject to the optimal solutions of consumer problems; 

such MPECs (mathematical programs with equilibrium con-

straints) are difficult to calibrate and solve. However, some 

energy market equilibrium models, such as the USDOE Na-

tional Energy Modeling System, do explicitly account for the 

effect of price changes on consumer energy equipment in-

vestment and operations [7]. 

In this paper, demand elasticity is used as an approximation 

to a often complex consumer decision making process, involv-

ing rescheduling of energy using activities. The complexity of 

consumer decision making process results from the both social 

and technical aspects. Social aspects refer to the fact that price 

changes might have a different effect during different mo-

ments (hour of the day, weekday versus weekend, season, ...), 

depending on exact energy uses and varying flexibility over 

time in adjusting those uses. Technical aspects refer to the fact 

that some demand adjustments can only be made during a 

limited period of time, that only a limited amount of consump-

tion (and related appliances) can be shifted. Both effects com-

bined might yield non-linear and time-varying response, re-

stricted by saturation effects and having minimum and maxi-

mum response levels. Models that represent demand response 
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with own- and cross-price elasticities can be viewed as first-

order approximations to such more complex representations.  

Some approaches that can be taken to parameterizing these 

models include the following. First, empirical estimates of 

elasticities and cross-elasticities from pilot studies of demand 

response programs can be extrapolated from pilot studies [8]. 

An example is the Baltimore Gas & Electric peak-time rebate 

and critical peak pricing pilot, which found a 20-30% load 

decrease in five afternoon hours from a ten-fold effective 

increase in price (an own price-elasticity of about -0.025), but 

at the same time ~3-8% increases in load in the hours immedi-

ately preceding and following those hours (which is a cross-

price elasticity with respect to each other hour’s price of less 

than +0.01, but which in aggregate is significant) [9]. If this is 

the only source of demand response, such results could be 

extrapolated; for example, if 50% of residential consumers are 

assumed to participate, and consumer load is 40% of demand 

in those hours, then those elasticities could be multiplied by 

0.5*0.4 = 0.2 to obtain the equivalent elasticity for aggregate 

load. Second, the impacts of new demand response technolo-

gies, such as plug-in hybrids or electric vehicles, could be 

approximated based on metamodeling analyses of the results 

of engineering studies. As an example, sensitivity analysis of 

detailed optimization or simulation models of vehicle charging 

behavior could be used to assess how charging would change 

with changes in relative prices [10], [11]. Again, the implica-

tions for aggregate load elasticity could be assessed by extrap-

olating, based on assumptions about the market penetration of 

the new technologies and the individual load shapes and re-

sponsiveness. Third, judgment could be used to limit the 

amounts of change in loads that are allowed. For instance, if a 

large part load response is from altering use of air condition-

ing or other HVAC systems, the changes in loads that might 

be expected from demand response could be bounded by hy-

pothesizing based on reasonable assumptions about tolerable 

temperature changes, informed by experience from load con-

trol and pilot demand response studies.  

Own-price elasticity (εt), also referred to as self-elasticity 

[12], indicates the relative change in the demand for electricity 

in response to a change in its price, where p0,t and q0,t are re-

spectively the initial price and loads in hour t: 
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The own-price elasticity represents the willingness of con-

sumers to adjust their electricity demand and is typically nega-

tive. Meanwhile, the cross-price elasticity (εt,t’) indicates the 

change in demand for electricity in hour t in response to a 

change in the price for electricity in hour t’≠t: 
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Own-price elasticities are used in an electricity market sim-

ulator to study consumer response in [13]. Cross-price 

elasticities are used in dynamic electricity pricing models in 

[14]. The impact of real-time pricing with own-price 

elasticities on the use of wind power generation and the fre-

quency of generation units being ramp-up or down-

constrained in a UC model is studied in [15]. However, the 

impact on operations costs, such as energy, start-up, emission, 

and wind power curtailment costs, is not reported. Unlike our 

study, cross-price elasticities and forecast uncertainty are also 

not considered. The effect of forecast errors is included in 

[16], without considering demand response to changes in 

electricity prices. The impact of demand response on wind 

integration is analyzed using stochastic programming in [17]. 

This paper does not include cross-price elasticities, and does 

not examine the impact on different cost components such as 

fuel and start-up costs. 

In this paper, we first present a fixed demand UC model in 

which consumers face a uniform price over the entire time 

horizon. This solution is obtained from a standard cost-

minimizing UC model; we then calibrate hourly demand 

curves based on the original loads, assumed elasticities, and a 

price based on the hourly (load weighted) marginal costs from 

the cost-based model. These demand functions with own- and 

cross-price elasticities are then used in a modified UC model 

to represent demand response in section II, describing the 

impact on wind curtailment, carbon emissions and market 

efficiency (gauged by net economic surplus). In section III, the 

assumption of perfectly predictable wind power injections is 

relaxed in the model by including wind power stochasticity, 

followed by conclusions in section IV. 

II. UNIT COMMITMENT WITH PRICE RESPONSIVE LOAD 

Assuming a single market clearing price in each time inter-

val (perhaps differentiated over space, as in nodal pricing 

models), UC models can be modified to find the equilibrium 

supply-demand balance and price for each interval. Under 

some conditions, described below, maximization of the market 

surplus (producer, consumer, and, in the case of transmission 

constraints, transmission operator surplus), [18] simulates the 

outcome of a competitive market, consistent with Samuelson's 

principle [19], assuming that submitted bids represent supplier 

costs and consumer benefits. If there are no cross-price 

elasticities, surplus is defined as the integral of the demand 

function minus the generation cost of meeting the load, taking 

operational constraints into account. According to microeco-

nomic theory, price-taking end-users who are maximizing 

their net benefits of consumption (i.e., consumer surplus) 

increase their load up the point where the cost of consumption 

is equal to the marginal benefit of that consumption [20].  

A. Model description 

A general UC model with fixed loads is described in detail 

in [21]. The specific formulation of the UC model applied in 

this paper can be found in [22] and is summarized in the Ap-

pendix. This model optimizes the commitment and dispatch of 

power generating units in the electricity system by minimizing 

operating costs. The operating costs include variable genera-

tion, start-up and wind power curtailment costs. Both fuel and 

emission costs are included in the variable generation costs. 

Generation technology-specific carbon emissions are included 

and multiplied by an emission price. Commitment of genera-

tion units also involves a technology specific start-up cost 

whenever a unit is turned on. Excessive wind power injections 

in the system could result in overgeneration situations. Clear-

ly, those situations with excess wind power occur when the 

amount of wind power injected (plus output from thermal 

generators running at their minimum allowable outputs) ex-

ceeds the load. Reducing hourly wind power injections in 

order to prevent such situations is referred to as wind power 
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curtailment. For each MWh of wind power curtailment, a cost 

is incurred. Although it can be argued that the true market cost 

of wind curtailment is zero, private costs to wind providers 

can be significant (in terms of lost production tax credits or 

renewable energy credits). Finally, a real-time system power 

balance requirement is enforced. 

This reference model is extended to model price-responsive 

load. The model results define the optimal (primal) variables. 

The marginal price of electricity is found based on the shadow 

price of the system power balance requirement. This is defined 

as the dual variable that results if the 0/1 commitment status of 

the generators is fixed, and the resulting linear program is 

solved for the optimal dispatch. This marginal price is then 

used to calculate an average energy price weighted by hourly 

energy demands for the entire time horizon. This is the flat 

tariff that we assume consumers face in the base case (no real-

time pricing structure).
1
 The single tariff combined with the 

base case hourly loads defines a price-quantity pair for each 

hour through which each hour’s linear elastic demand function 

is drawn. Own- and cross-price elasticities are included, defin-

ing decision variables (demt) equal to the load in each hour 

(rather than being a fixed coefficient): 

,t i t t t

i

g WIND curt dem    t  (3) 

The equilibrium solution considering short-term demand re-

sponse represented by the linear elastic demand function can 

be found by reformulating the Mixed Integer Linear Program 

(MILP) model as a Mixed Integer Non-Linear Program 

(MINLP) [18]. The objective function would be the maximiza-

tion of consumer and producer surplus. The objective function 

terms represent the integral of the demand functions (in the 

case of demand functions with only own-elasticities or sym-

metric cross-price coefficients) minus generation cost: 
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The first summation is the integral of the inverse demand 

function (price at hour t = Et + tFt,tdemt), which represents 

the value of consumption. To obtain net social surplus, genera-

tion costs (including marginal fuel costs, emissions penalties, 

start up costs, and wind curtailment costs) are then subtracted. 

(A full list of notation is provided in the Appendix.) 

This model can be viewed as simulating a market equilibri-

um in which the generation firm solves for its production 

schedule and calculates prices to which consumers react ac-

cording to demand functions, known by the firm. This is a 

type of Stackelberg equilibrium in which the firm is the leader 

and the consumers are followers. In general, such a model is a 

mathematical program with equilibrium constraints (MPEC) 

[23]. However, because consumers react according to demand 

functions that are the basis of the benefits in the firm's objec-

tive (4), the MPEC reduces to the above-described MINLP. 

Under the unrestrictive assumptions of (a) the existence of a 

 
1 A similar methodology could be applied to calculate weighted average prices 
for a double tariff structure, with peak and off-peak periods [31]. 

feasible solution and (b) nonnegative generation costs and 

bounded quantities demanded, a finite optimal solution will 

exist to the MINLP, and therefore an equilibrium will exist. 

According to the integrability condition, the coefficient ma-

trix Ft,t’, must be symmetric to use the QP approach. Addition-

ally, MINLPs can be hard to solve. For these reasons, an alter-

native computational procedure based on the PIES algorithm 

is attractive and used here. The PIES algorithm is compared 

with other methods in [24], which focuses on a long-term 

investment planning optimization, as opposed to the short-

term operational impacts that are the focus of this paper. 

This algorithm can approximate a non-integrable problem 

by a sequence of MILPs that account for both own- and cross-

price elasticities.
2
 This approach uses a piecewise linearization 

of the price elastic demand function. The MILPs can be solved 

by efficient optimization software [25] and do not require a 

coefficient matrix Ft,t’ with symmetric cross-price terms.  

Elsewhere, the PIES algorithm is shown to converge for en-

ergy supply models that are pure LPs [26], however, there is 

no such proof available for MINLPs such as ours. In the ab-

sence of such a proof, our use of the PIES algorithm should be 

viewed as a heuristic approach to modeling the response of 

demand with cross-price elasticities within a market with 

integer constraints. The mechanics of the PIES algorithm as 

applied here are described in section V. Appendix. 

B. Data and assumptions 

Here, we use the basic model to calculate the cost-

minimizing commitment of generation units in a system with 

high wind penetration for an illustrative 48-hour period. Ener-

gy demand data is based on an hourly load profile given in the 

“6 bus hourly data” file, available at http://motor.ece.iit.edu/ 

Data/. This website gathers multiple datasets used in several 

papers, e.g., [27] and [28]. The wind power profile captures its 

variability in a realistic manner as it is based on historical data 

(http://www.energinet.dk/). In the first six hours, available 

wind power exceeds electricity demand. Demand and power 

generation is assumed to be located in a single node; else-

where, we present results for a transmission-constrained UC 

problem [22]. In this section, perfect foresight is assumed with 

respect to real-time wind power injections as well as consum-

ers’ demand and their responsiveness to electricity prices.  

In reality the generation firm, required to balance injections 

and offtakes, might face significant uncertainty regarding the 

response of consumers to price changes.  Errors in estimating 

demand elasticities would be on top of the 2-5% errors com-

mon in day-ahead load forecasting, and the even larger errors 

in wind forecasting.  As is well known, such forecast errors 

increase the cost of system operations [29]. Thus, our model 

may overstate the ability of utilities to take optimal advantage 

of demand response.
3
 In section III, we consider the stochastic 

case on wind injections. Five technologies are represented, 

inspired by the 24-bus IEEE Reliability Test System [30] and 

 
2 This linear approximation method has good convergence characteristics. In 

the UC model, 20 piecewise steps have been created at each side of the initial 
demand level to represent the demand curve. The step size of the piecewise 

integration is reduced by a factor of 1.5 in each iteration. After 15 iterations, 

the objective value changes by less than 0.01% in consecutive iterations. 
3
 The inclusion of different uncertainty in demand elasticity will be modeled 

as multiple scenarios in stochastic unit commitment in further research. 
 

http://motor.ece.iit.edu/%20Data/
http://motor.ece.iit.edu/%20Data/
http://www.energinet.dk/
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a modified IEEE 118-bus Test System [27]. The power system 

portfolio is composed of 19 generation units (Table I). Two 

nuclear and two coal-fired power units are assumed, as well as 

three CCGT units. Nuclear power units have the lowest mar-

ginal operating cost, but are less flexible, having a slow ramp-

ing rate and a minimum run requirement stating that their 

output is always at or above their PMIN. Coal-fired and 

closed-cycle gas turbine (CCGT) units typically face shorter 

minimum on- and down-times. Finally, six Oil-fired Combus-

tion Turbines (OCT) and six Gas-fired Combustion Turbines 

(GCT) are the peaking units, being the most flexible units in 

the system. Carbon emissions are taken into account, given the 

carbon content of the fuel and an average technology efficien-

cy. The price of carbon emissions is considered to be 10 

€/tonne CO2. Finally, the option of spilling wind power is 

allowed at a penalty of 30 €/MWh. (This penalty represents 

the subsidy that the wind producer foregoes, and lies between 

the German feed-in tariff (in the neighborhood of 70 €/MWh) 

and the US federal production tax credit which was recently 

renewed (less than 20 €/MWh).) The basic model is then ex-

tended using own-price elasticities between 0 and -0.30. An 

overview of short-term price elasticity levels is given in [31] 

ranging between -0.002 to -0.158. Short-term elasticity levels 

in the same order of magnitude are suggested in [8]. 
TABLE I 

UNIT SPECIFIC OPERATIONAL PARAMETERS 

 Nuclear Coal CCGT GCT OCT 

PMAX  [MW] 400 300 250 30 30 

PMIN  [MW] 100 100 75 5 10 

EMIS  [tonne/MW] 0 0.9 0.41 0.59 0.78 

MC  [€/MWh] 10 35 50 72 (150)4 110 

SC  [€/start] 1000 800 500 80 75 

RAMP  [MW/hr] 33 40 50 100 100 

MO  [hr] 8 5 2 1 1 

MD  [hr] 8 5 2 1 1 

Number of units 2 2 3 6 6 

 

Other publications indicate that residential consumers are 

even more responsive, such as listed in [32], [33] and [34], 

between -0.18 and -0.79. The comparison of model results for 

alternative elasticity levels shows the sensitivity of the results 

with respect to the price elasticity. Positive cross-price 

elasticities are included, so that a price increase in one hour 

(which would decrease load in that hour due to the negative 

own-price elasticity) would result in load increases in other 

hours, as consumers respond to a higher price in one hour by 

shifting part of their load to adjacent hours. Sensitivity anal-

yses are undertaken assuming symmetric cross-price 

elasticities of 0.02, in which a price change in a given hour 

can equally affect loads in 1 up to 3 hours before and after the 

hour [35]. 

C. Model results 

Here we compare optimal generation, power prices, opera-

tions costs, environmental benefits and wind curtailment for 

alternative price elasticities, including zero (the base model). 

 
4 An additional Gas-fired Combustion Turbine (GCT) with a marginal operat-

ing cost of 150 €/MWh is included as a back-up option in case of restricted 
available power generation capacity. 

1) Generation outputs 

In the UC model without demand-side flexibility, Fig. 1a 

shows that wind is curtailed by more than 500 MW in hours 1-

7, resulting in prices of -30 €/MWh. It takes at least three 

hours before the nuclear power units reach rated capacity as 

enforced by the 33%/hr ramping limit. Two coal-fired power 

units are turned on in hour 8 and are restricted by their 40%/hr 

ramping limit. A first and second CCGT unit are turned on in 

hour 14 and 18 respectively, in response to peaking loads. 

Even though the demand peak is less pronounced between 

hours 32 and 36 compared to hour 20, net loads, after subtract-

ing wind power, are higher, thus requiring more conventional 

power generation.  

 

 

 
Fig. 1: Generation outputs and loads: (a) Zero price elasticity (base); (b) -0.20 

own price elasticity 

Finally, generation in hours 27 and 28 also require special 

attention. Reduced conventional energy loads during the night 

cause one coal-fired unit to be turned off. It takes five hours 

before this unit can be turned on again, due to its minimum 

down-time. At the same time, the output of the other coal-fired 

power unit is reduced to the minimum level of 100 MW. Also 

the output of the nuclear power unit is slightly reduced.  

In contrast, Fig. 1b shows the generation outputs given a 

0.20 own-price elasticity. Looking at the first 8-hour period, 

loads are increased by about 500 MW. Simultaneously, initial 

peak load levels are reduced by almost 300 MW or 10% be-

tween hours 18 and 22. Valley fill effects during the first 

hours of this period allow an earlier start-up of the nuclear 

power units. Valley filling also occurs during the off-peak 

period between the first and the second 24-hour period, espe-

cially around hours 27-28. The increased generation from the 

nuclear unit also significantly increases its capacity factor (the 

ratio of actual energy generated by a unit to the maximum 

possible energy) (Fig. 2).  
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CCGT units are typically used to satisfy demand for elec-

tricity during higher load periods. CCGT generation is reduced 

when increasing demand-side flexibility. Furthermore, it is no 

longer necessary to turn on a second CCGT unit in the first 

24-hour period. Loads are also reduced at the peak load period 

during hours 32-44 by about 150 MW. As a result, not only 

the CCGT output is reduced, but also the third CCGT unit is 

switched off after hour 35, reducing its capacity factor.  

 
Fig. 2: Capacity factors for nuclear, coal-fired and CCGT power units under 

alternative demand elasticities (0=base case) 

2) Electricity prices 

First we discuss marginal costs from the base solution, 

which are also the prices in the zero elasticity, real-time pric-

ing case. Afterwards, those are compared with the marginal 

cost (price) in the -0.20 own-price elasticity case. 

The real-time marginal price for the UC model without re-

sponse is shown by the solid line in Fig. 3. The coal-fired unit 

is the marginal unit in hours 9-14 and 29-31, yielding a price 

equal to its marginal cost of 44 €/MWh. This cost equals the 

coal fuel cost of 35 €/MWh plus an emissions cost of 9 

€/MWh (0.9 tonne CO2/MWh times the CO2 emission price of 

10 €/tonne). A CCGT is the marginal power source in hours 

15-24 and 36- 46. Its marginal cost, including fuel and emis-

sions, yields an electricity price of 54.1 €/MWh. Similarly, the 

electricity price when the GCT or OCT are marginal results in 

electricity prices of 77.9 €/MWh (hour 33 and 35) and 117.8 

€/MWh (hour 34), respectively. During hours of wind power 

curtailment, the price of electricity becomes negative in the 

base solution, because increasing electricity demand by one 

MWh reduces curtailment costs by 30 €/MWh. For some other 

hours, prices spike up or down because of the interaction of 

ramp constraints with dispatch (e.g., hours 8 and 28). A spike 

up can occur when a load increase in a given period not only 

increases generation in that period but also forces substitution 

of costly generation for cheaper in an earlier period. This hap-

pens because a binding ramp constraint is forcing the cheaper 

generator downward in order to make it possible for the sys-

tem to attain the required ramp level [36]. 

 
Fig. 3: Comparison of real-time price of electricity to flat tariff 

In the extended model, we assume that consumers react 

when prices deviate from the base (flat) tariff. This flat tariff 

of 42.7 €/MWh is calculated as the quantity-weighted average 

electricity price for the UC model without demand response. 

Market-clearing hourly electricity prices with -0.20 own-price 

elasticity are compared to the flat tariff in Fig. 3. The latter 

prices are not the same as the marginal costs under zero price 

elasticity because of shifts in demand (valley-fill and peak-

reduction) result in different generation units being on the 

margin. This generally makes prices less extreme, and erases 

the price spikes associated with high ramps. 

3) Operations costs 

Price-based demand response also impacts operations costs 

(Table II). Increasing the assumed level of own-price elasticity 

from -0.10 to -0.30 reduces total operations costs by approxi-

mately 10% to 20% in this 48-hour period. The inclusion of 

cross-price elasticities, representing shifting of electricity 

consumption, decreases the operations cost reductions, be-

cause negative own-price elasticities are counteracted by posi-

tive cross-price elasticities. For instance, if price increases in 

one hour, demand is dampened in that hour, but there is offset-

ting increases in loads in other hours. These cross-price effects 

mean that the cost savings are appreciably less than if only 

own-effects are assumed. Table II shows that when the great-

est amount of cross-price effect is assumed, the cost savings 

relative to the zero elasticity case is roughly 60% compared to 

the own-price elasticity only case. 

4) Carbon emissions and wind curtailment 

Price-based demand response can have environmental bene-

fits. Demand response reduces net load variance, causing the 

more efficient units to generate more, although that does not 

always mean the cleanest units [37]. In this example, however, 

nuclear power units increase their output, while the power 

output of the polluting CCGT unit is reduced. Price response 

yields CO2 emission reductions of 5 to 10% relative to initial 

emissions. Price responsive consumers also facilitates wind 

integration. Hourly wind power spillage of 21% in the refer-

ence scenario is reduced to about 7% in hour 2 and 3, assum-

ing only a -0.10 own-price elasticity. With a -0.20 own-price 

elasticity or greater, wind is no longer curtailed. 

TABLE II 
OPERATIONS COSTS AND ENVIRONMENTAL BENEFITS UNDER ALTERNATIVE 

PRICE ELASTICITIES 

Own elast. Total  

costs [€] 

Fuel  

costs [€] 

Start-up  

costs [€] 

Emissions  

[tonne] 

Curtailment  

[MWh] 

-0.00 1,930,439 1,631,733 7,370 22,489 2,215 

-0.10 1,740,739 1,509,056 6,900 21,384 365 

-0.20 1,618,328 1,407,201 6,400 20,474 0 

-0.30 1,536,919 1,332,857 6,400 19,767 0 

-0.20 own- with ± 1, 2, 3 hours of +0.02 cross-price elasticity 

1 h 1,657,253 1,442,324 6,900 20,803 0 

2 h 1,692,533 1,473,885 6,900 21,097 26 

3 h 1,731,282 1,506,795 6,900 21,308 150 

5) Impact on market efficiency 

The general impact of consumers adjusting electricity con-

sumption in response to short-term dynamic pricing on eco-

nomic surplus (consumer plus producer surplus) is described 

in [38]. Model results in Table III show the welfare impacts of 

increasing the own-price elasticity of electricity demand for 
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the 48 hour period. On average, consumption benefits (integral 

of the demand curve) are reduced as load shrinks, but total 

cost is reduced even more. Consequently, total surplus (and 

thus market efficiency) grows as the own-price elasticity is 

increased. We also express these changes in generation costs 

and surplus as a proportion of the generation costs in the ‘no 

response’ case. Table III suggests that generation costs can be 

reduced by as much as 20%, assuming a -0.30 own-price elas-

ticity. But total surplus improves less (just 10.14%), because 

consumption benefits also decrease. 
TABLE III 

IMPACT OF OWN-PRICE ELASTICITIES ON WELFARE 

Own-price elasticity -0.10 -0.20 -0.30 

Consumption benefit change [€] -87,071 -149,651 -197817 

Generation cost change [€] -189,700 -312,111 -393,520 

Total surplus change [€] 102,628 162,460 195,703 

Generation cost change [%] -9.83% -16.17% -20.38% 

Total surplus change [%] 5.32% 8.42% 10.14% 

III. DEMAND RESPONSE WITH WIND POWER STOCHASTICITY 

This section departs from the assumption of perfectly pre-

dictable wind power injections. The UC model is extended so 

that commitment decisions account for possible wind forecast 

errors in later periods. As a result, the model automatically 

commits additional reserve capacity to maintain reliable sys-

tem operation in case forecasts are wrong. Also, in case wind 

power injections are underestimated, the UC solution main-

tains downward ramp capability. But flexible generation may 

be more costly than other types of thermal generation; as a 

result, commitment of too much flexible capacity may in-

crease system costs more than necessary [39]. Actual dispatch 

and demand response is then determined in real-time, when 

the wind output is known. Depending on the real-time wind 

power injection, a different price is sent to the consumers, 

resulting in scenario-specific levels of electricity demand, 

under the assumption that consumers can react to real-time 

prices.
5
 

A. Model extension 

The first step in including uncertainty about the real-time 

wind power injection in the system involves formulating a 

stochastic mixed-integer linear programming (MILP) model. 

Stochasticity is represented by a scenario tree for possible 

wind power generation forecasts for each individual hour as in 

[40], which like [31] does not consider the effect of price-

responsive consumers. The inclusion of stochasticity means 

that scenario-specific parameters as well as scenario-specific 

decision variables must be defined, indicated by index j [41]. 

Hourly wind power injections become scenario-specific 

(windt,j). An equal probability is assigned to each of the three 

scenarios (PRj = 1/3), as in [42]: 

 Scenario 1: Overestimate: less wind injected in real-time 

 Scenario 2: Wind power correctly forecasted 

 Scenario 3: Underestimate: more wind injected in real-time 

However, because of the size of a model with a full scenario 

tree with all combinations of all scenarios would be very large 

 
5 Actual dynamic pricing mechanisms usually involve communication of day-

ahead prices rather than real-time prices to consumers. The assumption here is 
that real-time prices are communicated, reflecting actual wind conditions, and 

then reacted to by consumers. Including a lag between forecast and actual 

prices in the UC is possible, e.g., by making decision about load levels at the 
same time as UC decisions rather than when dispatch decisions are made. 

[32], we simplify the stochastic structure by assuming that 

each of the three scenarios in a given hour could occur, so that 

the unit commitment is optimized day-ahead recognizing that 

all three possibilities could occur. Ramp requirements or 

commitments of short-start units for each scenario are satis-

fied, assuming that Scenario 2 occurs in the previous hour.   

This could be viewed as a simplification of a more extensive 

stochastic unit commitment that considers changes in load 

from all possible scenarios in a previous hour, but such a Mar-

kov representation greatly increases the size of the problem.  

Our representation is a compromise between the need for 

computational efficiency and the desire to capture uncertainty 

across a range of possible ramps and load changes from hour 

to hour. This allows modeling of the effects of uncertainty 

without resulting in an explosive number of wind scenarios. 

A sensitivity analysis calculates the impact of forecast er-

rors for 4 alternative cases, respectively with the three scenar-

ios of a correct forecast, an over- and underestimate of 10%, 

15%, 20% and 25% in each hour of the projected wind power 

injections, corresponding to experience in Western Denmark 

for day-ahead forecasts, meaning 13 up to 37 hours ahead 

[43]. In a stochastic program, decision variables are divided 

into first-stage (‘here-and-now’) and later stage (‘wait-and-

see’) variables as illustrated by Fig. 4. The here-and-now 

variables represent commitments made before it is known 

which scenario will occur, while the ‘wait-and-see’ variables 

are scenario-specific, chosen once the scenario is known in 

hour t. So-called ‘non-anticipativity’ constraints ensure that 

the here-and-now variables are the same for all scenarios.  

 
Fig. 4: Decision tree for stochastic two stage problem 

Here-and-now variables include the 0-1 binary variables 

that represent nuclear, coal-fired and CCGT commitments 

(zt,i). These commitments are assumed to be made day-ahead. 

Thus, the on or off status of these units is assumed to be fixed 

for all scenarios for a given hour (non-anticipativity).  

Wait-and-see variables are the four scenario-specific sets of 

primal variables defined for decisions that are deferred until 

the wind scenario is known. These include the amount of wind 

power curtailment (curtt,j); the thermal unit dispatch variables 

(gt,i,j); OCT and GCT commitments; and responsive load lev-

els. The net load that must be met is scenario-specific, so each 

scenario j in each hour t has a separate set of recourse varia-

bles. Generation for each unit in each of the scenarios in a 

given hour must satisfy ramp limits (RAMPi), assuming that 

the scenario 2 solution has occurred in the previous hour (t-1): 

, , 1, ,2t i j t i i ig g RAMP PMAX    , ,t i j  (5) 

, , 1, ,2t i j t i i ig g RAMP PMAX     , ,t i j  (6) 

The scenario-specific GCT and OCT unit status variables also 

require a scenario-specific start-up cost (SCt,i,j). The resulting 

scenario-specific costs are included in the objective function, 

which weights costs by the assumed probability PRj: 
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PR CC curt PR SC      (7) 

There are also scenario-specific constraints; in particular, 

power balances in each j guarantee that power injected and 

consumed is equal in every hour for every scenario: 

, , , , ,t i j t j t j t j

i

g WIND curt dem    ,t j  (8) 

Its dual variable is the scenario-specific electricity price. Then, 

assuming price-based demand response, scenario-specific 

prices finally yield scenario-specific hourly electricity loads, 

which are the fourth set of scenario-specific primal variables. 

B. Stochastic model results 

The introduction of price-based demand response in the 

model with wind power uncertainty impacts optimal genera-

tion and the corresponding market-clearing equilibrium prices. 

We also compare costs, emissions and wind curtailment for 

the cases with and without price-based demand response. 

1) Generation outputs 

Generation outputs in Fig. 5 illustrate the impact of de-

mand-side flexibility, assuming a -0.20 own price elasticity. 

Each of the scenarios has a probability of occurrence of 1/3, 

satisfying operational constraints assuming Scenario 2 in the 

previous hour. In the correct forecast case, loads are increased 

by up to 500 MW in the first hours because of negative prices, 

relative to the initial load level. During the other hours, load is 

less significantly impacted because prices are closer to the flat 

tariff. The price responsive load profile rarely deviates in later 

hours more than 100 MW from the base levels. In this case, 

several generation units are committed, providing reserve 

capacity to deal with the wind power overestimation case. 

The wind power overestimation case (scenario 1) is where 

the amount of realized wind power is 25% less than forecast-

ed. With consumers responding to real-time price signals, this 

deficit can be offset by increasing conventional power genera-

tion outputs or by lowering real-time electricity loads. Fig. 5a 

suggests that demand is reduced compared to the initial load 

(dashed line) when less wind power is realized in real-time. 

For instance, demand drops by 340 MW and 400 MW, absorb-

ing 85% and 100% of the forecast error in hours 9 and 8, re-

spectively. This means that in some hours, the entire amount 

of required flexibility in the system is provided by the de-

mand-side. On average, more than 45% of the forecast errors 

in scenario 1 are resolved by the demand-side. By reducing 

loads, GCT and OCT power generation is avoided, which also 

saves significant amounts of fuel expenses and lowers prices. 

 

 
Fig. 5: Generation outputs with wind uncertainty 

The wind underestimation case (scenario 3) is where 25% 

more wind power arrives in real-time than is forecasted. When 

consumers are able to respond to real-time price signals, this 

surplus can be offset by lowering conventional power genera-

tion outputs or by increasing real-time electricity loads. Lower 

prices motivate consumers to use more power compared to the 

initial load (dashed line in lower graph). Between hours 9-13, 

real-time hourly electricity loads are increased by about 200 

MW, absorbing more than 50% of the wind power injection 

surplus. Demand response also allows the nuclear power unit 

to operate at capacity. On average, more than 25% of the fore-

cast errors in scenario 3 are absorbed at the demand-side.  

2) Electricity prices 

Electricity prices are shown in Fig. 6 for the three wind 

forecasting scenarios. Electricity prices in the upper graph (a) 

(without demand response) can be explained by the marginal 

generator in each hour. Prices are commonly higher when less 

wind power is injected. For instance, in hour 34 with scenario 

1, the back-up GCT unit must be started-up with marginal 

costs of 155.9 €/MWh, including emission costs.  
(a) 
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Fig. 6: Electricity prices with wind power uncertainty: with and without price 

elastic demand  

With price responsive load (Fig. 6b), higher prices still oc-

cur when less wind power is injected. However, the differ-

ences in prices between the correct forecast scenario and the 

other two cases are reduced. This directly relates to ability of 

demand response to eliminate the need to dispatch peaking 

units, reducing upward price spikes. Also, the amount of wind 

power curtailment is reduced. 

3) Operations costs  

Operations costs, carbon emissions and wind power cur-

tailment levels are summarized in Table IV with and without 

price elastic demand, not only for the 25% forecast errors as in 

Figs. 5 and 6, but also for lesser amounts of forecast error. The 

results are expected values over the three scenarios (i.e., each 

weighted by 1/3, the assumed probability for each scenario). 

Without price-based demand response, expected operations 

costs are 2.7% to 5% higher relative to the analysis without 

forecast errors (Table II), assuming forecast errors ranging 

from 10% to 25%. This difference in total costs indicates the 

extent to which deterministic models underestimate the cost of 

wind power integration [44]. Larger forecast errors give higher 

fuel as well as start-up costs. This higher cost occurs for two 

reasons. One is that higher commitment costs are incurred for 

the nuclear/coal/CCGT units because more are committed than 

in the deterministic solution in order to accommodate the 

possibility of significantly higher net load. The second is that 

thermal generation costs are generally a convex function of net 

load, with the cost increase resulting from an increase in load 

being greater in magnitude than the cost decrease resulting 

from a similar decrease in load.  

When consumers are able to adjust their loads, the system 

has more flexibility to deal with wind forecast errors. The 

demand flexibility means that the system can avoid dispatch-

ing expensive generators and reduces partial loading of power 

units. Consequently, expected costs are reduced by 10%, given 

a 10% forecast error, and up to 15% for a 25% forecast error, 

assuming a -0.20 own-price elasticity. Consequently, demand-

side participation is a way to reduce the cost of poor forecasts.  

TABLE IV 

EXPECTED OPERATIONS COSTS, EMISSIONS, AND WIND CURTAILMENT WITH 

WIND POWER UNCERTAINTY: WITHOUT PRICE-BASED DEMAND RESPONSE 

Forecast 

error 

Total costs 

[€] 

Fuel costs 

[€] 

Start-up 

costs [€] 

Emissions 

[tonne] 

Curtailment 

[MWh] 

Inelastic electricity demand 

10% 1,945,090 1,643,486 8,123 22,520 2,276 

15% 1,965,769 1,661,006 8,244 22,490 2,387 

20% 1,999,534 1,687,788 8,803 22,560 2,578 

25% 2,043,417 1,722,863 8,559 22,635 2,855 

-0.20 own-price elasticity 

10% 1,663,473 1,445,806 6,900 21,002 29 

15% 1,652,165 1,433,896 6,900 20,796 120 

20% 1,690,477 1,466,710 6,900 20,904 270 

25% 1,700,182 1,471,263 6,900 20,843 460 

4) Emissions and Wind Curtailment 

When loads adjust in response to electricity prices, carbon 

emissions can be reduced by 6.5% to 8% assuming a 10% to 

25% forecast error, respectively. Short-term price-based de-

mand response reduces the amount of wind curtailment dra-

matically. When loads cannot adjust in response to prices, an 

oversupply of wind must be increasingly curtailed with in-

creasing forecast error. As suggested by the results in Table 

IV, wind variations can easily be absorbed by demand re-

sponse. With zero elasticity, the total level of curtailment is 

2,855 MWh under a 25% forecast error; in that case, a flexible 

demand-side can reduce curtailment by almost 85% to 460 

MWh. 

IV. CONCLUSIONS  

UC models optimize short-term operation of available gen-

eration units, accounting for technical constraints. In typical 

applications, loads are assumed to be fixed, so flexibility to 

adapt to demand or wind forecast errors must be provided by 

thermal generation. However, a smart meter roll-out plus real-

time pricing facilitates demand-side flexibility. This provides 

economic value in the form of generation cost reductions and 

avoided wind power spillage, which we quantify in this paper. 

We include price responsive load in a UC model. Consum-

er’s ability to adjust load in response to price is modeled using 

hourly elastic demand functions. We represent their flexibility 

by own- and cross-price elasticities. 

Increasing consumer responsiveness to price deviations on 

the one hand reduces peak loads, avoiding expensive peak 

load power generation. On the other hand, demand valleys 

with low electricity demand or excess wind power generation 

can be filled, increasing the output of less expensive power 

generation and providing additional benefits of consumption. 

Consequently, the capacity factor of base load generation 

increases, whereas peakers see reduced capacity factors. In 

addition to those cost reductions, the integration of non-

dispatchable wind power generation is improved, measured by 

the amount of wind spillage avoided. 

Positive cross-price elasticities, representing the shift of 

loads from high price to low price periods, are modeled using 

an iterative linearization technique based on the PIES algo-

rithm. If there are such cross-price effects, disregarding them 
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in unit commitment modeling results in an exaggeration of 

cost savings from responsive demand.  

Finally, a flexible demand-side proves to be effective in 

dealing with the unpredictability of real-time wind power 

injections. A stochastic UC model indicates that the costs of 

wind power forecast errors can be significantly reduced by 

demand-side flexibility. As the instantaneous system power 

balance no longer needs to be maintained by supply-side flex-

ibility alone, greater amounts of wind power can be integrated 

into the system with fewer problems from forecast errors.  

V. APPENDIX  

A. Nomenclature 

Sets Indices 

T Index of hours t 

T’ Index of cross-hours t’ 

I Generation technologies  i 

J Index of scenarios j 

Parameters 

E, F Parameters of the linear inverse demand func-

tion P (as a function of quantities demanded) 

with F symmetric elasticity matrix for own- 

and cross-price elasticity 

CC  Cost of wind power curtailment [€/MWh] 

D Demand function 

dem0 Initial demand level [MWh] 

ε Price elasticity 

EMIS Marginal emission [tonne CO2/MWh] 

EP Emission price [€/tonne CO2] 

MC Marginal generation costs [€/MWh] 

MD Minimum down-times [h] 

MO Minimum on-times [h] 

P Inverse demand function  

p0 Reference price level [€/MWh] 

PMAX Maximum output level [MW] 

PMIN Minimum run level [MW] 

PR Probability of occurrence of a scenario 

RAMP Maximum ramping rate [%/h] 

SC Start-up costs [€] 

WIND Wind power injection [MW] 

Decision variables 

curt Wind power curtailment [MWh] 

dem Elastic demand level [MW] 

g Output of generation unit [MW] 

p Hourly electricity price [€/MWh] 

z 0-1 variable indicating whether a plant is on 

(1) or off (0)   

Auxiliary variable 

s_costs Start-up costs [€] 

B. General unit commitment model statement 

The objective of the deterministic model is presented in (9). 

This is a welfare maximization objective where the total sys-

tem costs are subtracted from the total utility of consuming 

electricity. Total utility is presented by the integral of the 

inverse demand function Pt( ). System constraints are listed 

below in (10)-(17). 

, ' '

'

1

2
t t t t t t

t t

Max Welfare dem E dem F dem

  
         
    

   

, ,

,

( )t i i i t i t

t i t

g MC EP EMIS s_costs CC curt

 
 

       
 
 

 
 

(9) 

Subject to: 

,t i t t t

i

g WIND curt dem    t  (10) 

, ,t i t iPMIN z g   ,t i   (11) 

, ,t i t iPMAX z g   ,t i   (12) 

, 1,t i t i i ig g RAMP PMAX    ,t i   (13) 

, 1,t i t i i ig g RAMP PMAX     ,t i   (14) 

, , 1,[ ]t i i t i t is_costs SC z z     ,t i   (15) 

, 1, 1, , 1t i t i t v i t v iz z z z         
     , , [1,2,..., 1]it i v MO      (16) 

1, , , 1, 1t i t i t v i t v iz z z z         
     , , [1,2,..., 1]it i v MD      (17) 

where 

, ,, , _ 0t i t t ig curt s costs 

  , 0,1t iz   

C. Details of the PIES algorithm  

The PIES algorithm is an iterative approach that, in each it-

eration, solves a linear model that includes a piecewise linear 

approximation of the welfare function is created, accounting 

for the marginal effects of changes in quantity upon market 

welfare around the previous solution [21,22]. The optimal 

hourly demand levels demt are chosen such that market sur-

plus (the integral of the demand function, minus the genera-

tion and investment costs) is maximized. An iterative proce-

dure adjusts the welfare function approximation and solves the 

MILP until the algorithm converges to the equilibrium solu-

tion. The algorithm assumes that own-price elasticities are 

higher in magnitude than the sum of the cross-price elasticities 

with other commodities, and a symmetric elasticity matrix is 

used as an approximation of the actual matrix. 

In each PIES iteration, in order to find an appropriate solu-

tion to this problem, perturbations y
+

t,n and y
-
t,n are introduced, 

defined as the difference between initial demand level DEMt 

for each hour t and a new demand level demt. These continu-

ous, positive variables y
+

t,n and y
-
t,n allow building a partition 

of the interval around the anchor point with the initial demand 

level DEMt. Given set N (n= 1,…,m-1,m), y
+

t,n constructs m 

steps in the demand function approximation on the right-hand 

side of initial demand level DEMt, while y
-
t,n constructs m 

steps on the left-hand side of DEMt (Fig. 7), where variables 

y
+

t,n and y
-
t,n are respectively constrained by upper bounds V

+
t,n 

and V
-
t,n, being the maximum partition size on the right- and 

left-hand side: 

, ,0 t n t ny V    ,t n   (18) 

, ,0 t n t ny V    ,t n   (19) 
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For each step around the initial demand levels, objective 

function (price) coefficients P
+

t,n and P
-
t,n are defined for the y 

variables resulting in the approximation of the inverse demand 

function shown in Fig. 7. These coefficients are defined by the 

original inverse demand function Pt( ) as follows:  

, ,

1

( )

m

t n t t t n

n

P P DEM V 



   ,t n   (20) 

, ,

1

( )

m

t n t t t n

n

P P DEM V 



   ,t n   (21) 

(This is for the case of own-price elasticities only, so that Pt() 

is a function only of quantity demanded in hour t. In the more 

general case of cross-price elasticities, Pt() is also a function of 

quantities demanded in other hours.) 

 
Fig. 7: Partitioning for piecewise integration 

The effect is to approximate the integral calculating the 

consumer’s value of consumption by the piecewise approxi-

mation in the objective: 

0

( )

t tDEM y

tP q dq



  (22) 

, , , ,

10

( ) ( ) ( )

tDEM m

t t n t n t n t n

n

P q dq P y P y   



     
    (23) 

where: 

, ,

1

( )

m

t t n t n

n

y y y 



   t  (24) 

Increasing demand beyond the initial demand levels DEMt, 

(i.e., when some y
+

t,n > 0), increases the value consumers 

receive from consumption in (23). Correspondingly, decreas-

ing demand (when some y
-
t,n > 0) decreases consumer value. 

The resulting approximations to the changes in consumer 

value (integral of the demand curve) are illustrated by the gray 

rectangles in Fig. 7. This approximate expression replaces the 

demand curve integrals in the general unit commitment model 

(9)-(17). In the constraints, only the system power balance 

requirement (10) is changed so that: 

, ,( )t n t n t t

n

y y DEM dem     (25) 

A solution to this model yields optimal values for decision 

variables y
+

t,n and y
-
t,n, which is an approximate solution to the 

welfare maximization problem. Then the PIES algorithm pro-

ceeds by inserting the resulting prices into the original system 

of demand equations and calculating a new set of DEMt, and 

then deriving a new approximation (Fig. 7) around that those 

new demands. The algorithm continues until the DEMt in 

successive iterations are sufficiently close.  
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